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Based on recent numerical simulations and field experiments, the mechanism behind
wake meandering is increasingly accepted to be through the amplification of upstream
disturbances owing to the convectively unstable nature of the flow. In this paper, we
deduce a low-order phenomenological model for the far-wake region, which is based
on a modified form of the complex Ginzburg–Landau (CGL) equation for flows that
are in the amplifier regime, i.e. are only convectively unstable. The model reproduces
the main qualitative features of wake meandering: (i) its origin via amplification
of upstream structures, (ii) dependence of oscillation frequency on the upstream
disturbance amplitude (higher amplitudes lead to lower frequencies), (iii) shift towards
lower frequencies as the wake flow evolves in the streamwise direction and, to an
extent, (iv) the transfer of energy from very low frequencies towards relatively higher
frequencies. Additionally, the model also predicts the increase in the meandering
amplitude and an advancement in its onset with increasing thrust coefficient. To our
knowledge, this is the first low-order dynamical system in the literature that models
wake meandering. The model coefficients are obtained from the mean flow local
stability results that we show correctly account for the changing operating conditions
and thus pave way for the prediction of wake meandering features. Its low order
makes it suitable to use inside an energy farm design model, where it can help to
mitigate the adverse effects of wake meandering.

Key words: absolute/convective instability, low-dimensional models

1. Introduction
Far-wake regions behind tidal or wind turbines are usually reported to have

low-frequency oscillations (Medici & Alfredsson 2006; Larsen et al. 2008; Chamorro
et al. 2013). These oscillations give rise to a meandering wake pattern, hence the
term wake meandering, and cause an increase in turbulence in the far-wake flow. In
an energy farm, this increased turbulence level adversely affects the performance and
load characteristics of the downstream turbines (Ainslie 1988; Vermeer, Sørensen &
Crespo 2003; Larsen et al. 2008). Qualitative understandings of the origin of wake
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meandering and its main features, therefore, are required for mitigating those adverse
effects and hence are a topic of several recent studies (Heisel, Hong & Guala 2018;
Mao & Sørensen 2018; Foti et al. 2018a; Foti, Yang & Sotiropoulos 2018b; Foti
et al. 2019).

There are several plausible mechanisms for wake meandering that are suggested in
the literature. Larsen et al. (2007, 2008) conjectured that a turbine wake flow acts
as a passive tracer driven by large-scale vertical and transverse fluctuations in the
atmospheric flow. Such fluctuations change the wake flow direction stochastically and
this phenomenon is termed dynamic wake meandering. This conjecture, however, does
not explain the origin of low-frequency oscillations observed in several experiments
where the Strouhal number (St= f̃ D/U, f̃ – peak frequency, D – turbine diameter and
U – mean incoming velocity) is nearly independent of the inflow conditions (Okulov
et al. 2014).

To explain the origin of such low-frequency oscillations, Medici & Alfredsson
(2006) proposed that a turbine can be considered as a bluff body that generates
vortex shedding similar to the von Kármán vortex street. However, there are two
problems with this proposal. First, stability analysis results show turbine wake flows
to be only convectively unstable (Iungo et al. 2013; Sarmast et al. 2014; Mao &
Sørensen 2018), while bluff-body-type vortex shedding can occur only if a flow
is absolutely unstable in a substantial region (Chomaz, Huerre & Redekopp 1988;
Monkewitz 1988). Second, spectra of the low-frequency oscillations are observed to
have broad peaks, i.e. the peaks consist a range of frequencies (Foti et al. 2018b;
Heisel et al. 2018), while bluff-body-type vortex shedding spectra have sharp peaks
at distinct frequencies. Other proposed mechanisms for wake meandering are related
to the effect of near-wake structures. Okulov & Sørensen (2007), Iungo et al. (2013)
and Viola et al. (2014) hypothesised that tip or hub vortex instabilities can lead to
meandering in the far-wake region. However, they do not explain how these near-wake
region instabilities can affect the far-wake region (Mao & Sørensen 2018).

Recently, a new mechanism is proposed independently in two studies. First, a
numerical analysis of a steady wake flow field behind a turbine (modelled as a
porous disc) by Mao & Sørensen (2018). They found the wake flow to be only
convectively unstable. They then applied a novel adjoint algorithm to find nonlinear
optimal perturbations in three-dimensional flows and observed that the flow selectively
amplifies the upstream perturbations such that the far-wake oscillation frequency is
in the range St ≈ 0.25–0.63. Second, an experimental analysis of the incoming and
far-wake flow behind laboratory as well as utility-scale turbines by Heisel et al.
(2018). They observed that in the far-wake region, the flow amplifies upstream
disturbances in a range of frequencies with a peak in the range St = 0.3–0.4. Based
on these observations, the two studies proposed that wake meandering is a result of
amplification of upstream disturbances caused by the shear flow instabilities.

This mechanism is consistent with the Strouhal number related observations in
Foti et al. (2018b) and others, as well as with the far-wake instability mechanism
that gives rise to similar vortical fluctuations in bluff-body wakes (Cimbala, Nagib
& Roshko 1988; Williamson & Prasad 1993). Related to the new mechanism, there
are many features of wake meandering that are observed in the literature. These
include the shift in the far-wake oscillations towards lower frequencies with the
increasing amplitude of upstream disturbances (Mao & Sørensen 2018), increase in
their wavelength and amplitude with the downstream distance (Foti et al. 2018b)
and the transfer of energy from very low frequencies (St 6 0.1) to relatively higher
frequencies (Heisel et al. 2018). An understanding of these features and the ability to
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predict them under different operating conditions can enable an energy farm designer
to account for the adverse effects of wake meandering.

The existing models for turbine wake flows are kinematic in nature, such as
the stochastic wake meandering model by Larsen et al. (2007) or the input–output
correlation model by Hamilton et al. (2018). Such models are useful in different
ways, the model of Larsen et al. (2007) is a comprehensive farm model that includes
the effect of wake meandering and the model of Hamilton et al. (2018) provides
quantitative data for wake evolution under complex inflow conditions. Kinematic
nature of these models, however, means they do not account for the underlying
mechanism and hence cannot explain the origin of the above mentioned features.
Towards that purpose, we aim to develop a low-order model for the far-wake region
that qualitatively reproduces the phenomenon of wake meandering.

We obtain wake flows behind a tidal turbine under uniform and sinusoidally varying
inflow conditions by performing large-eddy simulations (LES) in § 2. The obtained
wake flows exhibit the main qualitative features of wake meandering that are reported
in the literature. We then perform a local linear stability analysis in § 3 to characterise
the mean flow and use those results in the low-order model deduced in § 4. We discuss
the achievements and limitations of the model and physical insights gained through it
in § 5.

2. Numerical simulations of the flow behind a turbine
2.1. Methodology

We obtain the flow fields behind a turbine placed in a straight channel with a
rectangular cross-section using LES, where the scales larger than the grid size are
directly resolved by solving the spatially filtered Navier–Stokes equations given below.

∂ ũi

∂t
+ ũj

(
∂ ũi

∂xj
−
∂ ũj

∂xi

)
=−

∂ p̃∗
∂xi
−
∂τ̃ij

∂xj
+ Fxδ1i + FT

i , (2.1)

where ũi represents the filtered velocity (ũ, ṽ, w̃) in the (x, y, z)-directions (of the
Cartesian coordinates) for i= 1, 2 and 3, respectively. The modified pressure is given
as p̃∗= p̃/ρ+0.5ũi

2, where p̃ is the filtered pressure and ρ is the density. The sub-grid
scales (SGS) are modelled as SGS stress terms (τ̃ij) according to Meneveau, Lund
& Cabot (1996). The viscous term is neglected. An external time-dependent forcing
(Fx) maintains a spatially uniform inlet flow velocity in the x-direction that is either
constant or varying sinusoidally with time. Lastly, FT

i represents the force imparted
by the turbine on the flow.

The turbine geometry is based on the National Renewable Energy Laboratory’s
hypothetical 550 kW two-bladed machine that is also simulated in Churchfield, Li &
Moriarty (2013). It has a rotor diameter (D) of 20 m, the blade sections are of NACA
63(1)-424 airfoil shape and the blade chord varies from approximately 1.7 m at the
root to 0.6 m at the tip. We do not resolve the turbine geometry, instead we assume
the blades as actuator lines. These lines are divided into a number of segments (NT)
and each segment imparts an aerodynamic force ( f Tj

i ) on the flow. This force is
based on the pre-tabulated lift and drag coefficients of the blade geometry (Sørensen
& Shen 2002). They are imposed on a cell located at (x, y, z) as a three-dimensional
Gaussian distribution around the centre of each segment (xj, yj, zj). The effect of the
turbine on the flow (FT

i ) is then calculated as

FT
i (x, y, z, t)=−

NT∑
j=1

fgf Tj
i (xj, yj, zj)

1
ε3π3/2

exp
[
−

(rj

ε

)2
]
, (2.2)
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where rj is the distance between (xj, yj, zj) and (x, y, z), and ε is the Gaussian
distribution parameter. We account for the tip loss through a pre-multiplication factor
fg ≡ (2/π) cos−1

[exp(−(0.5D− dj/dj sin βj))], where dj is the radial distance of the
jth blade section from the blade root and βj is the angle between the local relative
velocity and the rotor plane (Shen et al. 2005). Additionally, FT

i also includes the
effect of nacelle. Following Wu & Porté-agel (2011), we model it as a porous disc of
diameter 0.1D and drag coefficient 1.2. We follow the numerical methodology from
Churchfield et al. (2013) closely, and borrow the actuator lines code from NREL’s
software SOWFA (Churchfield et al. 2013). It is based on an open-source finite
volume solver OpenFOAM (Jasak 1996).

