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Abstract. Let L=K be a ¢nite Galois extension of number ¢elds of group G. In [4] the second
named author used complexes arising from ëtale cohomology of the constant sheaf Z to de¢ne
a canonical element TO�L=K� of the relative algebraic K -group K0�Z�G�;R�. It was shown that
the Stark and Strong Stark Conjectures for L=K can be reinterpreted in terms of TO�L=K�,
and that the Equivariant TamagawaNumberConjecture for theQ�G�-equivariantmotive h0�Spec
L� is equivalent to the vanishing of TO�L=K�. In this paper we give a natural description of
TO�L=K� in terms of ¢nite G-modules and also, when G is Abelian, in terms of (¢rst) Fitting
ideals. By combining this description with techniques of Iwasawa theory we prove that
TO�L=Q� vanishes for an interesting class of Abelian extensions L=Q.
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1. Introduction

In the seminal paper [1] Bloch and Kato give a conjectural formula for the leading
coef¢cient (up to sign) in the Laurent expansion at s � 0 of L-functions associated
to certain motives de¢ned over number ¢elds in terms of motivic realisations
and motivic cohomology groups. This `Tamagawa Number Conjecture' of Bloch
and Kato has been reformulated and extended by Fontaine and Perrin-Riou in [13]
and byKato in [18, 19] to the setting of mixed motives with commutative coef¢cients.
In [5^7] Flach and the second named author extended and reworked the conjectures
of [1, 13, 18, 19] to make clearer the consequences concerning equivariant structure
of lattices in the associated de Rham, Betti, and motivic cohomology spaces. In
particular, if L=K is a ¢nite Abelian extension of number ¢elds, then it was shown
that by considering h0�Spec L� as a motive de¢ned over K and with coef¢cients
Q�Gal�L=K�� one obtains in this way a considerable strengthening of the conjecture
formulated by Chinburg in [10]. In [3] the `Equivariant Tamagawa Number Con-
jecture' of [7] is generalized to the case of motives which are de¢ned over number
¢elds and have coef¢cients which are not necessarily commutative.
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Now let L=K be any ¢nite Galois extension of number ¢elds of group G. For any
integral domain R and any ¢eld extension E of the quotient ¢eld of R, let
K0�R�G�;E� denote the Grothendieck group of the ¢bre category of the functor
ÿ
R E from the category of ¢nitely generated projective left R�G�-modules to
the category of ¢nitely generated left E�G�-spaces.

In [4] the second named author used complexes arising from ëtale cohomology
with compact support of the constant sheaf Z on open subshemes of Spec OL to
de¢ne a canonical element TO�L=K� of K0�Z�G�;R�. It was shown that the Stark,
respectively Strong Stark, Conjecture for L=K is equivalent to asserting that
TO�L=K� belongs to K0�Z�G�;Q�, respectively to the torsion subgroup of
K0�Z�G�;Q�, and in addition that the central conjecture of [3] is for the
Q�G�-equivariant motive h0�Spec L� equivalent to the equality TO�L=K� � 0.

In this paper we give a natural description of TO�L=K� in terms of ¢nite
G-modules and also, when G is Abelian, in terms of (¢rst) Fitting ideals. We then
restrict exclusively to the case that G is Abelian, and show how this description
of TO�L=K� is amenable to investigation using Iwasawa theory. By means of an
explicit example, we combine this approach with re¢nements of arguments used
in [7] and [16] and prove the following result.

For each element x 2 K0�Z�G�;Q� and each prime pwe write xp for the component
of x in K0�Zp�G�;Qp� according to the canonical decomposition

K0�Z�G�;Q� '
a
p

K0�Zp�G�;Qp�:

For any natural number n we let zn denote a choice of complex primitive n-th root of
unity. We writeQ�n� in place ofQ�zn� and letQ�n�� denote its maximal real sub¢eld.

THEOREM 1.1. Let l1 and l2 be distinct odd primes, a and b positive integers, and L
any sub¢eld of Q�la1 ��Q�lb2 ��. If neither l1 or l2 splits in Q�la1 ��Q�lb2��=Q, then
TO�L=Q�p � 0 for each odd prime p. In particular therefore, if L=Q is also of
odd degree, then TO�L=Q� � 0.

Remarks 1.2. (i) If G is Abelian, then the equality TO�L=K� � 0 implies the
vanishing of Chinburg's invariant O�L=K; 3� (see also Remark 2.9(iii)). Theorem
1.1 therefore proves that the conjecture formulated by Chinburg in [10] is valid
for the extensions L=Q under consideration.

(ii) In [26] Ritter and Weiss proved the Strong Stark Conjecture for all Abelian
extensions L=Q of odd conductor. Hence one knows that TO�L=Q� belongs to
the torsion subgroup of K0�Z�Gal�L=Q��;Q� for all such extensions L=Q (cf. Prop-
osition 2.1(iv)).

At the moment there are still very few explicit examples in which the equivariant
Tamagawa number conjecture (for any motive) has been completely veri¢ed,
and Theorem 1.1 represents a considerable improvement of what is known for
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motives of the form h0�Spec L�. In addition, by combining Iwasawa theoretic tech-
niques with a good deal of explicit computation, our proof of Theorem 1.1 provides
much new insight into the rather subtle nature of the general conjecture.

2. Tamagawa Numbers and Fitting Ideals

Throughout this paper all modules are considered as left modules.
In this section we describe the equivariant Tamagawa number TO�L=K� of [4] in

terms of ¢nite G-modules and also, in the case that G is Abelian, in terms of (¢rst)
Fitting ideals. To do this we must ¢rst quickly review the Euler characteristic con-
struction introduced in [3]. For further details the reader is referred to [3] or to
the review given in [4].

LetR be an integral domain and E a ¢eld extension of the quotient ¢eld ofR. Let G
be any ¢nite group such that E�G� is semisimple, and write K0�R�G�;E� for the
Grothendieck group of the ¢bre category of the functor ÿ
R E from the category
of ¢nitely generated projective R�G�-modules to the category of ¢nitely generated
E�G�-spaces (cf. [30, p. 215]). Recall that this group lies in a long exact sequence
of relative K-theory

K1�R�G�� ÿ!K1�E�G�� ÿ!
@R�G�;E

K0�R�G�;E� ÿ!K0�R�G�� ÿ!K0�E�G�� �1�

(cf. loc. cit., Th. 15.5). If R � Z and E � R, resp. R � Z and E � Q, resp. R � Zp

and E � Qp, then we shall abbreviate @R�G�;E to @G, resp. @G;Q, resp. @G;p:
For any ¢nitely generated E�G�-spacesV andW we write IsE�G��V ;W � for the set of

E�G�-equivariant isomorphisms fromV toW . If IsE�G��V ;W � is not empty, then there
exists a canonical rank one space dE�G��V ;W � over the centre z�E�G�� of E�G�, and to
each f 2 IsE�G��V ;W � there is associated a canonical `reduced determinant'
detE�G��f� which belongs to dE�G��V ;W �. If G is Abelian, then

dE�G��V ;W � � HomE�G��detE�G�V ; detE�G�W �

and detE�G��f� is equal to the E�G�-determinant of f, but in general both dE�G��V ;W �
and detE�G��f� are de¢ned via Galois descent. We set

d�E�G��V ;W �:� fdetE�G��f�:f 2 IsE�G��V ;W �g � dE�G��V ;W �

and refer to elements of this subset as `trivialisations'. If V �W , then dE�G��V ;V �
naturally identi¢es with z�E�G�� and, with respect to this identi¢cation,
d�E�G��V ;V � is equal to the subset z�E�G���� of z�E�G��� consisting of those elements
which are reduced norms of units of the semisimple E-algebra E�G�. Recall that
taking reduced norms induces an isomorphism K1�E�G�� ÿ!� z�E�G���� (cf. [11,
½45A]).

