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Abstract
Machine learning (ML) has been perceived as a promising tool for the design and discovery of novel materials for a broad range of applica-
tions. In this prospective paper, we summarize recent progress in the applications of ML to composite materials modeling and design. An
overview of how different types of ML algorithms can be applied to accelerate composite research is presented. This framework is envisioned
to revolutionize approaches to design and optimize composites for the next generation of materials with unprecedented properties.

Introduction
Designing novel materials with superior tailored properties is
the ultimate goal of modern engineering applications.[1–5] In
the past few decades, with rapid advances in high-performance
parallel computing, materials science, and numerical modeling,
many essential properties of materials can now be calculated
using simulations with reasonable accuracy. For example, the
chemical reactivity and stability of molecules can be estimated
using density functional theory (DFT).[6,7] Molecular dynamics
(MD) and the finite element method (FEM) can be applied to
simulate a wide range of mechanical behaviors of materials
at the nano-scale and continuum-scale, respectively.[8,9]

Nowadays, simulations of material properties can be performed
on a laptop, workstation, or computer cluster, depending on the
computational cost. In general, performing simulations to pre-
dict the properties of a material is much faster and less expen-
sive than synthesizing, manufacturing, and testing the material
in a laboratory. Moreover, simulations offer very precise con-
trol over environments and offer more detailed information of
material behavior and associated mechanisms under different
conditions, many of which cannot or would be very difficult
to be observed using experiments. For instance, the stress
field of a composite material under fracture and the motions
of each molecule in an organic material under loading can be
predicated in simulations but are difficult to measure in exper-
iments. It is this reason that many studies in the literature have
focused on advancing computational tools and methods to
model various types of materials.[10–18]

Compared with solely predicting properties of known mate-
rials, designing new materials to achieve tunable properties is a
more important problem for scientific and engineering pur-
poses. In fact, predicting materials’ properties and designing
materials are quite different problems, in which the former is
often referred to as a forward modeling problem and the latter

is an inverse design problem. For a forward modeling problem,
the structure (e.g., atomic constituents, crystal structure, and
topology) of the material to be investigated is usually given
and the properties are governed by physical laws such as
quantum mechanics, thermodynamics, and solid mechanics.
Consequently, various types of properties at different length-
and time-scales can be calculated numerically by solving the
corresponding governing equations using proper physics-based
modeling tools such as DFT, MD, and FEM. However, there is
no physics-based modeling tool that can solve inverse design
problems—that is, to generate the structure of a material with
a given set of required properties. In practice, one common
approach to solve inverse design problems is using domain
knowledge and experience (intuition) to narrow down the
design space and propose new materials by trial and error, as
shown in the flow chart of Fig. 1. For example, many biomate-
rials such as nacre and bone have remarkable mechanical prop-
erties despite being composed of relatively weak components.
Consequently, it is plausible to study the architectures of these
biomaterials and learn the structure–property relationships nec-
essary for achieving improved properties of materials. Thus, the
knowledge gained can be applied to design new materials in a
case-by-case manner. This approach is referred to as biomimi-
cry and pursuant designs are termed bioinspired.[8,19–25] If the
design space can reasonably be parameterized into composi-
tional and configurational degrees of freedom, it is possible
to solve inverse design problems by using a physics-based
modeling tool with a brute-force exhaustive search approach
to explore the entire design space. This approach is referred
to as high-throughput computational screening and is explored
for various materials. For example, Emery et al. used high-
throughput DFT to screen ABO3 perovskites based on thermo-
dynamic considerations.[26] Chen et al. proposed the most sta-
ble molecular structures for eumelanin and polydopamine by
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using high-throughput DFT to screen thousands of probable
candidates.[6,7] However, when the design space is vast, using
a brute-force approach is computationally infeasible even
with modern algorithms and supercomputers. Therefore, opti-
mization methods such as greedy algorithms and gradient-
based algorithms are typically implemented in inverse design
problems to search for optimal designs without having to
explore the entire design space. Despite the high computational
efficacy of optimization methods, the optimal solutions often
depend on the initial configuration (initial values of design var-
iables) adopted in the optimization process. Therefore, the solu-
tions obtained from those optimization methods not only vary
from one initial configuration to another but also, in some
cases, can be stuck in local minima or critical points.
Consequently, it is crucial to investigate alternative methods
to make the inverse design of materials possible.

