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Abstract

A two-level defect–correction method for the steady-state Navier–Stokes equations with a high Reynolds
number is considered in this paper. The defect step is accomplished in a coarse-level subspace Hm by
solving the standard Galerkin equation with an artificial viscosity parameter σ as a stability factor, and
the correction step is performed in a fine-level subspace HM by solving a linear equation. H1 error
estimates are derived for this two-level defect–correction method. Moreover, some numerical examples
are presented to show that the two-level defect–correction method can reach the same accuracy as the
standard Galerkin method in fine-level subspace HM . However, the two-level method will involve much
less work than the one-level method.
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1. Introduction

We consider the steady-state incompressible Navier–Stokes equations defined on a
bounded domain �⊂ Rd (d = 2, 3) with a Lipschitz boundary in the functional form

νAu + B(u, u)= f, (1.1)

where A is the Stokes operator, B is the projection of the nonlinearity on the
divergence-free space H , ν is the kinetic viscosity which is inversely proportional
to the Reynolds number Re and f is the given body force per mass.

Despite the considerable increase in the available computing power in recent
decades, solving the Navier–Stokes equation numerically is still a challenge because of
its large computational scale, especially for large Reynolds numbers. To increase the
efficiency of numerical methods, an alternative idea is a two-level method, or a multi-
level method (see, for example the work of Ait Ou Ammi and Marion [1], Xu [14, 15]
and Layton et al. [6, 8, 10]). The basic idea of two-level type methods for solving
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nonlinear partial differential equations is to compute an initial approximation in a
coarse-level subspace, then to solve a linear system in a fine-level subspace. Hence,
the two-level or multi-level type methods can save a large amount of computation
compared to the one-level methods.

For a given positive integer M > 0, let PM denote the spectral projection from H
onto the space HM spanned by the first M eigenvectors of the Stokes operator A.
That is, HM = PM H . Then the standard Galerkin method (SGM) for (1.1) reads: find
uM ∈ HM such that

νAuM + PM B(uM , uM )= PM f. (1.2)

Generally we will solve this nonlinear equation (1.2) numerically by an iterative
method, for example Newton iteration. And, during each iteration, we usually
solve the associated linear algebraic equations by an iterative method, such as SOR
iteration. When the Reynolds number becomes large, the condition number of the
matrix increases. This will eventually lead to a divergence of the iterative procedure.
At the time of writing, application of the defect–correction type methods appears
to be becoming a key component; see, for example, Layton et al. [2, 5, 7, 9],
Stetter [11] and Böhmer [3]. The defect–correction method is an iterative improvement
technique which is well established for solving nonlinear steady-state problems.
One popular view of the defect–correction method is that it can stabilize a solution
that is nearly nonsingular for ill-conditioned problems. These methods have been
successively studied in many settings. For example, Axelsson and Layton [2]
applied the defect–correction methods for convection–diffusion problems. In [7],
Layton initially investigated the defect–correction method for the incompressible
Navier–Stokes equations with high Reynolds number. Subsequently, Layton also
provided some further studies based on the defect–correction method for Navier–
Stokes equations (see [9] and the references therein). Recently, Kaya et al. [5]
considered the synthesis of a subgrid stabilization method with defect–correction
methods for the steady-state Navier–Stokes equations.

In this paper we want to combine the two-level strategy with the defect–correction
method to solve the steady-state Navier–Stokes equations with high Reynolds number.
Here, we point out that all the computations in the subgrid defect–correction scheme
studied in [5], both the defect step and the correction step, are carried out on the
fine-level subspace which is actually a one-level method in spite of two mesh scales.
However, in our two-level defect–correction scheme presented in a subsequent section,
we execute the defect step in the coarse-level subspace and only solve a linear equation
in fine-level subspace, which greatly reduces the computational time.