For any R-module X and any ring extension L of R we write XL for the associated
L�G�-moduleX 
R L. If f:X ÿ!Y is a morphism ofR�G�-modules, then we write fL
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for the induced morphism XLÿ!YL of L�G�-modules. If X and Y are ¢nitely gen-
erated projective R�G�-modules and f 2 IsE�G��XE;YE�, then the element �X ;f;Y �
ofK0�R�G�;E� depends only upon the trivialisation t � detE�G��f� (cf. [4, Lem. 1.1.1]),
and so will occasionally be written �X ; t;Y �.

For each complex C� we write Co, resp. Ho�C��, for the direct sum of Ci, resp.
Hi�C��, over all odd integers i, and Ce, resp. He�C��, for the direct sum of Ci, resp.
Hi�C��, over all even integers i.

In [3] it is shown that to each pair consisting of a perfect complex of R�G�-modules
C� and an element t of d�E�G��Ho�C��E;He�C��E�; one can associate a canonical
element wR�G�;E�C�; t� of K0�R�G�;E�: To be more precise let P� be a bounded complex
of ¢nitely generated projective R�G�-modules and a:P� ! C� an R�G�-equivariant
quasi-isomorphism. Then a induces a bijection

d�E�G��Ho�C��E;He�C��E� ÿ!
�

d�E�G��Ho�P��E;He�P��E�

and we let ta denote the image of t under this bijection, and choose
f 2 IsE�G��Ho�P��E;He�P��E� such that detE�G��f� � ta. In each degree i we let
Bi�P��, resp. Zi�P��, denote the module of coboundaries, resp. cocycles, of P�. After
choosing in each degree E�G�-splittings of the canonical short exact sequences

0ÿ!Zi�P��E ÿ!Pi
E ÿ!Bi�1�P��E ÿ!0; �2�

0ÿ!Bi�P��E ÿ!Zi�P��E ÿ!Hi�P��E ÿ!0; �3�

one obtains a composite isomorphism

Po
E ÿ!

M
i2Z

B2i�1�P��E �H2i�1�P��E � B2i�2�P��E
ÿ �

ÿ!
M
i2Z

Bi�P��E
 !

�Ho�P��E

ÿ!�1;f�
M
i2Z

Bi�P��E
 !

�He�P��E

ÿ!
M
i2Z

B2i�P��E �H2i�P��E � B2i�1�P��E
ÿ �

ÿ!Pe
E

(where the second and fourth listed isomorphisms are the obvious ones). The reduced
determinant ta�P�E� of this isomorphism is independent of the chosen splittings of
each sequence (2) and (3) and of the precise choice of f and one sets

wR�G�;E�C�; t�:� �Po; ta�P�E�;Pe� 2 K0�R�G�;E�:

It can be shown that this element is indeed independent of the precise choice of P�

and a. In effect, this `re¢ned Euler characteristic' construction can be used as a
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natural replacement for the Grothendieck^Knudsen^Mumford determinant functor
(which is used systematically in [7]) in the case that G is not Abelian.

For any ring L, we shall say that a L-module is `perfect' if it is both ¢nitely gen-
erated and of ¢nite projective dimension. For any such module N and any integer
m we write N�m� for the perfect complex which consists of N placed in degree
ÿm and f0g placed in all other degrees. We recall that if R is either Z or Zp for
some prime p, then a ¢nitely generated R�G�-module is perfect if and only if its pro-
jective dimension is either 0 or 1.

We now let L=K be a ¢nite Galois extension of number ¢elds and set
G:� Gal�L=K�. For any ¢nite set S of places of K which contains the set S1 of
archimedean places of K we write S�L� for the set of places of L which lie above
the places in S, and write OL;S for the ring of S�L�-integers in L (in the case
S � S1 we write OL rather than OL;S1�. We say that any such set S is `admissible'
if it contains all places which ramify in L=K and is also suf¢ciently large to ensure
that Pic�OL;S� � 0.

We letYS denote the free Abelian group on the set S�L� and write XS for the kernel
of the augmentation map YS ! Z. We also let US denote the group O�L;S of
S�L�-units of L. Each of YS;XS and US has a natural structure as G-module.

For any admissible set S there exist perfectZ�G�-modulesC0
S andC1

S and an exact
sequence of Z�G�-modules

0ÿ!US ÿ!C0
S ÿ!

d
C1

S ÿ!XS ÿ!0 �4�

which represents the canonical element cS�L=K� of Ext2G�XS;US� de¢ned by Tate in
[31]. We let C�S denote the complex C0

S ÿ!
d

C1
S where the modules are placed in

degrees 0 and 1, and the cohomology is computed via the exact sequence (4). It
is shown in [6] that the most natural interpretation of C�S is in terms of the ëtale
cohomology with compact support of the constant sheaf Z on Spec OL;S, but
we shall use no details of this aspect of the theory here.

For each place w of L we let j ÿ jw denote the absolute value of w which is
normalised as in [32, Chap. 0, 0.2]. We let RS:US;Rÿ!XS;R denote the R�G�-
equivariant isomorphism given by RS�u� � ÿ

P
w2S�L� log j u jw �w for each u 2 US.

We let LS�s� denote the S-truncated L-function which is associated to the motive
h0�SpecL�, considered as de¢ned over K and with coef¢cients Q�G� (cf. [12, 2.12]
or [4, ½2] for a more explicit description). We write L�S�0� for the leading coef¢cient
in the Laurent expansion of LS�s� at s � 0. Then L�S�0� 2 z�R�G��� and we choose
an element l 2 z�Q�G��� such that

l � L�S�0�# 2 z�R�G����; �5�

where here # denotes theR-linear involution of z�R�G�� induced by g 7!gÿ1 for each
g 2 G. (The existence of such an element l is guaranteed by theWeak Approximation
Theorem.)
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For simplicity we assume henceforth that S is suf¢ciently large so that each
element of z�R�G���� is the reduced norm of a unit of EndR�G��XS;R�. Then (5) implies
that tS�l�:� lL�S�0�# � detR�G��Rÿ1S � belongs to d�R�G��XS;R;US;R�. Following [4], we
set

TO�L=K�:� c�G�wZ�G�;R�C�S; tS�l�� ÿ
X
p

@̂G;p�lp�� 2 K0�Z�G�;R�;

where here c�G denotes the involution of K0�Z�G�;R� which is induced by the linear
duality functor RHomZ�ÿ;Z� and, for each prime p, @̂G;p denotes the composite
morphism z�Qp�G���  ÿ� K1�Qp�G�� ÿ!

@G;p
K0�Zp�G�;Qp� � K0�Z�G�;Q� and lp

denotes the image of l in z�Qp�G���. Note that the summation term
in the formula for TO�L=K� makes sense since for almost all p one has
lp 2 z�Zp�G��� � ker�@̂G;p�:

We now recall some basic properties of TO�L=K�. For any subgroup, resp. normal
subgroup, H we let

rG;H :K0�Z�G�;R� ÿ!K0�Z�H�;R�;
resp:pG;G=H :K0�Z�G�;R� ÿ!K0�Z�G=H�;R�

denote the natural restriction, resp. de£ation, homomorphism. Following the usual
conventions, we shall refer to the conjecture [32, Ch. I, 5.1] as the `Stark Conjecture',
and to [10, Conj. 2.2] as the `Strong Stark Conjecture'.

PROPOSITION 2.1. (cf. [4], or [7] if G is Abelian.). (i) TO�L=K� depends only upon
the extension L=K.

(ii) For each subgroupH of G one has rG;HTO�L=K� � TO�L=LH �. For each normal
subgroup H of G one has pG;G=HTO�L=K� � TO�LH=K�.

(iii) TO�L=K� belongs to K0�Z�G�;Q� if and only if the Stark Conjecture is true for
L=K.

