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Abstract

In 1960, Trevor Evans gave a best possible embedding of a partial latin square of order » in a latin square
of order ¢, for any ¢+ > 2n. A latin square of order n is equivalent to a 3-cycle system of K, , ., the
complete tripartite graph. Here we consider a small embedding of partial 3k-cycle systems of K, ,, ,
of a certain type which generalizes Evans’ Theorem, and discuss how this relates to the embedding of
patterned holes, another recent generalization of Evans’ Theorem.

1991 Mathematics subject classification (Amer. Math. Soc.): 05B15.

1. Introduction

In what follows, to say that the complete undirected tripartite graph K, ,, ,, is based on
Q x {1, 2, 3} will always mean that the tripartition of the verticesis: O x {1}, Q x {2}
and QO x {3}. A 3k-tricycle of K, , , is a cycle of length 3k of the form depicted in Fig-
ure 1, which we will denote by any cyclic shift of ((x;, 1), (y1, 2), (21, 3), (x2, 1), ...,
(2, 3)) or (31, 2), (x1, 1), (2, 3), (%, 2), ..., (21, 3)). The definition implies that the
k elements in each of the sets {xy,x;, x3,...,x}, {¥1» ¥2» ¥3,..., %} and
{z1, 22, 23, . . ., z;} are distinct,

A 3k-tricycle system (3kTS) of order n is a pair (Q x {1,2,3},T), where T is a
collection of edge disjoint 3k-tricycles which partition X, , , based on Q x {1, 2, 3}.

It is well-known that a 3-tricycle system (Q x {1, 2, 3}, T) of order n is equivalent
to a quasigroup (@, o); the equivalence being ((a, 1), (b, 2), (¢, 3)) € T if and only
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FIGURE 1. The tricycle ((x1, 1), (31, 2), (z1,3), (x2, 1), ..., (2, 3))

if a o b = c. Beyond this, not a lot is known.

EXAMPLE 1.1. (3-tricycle system of order 4.)

T ={(11, 12,13), (31, 12, 23), (11, 22, 33), (31, 22, 43), (11, 32, 43), (31, 32, 33),
(11,42, 23), (31,42, 13), (21, 12, 43), (41, 12, 33), (21, 22, 23), (41, 22, 13),
(21, 32, 13), (41, 32, 23), (21, 42, 33), (41, 42, 43)}

o1 2 3 4
11113472
21412(1]3
312141311
413|124

equivalent quasigroup
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EXAMPLE 1.2. (6-tricycle system of order 4.)

T ={(11,12,13,21, 22,23), (31, 32, 33,41, 42, 43), (11, 22, 33, 21, 32, 13),
(11, 32,43,21, 42, 33), (11, 42, 23, 21, 12, 43), (31, 12, 23, 41, 22, 13),
(31, 22,43,41, 32, 23), (31,42, 13, 41, 12, 33)}

A partial 3kTS of order n is a pair (Q x {1, 2, 3}, P), where P is a collection of edge
disjoint 3k-tricycles of K, , ,. The difference between a partial 3kTS and a 3kTS is
that the 3k-tricycles of a partial 3kTS do not necessarily partition K, ,, ...

Now given a partial 3k TS (Q x {1, 2, 3}, P) of order n there is the obvious problem
of completing (Q x {1, 2, 3}, P) to a3kTS. That is to say, partitioning K, , ,\ P (the
complement of P in K, ,,) into edge disjoint 3k-tricycles. The following example
shows that in general this cannot be done.

EXAMPLE 1.3. (Partial 6T'S of order 3.) Let Q = {1, 2, 3}. Then (Q x {1, 2, 3}, P)
where P = {(11, 12, 13, 21, 22, 23), (11, 22, 33, 21, 32, 13)} is a partial 6T'S of order
3. Since |E(K333\P)| = 15, no amount of effort will partition K333\ P into edge
disjoint 6-tricycles.