In addition to the old-fashioned materials’ design
approaches mentioned above, data-driven approaches based
on machine learning (ML) techniques may transform the
approaches of materials’ design in the future as shown in
Fig. 1. ML, a branch of artificial intelligence, uses a variety
of statistical and probabilistic methods that allow computers
to learn from experience and detect hidden patterns (the corre-
lations between input and output variables) from large and
oftentimes noisy datasets.[27–30] Through evaluating only a por-
tion of the possible data, ML algorithms can detect hidden pat-
terns in the data and learn a target function that best maps input
variables to an output variable (or output variables)—a proce-
dure referred to as the training process. With the extracted pat-
terns, predictions for unseen data points can be made and allow
for generalizations with a limited amount of data rather than
using an exhaustive approach to explore all possible data

points. Recently, ML has turned our daily life to be more con-
venient in numerous ways by influencing image recognition,
autonomous driving, e-mail spam detection, among oth-
ers.[31–38]

In the field of materials science, most ML applications are
concentrated on discovering new chemical compounds or mol-
ecules with desired properties. Those studies can be categorized
into a subfield of ML for materials chemistry. One of the most
challenging and active research topics in this subfield is finding
a suitable representation (e.g., descriptors and fingerprints) of
a molecule or crystal structure to be used as input variables
in ML models.[39,40] This process is referred to as feature engi-
neering (Fig. 1). Such representation can be coarse-level
chemo-structural descriptors or something containing informa-
tion of molecular electronic charge density.[34] In this area,
Dieb et al. applied ML models to search for the most stable
structures of doped boron atoms in graphene[41]. Hansen
et al. applied a number of ML techniques to predict ground-
state atomization energies of small molecules.[32] Botu et al.
showed that energies and atomic forces may be predicted
with chemical accuracy using an ML algorithm.[28] In the
work of Mannodi-Kanakkithodi et al., the authors used ML
methods to design polymer dielectrics.[33] Meredig et al.
showed that the thermodynamic stability of compounds can
be predicted using an ML model.[42] Pilania et al. used ML
models trained on quantum mechanical calculations and com-
pared properties such as atomization energy, lattice parameter,
and electron affinity with their model.[34] As with other appli-
cations, applying ML to discover new materials requires a
large amount of training data, which can either be attained com-
putationally or experimentally. In addition to generating
required training data using physics-based modeling tools,

Figure 1. Comparison of materials’ design approaches based on domain knowledge and ML. The flowchart shown in blue represents the
domain-knowledge-based materials’ design approach and the flowchart shown in green represents the machine-learning-based materials’ design approach.
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numerous materials’ databases provide universal access to
abundant materials’ data. Some of the most comprehensive
materials’ databases include the Materials Project, Automatic
Flow for Materials Discovery, Open Quantum Materials
Database, and Novel Materials Discovery. De Jong et al. pre-
dicted bulk and shear moduli for polycrystalline inorganic com-
pounds using training data from the Materials Project.[43] Ward
et al. used training data from the Open Quantum Materials
Database to discover new potential crystalline compounds for
photovoltaic applications.[44]