The channel simulated here is 12.0D long in the streamwise direction (x) and 2.5D
wide in the other two directions. The turbine is placed 2.0D downstream of the inlet
and at the centre of the y–z plane. The location of its centre is called (0, 0, 0). The
grid is a uniform hexahedral mesh with 480× 100× 100 cells, which means the cell
size is 1/40D in each direction. The side, upper and lower walls are modelled as
free-slip boundary conditions. Each turbine blade is divided into NT = 40 segments.
The distribution parameter is set as two times the grid size (i.e. ε= 1/20D). The time
step is set as 1t=0.025 s in all turbine simulations. This keeps the maximum Courant
number below 0.2 and does not allow the actuator lines to travel across more than
a cell in a time step. Troldborg (2009) recommended these limits for ε and 1t for
avoiding numerical instabilities and are widely followed in the literature. The power
spectral density (PSD) of the w̃-velocity fluctuations (φw) is obtained using data from
t= 200 s to 2200 s, unless stated otherwise, sampled at every 0.1 s, and by using the
‘pwelch’ command in MATLAB. It is not normalised.

2.2. Simulation results under uniform inflow conditions

The inlet flow is maintained as (U, 0, 0), where U = 1.85 m s−1. The turbine is
operated at the rotor frequency of 0.15–0.20 Hz, the corresponding Ω = 9.0 to
12.0 expresses it in terms of revolutions per minute. The flow corresponding to
Ω = 10.5 r.p.m. is treated as the representative case for which figure 1(a) shows the
instantaneous axial velocity field in the x–z plane passing through the turbine’s centre.
It should be noted that owing to the uniform laminar inflow conditions, the wake
flow evolution is slower here as compared to in cases of turbulent inflow conditions,
such as in Churchfield et al. (2013).

In the near-wake region (up to x/D≈ 4.5), the velocity deficit is maximum in the
core region (z/D ≈ 0.325) and is negligible in the area between the blade root and
the nacelle. The tip and root vortices are present behind the blades in the immediate
downstream region. Other vortices, called near-wake vortices here, also start to appear
in the downstream region as indicated in the figure. The PSD in the near-wake region
(panel b) shows peaks at f̃t = 0.350 Hz (root and tip vortices, f̃t is twice the rotor
frequency) and f̃n≈ 0.219 Hz (near-wake vortices). Qualitatively, the near-wake region
matches well with the LES results in Kumar & Mahesh (2017) where a propeller’s
geometry is fully resolved. We do not scrutinise the origin of near-wake structures
here, which is a complex area of research as evident from the numerous studies
(Widnall 1972; Okulov & Sørensen 2007; Felli, Camussi & Di Felice 2011; Hong
et al. 2014). In this paper, we are concerned only with the effect of the obtained
near-wake structures on the far-wake region.
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FIGURE 1. (Colour online) (a) The instantaneous axial velocity field in the x–z plane
passing through y= 0 in Ω = 10.5 case. The PSDs of w̃-velocity fluctuations in the (b)
near-wake region (the circles in panel a) show the tip and root vortices ( f̃t = 0.350 Hz)
and other near-wake vortices ( f̃n ≈ 0.219 Hz), (c) far-wake region (the squares in panel
a) show the far-wake oscillations have a broad peak at f̃m ≈ 0.048 Hz and (d) along the
x-direction (the crosses at x/D = 0.0, 2.5, 4.0, 6.0 and 9.0 in panel a) shows that the
far-wake oscillations generate from amplification of the near-wake structures at 0.048 Hz
(St≈ 0.52).

The flow evolves and becomes turbulent in the far-wake region where a meandering
pattern is observed (indicated in the figure). The PSDs in the far-wake region (panel
c) show an increase in energy at all frequencies, which is due to the turbulence. More
importantly, there is a peak at a low frequency ( f̃m ≈ 0.048 Hz) that corresponds to
the observed wake meandering. It should be noted that this peak is broad, i.e. it
comprises a band of frequencies as also shown in panel (d) and figure 2, which hints
that it is a result of convective instability (i.e. via the amplification of the upstream
disturbances) (Huerre & Monkewitz 1990). In order to trace the origin of the observed
wake meandering, we plot φw at different streamwise locations in panel (d). In the
later part of the near-wake region (at x/D = 2.5), there are peaks at f̃ ≈ 0.315 Hz,
0.219 Hz and their linear combinations. Successive φw at x/D = 4.0, 6.0 and 9.0
show the peak at 0.048 Hz gets amplified and this, we speculate, gives rise to the
observed wake meandering in the far-wake region. When the frequency ( f̃ ) is non-
dimensionalised as St = f̃ D/U, Stm ≈ 0.52 is found to be in the range observed in
Mao & Sørensen (2018).

The origin of wake meandering via the amplification of near-wake structures is
consistent with (i) the new mechanism discussed in § 1, (ii) convectively unstable
nature of the flow shown in § 3 and (iii) the evolution of far-wake vortical structures
in flows behind cylinders. Williamson & Prasad (1993) showed that in the far-wake
region behind a cylinder (which is much further downstream than a turbine’s far-wake
region), the flow amplifies a subharmonic component of the near-wake vortex shedding
structure (particularly in the absence of other upstream perturbations) that gives rise
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FIGURE 2. (Colour online) (a,c,e,g) The instantaneous axial velocity fields in the x–z
plane at y= 0 and corresponding (b,d, f,h) φw at x/D= [2.5, 4.0, 6.0, 9.0] and z/D= 0.325.
Wake meandering is present in all the cases. Except for the Ω = 9.0 r.p.m. case, there is
a peak in φw at St≈ 0.5.

to sustained vortical oscillations in the far-wake region. The results presented here
show how near-wake structures can affect the far-wake region in flows behind turbines.
This provides a plausible explanation for the hypotheses in Okulov & Sørensen (2007),
Iungo et al. (2013) and Viola et al. (2014), where they suggested that instabilities in
the near-wake region can lead (or contribute) to meandering in the far-wake region.

Figure 2(a,c,e,g) shows the non-dimensional instantaneous axial flow fields at
increasing Ω from the top to bottom. The flow fields show some level of meandering
in all cases. It is relatively weak in the Ω = 9.0 r.p.m. case and gets stronger
with increasing Ω . This is consistent with the observations in Heisel et al. (2018),
where wake meandering is not observed for highly derated turbines, i.e. when the
thrust coefficient becomes too small. The corresponding PSDs at z/D = 0.325 at
four streamwise locations (x/D = {2.5, 4.0, 6.0, 9.0}) are presented in the adjacent
plots (b,d, f,h). Except in the Ω = 9.0 r.p.m. case, there is a broad peak in φw

at St ≈ 0.5. The fact that St is nearly constant in all the cases suggests that the
wake meandering frequency scales with the turbine diameter and the mean incoming
velocity, as observed in Foti et al. (2018b) and others. The weak dependence of the
peak frequency on Ω shows the effect of the near-wake structures. This effect is
expected to be small under turbulent inflow conditions.
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Stf = 0.11 Stf = 0.43

0.3 0.6 0.9 1.1
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FIGURE 3. The instantaneous axial velocity fields under sinusoidally varying inflow
conditions Stf = (a–c) 0.11, (d–f ) 0.43, (g–i) 0.76 and ( j–l) 0.97. The forcing amplitudes
(increasing from the bottom to top) are mentioned in the respective panels. The wake
meandering pattern becomes regular (except for Stf = 0.11) as Af increases.

2.3. Simulation results under sinusoidally varying inflow conditions
Turbines usually operate under turbulent inflow conditions where energetic structures
from the boundary layer, upstream turbines, surface waves and other intermittent
sources are present. Therefore, it is imperative to study the wake evolution under
perturbed inflow conditions. In this paper, we limit ourselves to perturbations
in the axial velocity that are spatially uniform and vary sinusoidally in time as
(U(1 + Af sin(2πStf (U/D)t)), 0, 0), where U is the same as before, Af and Stf are
the non-dimensional forcing amplitude and frequency, respectively. Although such
a forcing is a poor approximation of turbulent inflow conditions for utility-scale
turbines, many studies have shown harmonic response of a flow can provide valuable
insights into instability generated flow structures. These include McKeon & Sharma
(2010) for understanding the scaling of coherent structures in turbulent pipe flows
and Garnaud et al. (2013) for understanding the preferred mode selection in turbulent
axisymmetric incompressible jets.