The paper is organized as follows. Section 2 describes the steady-state
incompressible Navier–Stokes equations and gives some notation. Our two-level
defect–correction scheme and some classical properties of the exact solution u are
presented in Section 3. Section 4 investigates the H1 error estimates of this two-level
defect–correction method. Finally, some numerical examples are displayed to support
the analysis.
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2. The steady-state Navier–Stokes equations

We consider the steady-state incompressible Navier–Stokes equations−ν4u + (u · ∇)u +∇ p = F in �,
∇ · u = 0 in �,
Dirichlet or periodic boundary conditions on 0,

where �⊂ Rd , d = 2 or 3, is a bounded domain with a Lipschitz boundary 0, u
denotes the flow field, p is the pressure, F is the external force and ν is the kinetic
viscosity.

A number of function spaces are frequently used throughout this paper. For
homogeneous Dirichlet boundary conditions we introduce

H = {υ ∈ (L2(�))d : ∇ · υ = 0, υ · n|0 = 0},

where n is the unit outward normal vector on 0, and for periodic boundary conditions

H =

{
υ ∈ (L2

per(�))
d
| ∇ · υ = 0,

∫
�

υ dx = 0
}
.

Moreover, we introduce

V = {υ ∈ (H1
0 (�))

d
| ∇ · υ = 0}

in the case of homogeneous Dirichlet boundary conditions, or

V =

{
υ ∈ (H1

per(�))
d
| ∇ · υ = 0,

∫
�

υ dx = 0
}
,

in the case of periodic boundary conditions. When equipped with the inner products
and norms

(u, v)H =

∫
�

u · v dx, |u|H = (u, u)1/2 ∀u, v ∈ H,

(u, v)V = (∇u · ∇v), |u|V = (u, u)1/2V ∀u, v ∈ V,

the spaces H and V are Hilbert spaces.
Let P be the L2 orthogonal projection from (L2(�))d onto H . Then we define the

Stokes operator A and the bilinear operator B as follows:

A =−P1, B(u, v)= P[(u · ∇)v],

and f = P F . With the above notation we can get the functional form (1.1).
For convenience we also introduce the following bilinear and trilinear forms:

a(u, v)= 〈Au, v〉, b(u, v, w)= 〈B(u, v), w〉 ∀u, v, w ∈ V .

As shown by Temam in [13], the bilinear form a( · , · ) is V -coercive and the trilinear
form has the skew-symmetric properties

b(u, υ, w)=−b(u, w, υ) ∀u, υ, w ∈ V, (2.1)
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and continuity properties

|b(u, v, w)| ≤ C0|u|s1 |A
1/2v|s2 |w|s3

∀u ∈ (H s1(�))d , v ∈ (H s2+1(�))d , w ∈ (H s3(�))d , (2.2)

where s1, s2, s3 ≥ 0 satisfying s1 + s2 + s3 ≥ d/2 and

(s1, s2, s3) 6= (d/2, 0, 0), (0, d/2, 0), (0, 0, d/2),

and where C0 > 0 is a constant independent of u, v, w, but whose value may depend
on the context.

It is well known that the Stokes operator A is a positive definite, self-adjoint,
unbounded operator in H with compact inverse. Consequently, its eigenvalues and
associated eigenfunctions, which can form an orthogonal basis of H , admit

Awi = λiwi 0≤ λ1 ≤ λ2 ≤ · · · →∞.

Furthermore, we define the power operator Aα of A for all α ∈ R whose domain is

D(Aα)=

{
υ =

∞∑
i=1

υiwi

∣∣∣∣ ∞∑
i=1

υ2
i λ

2α
i <∞

}
,

which is a Hilbert space when equipped with the natural inner product and norm

( · , · )D(Aα) = (A
α
· , Aα· ), | · |D(Aα) = |A

α
· |.

It has been shown previously (see [12]) that D(A0)= H and D(A1/2)= V . For the
spatial periodic case |Aα · | and | · |2α are equivalent norms for all α ∈ R, and this
equivalence property is valid for the nonslip boundary condition case at least for α ≤ 1.

In order to approximate the solution of the steady-state Navier–Stokes equations we
define the finite-dimensional subspace HM

HM = span{w1, w2, . . . , wM }

for given positive integer M > 0, and define the orthogonal projection PM from H
onto HM as

u =
∞∑

i=1

uiwi ∈ H, PM u =
M∑

i=1

uiwi ∈ HM .

We also denote QM = I − PM . For properties of such projections we refer readers
to [4]. Then the SGM (1.2) is the projection of (1.1) onto HM by omitting the higher-
frequency components.