There are many instructive and inspiring review papers in
the literature on applying ML to accelerate the discovery of
new compounds.[31,34,45–48] In this prospective paper, we
focus instead on another type of material—composite materi-
als. Composites, composed of two or more base materials,
are commonly used as structural materials.[2,4,49,50] The base
materials oftentimes have vastly distinctive properties and the
combined architecture built from the base materials allows
composites to possess unprecedented properties. Despite the
vast design space of composites, traditional manufacturing
methods have limited composite architectures to mostly lami-
nate structures. In the past, more complex composites with hier-
archical and porous features were difficult to be realized.
Recent advances in additive manufacturing, however, have
opened up the design space of composites and allowed for
the creation of complex materials with internal voids and mul-
tiple materials.[51–60] With this newfound freedom when it
comes to the realization of complex shapes, optimization of
structures become essential to achieve superior materials.[61–65]

Consequently, finding a rational way to select optimal architec-
tures would be crucial when it comes to realizing the full
potential of composite materials in engineering applications.
Recently, ML has been perceived as a promising tool for the
design and discovery of new composite materials.[35,66–70]

In this prospective paper, we discuss recent progress in the
applications of ML to composite design. Here, the focus will be
on the applications of using ML models to predict mechanical
properties (e.g., toughness, strength, and stiffness) of compos-
ites as well as applying ML models to design composites with
desired properties. We review some basic ML algorithms
including linear regression, logistic regression, neural networks
(NN), convolutional neural networks (CNN), and Gaussian
process (GP) in the context of materials design. Recent studies
(both experimental and computational) on applying those ML
algorithms to composite research (including nanocomposites)
is also discussed and highlighted in Table I. Lastly, we con-
clude with a summary and future prospects in this rapidly grow-
ing research field.

Linear regression
Numerous ML algorithms have been developed for different
types of learning purposes such as supervised learning, semi-
supervised learning, and unsupervised learning. Supervised
learning (i.e., predictive modeling) is the most widely used
learning approach in scientific and engineering fields. Among

all supervised learning algorithms, linear regression is the
most basic one and has been studied and used extensively.
Unlike other more complex (deep) ML models (e.g., NN and
CNN), which are often being considered as “black box”models
because of their complexity, a linear (regression) model has
high interpretability of the relationship between input and out-
put variables. The hypothesis of linear regression is:

y = wTx (1)

wherew represents the learnable parameters or weights (includ-
ing a bias w0), x represents the input variables (including a
constant x0 for the bias term), and y represents the output var-
iable (dependent) of the model. One common technique to esti-
mate the loss (error) in a regression model is using the mean
squared error (MSE), which is used to quantify how close or
far the predictions are from the actual quantities. The MSE is
computed as follows:

E = 1

N

∑N

n=1

(yn − ŷn)
2 (2)

where N is the number of data points (samples) used to calcu-
late the MSE, yn is the prediction of sample n (from ML mod-
els), and ŷn is the actual quantity of the sample (ground truth).
Once the error function of a model is defined, the weights of the
model can be calculated by an optimization algorithm such as
the classical stochastic gradient descent or the Adam optimiza-
tion algorithm. Linear regression has been widely applied to
various research problems because of its simplicity and high
interpretability. For the applications in composite materials,
Tiryaki et al. showed that linear regression can be applied to
predict the compressive strength of heat-treated wood based
on experimental data (Table I).[71] In the authors’ work, the
input variables include wood species, heat treatment tempera-
ture, and exposure time. The output variable is the compressive
strength of heat-treated woods. Khademi et al. and Young et al.
applied linear regression to predict concrete compressive
strength, in which the input variables include experimentally
measured concrete characteristics and mixture proportions
(Table I).[72,73] In those studies, in addition to the linear models,
the authors also performed more complex ML models such as
NN models for their regression tasks. The authors showed that
more complex ML models, in general, offered more accurate
predictions. However, in those studies, the linear models pro-
vided valuable information like which input variables (e.g.,
treatment conditions and material features) were more impor-
tant (with higher influences) to the prediction (e.g., compres-
sive strength). Note that linear regression assumes a linear
relationship between input variables and the prediction. Most
problems have different degrees of nonlinear characteristics
and linear regression is not appropriate for highly nonlinear
problems in which the relationship between the input and out-
put variables cannot be approximated by a linear function.
However, it is always a good idea to try linear regression (or
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other simple ML algorithms) first to see how difficult the prob-
lem is before applying other more complex ML algorithms.