(iv) TO�L=K� belongs to the torsion subgroup of K0�Z�G�;Q� if and only if the
Strong Stark Conjecture is true for L=K. &

Let K0T �Z�G�� denote the Grothendieck group of the category of ¢nite perfect
Z�G�-modules (with relations given by short exact sequences). Each ¢nite perfect
Z�G�-module X has a resolution 0! Pÿ1!c P0! X ! 0 in which Pÿ1 and P0

are ¢nitely generated projective Z�G�-modules, and the association
X 7!�Pÿ1;cQ;P

0� induces a well de¢ned isomorphism of Grothendieck groups
tG:K0T �Z�G�� ÿ!� K0�Z�G�;Q�: We now use tG to describe TO�L=K� in terms of
¢nite G-modules.
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Recall ¢rst that the standard method of constructing an explicit extension of the
form (4) is to take a resolution of XS

0ÿ!XS�ÿ2� ÿ!F 0ÿ!F 1ÿ!XS ÿ!0; �6�

in which F 0 and F 1 are Z�G�-projective, and then consider the pushout of this
sequence along a G-morphism jS:XS�ÿ2� ! US which represents cS�L=K� when
Ext2G�XS;US� is computed by means of (6). We shall use the following two lemmas
to re¢ne this construction.

LEMMA 2.2. For all suf¢ciently large (admissible) sets S there exists an exact
sequence

0ÿ!XS�ÿ2� ÿ!F ÿ!d
0
F ÿ!XS ÿ!0 �7�

in which F is a ¢nitely generated free Z�G�-module.

Proof. For any (admissible) set S0 we take a truncated free resolution

0ÿ!ker�y� ÿ!� Z�G�s ÿ!y Z�G�r ÿ!p XS0 ÿ!0

of XS0 and without loss of generality we assume that s > r. Then

0ÿ!ker�y� ÿ!� Z�G�s ÿ!�y;0� Z�G�r �Z�G�sÿr ÿ!�p;id� XS0 �Z�G�sÿrÿ!0

is a truncated free resolution of XS0 �Z�G�sÿr. But if S00 is any set of sÿ r places of K
which do not belong to S0 and are fully split in L=K , then XS0 �Z�G�sÿr ' XS with
S � S0 [ S00. &

Remarks 2.3. (i) Proposition 2.1(i) implies that TO�L=K� is in particular indepen-
dent of the choice of admissible set S and, hence, it can always be computed by
using a resolution of the form (7).

(ii) For any given (admissible) set S a resolution of the form (7) need not exist.
However, for comparatively small sets S there often exists such a resolution as
a consequence of a `generation theorem' of Swan (cf. [25, Lem. 7] and [17, 7.3]).

LEMMA 2.4. (Assuming that S is suf¢ciently large) ¢x a resolution of XS as in (7),
and use this to compute Ext2G�XS;US�. Then for each element a 2 Ext2G�XS;US� there
exists an injective G-morphism j:XS�ÿ2� ! US which represents a.

Proof. The resolution (7) implies that the Q�G�-spaces XS�ÿ2�Q and XS;Q

are isomorphic, and hence that there exists an injective G-morphism
c:XS�ÿ2� ! US. If now j:XS�ÿ2� ! US is any G-morphism which represents a,
then j�N � c also represents a if N is any integer which is divisible by jGj. If
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in addition ÿN is not an eigenvalue of �cÿ1 � j� 
Q, then it follows that j�Nc is
injective. &

Assuming S to be suf¢ciently large we now ¢x a resolution of XS of the form (7)
and an injective G-morphism jS:XS�ÿ2� ! US which represents cS�L=K�, and
we consider the following commutative diagram of exact sequences

�8�

In this diagram C0
S denotes the pushout of iS and jS; C

1
S � F , d is the morphism

which is induced by d 0 and the central row is an extension of the form (4).
Furthermore, since jS represents cS�L=K� it induces isomorphisms in all dimensions
of Tate cohomology, and so cok�jS� is both ¢nite and Z�G�-perfect. Let F � denote
the complex F ÿ!d

0
F given by the top row of diagram (8), with the modules placed

in degrees 0 and 1. Then diagram (8) induces a G-equivariant distinguished triangle
of perfect complexes

F � ÿ!C�S ÿ!cok�jS��0�: �9�

Since cok�jS��0�R is acyclic this triangle induces a quasi-isomorphism F �Rÿ!C�S;R
and, hence, tS�l� induces a trivialisation tS�l�jS

2 d�R�G��H1�F ��R;H0�F ��R�.
We set t̂S�l�jS

:� tS�l�jS
�F �R� 2 d�R�G��FR;FR� !� z�R�G����. More explicitly

therefore, if f 2 IsR�G��XS;R;US;R� satis¢es detR�G��f� � tS�l�, then t̂S�l�jS
is

equal to the reduced determinant of the composite isomorphism (reading from left
to right)

FR  ÿ
�mR;�� XS;R � BR ÿ!

�jÿ1S;R�f;id�
XS�ÿ2�R � BR ÿ!

��;sR�
FR �10�

where here m is any choice of Q�G�-equivariant section to the natural
projection FQ ! H1�F ��Q � XS;Q, B:� ker�p� � Im�d 0� and s is any choice of
Q�G�- equivariant section to the differential d 0Q:FQ ! BQ.
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If E � R, resp. E � Q, then we write @̂G, resp. @̂G;Q, for the composite morphism

z�E�G����  ÿ� K1�E�G�� ÿ!
@G;E

K0�Z�G�;E�:

PROPOSITION 2.5. Let S be admissible and suf¢ciently large that XS has a
resolution of the form (7). Fix such a resolution of XS and let jS:XS�ÿ2� ! US

be an injective G-morphism which represents cS�L=K�when Ext2G�XS;US� is computed
via the chosen resolution. Then cok�jS� is a ¢nite perfect Z�G�-module and if l is any
element of z�Q�G��� which satis¢es (5), then

c�G�TO�L=K�� � tG�cok�jS�� � @̂G�t̂S�l�jS
� ÿ

X
p

@̂G;p�lp� 2 K0�Z�G�;R�:

Proof. We have already seen that the choice of jS ensures that cok�jS� is both
¢nite and Z�G�-perfect. In addition, the de¢nition of tS�l�jS

ensures that, in the
language of [3, Def. 1.2.6], the triangle (9) underlies a distinguished triangle of
perfect trivialised complexes �F �; tS�l�jS

� ÿ!�C�S; tS�l�� ÿ!�cok�jS��0�; 1�; and so
[3, Th. 1.2.7] implies that

wZ�G�;R�C�S; tS�l�� � wZ�G�;R�F �; tS�l�jS
� � wZ�G�;R�cok�jS��0�; 1�: �11�

Now if f 2 AutR�G��FR� satis¢es detR�G��f� � t̂S�l�jS
, then

wZ�G�;R�F �; tS�l�jS
� � �F ;f;F �
� @G��FR;f��
� @̂G�t̂S�l�jS

�;

and for any ¢nite perfect Z�G�-module N one has tG�N� � wZ�G�;R�N�0�; 1�. Hence,
(11) implies that

c�G�TO�L=K�� � wZ�G�;R�C�S; tS�l�� ÿ
X
p

@̂G;p�lp�

� tG�cok�jS�� � @̂G�t̂S�l�jS
� ÿ

X
p

@̂G;p�lp�: &

In the remainder of this section we assume (often without explicit comment) that G
is Abelian. We will show that in this case Proposition can be rephrased in terms of
determinants and (¢rst) Fitting ideals, and in later sections we shall ¢nd that this
description renders TO�L=K� more amenable to investigation using techniques of
Iwasawa theory.