3. Two-level defect–correction method

In general, as ν becomes smaller, it is more difficult for the iterative procedure for
solving (1.2) and the linear algebraic equation arising in each iteration to converge.
In this case, adding a suitable artificial viscosity term σ as a stability factor may solve
this problem to some extent. That is, we consider the following scheme: for given M ,
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find uM ∈ HM such that

(ν + σ)AuM + PM B(uM , uM )= PM f. (3.1)

However, (3.1) is not identical to the system (1.2) because of the addition of σ . So
the solution to (3.1) cannot be regarded as a good approximation of (1.1). To get
an approximation of optimal accuracy we have to correct the solution to (3.1). One
example is the direct correction scheme presented in [9]: find ūM ∈ HM such that

(ν + σ)AūM + PM B(uM , ūM )+ PM B(ūM , uM )

= PM f + σ PM AuM + PM B(uM , uM ), (3.2)

where um = PmuM , m < M . Another is the subgrid correction scheme given in [5]:
find ūM ∈ HM such that

(ν + σ)AūM + PM B(uM , ūM )+ PM B(ūM , uM )

= PM f + σ Aum + PM B(uM , uM ). (3.3)

From the analysis provided in [9] and [5] we see that if the solution to (1.1) is
H2-regular, for the two correction schemes above, only one correction step is
necessary to yield an H1 optimal order approximation when σ = O(ξλ−(1/4)M+1 ).

However, the schemes (3.1)–(3.2) and (3.1)–(3.3) are both one-level spectral
defect–correction schemes, which are time-consuming procedures especially for the
spectral case with large M since the coefficient matrix of the linear algebraic equation
arising in the scheme is almost a full matrix. In order to reduce computational effort
and to deal with the high Reynolds number problems efficiently we propose a two-level
defect–correction scheme in this paper. For given two integers m and M (m < M), the
defect step is solved in a coarse-level subspace Hm and only one linear correction
equation is solved in the fine-level subspace HM .

Defect Step 1. Find um ∈ Hm such that

(ν + σ)Aum + Pm B(um, um)= Pm f. (3.4)

Correction Step 1. Find uM ∈ HM such that

(ν + σ)AuM + PM B(um, uM )+ PM B(uM , um)

= PM f + σ Aum + PM B(um, um). (3.5)

In the following error analysis we will show that if we choose a proper σ , the
optimal accuracy can be reached with only one step correction.

We conclude this section by recalling some classical properties of the exact
solution u provided in [13]. It is classical that if

ξ = ν −
C0

ν
‖ f ‖−1 > 0, (3.6)

the solutions to (1.1) and (1.2) are unique. Moreover,

|A1/2u| ≤
1
ν
‖ f ‖−1

4
= M1. (3.7)
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In the rest of this paper we assume that the solution to (1.1) is H2-regular and there
exists a positive constant M2 such that

|Au| ≤ M2. (3.8)

4. Error analysis

This section gives the H1 error estimate of our two-level defect–correction scheme
and shows how to choose σ to get an approximation of the optimal order and how to
configure m and M to make the scheme efficient.

For convenience we introduce the following symbols in this section:

em = Pmu − um, êm = Qmu and eM = PM u − uM , êM = QM u.

First of all we establish the error estimate of the defect step.

THEOREM 4.1. Under the conditions of (3.6)–(3.8), for the defect solution um , we
have

|A1/2(u − um)| ≤
σ

ξ
M1 +

C1 + ξM2

ξ
λ
−(1/2)
m+1 ,

where C1 = 2C0 M1 M2.

PROOF. We project Pm onto (1.1) and subtract (3.4) to find

νAem − σ Aum + Pm B(em + êm, u)+ Pm B(um, em + êm)= 0. (4.1)

Taking the inner product of (4.1) with em and using property (2.1),

ν|A1/2em |
2
+ b(em, u, em)= σa(um, em)− b(êm, u, em)− b(um, êm, em).