We obtain the wake flow for the turbine operating at Ω = 10.5 r.p.m. under various
Stf and Af inflow conditions. Figure 3 presents the non-dimensional instantaneous
axial velocity fields in the x–z plane. The four columns correspond to four forcing
frequencies, increasing from the left to right, while the forcing amplitudes (increasing
from the bottom to top) are mentioned in the respective panels. In the absence
of sinusoidal forcing, the far-wake oscillations result from the amplification of
background noise (which includes the decomposing near-wake structures and the
resulting turbulence). Consequently, the wake meandering pattern is irregular (figure 1
and the lowest row here) and its spectrum has a broad peak at Stm (see figure 1d).
As Af is increased, the wake meandering pattern becomes regular (the top row except
in the Stf = 0.11 case) and the flow starts to exhibit periodic oscillations at Stf (see
figure 5). This phenomenon is similar to the lock-in observed in oscillators (Pikovsky,
Rosenblum & Kurths 2001), where an oscillator starts to oscillate at the forcing
frequency (provided the forcing amplitude is sufficiently high) in place of its natural
frequency. We call it pseudo lock-in here because our flow is not an oscillator system,
it is an amplifier of external disturbances. At pseudo lock-in, all other frequencies
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0.7
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0.5

FIGURE 4. (Colour online) The wake flow response to sinusoidal forcing in terms of
rf = φw(Stf )/(φw(Stf )+ φw[Stm]), which is nearly zero when the effect of the background
noise is dominant (i.e. φw[Stm] � φw(Stf )) and approaches one as the effect of the
sinusoidal forcing becomes dominant (i.e. φw(Stf )� φw[Stm]). The black line represents
the pseudo lock-in curve (rf ≈ 0.95), above which the sinusoidal forcing has suppressed
the effect of the background noise. Pseudo lock-in is achieved earlier (i.e. at lower Af )
when Stf is closer to Stm (≈ 0.52).

are suppressed (i.e. the given background noise is no longer amplified) and the wake
flow starts to oscillate at the forcing frequency similar to a globally unstable flow.

We also see from figure 3 that the wake meandering pattern becomes regular
at lower Af values when Stf = 0.43 and 0.76 as compared to when Stf = 0.11
and 0.97. Thus showing that pseudo lock-in is achieved earlier when Stf is closer
to Stm. The variation in Af that is required to achieve pseudo lock-in with Stf is
shown in figure 4 for the Ω = 10.5 r.p.m. case. The colour map represents the ratio
rf = φw(Stf )/(φw(Stf )+ φw[Stm]), where φw(Stf ) is the value of φw at Stf (representing
the wake flow response to the sinusoidal forcing) and φw[Stm] is the value of φw at
the broadband peak near Stm (representing the wake flow response to the background
noise) calculated at (x/D, z/D)= (9, 0.325). The black line represents the minimum
Af required to achieve pseudo lock-in (rf ≈ 0.95). The pseudo lock-in curve has a
parabola-like shape with a minimum at Stf ≈ 0.54–0.65, which is close to Stm ≈ 0.52,
and a little tilt towards Stf > Stm. The hollow circles indicate the locations where the
calculations are performed, φw at many points in figure 4 are calculated using only
400 s of data. The purpose here is to show the trend of pseudo lock-in, for which
the accuracy of φw is not required.

Quantitative response of the wake flow to sinusoidal forcing is calculated in terms
of Ef = (1/2U)

√
|u|2 + |v|2 + |w|2, where (|u|, |v|, |w|) are frequency spectra of the

(ũ, ṽ, w̃) fluctuations, respectively. These calculations are performed using 1000 s of
data sampled at 0.1 s. Figure 5 shows Ef at (x/D, z/D) = (9, 0.325) for the Ω =

10.5 r.p.m. case, where the three columns correspond to three forcing frequencies
(increasing from the left to right) and the three rows correspond to three forcing
amplitudes (increasing from the bottom to top). A shift towards lower frequencies
with increasing forcing amplitudes can be seen here. At the smallest forcing amplitude
(bottom row), the maximum response is at the highest forcing frequency (i.e. Stf =

0.76). At the medium and the largest forcing amplitudes, the maximum response shifts
to Stf = 0.54 and 0.32, respectively. This is in agreement with the findings of Mao &
Sørensen (2018).
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FIGURE 5. The wake flow response to sinusoidal forcing at frequencies (a–c) 0.32, (d–f )
0.54 and (g–i) 0.76 and at varying Af (increasing from the bottom to top) in terms of
the velocity fluctuations frequency spectra at (x/D, z/D)= (9, 0.325). As Af increases, the
maximum wake flow response shifts from at Stf = 0.76 to at Stf = 0.32. Thus, showing a
shift to lower frequencies with the increasing forcing amplitudes.

3. Local linear stability analysis

Our purpose here is to find local stability characteristics of the turbine wake flows.
These results guide the development of the low-order model in § 4. We perform
stability analysis on the time-averaged flow profiles, which are not the stationary
solutions of the Navier–Stokes equations. Nonetheless, such analysis is found to be
effective in finding shear layer generated flow oscillations in the literature (Garnaud
et al. 2013).

3.1. Local mean velocity profiles
We assume the mean flow to be axisymmetric around the (y, z) = 0 axis and to be
varying slowly in the x-direction for the Wentzel–Kramers–Brillouin–Jeffrey (WKBJ)
approximation to be valid. The mean axial (U) and azimuthal (W) velocities are then
obtained by time averaging ũ(x, 0, z, t) and ṽ(x, 0, z, t), respectively, and are non-
dimensionalised by the mean incoming velocity. Figure 6(a) presents U−1 (blue lines)
and W (red lines) at various streamwise locations for the Ω = 10.5 r.p.m. case. The
velocity scales are shown at the top of the horizontal axis. The background colours
here indicate the division between the near- and far-wake regions. In the near-wake
region (x/D= 0.0–4.5), the mean axial velocity profiles show two regions of deficits
similar to Foti et al. (2018a) – the outer one due to the turbine blades and a smaller
middle one due to the nacelle. Similarly, the azimuthal velocity has two regions as
well – behind the blades it is in the opposite direction to the turbine rotation, while
behind the nacelle it is smaller and in the same direction as the turbine rotation.
The near-wake region is followed by the transition (x/D= 4.5–5.5), far-wake (x/D=
5.5–9.5) and buffer regions (x/D = 9.5–10.0). The mean velocity profiles in these
regions do not have the middle wake and the shear layers are not as sharp as in the
near-wake region.
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FIGURE 6. (Colour online) Streamwise variation of the (a) local mean flow profile (U− 1:
blue, W: red) and eigenfunction components (in the insets), (b) most amplified frequency,
(c) spatial growth rate and (d) group velocity (∂ω/∂k|r) and diffusion term (∂2ω/∂k2

|i)
corresponding to m=−1 modes in the Ω = 10.5 r.p.m. case, unless explicitly mentioned.

3.2. Methodology
Because the mean flow is axisymmetric, the perturbation equations are written in
(x, r, θ) as axial, radial and azimuthal coordinates. The perturbations are assumed
to be of the form (ux, iur, uθ , p) exp(i(mθ + kx − ωt)), where ux, ur, uθ and p are
perturbations to the (x, r, θ) velocities and pressure, respectively, m is the azimuthal
wavenumber, k = (kr + iki) is the streamwise wavenumber and ω = (ωr + iωi) is the
angular frequency (subscripts r and i stand for real and imaginary parts, respectively).
The linearised perturbations equations are derived from the Navier–Stokes equations
as

0= kux +
1
r
∂

∂r
(rur)+

m
r

uθ , (3.1)

ωux = kp+ kUux +m
W
r

ux +
∂U
∂r

ur, (3.2)

ωur =−
∂p
∂r
+ kUur +m

W
r

ur + 2
W
r

uθ , (3.3)

ωuθ =
m
r

p+
(
∂W
∂r
+

W
r

)
ur + kUuθ +m

W
r

uθ . (3.4)

The stability analysis code is based on the Chebyshev spectral collocation method.
The discretisation in the radial direction is performed on a Gauss–Lobatto–Chebyshev
grid. It is mapped on a radially unbounded physical space r/D= ζ/(1− ζ 2

+ (1/Rmax)),
where ζ is the Chebyshev grid from 0 to 1 and Rmax=25 is an arbitrarily large number
to represent an unbounded space. The number of collocation points used is N = 120.
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The change in the results on doubling Rmax and N (not shown here) is less than a per
cent.