Since a partial 3k TS cannot necessarily be completed, the problem of embedding is
immediate. The (partial) 3kTS (Q x {1, 2, 3}, P) is said to be embedded in the 3kTS
(0 x {1,2,3}, P*) provided Q € Q* and P € P*. Naturally, if an embedding is
possible we would like |Q*] to be as small as possible. A quick check shows that the
partial 6TS of order 3 in Example 1.3 is embedded in the 67'S of order 4 in Example
1.2 (and you can’t get much smaller than that!)

In 1960 Trevor Evans [1] proved that a partial quasigroup of order n can always be
embedded in a quasigroup of order ¢ for every t > 2n. This is the best possible result
of its kind since it is always possible to construct a partial quasigroup of order n which
cannot be embedded in a quasigroup of order less than 2n for every n > 4. Since a
(partial) 3T'S is equivalent to a quasigroup, the problem of embedding a partial 37'S
is completely solved.

However, the problem of embedding a partial 3kT'S for 3k > 6 is an open problem.
The object of this paper is to use a recent generalization [2, 3] of Evans’ Theorem on
embedding partial quasigroups (to groupoids), to not only obtain an embedding of a
general partial 3kTS, but a fairly ‘small’ embedding as well. In particular, we prove
that when 3k ¢ {6, 18}, a partial 3kTS of order » can be embedded in a 3k TS of order
kt for every ¢t > 2n, and of order 2kt when 3k € {6, 18}. As mentioned above, this is
the best possible result for k = 1. For £ > 1 this is undoubtedly not the best possible
embedding, but is still pretty good. At this stage it is not exactly clear what the best
possible embedding is. A lot of work remains to be done on this problem.
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2. Embedding groupoids

In order to achieve the embedding results in this paper we will need the following
generalization of Evans’ Theorem.

A pair of partial groupoids (Q, o;) and (Q, o,) is called an embedding pair of
partial groupoids provided that:

(1) exactly the same products are defined in (Q, o) and ({2, o),
(2) each element x € Q occurs as a product the same number of times in (@, o)

and (Qv 02),
3) (Q, o) is row latin, and
(4) (Q, o) is column latin.

EXAMPLE 2.1. (An embedding pair of groupoids (Q, o) and (Q, o) of order 6.)

o1 2 3 4 5 6 |1 2 3 4 5 6
1 215 1 212

2 6 4 2 3 4
301 5 305 5

4 2 3 4 1 6

5 5

6 6 2 6 6 2

Now let (P, o) be a partial quasigroup with the undefined products being precisely the
products which are defined in (@, o;) and (Q, o,). Denote by (P, o(o,)) the groupoid
obtained from (P, o) by defining the undefined products with the products from
(Q, 01),and by (P, o(0)) the groupoid obtained from (P, o) by defining the undefined
products with the products from (Q, 0;). If (P, o(0;)) is row latin and (P, o(0,)) is
column latin we will say that the embedding pair of partial groupoids is embedded in
the partial quasigroup (P, o). In this case the ordered triple ((Q, o), (Q, 0,), (P, 0))
is known as a patterned hole [2].

EXAMPLE 2.2. The embedding pair of partial groupoids of order 6 in Example 2.1
is embedded in the following partial quasigroup (P, o) of order 9. Check it out!
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o|l1 2 3 4 5 6 7 8 9
111 4 |17|8]|9[31/6
217/(81|69 5 3121
3 4 91236 |7]|8
416 715 1141819
512|5(1|6{8[97]4]3
6|4 3119 8157
719174183 (5}1(6]2
8 (813|621 |7|5|9]4
9139871416 |2|1]5
(P,0)

THEOREM 2.3. (C. C. Lindner and C. A. Rodger [2].) An embedding pair of partial
groupoids of order n can be embedded in a partial quasigroup of order t for every
t>2n.

We remark that, as with Evans’ Theorem, this is the best possible result with respect
to the size of the containing partial quasigroup.
With Theorem 2.3 in hand we can now proceed to the embedding of a partial 3kT'S.

3. Embedding a 3kTS

For technical reasons (which will become abundantly clear) we break the construc-
tion into two parts: all 3k # 6 or 18 and 3k € {6, 18}.