Let R be any commutative ring. Recall that a graded invertible R-module is a pair
�L; a� consisting of an invertible (that is, rank one projective) R-module L and a
locally-constant function a: SpecR! Z. The category P�R� of graded invertible
R-modules and isomorphisms of such is a symmetric monoidal category with tensor
product �L; a� 
 �M; b� � �L
R M; a� b�, unit object �R; 0�, the usual associativity
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constraint and a commutativity constraint speci¢ed via the `Koszul rule' (cf. [7, (4)]).
For each ¢nitely generated projective R-module P one sets

DetR�P�:� �detR�P�; rkR�P��

where detR�P� denotes the highest exterior power of theR-module P and rkR�P� is the
locally constant function given by the R-rank of P. For each �L; a� 2 Ob�P�R�� one
sets Lÿ1:� HomR�L;R� and �L; a�ÿ1:� �Lÿ1;ÿa� 2 Ob�P�R��. For each bounded
complex P� of ¢nitely generated projective R-modules one de¢nes

DetRP�:�
O
i2Z

DetR�Pi��ÿ1�i�1 :

(Here we use the normalisation of [5^7] rather than [20].) Let Db�R� denote the
derived category of the homotopy category of bounded complexes of R-modules.
In [20] it is shown that DetR extends to give a well de¢ned functor from the sub-
category of Db�R� consisting of perfect complexes and where morphisms are restric-
ted to quasi-isomorphisms, to the category P�R�.

If N is any perfect R-module, then we set DetR�N�:� DetRN�ÿ1�. If each
cohomology module of a perfect complex P� is itself a perfect R-module, then there
is a canonical morphism in P�R� (cf. [20, Rem. b) following Th. 2])

DetRP� ÿ!�
O
i2Z

DetR�Hi�P����ÿ1�i�1 : �12�

Any isomorphism y:P1 ÿ!� P2 of ¢nitely generated projective R-modules induces a
canonical morphism in P�R�

ytriv: DetR�P1� 
DetR�P2�ÿ1 ÿ!� �R; 0�

given by

ytriv��p1 
 f2; 0�� � �f2�detR�y��p1��; 0�

for each p1 2 detR�P1� and f2 2 detR�P2�ÿ1: On occasion, we shall identify graded
invertible modules of the form �L; 0� with the underlying invertible R-module L.

The following lemma describes explicitly the link between elements ofK0�Z�G�;E�,
determinants and Fitting ideals.

LEMMA 2.6. Let G be Abelian. (i) Let X and Y be ¢nitely generated projective
Z�G�-modules and l:XE ÿ!� YE an isomorphism of E�G�-spaces for some extension
¢eld E of Q. Then the association �X ; l;Y � 7!ltriv DetZ�G��X � 
DetZ�G��Y �ÿ1

ÿ �
induces an isomorphism iG;E between K0�Z�G�;E� and the group of invertible
Z�G�-submodules of E�G�.

(ii) If �X ; l;Y � 2 K0�Z�G�;Q�; then
iG;Q��X ; l;Y �� � FittZ�G��Y=U� � FittZ�G��l�X �=U�ÿ1;
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where here U is any full projective Z�G�-sublattice of Y \ l�X �. In particular, if M is
any ¢nite perfect Z�G�-module, then iG;Q�tG�M�� is equal to the (¢rst) Fitting ideal
FittZ�G��M� of M.

Proof. For any ¢nitely generated projective Z�G�-module X we abbreviate
detZ�G��X � to D�X �, and for any isomorphism l:V ÿ!� W of ¢nitely generated
E�G�-spaces we abbreviate detE�G��l� to D�l�.

To prove (i) we recall that every element of K0�Z�G�;E� is of the form �X ; l;Y �
with X and Y ¢nitely generated projective Z�G�-modules and l:XE ÿ!� YE an
isomorphism of E�G�-spaces (cf. [30, Lem. 15.6]), and that

�X ; l;Y � � �D�X �;D�l�;D�Y �� 2 K0�Z�G�;E� �13�

(cf. [7, Lem. 1(c)]). This implies in particular that in K0�Z�G�;E�
�X1; l1;Y1� � �X2; l2;Y2�
� �X1 � X2; l1 � l2;Y1 � Y2�
� �D�X1 � X2�;D�l1 � l2�;D�Y1 � Y2��
� �D�X1� 
Z�G� D�X2�;D�l1� 
E�G� D�l2�;D�Y1� 
Z�G� D�Y2��:

�14�

Now �D�Y �ÿ1; 1;D�Y �ÿ1� � 0 2 K0�Z�G�;E� and hence one has

�X ; l;Y � ��13� �D�X �;D�l�;D�Y �� � �D�Y �ÿ1; 1;D�Y �ÿ1�
��14� �D�X � 
Z�G� D�Y �ÿ1;D�l� 
E�G� 1;D�Y � 
Z�G� D�Y �ÿ1�
� �ltriv DetZ�G��X � 
DetZ�G��Y �ÿ1

ÿ �
; 1;Z�G��;

where the last equality follows because ltriv � eY ;triv � �D�l� 
E�G� 1� and
eY ;triv�DetZ�G��Y � 
DetZ�G��Y �ÿ1� � Z�G� with eY equal to the identity
automorphism of D�Y �Q. This shows that every element of K0�Z�G�;E� is of the
form �L; 1;Z�G�� with L an invertible Z�G�-sublattice of E�G�. Furthermore, [7, Lem.
1(b)] implies �L; 1;Z�G�� � 0 2 K0�Z�G�;E� , L � Z�G�; and if L1 and L2 are any
invertible Z�G�-sublattices of E�G�, then (14) implies that

�L1; 1;Z�G�� � �L2; 1;Z�G�� � �L1L2; 1;Z�G��:

Claim (i) is now clear.
To prove (ii) we note that in Q�G�

iG;Q��X ; l;Y �� � ltriv DetZ�G��X � 
DetZ�G��Y �ÿ1
ÿ �

� eY ;triv DetZ�G��l�X �� 
DetZ�G��Y �ÿ1
ÿ �

� DetZ�G��Y=U�ÿ1 
DetZ�G��l�X �=U�:

Using these equalities both assertions of (ii) follow from the fact that
DetZ�G��N� � �FittZ�G��N�; 0�ÿ1 for any ¢nite perfect Z�G�-module N. To prove this
last equality we let p:Z�G�s ! N be a G-epimorphism and set Q:� ker�p�. Since
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N is Z�G�-perfect Q is Z�G�-projective. Hence one has

DetZ�G��N� � DetZ�G��Q�ÿ1 
DetZ�G��Z�G�s� � DetZ�G��Q�ÿ1 � �Z�G�; 0�;

and this is equal to �FittZ�G��N�; 0�ÿ1 as an easy consequence of the de¢nition of ¢rst
Fitting ideal (cf. [23, App. 4]). &

Since G is Abelian one has z�R�G���� � z�R�G��� and so the condition (5) is sat-
is¢ed by setting l � 1. We write tS and t̂S in place of tS�1� and t̂S�1� respectively,
and note that tS is equal to the canonical isomorphism

L�S�0�# � detR�G��Rÿ1S �: detR�G��XS;R� ÿ!� detR�G��US;R�:

We write F ��1� for the left shift of F � and let

W�jS�: �DetZ�G�F ��1��R ÿ!
� �R�G�; 0�

denote the composite morphism

�DetZ�G�F ��1��R
ÿ!�12�DetR�G��XS�ÿ2�R� 
DetR�G��XS;R�ÿ1

ÿ!detR�G��jS;R�
1
DetR�G��US;R� 
DetR�G��XS;R�ÿ1

ÿ!�t
ÿ1
S �triv�R�G�; 0�:

THEOREM 2.7. Let G be Abelian. Then with the same assumptions and notation of
Proposition 2.5 one has

FittZ�G��cok�jS�� � W�jS��DetZ�G�F ��1�� � iG;R�c�G�TO�L=K��� � Z�G�:

Proof. Choose f 2 AutR�G��FR� such that detR�G��f� � tÿ1S;jS
�F ��1��. Then Lemma

2.6(i) implies

@̂G�t̂ÿ1S;jS
� � @G�FR;f�
� �F ;f;F �
� �ftriv�DetZ�G�F ��1��; 1;Z�G��

so that

ÿiG;R�@̂G�t̂S;jS
�� � ftriv�DetZ�G�F ��1��: �15�

In addition, after unwinding the explicit construction of (12) one ¢nds that
ftriv � W�jS�. The theorem therefore follows upon combining equality (15) with
the formula of Proposition 2.5 (with l � 1) and the ¢nal assertion of Lemma
2.6(ii). &
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COROLLARY 2.8. If G is Abelian, then TO�L=K� � 0 if and only if

FittZ�G��cok�jS�� � W�jS��DetZ�G�F ��1�� � Z�G�:

Proof. This is an immediate consequence of Theorem 2.7 and the fact that

iG;R�c�G�TO�L=K��� � Z�G� () c�G�TO�L=K�� � 0
() TO�L=K� � 0:

&

Remarks 2.9. (i) The `Equivariant Tamagawa Number Conjecture' discussed in [3]
and [4] predicts that TO�L=K� � 0 for all ¢nite Galois extensions L=K .