Logistic regression
Unlike linear regression which is used for the prediction of
continuous quantities, logistic regression is mostly used for
the prediction of discrete class labels. Logistic regression
predicts the probabilities for classification problems with two
possible categories. A logistic function is used in logistic
regression to force the output variable to be between 0 and
1. Thus, the output variable can be used to represent the prob-
ability for a sample being in a category:

h = ew
Tx

1+ ewTx
(3)

where w represents the weights and x represents the input var-
iables of the model. Logistic regression is a generalized linear
model since the predicted probabilities only depend on the
weighted sum of the input variables. As only two categories
are considered in logistic regression, 0.5 is used as the classifi-
cation threshold. For logistic regression, the cross-entropy error
is often used to estimate the error in the model:

E = 1

N

∑N

n=1

ln(1+ e−ŷnw
Txn ) (4)

where N is the number of samples used to calculate the cross-
entropy error, xn represents the input variables of sample n,
and ŷn is the actual category of the sample (either 1 or −1).
As mentioned above, logistic regression can only perform
binary classification tasks. For multi-class classification tasks,

Softmax regression, a generalization of logistic regression, is
often applied, which extends logistic regression to multi-class
classification.

Using logistic regression algorithms, Gu et al. presented
pioneer work on applying ML to the design of composites
for Mode I fracture (Table I).[74] Unlike the applications of
using ML to predict the compressive strength of woods and
concrete, in which experimental measurements were used as
the training data,[71–73] Gu et al. performed finite element anal-
ysis to generate the training data for their composite design
problems. Figure 2 shows the ML approach using logistic
regression (i.e., linear model) for an 8 by 8 composite system
in the authors’work. The input variables represent the topology
of composites, where two base materials (stiff and soft) were
considered and denoted as 0 and 1. As can be seen in the figure,
instead of using the actual performance (i.e., toughness and
strength) of composites to train a regression model, the training
samples were categorized into two classes, namely “good”
design and “bad” design, and logistic regression was performed
for the classification task. After the training process, the linear
model not only could distinguish whether an unseen composite
design was a good or bad design but also could estimate how
good (or how bad) the composite design was by comparing
the probabilities of being in each class (Fig. 2). This study dem-
onstrated that ML could be applied to learn structure–property
relationships of materials even when the performance of mate-
rials could not be accurately measured. This ML approach
could be applied to other material modeling and design prob-
lems in which the performance of materials is difficult (or
expensive) to measure in experiments or simulations. The
authors showed that using ML to predict mechanical properties
of composites is orders of magnitude faster than conventional

Table I. Recent studies on applying ML algorithms to composite research.

Material Type ML models Input Output Samples

Heat-treated woods[71] Exp. Linear, NN Treatment conditions Compressive strength 48

Concrete[72] Exp. Linear, NN, ANFIS Mixture proportions Compressive strength 173

Concrete[73] Exp. linear, NN, SVM,
other

Mixture proportions Compressive strength 10,000

Composites[74] FEM Linear, CNN Topology of base materials Toughness, strength 1,000,000

Cemented paste
backfill[75]

Exp. NN Mixture proportions,
treatment conditions

Compressive strength 396

Composites[70] FEM CNN Topology of base materials Stiffness 8,550

Hierarchical
composites[66]

FEM CNN Topology of unit cells Toughness, strength 100,000

Graphene kirigami[77] MD NN, CNN Topology of unit cells Yield stress, yield
strain

