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1. Introduction 

Recent numerical calculations [1,2,3] have shown that Jupiter-family comets, which 

are on low inclination orbits, cannot originate from the gravitational scatter of 

long-period comets. Work by Quinn, Tremaine &; Duncan [1] shows that objects 

originally on low-inclination, Neptune crossing orbits will evolve into a population 

of objects with orbital parameters consistent with those of Jupiter-family comets. 

However,they point out that the timescale to deplete this initial population of 

planet-crossing objects is short. Therefore, they conclude there must be a system 

of objects that are evolving into planet-crossers on the timescale of the age of the 

solar system. The most likely source of these objects is a region just beyond the 

orbit of Neptune, the Kuiper belt. 

In order to complete this theory, it is still necessary to show that objects that 

formed in the Kuiper belt can become Neptune-crossers and to determine the 

timescale for this process. For if the length of time to deplete the Kuiper belt 

is too short then it can no longer be the source for the short-period comets seen 

today. If the length of time is too long then it will be difficult to reproduce a large 

enough flux of new comets to explain the number of observed short-period comets. 

Unfortunately, because the timescales involved must be on the order of the age of 

the solar system, it is not possible to determine them through the use of direct 

numerical integrations of orbits with current computer technology. In this paper 

we calculate the timescales of the evolution of objects in the Kuiper belt using a 

new technique that treats the evolution of orbits in integral space as a diffusion 

problem. 

2. Technique 

The technique employed in this paper is a new member of a class that treats the 

dynamical evolution of small gravitationally noninteracting objects within the solar 

system as a diffusion problem in integral space. We divide the two-dimensional 

integral space of perihelion (q) and aphelion (Q) distance into small bins. For each 

bin, we numerically integrate the orbits of 100 particles that initially start in that 

bin for approximately 60 orbital periods. From the behavior of the particles, we can 

calculate the probability that a particle will cross a bin boundary in a particular 

length of time represented by At. Thus, we have a matrix P, such that the ijth 

element is the probability of a particle moving from bin i to bin in time At. This 

matrix is a member of a well studied type known as a Markov chain. It is possible 
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to calculate the long term behavior of the dynamical system of interest by directly 

studying this matrix. 

In order to calculate the probability matrix, we must have an understanding of 

the short term evolution of orbits within the bins. To accomplish this, we numer-

ically integrate the orbits of 100 objects in each bin and follow the changes in q 

and Q for each object. We integrate the orbits of the particles in three dimensions 

under the gravitational influence of the Sun and the four jovian planets, but the 

particles themselves are not gravitationally interacting with each other. The initial 

values of q and Q for the particles are chosen from a uniform distribution and were 

constrained to lie within a bin. 

We can directly calculate the values of Pij from our empirical distribution of q 

and Q. Pij is the probability that a particle that starts in bin i will enter bin in 

a set amount of time, At = ~yrs. We need to add two special bins to act as the 

boundary condition for the problem. Particles enter these bins when they leave the 

system we study, and never return. We represent this in our probability matrix by 

assigning Pa — 1 and P^J^H) = 0 for these boundary bins. Here, the inner edge is 

at q < 30AU (the object becomes a Neptune-crosser). We arbitrarily set the outer 

edge at a = 100^4^7. Reference [4] discuss effects of changing the outer boundary 

on our results. 

The most basic characteristic of the Markov chain, P, is that it allow us to 

numerically integrate the behavior of the system. If we define a vector η so that 

the i t h element of η is the number of particles in bin i, then n(<j) = P J n(0) . To 

integrate the system for the age of the solar system then j = t/At = 3x 1 0 1 0 . This 

is not as impossible as it may seem because j « 2 3 5 . Thus, to get the probability 

matrix that relates that distribution of particles after 4.5 χ 10 9 years to their initial 

distribution, we square Ρ then square the square of Ρ and so on, 35 times. 

However, it is possible to determine the lifetimes of particles by directly studying 

P. Define the matrix Qij = Pij for all i and that are not boundary bins. The 

average number of time steps a particle spends in bin j before it leaves the system 

if it started in bin ί is Μ = (I — Q ) " 1 . Thus, if t = | | U || is the average number of 

time steps a particle spends in the system before it is absorbed if it started in bin 

i, then U — Mij. 

To summarize, it is possible for us, by using Markov chains, to determine the 

long term behavior of a dynamical system by simple matrix algebra. 