Under the condition of (3.6) we can easily show that |A1/2um | ≤ M1. Then, by
using (2.1), (2.2) and the Cauchy–Schwarz inequality, we obtain

|σa(um, em)| ≤ σ |A
1/2um | |A

1/2em | ≤ σM1|A
1/2em |,

|b(em, u, em)| ≤ C0|A
1/2em |

2
|A1/2u| ≤ C0 M1|A

1/2em |
2,

|b(êm, u, em)| ≤ C0|A
1/2êm | |A

1/2u| |A1/2em | ≤ C0 M1|A
1/2êm | |A

1/2em |,

|b(um, êm, em)| ≤ C0|A
1/2um | |A

1/2êm | |A
1/2em | ≤ C0 M1|A

1/2êm | |A
1/2em |.

Using the above inequalities, we obtain

(ν − C0 M1)|A
1/2em | ≤ σM1 + 2C0 M1|A

1/2êm |.

Thanks to the uniqueness assumption (3.6) – that is, ξ = ν − C0 M1 > 0 – we derive

|A1/2em | ≤
1
ξ
(σM1 + 2C0 M1|A

1/2êm |). (4.2)
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Using the assumption (3.8) and combining (4.2) with the inequalities

|A1/2(u − um)| ≤ |A
1/2em | + |A

1/2êm |,

|A1/2êm | ≤ λ
−(1/2)
m+1 |Au| ≤ λ−(1/2)m+1 M2,

we can conclude the proof. 2

Based on the error estimate of the defect solution um we present the error estimate
of the corrected solution uM in the following theorem.

THEOREM 4.2. Under the conditions of Theorem 4.1, for the corrected solution uM ,
we have

|A1/2(u − uM )| ≤
C1 + ξM2

ξ
λ
−(1/2)
M+1 +

1
ξ
(σ |A1/2(u − um)| + C0|A

1/2(u − um)|
2).

PROOF. Applying PM to (1.1) and subtracting (3.5),

νAeM − σ AuM + PM B(u, u)− PM B(um, uM )− PM B(uM , um)

+ σ Aum + PM B(um, um)= 0.

We add and subtract appropriate terms, obtaining

νAeM − σ AuM + σ Aum + PM B(u, u)− PM B(um, u)+ PM B(um, u)

− PM B(um, uM )− PM B(uM , um)+ PM B(u, um)

− PM B(u, um)+ PM B(um, um)= 0.

For simplicity, we denote
ed = u − um .

Simple calculation shows that

(ν + σ)AeM − σ PM Aed + PM B(ed , ed)+ PM B(um, eM + êM )

+ PM B(eM + êM , um)= 0. (4.3)

Taking the inner product of (4.3) with eM and using property (2.1), we obtain

(ν + σ)|A1/2eM |
2
= σa(ed , eM )− b(ed , ed , eM )− b(um, êM , eM )

− b(eM , um, eM )− b(êM , um, eM ).

We summarize the estimates of the right-hand side terms of the above equality as
follows:

|σa(ed , eM )| ≤ σ |A
1/2ed | |A

1/2eM |,

|b(ed , ed , eM )| ≤ C0|A
1/2ed |

2
|A1/2eM |,

|b(um, êM , eM )| ≤ C0|A
1/2um | |A

1/2êM | |A
1/2eM | ≤ C0 M1|A

1/2êM | |A
1/2eM |,

|b(eM , um, eM )| ≤ C0|A
1/2eM |

2
|A1/2um | ≤ C0 M1|A

1/2eM |
2,

|b(êM , um, eM )| ≤ C0|A
1/2êM | |A

1/2um | |A
1/2eM | ≤ C0 M1|A

1/2êM | |A
1/2eM |.
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Using the above inequalities,

(ν + σ − C0 M1)|A
1/2eM | ≤ σ |A

1/2ed | + C0|A
1/2ed |

2
+ 2C0 M1|A

1/2êM |.

Since ν + σ − C0 M1 > ξ > 0,

|A1/2eM | ≤
1
ξ
(σ |A1/2ed | + C0|A

1/2ed |
2
+ 2C0 M1|A

1/2êM |)

≤
1
ξ
(σ |A1/2ed | + C0|A

1/2ed |
2
+ C1λ

−(1/2)
M+1 ).