29,791

Stainless steel[80] Exp. GP Processing parameters Porosity 82

Assembled hairy NPs[81] CG-MD GP Mixture proportions Modulus, toughness 100
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finite element analysis. Moreover, although it was shown in the
authors’ work that the prediction accuracy could be improved
when using a more complex ML model such as CNN, the linear
model provided high interpretability of the relationship
between input and output variables. Thus, after the linear
model is trained, the optimal designs (the designs with the high-
est toughness or strength) of composites could be generated
directly by using the information of the weights in the linear
model, without requiring any sampling, optimizing, or search-
ing process. In the authors’ work, the linear model generated
optimal designs of composites with the toughness and strength
orders of magnitude higher than the training samples, and
required a much less computational cost compared with
exhaustive methods.

Neural networks
Linear models assume that the relationship between input and
output variables is linear. Thus, the learning capacity of linear
models is limited. Although it is possible to increase the learn-
ing capacity by adding a few nonlinear terms (e.g., polynomi-
als) to the hypothesis, it is not practical as there is an infinite
number of nonlinear functions that can be chosen from and
in general little is known which nonlinear functions are more
suitable for our problems. An alternative approach to achieve
high learning capacity is to use linear regression with an activa-
tion function to make an artificial neuron (perceptron) and con-
nect a number of neurons to make an artificial NN. The most
basic architecture of NNs is multilayer perceptron, which is
also denoted to as NN here. It consists of multiple hidden layers

(the layers except for the input and output layers) and each layer
comprises a number of neurons. Nonlinear functions such as
rectified linear unit and sigmoid are used as activation functions
to introduce nonlinearity. The hidden layers in a NN are called
the fully-connected layers as all the neurons in adjacent layers
are fully connected. The output of the first layer goes into the
second layer as input, and so on. On the basis of the universal
approximation theorem, a NN with one hidden layer containing
a finite number of neurons can approximate any continuous
functions. In addition to NN, CNN is another widely used
NN architecture, which is commonly applied to analyzing
images and videos. The main building block in the CNN archi-
tecture is the convolution layer. The convolution layer com-
prises a number of convolution filters. Each filter is
convolved with the input from the previous layer and generates
feature maps, which are fed into the next layer as input.
Compared with the fully-connected layers, this convolution
operator can significantly reduce the number of weights needed
in an ML model and makes the computation more efficient. The
purpose of doing convolution is to extract relevant features
from data. This feature learning ability is essential for image-
related problems. In practice, CNN models usually outperform
NN models on image classification tasks and many others.

NN and CNN have been applied to a few composite studies
mostly for regression tasks. Qi et al. applied a NNmodel to pre-
dict the unconfined compressive strength of cemented paste
backfill (Table I).[75] In the authors’ work, the training data
were collected from experiments. The input variables include
the tailing type, cement-tailings ratio, solids content, and curing

Figure 2. Overall flow chart. The flow chart shows the ML approach using the linear model for an 8 by 8 system. The ML approach using the CNN model is
similar to this flow chart but without the step of converting to 1-D arrays. Note that for a 16 by 16 system, the amount of input data, training data, and testing data
are 1 million, 0.9 million, and 0.1 million, respectively. Reprinted with permission from Ref. 74. Copyright 2017 Elsevier.
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time while the output variable is the unconfined compressive
strength of specimens. The authors applied particle swarm opti-
mization to tune the architecture (the numbers of hidden layers
and neurons) of their NN model and showed that their NN
model can accurately predict and calculate the unconfined com-
pressive strength of cemented paste backfill. For composite
modeling and design problems, the topology of a composite
can naturally be represented as an image (2-D or 3-D). The
unit cells or base materials of a composite are converted to pix-
els (with different values) of the corresponding image.
Accordingly, all the advantages of CNN found in image-related
tasks are valid when applying to composite problems. Yang
et al. applied CNN models to predict the effective stiffness of
3-D composites (Table I).[70] In the authors’ work, the training
data were generated by 3-D Gaussian filters with different
covariance matrixes. The performance of the training data
was calculated by finite element analysis. The input variables
include the topology of composites made up of two base mate-
rials (stiff and soft) and the output variable is the effective stiff-
ness. Different architectures of CNN models were explored to
tune hyperparameters (the numbers of layers and filters). The
authors showed that their CNN models can produce highly
accurate predictions of the effective stiffness of composites
based on a given topology.