(ii) If Stark's Conjecture is true for L=K , then Corollary 2.8 can be rephrased
completely in terms of Fitting ideals by using Proposition 2.1(iii) and Lemma 2.6(ii).

(iii) Since F is Z�G�-free W�jS��DetZ�G�F ��1�� is a principal ideal of Z�G�. The for-
mula of Corollary 2.8 therefore predicts that FittZ�G��cok�jS�� is a principal ideal
of Z�G�, and it is not dif¢cult to show that (if G is Abelian, then) this is equivalent
to the original conjecture formulated by Chinburg in [10].

3. Abelian Fields

In this section we use the approach described in Section 2 to prove Theorem 1.1.
In particular, we show how the description of Theorem 2.7 renders TO�L=K�
more amenable to investigation using Iwasawa theory. It is possible that our
approach could be used to compute TO�L=Q� for Abelian extensions L=Q which
are more general than those in Theorem 1.1, but we do not pursue this point
further here.

3.1. REVIEW OF KNOWN RESULTS

In this subsection we quickly review some known results concerning TO�L=Q� for
¢nite Abelian extensions L=Q.

Since Stark's Conjecture is known to be valid for all such extensions (cf. [32])
Proposition 2.1(iii) implies that TO�L=Q� belongs to K0�Z�Gal�L=Q��;Q�. In
addition, under a very mild rami¢cation restriction, Ritter and Weiss have veri¢ed
the Strong Stark Conjecture for L=Q. More speci¢cally, in conjunction with
Proposition 2.1(iv) the result of [26, Th. A] implies the following.

PROPOSITION 3.1. If L is a ¢nite Abelian extension of Q of odd conductor, then
TO�L=Q� belongs to the torsion subgroup of K0�Z�Gal�L=Q��;Q�. In particular,
if p j=�L:Q� then TO�L=Q�p � 0. &

At the moment, ¢ner results have only been proved for much more restricted
classes of extensions L=Q. For example, if the ideal class group cl�L� of L is
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Z�Gal�L=Q��-perfect, then the necessary computations are greatly simpli¢ed. Such
extensions L=Q have been systematically studied in [14], [15] and [2] and motivated
by these earlier results the following is proved in [7, ½8].

PROPOSITION 3.2. Let L=Q be an Abelian extension of odd prime power degree. If
L=Q is of prime power conductor or is the compositum of two linearly disjoint
extensions of prime power conductor and both primes which ramify in L=Q have
decomposition subgroup equal to Gal�L=Q�, then TO�L=Q� � 0. &

If one relaxes the degree restriction on any extension L=Q in Proposition 3.2, then
cl�L� need no longer beZ�Gal�L=Q��-perfect, and the situation becomes considerably
more complicated.

To discuss an explicit example we now take L to beQ�la�� for any prime l and any
exponent a. Then one can choose a set S0 � fp1; . . . ; ps0 g consisting of rational primes
which are fully split in L=Q and such that S � f1; l; p1; . . . ; ps0 g is admissible. Let l
be the unique prime of L above l and choose a prime pi above pi for each i with
1W iW s0. Let p1 be the archimedean place of L which is induced by sending zla
to exp�2pi=la�. Then

XS � Z�G��p1 ÿ l� �
Ms0
i�1

Z�G��pi ÿ l�

is a free Z�G�-module so that Ext2G�XS;US� � 0. This means that one can take any
exact sequence of the form

0ÿ!XS ÿ!� Z�G�s0�1 ÿ!0 Z�G�s0�1 ÿ!� XS ÿ!0

for the resolution (7) and any injective G-morphism jS:XS ! US for the map
in Theorem 2.7 (with K � Q). Following [16], we specify jS by means of the
conditions

jS�p1 ÿ l� � �1ÿ zla ��1ÿ zÿ1la �;
jS�pi ÿ l� � xi; i � 1; . . . ; s0;

where here xi is a choice of generator of the principal OL-ideal phi with h equal to the
class number of L. By using Iwasawa theoretic techniques Greither has computed
that FittZ�G��cok�jS�� � �2hs0 � (cf. loc. cit., Th. 6.1), and on the other hand it is a
straightforward exercise to verify that

W�jS��DetZ�G��Z�G�s0�1� 
DetZ�G��Z�G�s0�1�ÿ1� � �2hs0 �:

The next result follows directly by combining these computations with Corollary 2.8
and Proposition 2.1(ii).
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PROPOSITION 3.3. If L is a real absolutely Abelian ¢eld of prime power conductor,
then TO�L=Q� � 0. &

There are two further results which should be mentioned in this context. Let E=Q
be a tamely rami¢ed Abelian extension of odd prime degree. If the conductor of
E=Q is equal to the product of two (necessarily distinct) primes, then [27, ½1, Th.]
implies that TO�E=Q� � 0 (cf. [4, Prop. 2.3.3]). Also, Greither and Kucera have
very recently generalised this result by removing the restriction on the number
of primes which divide the conductor of E=Q.

3.2. PROOF OF THEOREM 1.1

In this section we reduce the proof of Theorem 1.1 to an explicit computation of
Fitting ideals. The necessary computation is then made in subsequent sections
by using Iwasawa theory.

For any Abelian group H and Qc
p-valued character c of H we write Zp�c� for the

ring extension of Zp generated by the values of c. For a Zp�H�-module M and
an Abelian character c we set Mc:� Zp�c� 
Zp�H�M where H acts on Zp�c� via
c. In general this is a quotient of Zp�c� 
Zp M but if p j=jHj and ec denotes the
idempotent jHjÿ1Ph2H c�hÿ1�h of Zp�c��H�, then Mc naturally identi¢es with
the direct summand ec�Zp�c� 
Zp M� of Zp�c� 
Zp M.

Let l1; l2; a and b be as in Theorem 1.1. Taking into account Proposition 2.1(ii) it
suf¢ces to consider the ¢eld L:� Q�la1 ��Q�lb2��. We set G:� Gal�L=Q�. Proposition
3.1 implies it is enough to consider primes p which divide jGj, and for any such
p we write G � Gp � G0 with Gp equal to the Sylow p-subgroup of G. We ¢x a
set of representatives U of the orbits of the action of Gal�Qc

p=Qp� on
Hom�G0;Qc�

p �: The group ring Zp�G� decomposes canonically as Zp�G� �L
x2U Zp�x��Gp� and this induces in turn a canonical isomorphism

K0�Zp�G�;Qp� '
M
x2U

K0�Zp�x��Gp�;Qp�x��: �16�

For each x 2 U we let TO�L=Q�p;x denote the component of TO�L=Q�p in
K0�Zp�x��Gp�;Qp�x�� under the decomposition (16). Then one has TO�L=Q�p � 0
if and only if TO�L=Q�p;x � 0 for each x 2 U. We ¢rst show that the results of Section
4.1 imply TO�L=Q�p;x � 0 for certain pairs �p; x�.