Finally, noticing that |A1/2(u − uM )| ≤ |A1/2eM | + |A1/2êM | and (3.8) implies the
result of this theorem. 2

REMARK 4.3. Thanks to Theorem 4.2, if we wish to obtain an optimal H1 accuracy
of uM we should choose

σ = O(λ−(1/2)m+1 ), λ
−(1/2)
m+1 = O(ξλ−(1/4)M+1 ). (4.4)

For such a configuration, we have |A1/2(u − uM )| = O(ξ−1λ
−(1/2)
M+1 ). For example in

the 2-D case we should choose m = O(ξ−1 M1/2) and σ = O(m−1)= O(ξM−(1/2)).
When the Reynolds number becomes bigger, the ξ becomes correspondingly
smaller. We should choose a larger m and a smaller σ to match the configuration
σ = O(m−1)= O(ξM−(1/2)) for a fixed M . However, in our following numerical
experiments, for a large Reynolds number, a σ that is too small cannot make the two-
level system converge either. To deal with the high Reynolds number problem we first
choose a relatively large σ to guarantee that the iteration converges, then eliminate the
side effect of this relatively large σ by correcting the defect solution um more than
once. Hence we modify the scheme consisting of Defect Step 1 and Correction Step 1
as follows.

Defect Step 1′. Find um ∈ Hm such that

(ν + σ)Aum + Pm B(um, um)= Pm f.

Correction Step 1′. For j = 1, 2, . . . and u0
M = um , find u j

M ∈ HM such that

(ν + σ)Au j
M + PM B(u j−1

M , u j
M )+ PM B(u j

M , u j−1
M )

= PM f + σ Au j−1
M + PM B(u j−1

M , u j−1
M ).

However, the above defect–correction scheme has to do more corrections in the fine-
level subspace HM , which is a time-consuming procedure. We have pointed out that
we do more corrections in order to remove the bad influence of the relatively large σ .
If we do the corrections in the coarse-level subspace, the side effect can be eliminated
in the same way. So when the Reynolds number becomes large enough, if we still want
to keep doing correction in HM only once, we can use the following defect–correction
scheme.
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Defect Step 2. Find u0 ∈ Hm such that

(ν + σ)Au0 + Pm B(u0, u0)= Pm f ;

for j = 1, 2, . . . and u0
m = u0, find u j

m ∈ Hm such that

(ν + σ)Au j
m + Pm B(u j−1

m , u j
m)+ Pm B(u j

m, u j−1
m )

= Pm f + σ Au j−1
m + Pm B(u j−1

m , u j−1
m ).

Correction Step 2. Find uM ∈ HM such that

(ν + σ)AuM + PM B(u j
m, uM )+ PM B(uM , u j

m)

= PM f + σ PM Au j
m + PM B(u j

m, u j
m).

In general, when the Reynolds number is not too large, we can choose a small σ
such that the σ meets the configuration σ ∼ m−1

∼ ξM−(1/2). At the time of writing,
we find that the Defect Step 1–Correction Step 1 scheme can work efficiently.
Unfortunately, as the Reynolds number increases, we cannot add a smaller σ to make
the iterative system converge. Hence, for the high Reynolds number case, the Defect
Step 2–Correction Step 2 scheme is the best choice.

5. Numerical examples

This section gives some numerical examples to illustrate the efficiency of our two-
level defect–correction method, especially for the large Reynolds number case. In the
following numerical experiments we compare the H1 accuracy and the CPU time of
our two-level defect–correction method (TLDC) with some other numerical schemes,
for example the SGM, the one-level defect–correction scheme (OLDC) (3.1)–(3.2) and
the subgrid defect–correction algorithm (SDC) (3.1)–(3.3).

Here we consider the 2-D Navier–Stokes equations with periodic boundary
conditions confined in �= [0, 2π ]2. We investigate the spectral method for spatial
discretization. To calculate the errors of various approximations we give an exact
solution in advance and compute the forcing term f accordingly. This makes
it possible to compare the exact solution without computing a large Galerkin
approximation as an ‘exact’ solution.

We choose the exact solution as follows:

u(x, t)= u1(x, t)+ u1(x, t),

u1(x, t)=
∑

k1>0;k2>0,k1=0

0.1

|k|4

(
k2

−k1

)
e−ik·x .