Recently, CNN has been employed to design hierarchical
composites. Gu et al. applied CNN models to accelerate the
design of bioinspired hierarchical composites (Table I).[66] In
the authors’ work, three unit cells made up of stiff and soft
materials were used to create hierarchical composites. Those
unit cells exhibited distinctive anisotropy responses because
of different geometrical configurations of stiff and soft materi-
als in the unit cells. The input variables represent the topology
of hierarchical composites, where the three unit cells are
denoted as 1, 2, and 3. Compared with using complete micro-
structural data with the geometrical configuration of all local
elements (stiff and soft), using macrostructural data with the
geometrical configuration of unit cells drastically reduces the
data space. Thus, a less complex ML architecture and fewer
training samples are needed for this learning task. The output
variable is the toughness of hierarchical composites calculated
using finite element analysis. The idea of using unit cells to rep-
resent the topology of composites is similar to the homogeniza-
tion process commonly applied in estimating effective material
properties of composites. However, the conventional homoge-
nization process requires to extract effective (homogenized)
parameters of unit cells based on a rigorous mathematical the-
ory,[76] which is not required in the authors’ ML approach.
Moreover, the fracture of composites occurs on the microstruc-
tural scale (local elements) and cannot be captured in a homog-
enized FEM model. Consequently, in homogenized finite
element analysis, the localization process is required to convert
the averaged strains of unit cells to the strains of local elements.
In contrast, Gu et al. showed that the correlations between the
geometrical configuration of unit cells (macrostructural data)
and the corresponding toughness (microstructural property)

can be learned by ML directly based on training data, without
the need for conventional homogenization and localization pro-
cesses. For this hierarchical composite problem, CNN was
implemented to perform a regression task since linear regres-
sion was incapable of capturing the highly nonlinear correla-
tions between the input and output variables. However,
unlike linear models, CNN models (and most ML models) can-
not generate optimal designs directly based on the values of
weights. To overcome this limitation, Gu et al. further aug-
mented CNN models to discover high-performing hierarchical
composite designs with a self-learning algorithm. The concept
of the self-learning algorithm is similar to that of the genetic
algorithm. The sampling process consisted of many sampling
loops. In each sampling loop, a large number of new composite
designs (candidates) were fed into their CNN model and the
model predicted the performance of those designs with a negli-
gible computational cost. From there, high-performing candi-
dates were identified and used to generate new candidates for
the next sampling loop. The mechanical properties of the ML
designs were then calculated using finite element analysis. As
can be seen in Fig. 3, simulation results show that the ML
designs are much tougher and stronger than the training samples.
Most importantly, the simulation results were validated through
additive manufacturing and experimental testing in the authors’
work. Note that knowing the optimal designs gives us an oppor-
tunity to probe design strategies and physical insights (Fig. 3) of
how to create tougher and stronger hierarchical composites.

Recently, Hanakata et al. applied ML to accelerate the
design of stretchable graphene kirigami, which is a patterning
graphene sheet with cuts (Table I).[77] In the authors’ work,
NN and CNN models were applied to predict the yield stress
and yield strain of graphene sheets based on the cutting pattern
described by two unit cells. The input variables represent the
topology of graphene sheets, where the two unit cells (with a
cut and with no cut) are denoted as 0 and 1. The training
data generated by MD and ML models was applied to perform
a regression task to achieve accuracy close to the MD simula-
tions. After the training process was completed, an iterative
screening process was used to search for high-performing (high-
yield strain) candidates. In each screening iteration, their CNN
model was applied to search for high-performing candidates
and the performance of those candidates was calculated using
MD. The new simulation results were then added to the training
data for the next iteration of training and screening processes.
The authors showed that when more and more samples were
used to train the CNN model, the yield strains of the high-
performing candidates in each iteration were also improved.