3.3. Stability analysis results
We first heuristically define the concepts of convective and absolute instabilities and
their relation to the global flow instability (for detailed reviews please see Huerre &
Monkewitz (1990) and Chomaz (2005)). A parallel flow is linearly stable if ωi<0
for all values of k, otherwise it is linearly unstable. In a linearly stable parallel flow,
all external perturbations eventually die everywhere in the domain, whereas in a
linearly unstable parallel flow, there are two possibilities. The first is the convective
instability where perturbations of certain wavenumbers can grow but the growth rate
is slower than the advection rate, i.e. perturbations get advected away from their
origin. Mathematically, this happens when ωi > 0 for some values of k, but the
modes with zero group velocity (i.e. ∂ω/∂k = 0) have ωi < 0. Such flows do not
exhibit self-sustained oscillations but can greatly amplify external perturbations and
are called amplifier flows. The second is the absolute instability where perturbations
of certain wavenumbers can grow and the growth rate is faster than the advection
rate (Tobias, Proctor & Knobloch 1998) (i.e. at least one mode with ∂ω/∂k = 0 has
ωi > 0). Such flows exhibit self-sustained oscillations and are called oscillator flows.

These concepts of local stability analysis are applicable in weakly non-parallel
flows where the basic flow varies on a longer length scale as compared to the
instability wavelength (Monkewitz, Huerre & Chomaz 1993; Chomaz 2005). A weakly
non-parallel flow is (i) stable – when it is locally linearly stable everywhere, (ii) an
amplifier of external perturbations – when it is locally convectively unstable in some
part of the domain, and (iii) an oscillator – when it is locally absolutely unstable in
a sufficiently large region of the domain. A transition from stable to oscillator flow
with increasing instability is shown in § 4.2.

Turbine wake flows are only locally convectively unstable (Iungo et al. 2013;
Mao & Sørensen 2018) and thus belong to the second class (i.e. amplifier flow). In
figure 6(b–d), therefore, we present the stability results corresponding to the locally
most amplified modes (unless explicitly stated, the results are for Ω = 10.5 r.p.m.
case and m = −1 mode). Panel (b) shows the variation of the most amplified
frequency (ωr/2π) with x/D. The near-wake region of the flow amplifies higher
frequencies (compared to the far-wake region) because the mean flow in this region
has smaller-scale features (such as the middle wake) and sharper shear layers. The
sudden changes in the frequency signify mode switchings (determined by the mean
flow feature that is dominant locally). Again, we do not scrutinise the origin of
different near-wake modes. In the transition region, there is a clear shift from the
higher to lower frequencies. Finally, in the far-wake region, there is a slow but
consistent decrease in the most amplified frequency. Panels (c) and (d) show the
corresponding spatial growth rate (ki), the group velocity (∂ω/∂k|r), and the diffusion
term (−10(∂2ω/∂k2)|i). The spatial growth rate has the same behaviour as ωsr,
it decreases slowly in the far-wake region as the flow evolves and the shear layers
become less sharp. The group velocity signifies the advection rate of the perturbations
and is roughly equal to 0.75 times the mean incoming velocity. The negative value of
the diffusion term signifies that very high-frequency perturbations decay in the flow.
The imaginary part of the group velocity (∂ω/∂k|i) at (ωs, ks) is zero by definition,
the linear dispersion term (∂2ω/∂k2

|r) is negligibly small and the real wavenumber is
given as ksr ≈ωsr(∂ω/∂k)−1 (please see appendix A).
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Additionally, in panel (a), we show the normalised eigenfunction components at
locations x/D= 6, 7, 8 and 9 for the m= 0 and −1 modes in terms of

√
u2

x + u2
r + u2

θ

from r/D= 0 to 1.2. Both the modes initially show two peaks (at r/D≈ 0.2 and 0.5),
but later at x/D= 9.0, only the outer peak at r/D≈ 0.5 survives. The eigenfunctions
show the flow region in the radial direction where the wake meandering is influential
(see (4.5)). In panel (b), we show the variation of the most amplified frequency in
the Ω= 12.0 r.p.m. and 9.0 r.p.m. cases (only after their respective transition regions).
The results for these flow cases are qualitatively similar, implications of this similarity
are explored in § 5.1. In panel (c), we show the spatial growth rates for the m= 1, 0
and −2 modes, which indicate that the local stability results are very similar for all
the azimuthal modes (see § 4.2).

4. Low-order modelling of the far-wake region
For spatially developing open shear flows, such as jets and wakes, Chomaz and

co-workers (Chomaz et al. 1988; Chomaz, Huerre & Redekopp 1990, 1991; Chomaz
1992; Le Dizès et al. 1996; Cossu & Chomaz 1997) pioneered the use of the complex
Ginzburg–Landau (CGL) equation given as

Ȧ= (σr + iσi)A−Ug∂xA+ (cdr + icdi)∂
2
x A− (cnr + icni)|A|2A. (4.1)

This equation governs the evolution of a hydrodynamic instability wave (in terms of
the complex amplitude A= |A|eiφ , where φ is its phase) travelling downstream at the
group velocity Ug. The growth rate σr is the driving term, σi is the frequency
shift, cdr (> 0) is the diffusive coupling coefficient, cnr (> 0) is the nonlinear
saturation coefficient and cdi and cni are the linear and nonlinear dispersion coefficients,
respectively.

4.1. Model deduction
Strictly, the CGL equation is limited to describing instability waves in flows that
are (i) weakly nonlinear and (ii) weakly non-parallel (Aranson & Kramer 2002;
van Saarloos 2003). The first condition is satisfied when a flow is only marginally
unstable (i.e. has just transited to the oscillator regime) and ensures the absence of
the higher harmonics. The second condition ensures that instability waves satisfy the
local dispersion relations as per the WKBJ approximation (Monkewitz et al. 1993).
Thus, it provides a way to obtain the linearised CGL coefficients from the local
stability results (Le Dizès et al. 1996) as

˙̃A = −1i
(
ω0(X)+

1
2
∂2ω

∂k2
(ω0, k0; X)k0(X)2

)
Ã+

∂2ω

∂k2
(ω0, k0; X)k0(X)∂xÃ

+
1i
2
∂2ω

∂k2
(ω0, k0; X)∂2

x Ã, (4.2)

where X≡ εx (ε�1) is the slow scale at which the basic flow varies, ω0(X) and k0(X)
are the complex frequency and wavenumber, respectively, at X corresponding to the
zero group velocity modes (i.e. ∂ω/∂k(ω0, k0; X)= 0) and Ã is the linear counterpart
of A. Following Crighton & Gaster (1976), Monkewitz et al. (1993) and Siconolfi
et al. (2017), linear self-sustained oscillations in a weakly non-parallel flow can be
approximated as

Ã(x, r, θ, t)=Wg(X)qg(r, θ; X) exp
[

iε−1
∫ X

kg(X′) dX′ − iωgt
]
, (4.3)
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where Wg(X) is the slow amplitude variation, qg(r, θ; X) and kg(X) are the local
eigenfunction and wavenumber, respectively, corresponding to the complex global
mode frequency ωg. In order to check the applicability of (4.2), we insert (4.3)
in (4.2) and retain only the leading-order terms (at O(ε0)). The resultant equation is
the local linear dispersion relation at X up to the second-order term as

ωg −ω0(X)=
1
2
∂2ω

∂k2
(ω0, k0; X)(kg(X)− k0(X))2. (4.4)

Although, in general, flows have higher-order terms in their dispersion relations, they
can be neglected because in a weakly non-parallel flow ωg is close to ω0(X) (Chomaz
et al. 1991; Monkewitz et al. 1993; Le Dizès et al. 1996; Pier & Huerre 2001; Pier
2002).

In contrast to self-sustained oscillations modelled by (4.2), wake meandering arises
from amplification of upstream disturbances (see §§ 1 and 2). We argue that (i) the
CGL equation can still be used to model wake meandering and (ii) its coefficients can
still be obtained from local stability results. In support of the first argument, Cossu
& Chomaz (1997), Tobias et al. (1998) and Bagheri et al. (2009) showed that flow
structures arising from the amplification of upstream perturbations can be qualitatively
modelled using the CGL equation. In support of the second argument, Gaster (1969)
showed that spatially amplified modes can be modelled using a wave equation tuned
by local mean flow parameters. More formally, Chomaz (2005) and Viola, Arratia &
Gallaire (2016) showed that similar to (4.3), the linear response to sinusoidal forcing
(say at frequency ωf ) in weakly non-parallel flows can be approximated as

Ã(x, r, θ, t)=Wf (X)qf (r, θ; X) exp
[

iε−1
∫ X

kf (X′) dX′ − iωf t
]
, (4.5)

where Wf is the slow amplitude variation, qf (r, θ; X) and kf (X) are the local
eigenfunction and wavenumber, respectively, corresponding to ωf . The range of ωf
that is of interest is where the spatial amplification is maximum, which is at ωs(X)
(see § 3.3). The CGL equation to describe the spatially amplified waves, therefore,
should be based on the dispersion relation around (ωs, ks) (see appendix A) and can
be written as

Ȧ = −1i
(
ωs(X)−

∂ω

∂k
(ωs, ks; X)ks(X)+

1
2
∂2ω

∂k2
(ωs, ks; X)ks(X)2

)
A

−

(
∂ω

∂k
(ωs, ks; X)−

∂2ω

∂k2
(ωs, ks; X)ks(X)

)
∂xA+

1i
2
∂2ω

∂k2
(x)∂2

x A−Cn(X)|A|2A.