We assume until further notice that p j=l1l2. For any ¢eld F we set F 0 � F �zp� and
write o: Gal�Q0=Q� ' Gal�L0=L� ! Z�p for the p-adic Teichmu« ller character which
is characterised by s�zp� � zo�s�p . We set D:� Gal�Q0=Q� and H:� G0 � D and note
that xÿ1o is an odd character of H for any character x of G0.
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The following diagram of ¢elds clari¢es the situation.

We set K1:� Q�la1�� and K2:� Q�lb2�� so that L � K1K2 and K1 \ K2 � Q, and we
write G1 and G2 for Gal�L=K1� and Gal�L=K2� respectively.

PROPOSITION 3.4.Let p be an odd prime which does not divide l1l2 and let l 2 fl1; l2g.
Let D be the decomposition group of l in Gal�L0=Q� and suppose that the character
xÿ1o is trivial on D \H. Then TO�L=Q�p;x � 0.

Proof. It suf¢ces to show that under the stated conditions x is trivial or factors
through a character of either Gal�K1=Q� or Gal�K2=Q�. Indeed LG0=Q is an extension
of the form considered in Proposition 3.2, and so for all such characters x Pro-
positions 2.1(ii), 3.2 and 3.3 combine to imply that TO�L=Q�p;x � 0.

Without loss of generality we assume l � l1. We suppose ¢rst that p j l1 ÿ 1. Then
D � G because l1 splits completely in Q0=Q. Therefore D \H � G0 and so
x � xoÿ1 jG0 is trivial.

If on the other hand p j=l1 ÿ 1, then G2 � G0 � H. Moreover G2 � D because all
primes of K 02 above l1 are totally rami¢ed in L0=K 02. Therefore x jG2� xoÿ1 jG2 is
trivial and so x factors through a character of Gal�K2=Q�. &

To compute TO�L=Q�p;x for pairs �p; x�which do not satisfy the condition of Prop-
osition 3.4 we shall use the approach described in Section 2. To do this we ¢rst recall
some results from [2, ½6] and [7, ½8].

We let g1, resp. g2, denote the generator of G1, resp. G2, which restricts to give the
Frobenius of l1 on K2, resp. of l2 on K1. In addition, for i 2 f1; 2g we set
Si:�

P
g2Gi

g 2 Z�Gi�. We let S0 � fp1; . . . ; ps0 g be a set of rational primes which
are fully split in L=Q and such that S � f1; l1; l2; p1; . . . ; ps0 g is admissible for
L=Q. Let l1 and l2 denote the unique primes of L above l1 and l2 and choose primes
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p1; . . . ; ps0 above the rational primes p1; . . . ; ps0 respectively. It is shown in [2, ½6] that
there is an exact sequence

0ÿ!XS�ÿ2� ÿ!y
ÿ1

F ÿ!@ F ÿ!y
1

XS ÿ!0 �17�

with

XS � Z�l2 ÿ l1� �Z�G��p1 ÿ l1� �
Ms0
i�1

Z�G��pi ÿ l1�;

F � Z�G�s0�2;
XS�ÿ2� �< �g2 ÿ 1; g1 ÿ 1; 0�; �S1; 0; 0�; �0;S2; 0�;w1; . . . ;ws0 >Z�G�

where wi:� �0; 0; ei� with ei equal

to the ith unit vector of Z�G�s0

y1�x; y; t1; . . . ; ts0 � � E�x��l2 ÿ l1� � y�p1 ÿ l1� �
Xs0
i�1

ti�pi ÿ l1�;

�E � augmentation map�;
@�x; y; t1; . . . ; ts0 � � ��g1 ÿ 1�xÿ �g2 ÿ 1�y; 0; 0�;

yÿ1 � inclusion:

Following [7, ½8] we ¢x integers i and j such that

ilbÿ12 � 1�mod la1�; jlaÿ11 � 1�mod lb2� �18�

and de¢ne

Z1:� NQ�la1 �=K1 �1ÿ zla1 � 2 K1;

Z2:� NQ�lb2 �=K2
�1ÿ zlb2 � 2 K2;

Z3:� NQ�la1 lb2 �=L�1ÿ zila1 z
j
lb2
� 2 L:

Then (18) implies that S1Z3 � �g2 ÿ 1�Z1, S2Z3 � �g1 ÿ 1�Z2; and so there exists an
injective G-morphism jS:XS�ÿ2� ! US which satis¢es the conditions

jS��g2 ÿ 1; g1 ÿ 1; 0�� � Z3;

jS��S1; 0; 0�� � Z1;

jS��0;S2; 0�� � Z2;

jS�wi� � xi for each i 2 f1; . . . ; s0g

�19�

where here xi is any choice of generator of the principal OL-ideal phi with h equal to
the class number of L.
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LEMMA 3.5. If Ext2G�XS;US� is computed via the resolution (17), then jS

represents the canonical class cS�L=Q�.
Proof. For each prime p we set Ep:� Ext2Zp�G��XS 
Z Zp;US 
Z Zp� '

Ext2G�XS;US� 
Z Zp, and we write ep for the element of Ep represented by
jS 
Z Zp when Ep is computed via the resolution R�p of XS 
Z Zp obtained by
applying ÿ
Z Zp to (17). It suf¢ces to show that ep is equal to the image c�L�p
of cS�L=Q� in Ep for each prime divisor p of jGj, and we prove this by using results
from [2, ½6].

Regarding p as ¢xed, we write N1 and N2 for the maximal sub¢elds of K1 and K2

which are of p-power degree over Q. We let N denote the compositum of N1

and N2, set P:� Gal�N=Q� and H:� Gal�L=N�, write US;N;p;XS;N;p and c�N�p
for the analogues of US 
Z Zp;XS 
Z Zp and c�L�p for the ¢eld N, and set
EN;p:� Ext2Zp�P��XS;N;p;US;N;p�. Since p j=jHj, the Hochshild^Serre spectral sequence
induces a canonical isomorphism dN : Ep ' EN;p. It is well known that
dN �c�L�p� � c�N�p and so it suf¢ces to prove dN�ep� � c�N�p.

To compute dN�ep� explicitly, one can proceed in the following manner. Let
cS 2 HomG�XS�ÿ2�;US� be the homomorphism which differs from jS only in that
cS�wi� � 0 for each i 2 f1; . . . ; s0g, and set cS;p:� cS 
Z Zp. By takingH ¢xed points
of R�p one obtains a resolution R�p;F of XS;N;p, and dN�ep� is represented by the
restriction cH

S;p of cS;p to �XS�ÿ2� 
Z Zp�H when EN;p is computed via R�p;F .
Now N=Q is an extension of the form considered in [2, ½6] (with the group G
and primes l; p and q of loc. cit. now replaced by P; p; l1 and l2 respectively),
cH
S;p can be naturally identi¢ed with the p-completion of the morphism f described

in [loc. cit., Lem. 6.2], and the resolution R�p;F can be obtained from the resolution
of [loc. cit., (6.4)] by adding a free Z�P�-module of rank s0 to each term of the latter
(with an obvious change of differentials), and then applyingÿ
Z Zp. The argument
which begins at the top of [loc. cit., p. 899] thus proves that c�N�p is represented by
cH
S;p when EN;p is computed via R�p;F , as was required. &

The last result con¢rms that jS can be used in the context of Corollary 2.8. In
addition, by using a simple adaptation of the computations which prove [7, Lem.
8 and 9] one obtains the following result.

LEMMA 3.6. W�jS� DetZ�G�F ��1�
ÿ � � �2hs0 �. &

Taking into account Proposition 3.4 and Lemmas 3.5 and 3.6, the proof that
TO�L=Q�p � 0 for all primes p j=2l1l2 is completed by combining Corollary 2.8 with
the following result.