First case: 3k # 6 or 18. Let (Q x {1, 2, 3}, P) be a partial 3kTS of order n, where
3k # 6 or 18. Define a pair of partial groupoids as follows: For each 3k-tricycle
((x1, D, 1, 2), (21, 3), ..., (2, 3)) belonging to P define:

X101 Y1 =2 |X102)1 =2y

X201 Y2=2) |[X202)2=22

Xp Ot Yk = Zg—t | Xk O2 Yk = 2k

It is straightforward and not difficult to show that (Q, o) and (Q, o,) is an embedding
pair of partial groupoids of order n. Let (Q*, o) be a partial quasigroup of order¢ > 2n
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in which (Q, o) and (Q, o,) can be embedded. Finally, let (K, ®) be an idempotent
quasigroup of order k having an orthogonal mate. (Since k # 2 or 6, (K, ®) exists.)
We can partition (K, ®) into £ disjoint transversals

X,‘1=1 x,2=2 X,‘3=3 X,‘k=k
= Yi1 Yi2 Yi3 s Yik
Zi1 Zj2 Zj3 s Zik

for 1 <i <k, where x;; @ y;; = z;;. Let S = K x Q" and define a collection of
3k-tricycles T of Ky, 4.1 based on S x {1, 2, 3} as follows:

1y If ((x, D, 01, 2), (21, 3), ..., (@, 3)) € P, place the k? 3k-tricycles

((axls 1)’ (byl’ 2)7 (CZ[, 3)v (ax27 1)5 (by2r 2)’ (CZZv 3)’ e (axkv 1)7 (byks 2),
(cz, 3))

inT,foralla,be Kanda ® b =c.
(2) If ((a, 1), (b, 2)) does not belong to a 3k-tricycle of P, place the 3k-tricycle

((a-xil’ 1)5 (byi19 2)’ (Czih 3)7 (axiZa 1)’ (byi27 2)9 (CZ,‘2, 3)7 sy (axik’ 1)5
(byix, 2), (czu, 3))

in T for each transversal 7; of (Q, ®) where a o b = c in the partial quasigroup
(Q*, o). (This gives a total of k 3k-tricycles for each such ((a, 1), (b, 2)).)

CLAIM. (S x {1,2,3}, T) is a 3kTS. The proof consists of showing that |T| = k¢2
and that every edge belongs to at least one 3k-tricycle of T. The first part is easy. Let
|P| = x, then T contains xk? type (1) 3k-tricycles. Since each 3k-tricycle defines
k products in the embedding pair (Q, o,) and (Q, o,), there are k(t> — xk) type (2)
3k-tricycles. Hence |T| = xk? + kt* — xk* = kt?.

We now show that every edge belongs to at least one 3k-tricycle of T. There
are three cases to consider: (1) ((k1x, 1), (k2y, 2)); (2) ((kix, 1), (k3z, 3)); and (3)
((kyy, 2), (k3z, 3)). We will handle each case in turn.

1) ((kyx, 1), (kzy, 2)). If ((x,1),(y,2)) belongs to a 3k-tricycle of P, then
((kyx, 1), (kay, 2)) belongs to a 3k-tricycle of type (1). If ((x, 1), (¥, 2)) does not be-
long to a 3k-tricycle of P, then x o y = z is computed in the partial quasigroup (Q*, o),
and so ((kx, 1), (k2y, 2)) belongs to the 3k-tricycle (. . ., (x;;x, 1), (y;;¥, 2), (z;52, 3),
...) of type (2), where k; = x;; and k, = y;;.

(2) ((kyx, 1), (k3z, 3)). If ((x, 1), (z,3)) belongs to a 3k-tricycle of P, then
((kyx, 1), (k3z, 3)) belongs to a 3k-tricycle of type (1). If ((x, 1), (z, 3)) does not
belong to a 3k-tricycle of P, then there is a unique y such that x oy = z in
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the partial quasigroup (Q*, o). Moreover, there is a unique transversal such that
x;j = ky and z;;_,y, = ks, and so ((kix, 1), (k3z, 3)) belongs to the 3k-tricycle
(..., @G-z, 3), (xijx, 1), (¥, 2), (z;;2,3), ...) of type (2), where k; = x;; and
ks = zi¢j-1y.