(4.6)

It should be noted here that we replaced Ã by its nonlinear counterpart A and also
included the nonlinear term (Cn ≡ cnr + icni). The conversion from the linear to
nonlinear CGL equation in not trivial and is discussed in detail in § 5.2.

Equation (4.6) is solved in the range X = 0–12, where X is equivalent to x/D in
the wake flow. At the inlet (X = 0), the boundary condition is set as time-dependent
forcing, which can be an impulse, sinusoidal or white noise forcing or their
combination. At the outlet (X= 12), following Heaton, Nichols & Schmid (2009), the
boundary condition is set as a convective outflow. We convert the partial differential
equation to a set of ordinary differential equations by discretising the spatial
coordinate using the fourth-order accurate central differencing scheme (dX = 1/32).
We then use the implicit Crank–Nicolson scheme (dt = 0.04) for time marching and
Picard’s method for iterating the nonlinear term.
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FIGURE 7. (Colour online) The coefficients are determined using least-square polynomial
curve fits (red lines) to the local stability results at m = −1 (black lines) in the region
X = 4.5–10.0.
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FIGURE 8. (Colour online) The linear impulse response of the system (a) decays
monotonically (stable regime), (b) shows transient growth (amplifier regime – present
case), (c) exhibits nearly self-sustained oscillations (marginally close to the oscillator
regime) and (d) exhibits exponentially growing oscillations (oscillator regime). The lines
correspond to the response amplitude at X = {1, 2, 3, . . . , 10} (the arrows indicate
increasing X).

4.2. Model coefficients

Figure 7 shows the model coefficients (ωsr/2π, ksi, ∂ω/∂k(ωs, ks)|r and ∂2ω/∂k2

(ωs, ks)|i), which are determined directly by least-square polynomial curve fitting of
the local stability results at m=−1 in the region X= 4.5–10.0 (presented in figure 6).
In the near-wake region (X < 4.5), the coefficients are extrapolated (as shown in the
figure) such that the model response and turbine wake flow results roughly match
in the region X = 2.0–3.0 (see § 5.1). In principle, the model coefficients should
be fixed separately for different azimuthal modes and thus different CGL equations
should be used for the forced response based on the azimuthal wavenumber of the
inflow disturbances. However, the stability results are very similar at all m (as shown
in figure 6c). We, therefore, assume that a single CGL equation should be able to
qualitatively model the evolution of all m modes.

Figure 8 shows the linear impulse response of the model (panel b) as well as for
its variants (panels a, cand d). An impulse of magnitude 1 is applied at X = 0 at
time t= 0, and the response amplitudes at X= {1, 2, 3, . . . , 10} with time are plotted.
Panels (a–d) show transition from (a) the stable regime to (b) the amplifier regime
to (c) being marginally close to the oscillator regime and finally to (d) the oscillator
regime as the flow instability increases. In the stable regime in (a), a disturbance
dies down monotonically. In the amplifier regime in (b), a disturbance shows a
transient growth via a convective-type non-normality (Cossu & Chomaz 1997) before
eventually decaying. The flow is still in the amplifier regime but is marginally close
to the oscillator regime in (c). The transient growth in this case is much higher
and the decay rate is much slower as compared to those in (b). Thus, even small

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

61
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.619


548 V. Gupta and M. Wan

10-1
10-8

ƒA 10-5

10-2

100

St
101

FIGURE 9. (Colour online) The model response to white Gaussian noise forcing
(Aw = 0.0004) in terms of the PSDs (φA) at X = {1, 2, 3, . . . , 10}. The oscillations evolve
towards lower frequencies with increasing X (indicated by the arrow) and finally have a
broad peak at St≈ 0.5.

external noise can sustain oscillations in such a flow (Huerre & Monkewitz 1990;
Babcock, Ahlers & Cannell 1991). In the oscillator regime in (d), a disturbance grows
exponentially until the nonlinearities saturate the oscillations to a finite amplitude.
This figure confirms that, like the wake flow, the model (i) is in the amplifier regime
and (ii) can spatially amplify the incoming disturbances.

The nonlinear saturation term (cnr) represents the reduction in amplification of
disturbances with their amplitude. It is observed in § 2.3, that this reduction is higher
at the higher forcing frequencies (Stf ). Thus, cnr should be proportional to a positive
exponent of Stf . Among the exponents tried (0.5, 1.0, 1.5 and 2.0), 1.5 gives the best
results. Thus leading to cnr = 4(2πStf )

1.5, where the pre-multiplication factor controls
the level of the saturation. The nonlinear dispersion term (cni) represents the change in
the wavenumber with the forcing amplitude and, similar to the linear dispersion term,
is set as zero. When a number of frequencies are present in the boundary forcing,
the nonlinear saturation term is set as cnr(X) = 4(2π(ΣjAfjStfjGLj(X)/ΣjAfjGLj(X)))1.5,
where Afj and GLj(X) are the forcing amplitude and the linear gain corresponding
to the forcing frequency Stfj (linear gains at some frequencies are shown in
appendix B). The implications of the nonlinear coefficient and alternative ways
for its mathematically rigorous calculation are discussed in § 5.2.

4.3. Model behaviour
Turbines operate under conditions comprising of small-scale turbulence as well
as coherent structures arising from a number of sources. Therefore, we study the
model behaviour when inflow conditions (at X = 0) are set as combinations of
white Gaussian noise (representing small-scale turbulence) and sinusoidal forcing
(representing coherent structures). Although simplistic, such input–output analyses
are shown to be useful in understanding the origin of complex structures arising in
turbulent flows (see § 2.3).

Figure 9 shows the model response to white Gaussian noise forcing (of normalised
amplitude Aw = 0.0004) in terms of the PSDs at X = {1, 2, 3, . . . , 10}. The PSDs
evolve towards lower frequencies and have a broad peak at St≈ 0.5 in the downstream
region, which matches well with the wake flow PSDs shown in figure 1(d). The peak
is broader here because the background noise is white, unlike in turbine far wake
where it consists of the near-wake structures. In addition to the white noise, which is
present in all the subsequent simulations, we add an upstream sinusoidal forcing term
(of normalised amplitude Af and frequency Stf ) at X= 0. Figure 10 shows the model
responses to forcing at varying Stf and Af in terms of rfm=φA(Stf )/φA(Stf )+ φA(Stmax),
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FIGURE 10. (Colour online) The model response to sinusoidal forcing in terms of rfm,
which is nearly zero when the background noise is dominant and approaches one as
the sinusoidal forcing becomes dominant. The black line represents the pseudo lock-in
curve (rfm ≈ 0.95), above which the sinusoidal forcing has suppressed the effect of the
background noise. Pseudo lock-in is achieved at lower Af when Stf is close to Stm (≈0.52).
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Af = 0.008

Stf = 0.32
Af = 0.135

Af = 0.016

Af = 0.008

Stf = 0.54
Af = 0.135

Af = 0.016

Af = 0.008

Stf = 0.76

FIGURE 11. The model response to forcing at frequencies (a–c) 0.32, (d–f ) 0.54 and (g–i)
0.76 and at varying Af (increasing from bottom to top) in terms of the spectra at X = 9.
As Af increases, the maximum model response shifts from Stf = 0.54 to Stf = 0.32. Thus
showing a shift to lower frequencies with increasing forcing amplitude.

where φA(Stf ) and φA(Stmax) are the PSD values (at X = 9) at the forcing frequency
(Stf ) and at the frequency (Stmax) where the response is maximum but Stmax 6= Stf . The
ratio rfm is nearly zero when the background noise is dominant and approaches one as
the sinusoidal forcing suppresses the effect of the background noise. The black line
shows the pseudo lock-in curve (rfm≈ 0.95), i.e. the minimum Af at a given Stf where
the effect of the background noise is suppressed. Similar to that for the wake flow in
figure 4, pseudo lock-in is achieved at lower Af when Stf ≈ 0.54–0.65, which is close
to Stm≈0.52, and the pseudo lock-in curve is parabola like in shape with a tilt towards
Stf > Stm.

Figure 11 presents the model responses (in terms of the frequency spectrum at
X = 9) to sinusoidal forcing at varying Stf (increasing from the left to right) and Af

(increasing from the bottom to top). The maximum response shifts from Stf = 0.54 to
0.32 as the forcing amplitude increases. This shows a shift towards lower frequencies
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FIGURE 12. (Colour online) Comparison of the wake flow and the model responses to
forcing at frequencies (a,b) 0.32, (c,d) 0.54 and (e, f ) 0.76 and at two forcing amplitudes.
The wake meandering frequency shifts to lower values with increasing (i) x/D and (ii) Af .

with increasing Af , as also seen for the wake flow in figure 5 and Mao & Sørensen
(2018).