Gaussian process
Although deep neural networks (e.g., NN and CNN) with many
hidden layers and neurons, theoretically, can capture any com-
plex patterns in data, they require a large amount of training
data in order to learn the hidden patterns without overfitting.
For some problems, simple ML algorithms cannot capture the
complex patterns in data and generating a large amount of
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training data for deep learning algorithms is unfeasible due to
the time and cost of conducting experiments or simulations.
A GP, which is a non-parametric approach, serves as an alter-
native method for highly nonlinear problems. A GP is a collec-
tion of random variables and assumes that all input and output
variables have joint Gaussian distributions. Instead of setting a
hypothesis for an ML model and finding optimal values for
the weights in the model, a GP produces a distribution of all pos-
sible functions that are consistent with the observed (training)
data. Therefore, the number of parameters in a GP is unbounded
and grows with the amount of training data. A GP is defined as:

y = f (x) � GP(m(x), k(x, x′)) (5)

where m(x) is the mean function and k(x, x′) is the covariance
function. When a GP model is applied to predict the output
value for an unseen data point, it generates a Gaussian distribu-
tion with a covariance matrix produced by a kernel function (e.g.,
squared exponential) which measures the similarity between

points. Therefore, a GP model not only can make a prediction
for an unseen data point based on the training data but also
can naturally quantify the uncertainty of the prediction. In gene-
ral, the uncertainty of the prediction for an unseen data point
increases when the point is away from the training data points.
Although a GP is a powerful and elegant method with numerous
applications in ML and statistics, the implementation requires a
computational cost which grows asO(n3), where n is the number
of training data points. Thus, conventional GP models have been
mostly applied to problems with a small amount of training data.
There are a number of sparse GP techniques proposed to reduce
the computational cost for large data sets.[78,79]

Tapia et al. applied a GP model to predict the porosity in
metallic parts produced by selective laser melting, which is a
laser-based additive manufacturing process (Table I).[80] In
the authors’ work, the input variables are the laser power and
laser scanning speed, which are two of the most influential pro-
cessing parameters. The output variable is the porosity of spec-
imens (17-4 PH stainless steel). A GP can be computationally

Figure 3. ML-generated designs. (a) Strength and toughness ratios of designs computed from training data and ML output designs. Strength ratio is the
strength normalized by the highest training data strength value. Toughness ratio is the toughness normalized by the highest training data toughness value. The
ML output designs are shown from training loops of 1000 and 1,000,000. Envelopes show that ML material properties exceed those of training data. (b) Effects
of learning time on ML models for minimum, mean, and maximum toughness ratio start to converge as training loops increase. (c) Microstructures from
partitions A (lowest toughness designs in training data) and B (highest toughness designs from ML) in part (a) of the figure with the corresponding colors for
unit cell blocks (blue = U1, orange = U2, yellow = U3). Also shown in the right-most columns for the designs A and B are the strain distributions, which show
lower strain concentration at the crack tip for the ML-generated designs[66].

562▪ MRS COMMUNICATIONS • VOLUME 9 • ISSUE 2 • www.mrs.org/mrc
https://doi.org/10.1557/mrc.2019.32 Published online by Cambridge University Press