Here x = (x1, x2) ∈�, k = (k1, k2) ∈ Z2, |k| =
√

k2
1 + k2

2 , i =
√
−1. Such a choice

ensures the exact solution u ∈ D(A) and that the assumption (3.8) is valid.
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FIGURE 1. ν = 10−2.
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FIGURE 2. ν = 10−3.

In our TLDC method we fix M = 75 and let m (≤M) change between 3 and M .
For SGM, OLDC and SDC, we compute the associated approximations with respect
to different M (3≤ M ≤ 75). For the SDC in particular, we are careful to choose m to
keep the relation m ∼ M1/2 as the analysis in [5].

When ν ≥ 10−3, for such viscosity coefficient (lower Reynolds number), all the
methods considered here, SGM, OLDC, SDC, and TLDC, can converge for arbitrary
small positive σ . To guarantee the accuracy of the one-step correction we choose an
optimal σ = 0.001. The numerical results corresponding to such Reynolds number
are presented in Figures 1 and 2 when ν = 10−2 and 10−3, respectively. At this time,
we apply the two-level defect–correction scheme Defect Step 1–Correction Step 1. It
is clear that the two-level defect–correction scheme can generate approximations of
the same H1 accuracy as the SGM and one-level defect–correction scheme when m is
about in the vicinity of M1/2.
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TABLE 1. Error and convergent rates of standard Galerkin method (SGM).

M Error Rate CPU time (s)

13 5.002827e-02 0.1
29 1.591076e-02 1.428 1
53 6.585102e-03 1.463 9
69 4.461336e-03 1.476 66
75 3.943505e-03 1.480 108

TABLE 2. Error and convergent rates of one-level defect–correction method (OLDC).

M Error Rate CPU time (s)

13 5.002827e-02 0.1
29 1.591076e-02 1.428 1
53 6.585102e-03 1.463 17
69 4.461336e-03 1.476 110
75 3.943505e-03 1.480 169

TABLE 3. Error and convergent rates of subgrid defect–correction method (SDC).

M m Error Rate CPU time (s)

13 5 5.002827e-02 0.1
29 5 1.591076e-02 1.428 1
53 7 6.585102e-03 1.463 19
69 9 4.461336e-03 1.476 90
75 9 3.943505e-03 1.480 149

TABLE 4. Error and convergent rates of two-level defect–correction method (TLDC).

M m Error Rate CPU time (s)

13 7 5.002856e-02 0.01
29 15 1.591094e-02 1.428 0.13
53 19 6.585418e-03 1.463 1
69 23 4.461659e-03 1.476 2.8
75 29 3.943723e-03 1.480 5.3
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FIGURE 3. ν = 8× 10−4.
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FIGURE 4. ν = 5× 10−4.

When ν ≤ 10−3, the SGM no longer converges. From the analysis in Remark 4.3 we
should choose a smaller σ than 0.001 in order to reach the optimal accuracy. However,
our practical experiments show that the iterative procedure does not converge for
small σ . To cope with the larger Reynolds number case we first choose a relatively
larger σ , then use several correction steps to diminish the influence of this relatively
large artificial viscosity σ to get a suitable approximation. That is, we will use
the TLDC Defect Step 2–Correction Step 2 scheme and the OLDC, SDC schemes
with several corrections like those given in [5, 9]. We give two numerical results
corresponding to ν = 8× 10−4 and 5× 10−4 with σ = 0.005. The numerical results
presented respectively in Figures 3 and 4 show that the two-level scheme can reach the
same accuracy of the one-level scheme with M2 modes when m ∼ M1/2 for the high
Reynolds number case.

Moreover, we would like to see the performance of these algorithms with
different M . Tables 1 and 2 show the relative H1 errors, convergent rates and CPU
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time of SGM and OLDC respectively with different M . Tables 3 and 4 present the
results of SDC and TLDC respectively with various M and m, and show that TLDC
can reach the same convergent rate with respect to M as SGM, OLDC, SDC with a
suitable m. However, since the TLDC only does the defect step in the coarse-level
subspace, the TLDC is especially efficient compared with other numerical schemes.
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