5. Results and discussion
5.1. Achievements of the low-order model

The match between figures 10 and 11 with figures 4 and 5, respectively, shows how
well the CGL equation models the convectively amplified flow structures that give rise
to wake meandering. Thus, justifying the use of the CGL equation (4.6) for modelling
wake meandering. Here, we present a more detailed comparison between the model
and the wake flow results. It should be noted that we only qualitatively model the
wake from x/D= 4.5 to 9.5. The quantitative match between the two arises because
the model is designed to roughly match the wake flow in the region x/D= 2.0 to 3.0.
The model output |A| is equivalent to the wake flow response amplitude calculated as
the summation of Ef at Stf and its harmonics (see figure 5) and then averaged over
z/D= 0.0–0.5.

5.1.1. Variations in the wake meandering features with the forcing parameters
Figure 12 shows the variations of the wake flow and the model response amplitudes

with the streamwise distance from the turbine. The results are presented for three
forcing frequencies (increasing from left to right) and two forcing amplitudes (a,c,e–
Af = 0.016, b,d, f – Af = 0.135). There are two main points to note from this figure.
The first is the change in the dominant frequency with the downstream distance. The
top row shows that the response at Stf = 0.32 increases in the streamwise direction up
to x/D≈ 10, while the responses at Stf = 0.54 and Stf = 0.76 initially increase up to
x/D≈ 9 and x/D≈ 7, respectively, and then decrease. Consequently, up to x/D≈ 6,
the wake flow response at Stf = 0.76 is dominant while after that the response at
Stf = 0.54 is dominant. The bottom row shows qualitatively similar behaviour, where
the wake flow response at Stf = 0.54 is dominant initially (up to x/D≈ 5) while the
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response at Stf = 0.32 is dominant later. This shows that as the wake evolves in the
downstream direction, the frequency content shifts toward the lower values as also
observed in Foti et al. (2018b). The physical origin of such behaviour is the mean
flow evolution, which spreads in the radial direction with the downstream distance.
Thus, the frequency of the locally most unstable mode decreases with x/D (as shown
in figure 6b). Because the model coefficients are directly based on the local stability
results, the model, apart from minor quantitative differences, mimics this wake flow
behaviour correctly.

The second point to note is the change in the dominant frequency with the forcing
amplitude. The figure shows that the wake flow responses at all three Stf increase from
the top to the bottom row as Af increases. This increment in the response is maximum
at Stf = 0.32 and is minimum at Stf = 0.76. Consequently, in the top row, the model
response is maximum at Stf = 0.76 (for x/D < 6) and at Stf = 0.54 (for x/D > 6).
While, in the bottom row, the model response is maximum at Stf = 0.54 (for x/D< 5)
and at Stf =0.32 (for x/D>5). This shows that as the disturbance amplitude increases,
the wake flow response shifts towards lower frequencies as also observed in Mao &
Sørensen (2018). Again the model captures this behaviour correctly, thus, justifying
our choice of the nonlinear coefficient (see § 4.2). The figure also shows that at the
higher Af (bottom row), the wake flow response fluctuates around its curve fit. These
fluctuations are because of the presence of the higher harmonics and their interaction
with the fundamental mode. The higher harmonic was also observed in figure 5(a),
but is not present in the CGL equation based model results (such as in figure 11a).
This is discussed in appendix B.

5.1.2. Variations in the wake meandering features with the turbine operating
conditions

Figure 13 presents the same results as in figure 12 but for the wake flows
corresponding to Ω=12.0 r.p.m. and 9.0 r.p.m. cases. A comparison of the wake flow
behaviour for different Ω cases reveal three important features. The wake meandering
(i) occurs earlier in the streamwise direction, (ii) has higher amplitude and (iii) has
nearly constant peak Strouhal number range as Ω increases. The first two features are
due to the fact that thrust coefficient (Ct) increases with Ω (Ct = {0.59, 0.74, 0.86}
for Ω = {9.0 r.p.m., 10.5 r.p.m., 12.0 r.p.m.}, respectively). While the third feature
is because wake meandering frequency scales with the incoming velocity and turbine
diameter, the operating conditions play only a marginal role.

Foti et al. (2018a) performed LES on a turbine operating at optimal and suboptimal
(lower thrust) conditions and simulated them with and without a nacelle. They
observed that wake meandering is delayed when turbine is operating at suboptimal
condition as well as when simulated without a nacelle (similar observations are also
reported in Kang, Yang & Sotiropoulos (2014)). They attributed this observation to
the turbine drag force that determines the wake deficit and affects the mean velocity
evolution. The local stability results in figure 6(b) also support this reasoning, where
transition to the far-wake region occurs earliest in the Ω = 12.0 r.p.m. case and latest
in the Ω = 9.0 r.p.m. case. Consequently, this observation is also reflected in the
model, where (like the wake flow) the peak amplitude in each Af and Stf case is
achieved earliest in the Ω = 12.0 r.p.m. case and latest in the Ω = 9.0 r.p.m. case.

Higher drag force (or wake deficit) is also responsible for higher wake meandering
amplitude. This is first shown in Yang et al. (2015), where the added turbulent kinetic
energy in the far-wake region is shown to increase with the thrust coefficient, and
is later also confirmed in Heisel et al. (2018) and Foti et al. (2018a,b). Not shown
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FIGURE 13. (Colour online) Same results as in figure 12 but for the Ω = 12.0 r.p.m. and
9.0 r.p.m. cases. A comparison between different Ω cases shows that wake meandering
(i) occurs earlier in the streamwise direction and (ii) has higher amplitude as Ω increases
(because the thrust coefficient increases with Ω). (iii) The Strouhal number range, however,
remains nearly unaffected by changing Ω . All these features are well captured by the
low-order model.

in local stability results here, the spatial growth rate (−ksi) also increases with Ω ,
particularly in the region up to x/D = 6, and hence is also observed in the model
results.

The results in figures 2, 12 and 13 show that the peak frequency does not vary
much with the turbine’s operating conditions. The small increase in the peak frequency
with increasing Ω in figure 2 was attributed to the effect of the near-wake structures.
In figures 12 and 13, there is a small reduction in the peak frequency with increasing
Ω . This reduction is attributed to the earlier onset of wake meandering in higher
Ω cases as is also reflected in the stability results in figure 6(b). These results thus
corroborate that wake meandering frequency scales with the turbine diameter and the
mean velocity.

5.2. System nonlinearity and transfer of energy from low to high frequencies
As mentioned at the end of § 4.1, the conversion from the linear to nonlinear CGL
equation is not trivial. There are various options that exist in the literature. These
include using (i) the nonlinear dispersion relations to obtain the CGL coefficients (Pier
et al. 1998), (ii) a weakly nonlinear analysis to obtain the nonlinear term from the
Navier–Stokes equations (Sipp & Lebedev 2007), (iii) an input–output analysis to find
the nonlinear terms as well as their order (Lee et al. 2019) and (iv) a self-consistent
framework to obtain the variation in the nonlinear gain with the forcing amplitude
(Mantič-Lugo & Gallaire 2016). The first two methods are limited to self-sustained
oscillations, while the latter two methods are computationally intensive as well as
mathematically involved and hence are out of the scope of the present study. Here,
we determine the nonlinear term to be proportional to ω1.5

f based on the wake flow
observations (see § 4.2). The results in figures 12 and 13 justify our choice of the
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FIGURE 14. (Colour online) The (a) wake flow and (b) model response to forcing at a
low frequency (Stf = 0.11). They both show a transfer of energy from the low frequency
(at x/D = 4) to relatively higher frequencies at St = 0.2–0.8 (at x/D = 9). The model,
however, is unable to account for the transfer of energy to the higher harmonics.

nonlinear coefficient, as it correctly captures the change in wake meandering behaviour
with the forcing amplitude. To further justify our choice of the nonlinear coefficient,
we refer to the results in Keppens et al. (1999) where they showed the saturation
amplitude to be higher at the lower wavenumbers (than the linearly most unstable
wavenumber) in Kelvin–Helmholtz-type instabilities.

Physically, the origin of nonlinear saturation is the distortion of the base flow, which
results in a mean flow profile that, via Reynolds stress, saturates the instability modes
at finite amplitudes. This is first formulated by Stuart (1960) and calculated recently
by Mantič-Lugo, Arratia & Gallaire (2014) and Meliga (2017) for oscillator flows
and, more relevant to the present case, by Mantič-Lugo & Gallaire (2016) for the
response to harmonic forcing in an amplifier flow. Although, we do not obtain the
nonlinear term from rigorous calculations. Nevertheless, based on the present results,
we speculate that in the far-wake region higher-frequency flow structures distort the
wake flow faster and create more Reynolds stress as compared to lower-frequency flow
structures.

Another role of nonlinearity is to transfer energy between the different frequencies
that are otherwise linearly decoupled. Heisel et al. (2018) observed that very
low-frequency disturbances transfer energy to relatively higher frequencies. We
perturb the wake flow and the model by low-frequency disturbances (at Stf = 0.11),
and the spectra of their responses are shown in figure 14. Panel (a) shows that in
the wake flow, energy is transferred to the higher frequencies and several peaks at
the higher harmonics appear in the far-wake region. Panel (b) shows that in the
model, energy from Stf = 0.11 is also transferred to higher frequencies but there are
no higher harmonic peaks in the far-wake region. This is because the CGL equation
is inherently unable to capture the higher harmonics. An alternative to the CGL
equation, in the form of a wave equation, that can capture the higher harmonics is
formulated and discussed in appendix B.