https://doi.org/10.1557/mrc.2019.32


very efficient when the amount of training data is small. The
authors used the GP model to predict the porosity of specimens
over the entire design space. Thus, the resulting porosity at any
combination of the laser power and laser scanning speed was
revealed. Recently, Hansoge et al. applied GP models to predict
mechanical properties of assembled hairy nanoparticles (NPs)
(Table I).[81] Assembled hairy NPs is a type of polymer nano-
composite with relatively regular spacing between particles. In
the authors’ work, the input variables are the polymer chain
length, grafting density, polymer–NP interaction strength, and
NP-edge length. The output variable is the modulus or toughness
of assembled hairy NPs. The training data was generated using
coarse-grained molecular dynamics (CG-MD) and GP models
were applied to perform regression tasks based on the CG-MD
simulation results. The authors used the GP models (metamodel)
to predict the modulus and toughness of assembled hairy NPs
over the entire design space. Figure 4 shows the modulus and
toughness obtained from the metamodel by sampling 1 million
assembled hairy NPs with different combinations of input vari-
ables. As can be seen in the figure, the predicted modulus and
toughness obtained from the metamodel and those obtained
from the CG-MD simulations are very close.

Summary and future perspectives
This prospective paper presents recent progress in the applica-
tions of ML to composite materials. We give a brief overview

of some basic ML algorithms and review recent studies using
ML models to predict mechanical properties of composites.
In those studies, ML models were applied to approximate
physics-based modeling tools such as MD and FEM with a
computational cost orders of magnitude less. Given the com-
puting speed advantage of ML approaches compared with
physics-based modeling tools, ML models were applied to
explore the design space of composite design problems and
to generate optimal designs of composites. By knowing the
optimal designs obtained from ML for different composite
design problems, it is possible to probe design strategies for
achieving high-performing composites. Although ML models
are often being considered as “black box” models, the discov-
ered design strategies can provide new physical insights into
how to make tougher and stronger composites.

Future implementations for further breakthroughs in ML
applications on composite materials include developing more
efficient topology representations for composites and more effi-
cient inverse design techniques. Although the topology of a
composite can naturally be represented as an image by convert-
ing the unit cells or base materials of the composite to pixels,
this representation is not as efficient for large composite sys-
tems (e.g., aircraft wings). For example, considering each
base element in an FEMmodel as an input variable for ML nat-
urally causes computational problems when the model is large.
Thus, developing new topology representations (with fewer

Figure 4. (a) Young’s modulus versus toughness obtained from the metamodel. Pareto frontier obtained by sampling 1 million input parameters over the entire
design space. (b) One hundred initial CG-MD designs (blue dots) are used to build the metamodel. Using the metamodel, a Pareto frontier (red curve) is
obtained. Seven random points from the Pareto curve are chosen (purple squares) and tested by running CG-MD simulations (green diamonds). Comparison of
(c) Young’s modulus and (d) toughness obtained from the metamodel and CG-MD simulations. The error bars represent a 95% confidence interval. Reprinted
with permission from Ref. 81. Copyright 2018 American Chemical Society.
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variables) for large composite systems is imperative to apply
ML to design large composite systems. In this prospective
paper, we review recent studies using ML to solve inverse
design problems. Gu et al. applied a linear model to generate
optimal designs of composites by using the information of
the weights in the model.[74] However, the performance of
the ML designs was limited to the learning ability of the linear
model. In their later work, Gu et al. augmented CNN models
with a self-learning algorithm to discover high-performing
hierarchical composite designs.[66] Hanakata et al. applied
ML with an iterative screening process to search for high-
performing graphene kirigami.[77] Recently, Peurifoy et al.
showed that NN models could be used to solve an inverse
design problem for NPs by using backpropagation to train the
inputs of the NN models.[82] Although the gradient in this
inverse design approach is analytical, not numerical, it is still
a gradient-based optimization approach. Thus, this approach
can still get stuck in local minima or critical points. Note
there is no optimization approach that can guarantee finding
global minima of a non-convex optimization problem without
exploring the entire design space. Future work on understand-
ing the performance (theoretically or numerically) of different
inverse design approaches for the applications of ML on com-
posites is required for the accelerated discovery of new materi-
als. Though true inverse design is currently a challenge in the
field, it is believed that ML will play a promising role in this
engineering problem in the future.
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