(3) ((k2y, 2), (k3z, 3)). If ((y, 2), (z, 3)) belongs to a 3k-tricycle of P, then ((kyy, 2),
(k3z, 3)) belongs to a 3k-tricycle of type (1). Otherwise, x o y = z for a unique x in
the partial quasigroup (Q*, o). Hence ((k»y, 2), (k3z, 3)) belongs to the 3k-tricycle
ooy ajx, 1), (yijy, 2), (252, 3), ... ) of type (2), where k; = y;; and k3 = z;;.

Combining cases (1), (2), and (3) shows that (S x {1,2,3},T) is a 3kTS. Since
(K, ®) is idempotent, the type (1) 3k-tricycles produce k disjoint copies of (Q X
{1,2,3}, P)in (S x {1,2,3}, 7).

Second case: 3k € {6, 18}. Clearly the proof here is a little different, since there
does not exist a pair of orthogonal latin squares of order 2 or of order 6, but the
construction is the same in principle. As in the previous case, from the partial 3k TS
(Q x {1, 2,3}, P) of order n we define the partial groupoids (Q, o) and (Q, o,), and
let (Q*, o) be a partial quasigroup of order ¢+ > 2n into which this embedding pair
can be embedded. Let (K, ®) be an idempotent quasigroup of order 2k. Finally, we
need some half-transversals: n/2 cells in a latin square of order , no two in the same
row or column, and no two containing the same symbol. When 3k = 6 we use the
following quasigroup (L4, ®4) of order 2k = 4:

i1 2 3 4
1111234
21314112
31211143
4 1413121

The first k = 2 rows of (L4, ©4) can be partitioned into 2k = 4 half-transversals

1 2 1 2 1 2 1 2
m=\|1 2], m=14{2 1], m=1]|3 4 and n,=1[]4 3],
1 4 2 3 3 2 4 1
and similarly the last ¥ = 2 rows of (L4, ®4) can be partitioned into 2k = 4 half-
transversals
x,‘]=k+l x52=k+2
n; = Yi1 Vi s 2k+1=5§l§8=4k.

Ziy Zi2
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These will be used in the case 3k = 6. When 3k = 18 we use the quasigroup
(L2, ®12) of order 2k = 12 which is the direct product of (L4, ©4) with a quasigroup
of order 3. Then clearly the first k = 6 rows of (L5, ®1,) can be partitioned into 2k
half-transversals

x,'1=1 x,~2=2 X,'k=6=k
= Yi1 Yi2 YVik , 1<i<12=2k
Zi1 Zi2 Zik

and the last k = 6 rows of (L5, ®,) can be partitioned into 2k half-transversals

x,-,=k+1 x,»2=k+2 X,'k=2k
T = Yi1 Yi2 L Yik R 2k+1 < i 5 4k
Zi1 Ziz Zik

For 3k € {6, 18} we can now define S = L, x Q* and define a collection of
3k-tricycles T of Ko aeon: based on S x {1, 2, 3} as follows.

() If ((x1, 1)y 01, 2), (21, 3), ..., (2, 3)) € P, place the (2k)? 3k-tricycles

((axl’ 1)’ (b)’h 2)! (Czlv 3)7 ((IX2, 1)5 (b)’2, 2)’ (CZz, 3)’ o (axka l)a (b)’k, 2)»
(cz, 3))

inT,foralla,be Kanda® b =c.
(2) If ((a, 1), (b, 2)) does not belong to a 3k-tricycle of P, place the 3k-tricycle

((axiy, 1), (byir, 2), (czir, 3), (axiz, 1), (byi2, 2), (¢2i2, 3), ..., (axi, 1),
(byiks 2)7 (Czikv 3))
in T for each half-transversal m; of (L,, ®y), 1 <i < 4k, whereao b = cin
(Q*, o). (This defines a total of 4k 3k-cycles for each such ((a, 1), (b, 2)).)

The proof these 4kt? 3k-tricycles in (S x {1, 2, 3}, T) form a 3k T'S is virtually identical
to the proof given earlier in the case where 3k ¢ {6, 18}.
Putting all this together gives the following result.