3 . Results 

The details of our results depend on what region of the solar system is studied. 

Here we define the Kuiper belt as the region of integral space such that q > 30 AU 

and a < 100AU. Objects tend to diffuse through this region on timescales that 

are on the order of the age of solar system. These diffusion times imply that it is 

very unlikely to find an object near to where it formed. This is illustrated in Figure 

1, which shows the expected surface density distribution after 4.5 χ 10 9 years for 

objects that start in circular orbits with a = 40AU ( Ά ' ) and a = 70AU ('Β'). Both 

distributions fill the entire region being studied. Note that many of the objects that 

started at 40^4Z7 moved outward in the solar system. 
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Fig. 1. The surface density as a function of distance from the Sun (r). The solid curve 

represents the surface density of the Kuiper belt after 4.5 χ 10 9 years if the initial dis-

tribution (dashed curve) were a delta function. A) All particles are initially on circular 

orbits at <U)AU. B) All particles are initially on circular orbits at 70 AU. 

A large fraction of integral space is covered with orbits whose lifetimes are on the 

order of age of the solar system. Here, lifetime is defined as the statistically mean 

length of time it takes for an object to evolve out of the Kuiper belt (q < 30AU 

or a > 100AU). Figure 2 is a contour plot of the expected lifetime of particles as a 

function of their initial q and Q. The solid contour represents the positions where 

the expected lifetime is equal to the age of the solar system, 5 χ 10 9 years. The 

dotted curves are contours of lifetimes less than the age of the solar system and 

the dashed curve is the contour of 1 0 1 0 years. The longest lifetime in the system is 

1.8 χ 1 0 1 0 years. It occurs for a circular orbit at a — 15AU. Approximately 30% of 

these objects become Neptune-crosses and thus provide a source for Jupiter-family 

comets. The rest are stored in orbits further out in the solar system. 

Even objects that form close to the orbit of Neptune have a significant chance 

to evolve to orbits with α > ΙΟΟΑίΛ For example, objects that formed in circular 

orbits at 4bAU have a 50% chance of evolving to orbits with α > 100AU. However, 
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Fig. 2. A contour plot of the mean length of time that a particle spends in the region 

studied in Run 4 as a function of its initial perihelion and aphelion distances. The thick 

solid curves represent the boundaries of q < Q and a < 100AU. The solid contour is 

5 x 10 9 years. The dashed contour is 1 0 1 0 years. The three doted contours are 10 8 , 5 χ 10 8 

and 10 9 years. 
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Fig. 3. The surface density as a function of distance from the Sun (r). The solid curve rep-

resents the surface density of the Kuiper belt after 4.5 χ 10 9 years if the initial distribution 

(dashed curve) followed a power law Σ oc r " 2 . 
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objects stored in this region of the solar system are not precluded from becoming 

short period comets. It is possible that after being stored for some time they can 

diffuse back through the system to become Neptune-crossers. Indeed, a significant 

fraction of objects follow this evolutionary track. They formed near the orbit of 

Neptune and slowly evolved to orbits with α > 100AU. After being stored there for 

some time (say, approximately 5 χ 10 9 years), they can diffuse back through the 

Kuiper belt and become Neptune-crossers. Thus, a significant fraction of objects 

that formed near the orbit of Neptune can currently be evolving into Jupiter-family 

comets. 

If we assume an initial surface density distribution, Σ , we can calculate the 

current distribution of mass. For example, if initially, Σ oc r~ 2 , then Figure 3 shows 

the current values of Σ . The units are such that the initial total mass in the Kuiper 

belt was 1. This predicts that the density in the Kuiper belt peaks at about 70AU. 

Unfortunately, this result implies that the Kuiper belt will be much harder to detect 

observationally. 

The shape of current surface density distribution is not a strong function of the 

initial conditions. Compare the current Σ calculated from the power law (Figure 

3) to those derived from delta functions (Figures 1A and IB). Even in the extreme 

cases the shapes of surface density distributions look similar. 

It is also possible to determine the number of comets in the Kuiper belt with 

this model. We find that 

ο,ΙΟΟΟΟ yrsx 

Nkb = 6xl09( j^— ) , 

where L is the average lifetime of a Jupiter family comet. If the average mass of a 
comet is 1 0 - u M e then the mass of Kuiper belt is 0.06( 1000®Vr$ ) M $ . 
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