THEOREM 3.7. Let p be any prime which does not divide 2l1l2, and let D1 and D2

denote the decomposition groups in Gal�L0=Q� of l1 and l2 respectively. Let x be a
non-trivial character of G0 such that xÿ1o is non-trivial on Di \H for both
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i 2 f1; 2g. Then

FittZp�x��Gp���cok�jS� 
Z Zp�x� � �hs
0 �: �20�

Theorem 3.7 is proved in Section 3.4 after some preparations in Iwasawa theory
which are given in Section 3.3.

The proof of Theorem 1.1 is then completed in Section 3.5 where we shall prove
that TO�L=Q�p � 0 for both p � l1 and p � l2.

3.3. IWASAWA THEORETIC PRELIMINARIES

In this subsection we prove the results in Iwasawa theory which are essential for the
proof of Theorem 3.7 given in Section 3.4. We keep the notation of Section 3.2
and continue to assume that p does not divide 2l1l2.

For each non-negative integer n we let Qn denote the n-th p-cyclotomic extension
of Q and set Ln:� LQn. Since p j=l1l2 the groups Gal�L0n=Qn� and Gal�L0=Q� are nat-
urally isomorphic via restriction. Let Mn denote the maximal Abelian p-rami¢ed
pro-p-extension of Ln and write Bn for the Galois group of Mn=Ln. As usual we
let L � Zp��T �� denote the Iwasawa algebra and for a Qc

p-valued character w of
G0 we set L�w�:� Zp�w���T ��. We de¢ne

Q1:�
[1
n�0

Qn; L1:� LQ1 and M1:�
[1
n�0

Mn:

Then L1 is the cyclotomic Zp-extension of L and we set G:� Gal�L1=L�. We let Y
denote the Galois group of M1=L1 and note that Y is a module over the group
ring L�G�.

The key to applying Iwasawa theory in the context of Theorem 3.7 is the following
observation.

THEOREM 3.8. Let x be a non-trivial character of G0 which satis¢es the assumptions
of Theorem 3.7. Then the projective dimension of Yx over the ring L�x��Gp� is at most
one.

The proof of this theorem is based on the following result.

PROPOSITION 3.9. Let x be a non-trivial character of G0 which satisi¢es the
assumptions of Theorem 3.7 and set w:� xÿ1o. Then cl�L0n�w is Gp-cohomologically
trivial for all nX 0.

We will give the proof of Proposition 3.9 at the end of this subsection.
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Proof of Theorem 3.8. Given the result of Proposition 3.9, the proof of Theorem
3.8 is completely analogous to the proof of [16, Prop. 5.1], but for the convenience
of the reader we brie£y recall the arguments.

By [16, Th. 2.2] it suf¢ces to show that Yx is Zp-torsion free and cohomologically
trivial over Gp (note the assumption that G is cyclic in [16, Th. 2.2] is unnecessary).
By Kummer duality (cf. for example the argument in [33, pp. 292^3]) Yx is the
Pontryagin dual of Aw, where here A is the direct limit of An � cl�L0n�p and
w � xÿ1o. It follows that Yx is Zp-torsion free since Aw is divisible.

Proposition 3.9 implies that Aw is cohomologically trivial over Gp. Since Qp=Zp is
Zp-injective we have ExtZp �Aw;Qp=Zp� � 0, and hence [29, Ch.IX, Th.9] implies that
Yx ' HomZp�Aw;Qp=Zp� is also cohomologically trivial over Gp. &

Remark 3.10. In general the projective dimension of Yx over L�x��Gp� is greater
than one.

We prepare for the proof of Proposition 3.9 by ¢rst proving three lemmas. For
these, we continue to use the notation and assumptions of Proposition 3.9. In
addition, for any group G, any G-module M and any integer i we write
Ĥi�G;M� for the Tate cohomology group in dimension i. In the case that
G � Gal�E=F � for a Galois extension of ¢elds E=F we also use the notation
Ĥi�E=F ;M� in place of Ĥi�G;M�.

LEMMA 3.11. Let n be a strictly positive integer, and let l be any prime of Qn above
either l1 or l2. If D denotes the decomposition subgroup of l in Gal�L0n=Qn�, then
w is non-trivial on D \H.

Proof. Without loss of generality we assume that l j l1. Since p j=l1l2 the inertia
group of l1 in Gal�L0n=Q� is equal to G2 viewed as a subgroup of Gal�L0n=Q�. Setting
Gn:� Gal�Qn=Q� and G2:� G02 � G2;p we have the following diagram of ¢elds:

Let l̂ be a prime ofL0n
H above l. ThenG02 is the inertia group of l̂ in Gal�L0n=L0nH � and

so D \H �< Fr�l̂;L0nG
0
2=L0n

H � > �G02: Now �L0n:L0nH � is coprime to �L0nH :Q� and
hence restriction induces an isomorphism between G02 and the inertia group of l1
in Gal�L0Gp=Q�, and also between the decomposition groups of l̂ in
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Gal�L0nG
0
2=L0n

H� and of l1 in Gal�L0�G02�Gp�=Q�. It follows that if w is trivial on D \H,
then it is trivial on the decomposition group of l1 in Gal�L0Gp=Q� and this cannot
happen since x satis¢es the assumptions of Theorem 3.7. &

For any Abelian group G we let Gp denote its p-completion lim G=pnG.

LEMMA 3.12. Let U be a subgroup of Gp and set E � L0n
ÿ �U. Then

cl�L0n�Up;w � cl�E�p;w:

Proof. The situation is clari¢ed by the following diagram.

Note that there is a natural action ofZp�x��H� on objects coming from either L0n or
E.

For any number ¢eldN we write IN for its group of fractional ideals and PN for the
subgroup of IN consisting of those ideals which are principal. We consider the natu-
ral short exact sequence of Gal�L0n=Qn�-modules 0ÿ!PL0n ÿ!IL0n ÿ!cl�L0n� ÿ!0:
Taking w-eigenspaces (which is exact since �jHj; p� � 1) and then U-invariants yields
the exact sequence

0ÿ!PU
L0n;w
ÿ!IUL0n;wÿ!cl�L0n�Uw ÿ!Ĥ1�U;PL0n;w�; �21�

where we omit the index p which usually stands for p-completion. Let J be the
subgroup of IL0n which is generated by the primes above l1 and l2 (these are exactly
the primes that ramify in L0n=E).

Since w is non-trivial on D \H one has Jw � 0 and hence IUL0n;w � IE;w. As a conse-
quence of (21), it is therefore suf¢cient to show that

PU
L0n;w
� PE;w and Ĥ1�U;PL0n;w� � 0: �22�

To that end we consider the exact sequence

0ÿ!O�L0n ÿ!L0n
� ÿ!PL0n ÿ!0:

By taking w-eigenspaces andU-invariants Hilbert's Theorem 90 yields the long exact
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cohomology sequence

0ÿ!O�E;wÿ!E�w ÿ!PU
L0n;w
ÿ!Ĥ1�U;O�L0n;w� ÿ!0ÿ!Ĥ1�U;PL0n;w�

ÿ!Ĥ2�U;O�L0n;w�:

From [33, Th. 4.12] we deduce that O�L0n;w � m�L0n�w �O��L0n��;w (recall that we always
work with p-completion for an odd prime p). Since w is odd we have
O�L0n;w � m�L0n�w. But m�L0n�w � m�L0n�p;w �< zpn�1 >w� 1, since G0 acts trivially on
zpn�1 2 Q0n and x is non-trivial. Consequently Ĥi�U;O�L0n;w� � 0 for all integers i
and (22) follows. &

LEMMA 3.13. Let E and F be ¢elds with L0n
Gp � E � F � L0n and such that there

exists a chain of ¢elds E � F0 � F1 � F2 � . . . � Fs � F in which F1=F0 is unrami¢ed,
and for each integer i with 2W iW s the extension Fi=Fiÿ1 contains no non-trivial
unrami¢ed subextension. Then Ĥ0�F=E; cl�F �w� � 0.