THEOREM 3.1. A partial 3kTS of order n can be embedded in a 3kTS of order kt
ifk ¢ {2, 6} and of order 2kt if k € {2, 6}, for any t > 2n.

4. Final comments

In the introduction, we described the well-known equivalence between quasi-
groups of order n and 3-tricycle systems of K, , ,. In Section 2, the patterned hole
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((Q, o)), (Q, 03), (P, 0)) was defined. Patterned holes were introduced in [2] where
they provided the means of obtaining small embeddings of partial cycle systems of
K,, the complete graph. Our final remark is to point out that patterned holes are
generalizations of quasigroups, and that this generalization can easily be seen by
noticing a correspondence between patterned holes and tricycle systems: A tricycle
system of order n is a pair (Q x {1, 2, 3}, T), where T is a collection of edge-disjoint
tricycles (of possibly different lengths), which partition X, , , based on Q x {1, 2, 3}.
So the difference between a 3k -tricycle system and a tricycle system is that in a tricycle
system not all tricycles need to have the same length 3k.

Given a tricycle system (Q x {1, 2, 3}, T) of order n, we construct a patterned hole
(Q, o1), (@, 02), (P, 0)) as follows. Foreach 3k-tricycle ((x, 1), (31, 2), (21, 3), ...,
(z,3)in T withk > 1,for 1 < i < k define x; oy y; = z;_; in (@, o) (reducing
the subscript modulo k), and define x; o, y; = z; in (Q, 0;). For each 3-tricycle
((x, 1), (,2), (z, 3)) we get a choice: either define x o y = z in (P, o); or define
xo1y =zin(Q, o;) and define x o, y = z in (Q, o;). It is easy to see that this defines
a patterned hole.

EXAMPLE 4.1. To understand the choice offered for each 3-tricycle, consider the
following. The patterned hole ((Q, o;), (@, ©2), (P, o)) defined in Examples 2.1 and
2.2 results from a tricycle system that includes the 3-tricycle ((2, 1), (6, 2), (4, 3)).
In this case, this 3-tricycle was used to define 2 o, 6 = 4 and 2 o, 6 = 4. However,
note that a patterned hole would still result if we defined 2 0 6 = 4 in (P, o) instead,
leaving 2 o, 6 and 2 o, 6 undefined.

Conversely, suppose that we are given a patterned hole ((Q, o), (@, 02), (P, 0)),
of order n. We define a tricycle system of K, ,, as follows. For each product
x oy = z defined in (P, o), define the 3-tricycle ((x, 1), (y, 2), (z, 3)). Let G be the
graph formed from K, , , by removing the edges {(x, 1), (v, 2)}, {(y,2), (z, 3)} and
{(x, 1), (z,3)} foreach x o y = z defined in (P, o). Then there exists a tricycle system
of G, as the following shows. Form a directed graph D from G by replacing the
edge {(x, a), (¥, a + 1)} with the arc directed from (x, @) to (y, a + 1) (reducing the
second component modulo 3). For each vertex v in D, v has the same indegree as its
outdegree, so D has a directed Euler tour. This directed Euler tour can be expressed
as the union of arc-disjoint directed cycles, and the underlying simple graph of each
such directed cycle is clearly a tricycle in G. Therefore there exists a tricycle system
of G.

In fact there may exist many tricycle systems of G, so it is natural to ask which
patterned holes are defined from the resulting tricycle systems of K, , ,. Notice that for
each patterned hole ((Q, oy), (Q, 02), (P, 0)), we can define closely related patterned
holes ((Q, *), (Q, *2), (P, o)) by performing the operations:
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(1) rearrange the symbols among the filled cells within each row of (Q, o,) to form
(Q, %), and

(2) rearrange the symbols among the filled cells within each column of (Q, o,) to
form (Q, *,).

It is easy to see that the patterned holes formed from ((Q, o), (@, o), (P, 0))
by using these operations are precisely the patterned holes that are formed from the
tricycle systems of G, together with the 3-tricycles used to define (P, o).
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