5.3. Limitations of the low-order model
The main limitation of the present model that hinders quantitatively accurate
predictions arises from the limitations in our understanding of the near-wake region.
In contrast to the far-wake region, the flow instabilities and their interactions in the
near-wake region are very sensitive to the turbine design and support structures
(Kumar & Mahesh 2017). Reliable modelling and understanding the origin of
flow instabilities in this region, therefore, may require turbine-geometry resolved
high-fidelity simulations. This is beyond the scope of this study and is the reason that
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we avoided speculation on the origin of the near-wake structures and mode switchings
observed in §§ 2 and 3, respectively. The model coefficients in the near-wake region,
therefore, are based only on extrapolation of the far-wake region (see § 4.2) and a
rough match with the near-wake region (see § 5.1). Other limitations in the model
arise from the strong nonlinearity (as discussed in § 5.2 and appendix B) and from
lack of coupling of different azimuthal wavenumber modes.

Apart from that, there are limitations that arise from the simplifications in the
simulations as compared to realistic conditions in utility-scale turbines. These include
spatially uniform inflow conditions in place of a turbulent boundary layer mean flow
profile or mean incoming flow at a yaw angle, which disrupt the axisymmetric nature
of the flow. Other complexities, such as the spatial shape of turbulent structures,
presence of support structures and further variations in the operating conditions
increase the number of parameters to be considered in the model. To account for
them, the present model may need data from input–output models developed in the
literature (Hamilton et al. 2018).

6. Conclusion

Several recent studies have shown that wake meandering observed behind turbines
have broad spectral peaks centred around St = 0.3 (Heisel et al. 2018; Foti et al.
2018b). Based on these observations and stability analysis of the wake flow profile
(Mao & Sørensen 2018), the mechanism behind wake meandering is concluded to
be the amplification of upstream structures via shear flow instabilities in the far-wake
region. In this paper, we obtain unsteady wake flow fields behind a tidal turbine in
a uniform rectangular channel using LES (in § 2). The inflow in our simulations is
maintained as spatially uniform and is either steady or sinusoidally varying in time.
The main features of the wake flow, particularly of wake meandering in the far-wake
region, are shown to agree well with the literature. We also discuss how the near-wake
structures can lead or contribute to meandering in the far-wake region via convective
instabilities (figure 1(d) in § 2.2).

The main contribution of this paper is the development of a low-order dynamical
system to phenomenologically model wake meandering (in § 4). The model is based
on a modified form of the CGL equation for flows that are in the amplifier regime.
The model reproduces the main qualitative features of wake meandering, such as
(i) its origin via amplification of upstream structures, (ii) dependence of oscillation
frequency on the upstream disturbance amplitude (figure 12), (iii) shift towards lower
frequencies as the wake flow evolves in the streamwise direction (figure 12), and,
to an extent, (iv) transfer of energy from very low frequencies towards relatively
higher frequencies (figure 14). Additionally, the model also predicts the increase in
meandering amplitude and the advancement of the onset of meandering closer to the
turbine with the increasing thrust coefficient (figure 13). The main reason that the
model is able to predict these features is because its coefficients are based on the
results from local linear stability analysis performed over the time-averaged mean
flow (in § 3).

To our knowledge, this is the first low-order dynamical system that models
wake meandering and account for the mechanism of its origin. The agreement
between the model and the simulations is very encouraging, however, there are still
some limitations in the model that need to be resolved for quantitatively accurate
predictions. The main limitations include determination of (i) the model coefficients
in the near-wake region, and (ii) the nonlinear coefficient that can account for higher
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FIGURE 15. (Colour online) A local dispersion relation and its second-order
approximation around (ωs, ks) in terms of the variations of the (a) real and (b) imaginary
parts of the wavenumber with the real frequency. Equation (4.6) is based on the
second-order approximation.

harmonics and coupling of different azimuthal modes. Other limitations arise from the
simplistic and limited operating conditions explored in this paper. Given that these
limitations can be satisfactorily resolved, the small number of degrees of freedom
makes this model an ideal candidate for application in energy farm models. It can thus
help in designing farm layouts to minimise the adverse effects of wake meandering.
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Appendix A. The local dispersion relations

Figure 15 presents the local dispersion relation at x/D= 6 in the Ω = 10.5 r.p.m.
case in terms of the (a) real and (b) imaginary parts of the wavenumber versus the
real frequency. The dashed line represents its second-order approximation ω − ωs =

∂ω/∂k(ωs, ks)(k − ks) +
1
2∂

2ω/∂k2(ωs, ks)(k − ks)
2, where (ωs, ks) are marked in the

figure. The CGL equation used for modelling wake meandering in this paper is based
on this second-order approximation. There are two important points to note from this
figure. First, the second-order approximation is good in the range ωr/2π≈0.2–0.8, but
starts to depart from the actual dispersion relation outside this range. Consequently, the
CGL equation based model in this paper is also expected to be good in the range St≈
0.2–0.8 and to start to have errors outside this range. Second, kr varies almost linearly
with ωr. This means (i) ∂2ω/∂k2

|r is negligible, and (ii) kr can be approximated as
ω(∂ω/∂k)−1.

Appendix B. The CGL and the wave equation

The CGL equation is strictly applicable only in the weakly nonlinear regime, mainly
because of its inability to account for the higher harmonics. For flows that are strongly
nonlinear, either because they are highly linearly unstable or are under the influence
of strong external forcing, such as a wake oscillator (Ogink & Metrikine 2010) or a
forced axisymmetric jet (Li & Juniper 2013), van der Pol oscillator like equations are
used in the literature. While for the vortex shedding behind slender bodies, for which
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there is also the frequency variation in the spanwise direction, coupled van der Pol
like oscillators are used (Gaster 1969; Noack, Ohle & Eckelmann 1991; Papangelou
1992; Facchinetti, de Langre & Biolley 2002).

Here, we also propose a wave equation (given below) that is based on coupled
oscillators. We show its equivalence with the CGL equation in linear and weakly
nonlinear regimes, as well as its ability to capture the higher harmonics in strongly
nonlinear regime

ü+ o2u= ε(1− bu2)u̇+µ∂2
x u̇+Cdi∂

2
x u− ug∂xu̇− ugi∂xu. (B 1)

Here, o, ε, b, µ, Cdi, ug and ugi are space-dependent real variables. We follow
Nayfeh (1982) to derive an amplitude equation (i.e. the CGL equation) from the
wave equation (see Lee et al. (2019) for more details). Towards that purpose, we first
apply a variation of parameter and transform u(x, t) into variables |A(x, t)| and θ(t)
as

u= |A| cos(ωf t+ θ), u̇=−|A|ωf sin(ωf t+ θ), (B 2a,b)

where ωf is the global frequency (for oscillator flows) or the forcing frequency (for
amplifier flows). Conditions in (B 2) also give the following two equations as

0= ˙|A| cos(ωf t+ θ)− θ̇ |A| sin(ωf t+ θ), (B 3)

ü=− ˙|A|ωf sin(ωf t+ θ)− |A|ω2
f cos(ωf t+ θ)− |A|ωf θ̇ cos(ωf t+ θ). (B 4)

We insert (B 2) to (B 4) in (B 1) and apply the trigonometric identities to obtain two
first-order differential equations in time as

˙|A| =
(ε

2
|A| +

µ

2
∂2

x |A| −
ug

2
∂x|A|

)
(1− cos(2ωf t+ 2θ))−

εb
8
|A|3

(1− cos(4ωf t+ 4θ))+
(

Cdi

2
∂2

x |A| −
ugi

2
∂x|A|

)
sin(2ωf t+ 2θ), (B 5)

− |A|ωf θ̇ =

(
(ω2

f + o2)

2
|A|

Cdi

2
∂2

x |A| −
ugi

2
∂x|A|

)
(1+ cos(2ωf t+ 2θ))

−

(
εb
2
|A| +

µ

2
∂2

x |A| −
ugr

2
∂x|A|

)
ωf sin(2ωf t+ 2θ)

+ εb|A|3ωf

(
sin(4ωf t+ 4θ)

8
+

sin(2ωf t+ 2θ)
4

)
. (B 6)

It should be noted, that until this point we have made no assumption about the system
behaviour. We now make an assumption that the system is weakly nonlinear. Hence,
the higher harmonics are weak and |A| and θ act like system’s amplitude and phase,
and vary sinusoidally with t at the fundamental frequency. The application of the
method of averaging then gives the CGL equation governing the evolution of A =
|A| exp(iωf t+ iθ) as

Ȧ+
(

ug

2
+ i

ugi

2ωf

)
∂xA=

(
ε

2
+ i
ω2

f + o2

2ωf

)
A−

εb
8
|A|2A+

(
µ

2
+ i

Cdi

2ωf

)
∂2

x A. (B 7)
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FIGURE 16. (Colour online) The CGL versus wave model (a) linear gain and (b–d)
nonlinear responses (as the spectra at {X = 4, 5, 6, 7, 8, 9} for Af = 0.135) at
Stf = 0.11, 0.54 and 0.97. The CGL and wave models show a good agreement except
for the nonlinear response in Stf = 0.11 case, where the higher harmonics appear in the
wave model response.

In order to make (B 1) equivalent to the model (4.6), we adjust its coefficients
based on the form in (B 7) and the local stability results as o = 2ωfωsr − ω2

f ,
ε = −2(∂ω/∂k)(ωs, ks)ksi, µ = −(∂2ω/∂k2)|i, Cdi = 0, ug = 2(∂ω/∂k)|r and ugi = 0.
The nonlinear term is set as εb = 32ω1.5

f . The results of the wave equation (B 1)
are compared with the CGL equation (4.6) in figure 16 where (a) linear gains (GL)
and (b–d) nonlinear responses (in terms of the spectra at {X = 4, 5, 6, 7, 8, 9} for
Af = 0.135) at Stf = 0.11, 0.54 and 0.97 are plotted. Panel (a) confirms the equivalence
of the CGL and the wave equation in the linear limit. Even under the strong forcing,
panels (b–d) show that the nonlinear responses match between the two models, except
in the later regions in the Stf = 0.11 case. In this case, the wave equation results show
the emergence of a higher harmonic that is missing in the CGL equation results.

REFERENCES

AINSLIE, J. F. 1988 Calculating the flow field in the wake of wind turbines. J. Wind Engng Ind.
Aerodyn. 27, 213–224.

ARANSON, I. & KRAMER, L. 2002 The world of the complex Ginzburg–Landau equation. Rev. Mod.
Phys. 74 (1), 99–143.

BABCOCK, K. L., AHLERS, G. & CANNELL, D. S. 1991 Noise-sustained structure in Taylor–Couette
flow with through flow. Phys. Rev. Lett. 67 (24), 3388–3391.

BAGHERI, S., HENNINGSON, D. S., HŒPFFNER, J. & SCHMID, P. J. 2009 Input–output analysis
and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev.
62 (March), 020803.

CHAMORRO, L. P., HILL, C., MORTON, S., ELLIS, C., ARNDT, R. E. A. & SOTIROPOULOS, F.
2013 On the interaction between a turbulent open channel flow and an axial-flow turbine.
J. Fluid Mech. 716, 658–670.

CHOMAZ, J. M. 1992 Absolute and convective instabilities in nonlinear systems. Phys. Rev. Lett. 69
(13), 1931–1934.

CHOMAZ, J. M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity.
Annu. Rev. Fluid Mech. 37, 357–392.

CHOMAZ, J. M., HUERRE, P. & REDEKOPP, L. G. 1988 Bifurcation to local and global modes in
spatially developing flows. Phys. Rev. Lett. 60 (1), 25–28.

CHOMAZ, J. M., HUERRE, P. & REDEKOPP, L. G. 1990 The effect of nonlinearity and forcing on
global modes. In New Trends Nonlinear Dyn. Pattern-Forming Phenom. (ed. P. Coullet &
P. Huerre), pp. 259–274. Plenum Press.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

61
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.619


558 V. Gupta and M. Wan

CHOMAZ, J. M., HUERRE, P. & REDEKOPP, L. G. 1991 A frequency selection criterion in spatially
developing flows. Stud. Appl. Maths. 144, 119–144.

CHURCHFIELD, M. J., LI, Y. & MORIARTY, P. J. 2013 A large-eddy simulation study of wake
propagation and power production in an array of tidal-current turbines. Phil. Trans. R. Soc.
Lond. A 371, 20120421.

CIMBALA, J. M., NAGIB, H. M. & ROSHKO, A. 1988 Large structure in the far wakes of two-
dimensional bluff bodies. J. Fluid Mech. 190 (1988), 265–298.

COSSU, C. & CHOMAZ, J. M. 1997 Global measures of local convective instabilities. Phys. Rev.
Lett. 78 (23), 4387–4390.

CRIGHTON, D. G. & GASTER, M. 1976 Stability of slowly diverging jet flow. J. Fluid Mech. 77
(2), 397–413.

FACCHINETTI, M. L., DE LANGRE, E. & BIOLLEY, F. 2002 Vortex shedding modeling using diffusive
van de Pol oscillators. C. R. Acad. Sci. Paris 330 (II b), 1–6.

FELLI, M., CAMUSSI, R. & DI FELICE, F. 2011 Mechanisms of evolution of the propeller wake in
the transition and far fields. J. Fluid Mech. 682, 5–53.

FOTI, D., YANG, X., CAMPAGNOLO, F., MANIACI, D. & SOTIROPOULOS, F. 2018a Wake meandering
of a model wind turbine operating in two different regimes. Phys. Rev. Fluids 3 (5), 054607.

FOTI, D., YANG, X., SHEN, L. & SOTIROPOULOS, F. 2019 Effect of wind turbine nacelle on wake
dynamics in large wind farms. J. Fluid Mech. 869, 1–26.

FOTI, D., YANG, X. & SOTIROPOULOS, F. 2018b Similarity of wake meandering for different wind
turbine designs for different scales. J. Fluid Mech. 23, 5–25.

GARNAUD, X., LESSHAFFT, L., SCHMID, P. J. & HUERRE, P. 2013 The preferred mode of
incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189–202.

GASTER, M. 1969 Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech.
38 (3), 565–576.

HAMILTON, N., VIGGIANO, B., CALAF, M., TUTKUN, M. & CAL, R. B. 2018 A generalized
framework for reduced-order modeling of a wind turbine wake. Wind Energy 21 (6), 373–390.

HEATON, C. J., NICHOLS, J. W. & SCHMID, P. J. 2009 Global linear stability of the non-parallel
Batchelor vortex. J. Fluid Mech. 629, 139–160.

HEISEL, M., HONG, J. & GUALA, M. 2018 The spectral signature of wind turbine wake meandering:
a wind tunnel and field-scale study. Wind Energy 21 (9), 715–731.

HONG, J., TOLOUI, M., CHAMORRO, L. P., GUALA, M., HOWARD, K., RILEY, S., TUCKER, J. &
SOTIROPOULOS, F. 2014 Natural snowfall reveals large-scale flow structures in the wake of
a 2.5-MW wind turbine. Nat. Commun. 5, 1–9.

HUERRE, P. & MONKEWITZ, P. A. 1990 Local and global instabilities in spatially developing flows.
Annu. Rev. Fluid Mech. 22, 473–537.

IUNGO, G. V., VIOLA, F., CAMARRI, S., PORTÉ-AGEL, F. & GALLAIRE, F. 2013 Linear stability
analysis of wind turbine wakes performed on wind tunnel measurements. J. Fluid Mech. 737,
499–526.

JASAK, H. 1996 Error analysis and estimation for the finite volume method with applications to
fluid flows. PhD thesis, Imperial College, London.

KANG, S., YANG, X. & SOTIROPOULOS, F. 2014 On the onset of wake meandering for an axial
flow turbine in a turbulent open channel flow. J. Fluid Mech. 744, 376–403.

KEPPENS, R., TÓTH, G., WESTERMANN, R. H. J. & GOEDBLOED, J. P. 1999 Growth and saturation
of the Kelvin–Helmholtz instability with parallel and antiparallel magnetic fields. J. Plasma
Phys. 61 (1), 1–19.

KUMAR, P. & MAHESH, K. 2017 Large eddy simulation of propeller wake instabilities. J. Fluid
Mech. 814, 361–396.

LARSEN, G. C., MADSEN, H. A., BINGÖL, F., MANN, J., OTT, S., SØRENSEN, J. N., OKULOV, V.,
TROLDBORG, N., NIELSEN, M., THOMSEN, K. et al. 2007 Dynamic wake meandering
modeling. Tech. Rep. Technical University of Denmark, Roskilde.

LARSEN, G. C., MADSEN, H. A., THOMSEN, K. & LARSEN, T. J. 2008 Wake meandering: a
pragmatic approach. Wind Energy 11 (4), 377–395.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

61
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.619


Low-order modelling of wake meandering 559

LE DIZÈS, S., HUERRE, P., CHOMAZ, J. M. & MONKEWITZ, P. A. 1996 Linear global modes in
spatially developing media. Phil. Trans. R. Soc. Lond. A 354, 169–212.

LEE, M., ZHU, Y., LI, L. K. B. & GUPTA, V. 2019 System identification of a low-density jet via
its noise-induced dynamics. J. Fluid Mech. 862, 200–215.

LI, L. K. B. & JUNIPER, M. P. 2013 Lock-in and quasiperiodicity in a forced hydrodynamically
self-excited jet. J. Fluid Mech. 726, 624–655.
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