Proof. From Lemma 3.12 and [33, Th. 10.1] we derive

Ĥ0�F=E; cl�F �w� � cl�E�w=NF1=E�cl�F1�w�;

and by global class ¢eld theory one has cl�E�=NF1=E�cl�F1�� ' Gal�F1=E�: Now since
Gal�F1=Qn� is Abelian, the group H � Gal�E=Qn� acts trivially on Gal�F1=E�
and hence Gal�F1=E�w � 0. This therefore implies that cl�E�w � NF1=E�cl�F1��w
and hence that Ĥ0�F=E; cl�F �w� � 0. &

Proof of Proposition 3.9. By [8, Th. 9] it suf¢ces to show that Ĥi�U; cl�L0n�w� � 0 for
both i 2 f0; 1g and all subgroups U of Gp. We ¢x a subgroup U of Gp and set
E � L0n

U . For each i 2 f1; 2g let Fi denote the inertia ¢eld of primes above li in
L0n=E and set F :� F1 \ F2. With obvious notation we have the following diagram
of ¢elds.
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We observe that all primes above l2 are totally rami¢ed in L0n=F2, that all primes
above l1 are totally rami¢ed in F2=F and that F=E is unrami¢ed. Therefore Lemma
3.13 implies that Ĥ0�U; cl�L0n�w� � 0.

So we are left to show that Ĥ1�U; cl�L0n�w� � 0. The in£ation-restriction exact
sequence for the subgroup U1 � Gal�L0n=F � gives

0ÿ!Ĥ1�U=U1; cl�L0n�U1
w � ÿ!Ĥ1�U; cl�L0n�w� ÿ!Ĥ1�U1; cl�L0n�w�;

and so it is certainly suf¢cient to show that both

�i� Ĥ1�U1; cl�L0n�w� � 0

�ii� Ĥ1�U=U1; cl�L0n�U1
w � � 0:

To prove (i) we set U2:� Gal�L0n=F2� and consider the exact sequence

0ÿ!Ĥ1�U1=U2; cl�L0n�U2
w � ÿ!Ĥ1�U1; cl�L0n�w� ÿ!Ĥ1�U2; cl�L0n�w�: �23�

By Lemma 3.12 we have cl�L0n�U2
w � cl�F2�w. The groups Ĥ0�U1=U2; cl�F2�w� and

Ĥ0�U2; cl�L0n�w� are both trivial as a consequence of Lemma 3.13. Since U1=U2

and U2 are cyclic a Herbrand quotient argument therefore implies that the second
and fourth terms in (23) are trivial, and this proves (i).

We now choose a chain of sub¢elds E � E0 � E1 � . . . � Et � F such that each of
the extensions Ei�1=Ei is cyclic. Then in£ation-restriction together with Lemma 3.12
leads to exact sequences

0ÿ!Ĥ1�E1=E; cl�E1�w� ÿ!Ĥ1�U=U1; cl�F �w� ÿ!Ĥ1�F=E1; cl�F �w�:

By Lemma 3.13 we have Ĥ0�E1=E; cl�E1�w� � 0 and since E1=E is cyclic this implies
that Ĥ1�E1=E; cl�E1�w� � 0. To prove (ii) it therefore remains to show that
Ĥ1�F=E1; cl�F �w� � 0 and to prove this one can proceed by induction (over t). &

We conclude this subsection with the following observation. Set B:� Gal�M0=L0�.

LEMMA 3.14. For any non-trivial character x of G0 there is a canonical isomorphism
Bx ' Yx=TYx:

Proof. By Iwasawa theory one has Gal�M0=L1� ' Y=TY (cf. [33, p. 291]). In
addition, G acts trivially on G since L1=Q is Abelian and hence the lemma follows
upon taking x-eigenspaces of the canonical extension

0ÿ!Gal�M0=L1�ÿ!Bÿ!Gÿ!0: &

3.4. PROOF OF THEOREM 3.7

In this section we prove Theorem 3.7. We continue to use the notations of Sections
3.2 and 3.3. In particular, p is a prime which divides jGj and is coprime to 2l1l2.
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We ¢x a character x of G0 which satis¢es the assumptions of Theorem 3.7. Our proof
of this theorem closely follows [16, ½7].

Let T be a set of ¢nite places of L which contains all places above p and also
S�L� n S1�L�. For a ¢nite place v of L we write L�v for the multiplicative group
of the completion Lv of L with respect to v. We let L�v;p denote the p-completion
of L�v and de¢ne an ide© le group

Jp;T :�
Y

v2T ;vjp
Zp �

Y
vjp

L�v;p:

By global class ¢eld theory one has

Gal�F=L� ' JL=L�
Y
vj=p

Uv;

where JL denotes the ide© les of L and F the maximal Abelian extension of L
unrami¢ed outside p (cf. [33, proof of Th. 13.4]). By taking p-completion one shows
that

B '
Q

vj=p Zp �
Q

vjp L
�
v;p

L�
:

Since S is admissible and S�L� n S1�L� � T it easily follows that B ' Jp;T=UT , where
(by abuse of notation) UT denotes the group of T [ S1�L�-units of L and overbar
stands for `closure of image'. We de¢ne

J 0:� Jp;S�L�nS1�L�; if p 2 S;Q
v2S�L�nS1�L�Zp �

Q
vjpO�v;p; otherwise,

�
whereO�v;p is the p-completion of the multiplicative group of the valuation ringOv of
Lv. Since S is admissible one checks that in both cases Jp;T=UT ' J 0=US: Recall now
the de¢nition of jS in (19) and set

P:� im�jS� � hZ1; Z2; Z3; x1; . . . ; xs0 iZ�G�;
C:� hZ1; Z2; Z3iZ�G�;

so that cok�jS� � US=P. By using the fact that �Z1� � l1 and �Z2� � l2 one can show
that there is a natural exact sequence

1ÿ! �
Y
vjp
O�v;p�= �C

 !
x

ÿ! J 0= �P
ÿ �

xÿ! Zp�S0�L��=h �Zp�S0�L��
ÿ �

xÿ!0: �24�

(In this context we remark that the sequence (10) in [16] is only correct after
multiplying by ex where x is a non-trivial character G0.) Note that Zp�S0�L�� is a
free Zp�G�-module of rank s0.
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On the other hand one has an obvious exact sequence

1ÿ! US= �P
ÿ �

xÿ! J 0= �P
ÿ �

xÿ! J 0=US
ÿ �

x' Bxÿ!1: �25�

The precise choice of S ensures XS;p;x is cohomologically trivial and the exactness of
diagram (8) therefore implies that the same is true for both US;p;x and
XS�ÿ2�p;x. Since jS is injective it follows that Pp;x is cohomologically trivial and
since P � C � xZ�G�1 � . . .� xZ�G�s0 this means that Cp;x is also cohomologically trivial.
Finally, the module

Q
vjpO�v;p ' indGGv

O�v;p is cohomologically trivial since p is
unrami¢ed in L, and so (24) implies that �J 0= �P�x is cohomologically trivial. It follows
that all terms in (24) and (25) are of projective dimension at most 1 over Zp�x��Gp�,
and so [16, Cor. 1.2] implies that

FittZp�x��Gp� �US=P�p;x
� �

� hs
0 � FittZp�x��Gp� ��

Y
vjp
O�v;p�= �C�x

 !
� FittZp�x��Gp��Bx�
ÿ �ÿ1

:

It therefore remains to prove that

FittZp�x��Gp��Bx� � FittZp�x��Gp� ��
Y
vjp
O�v;p�= �C�x

 !
: �26�

Still following [16] we will prove (26) by explicitly computing the left and right hand
sides in terms of Iwasawa power series. For a ¢nite Abelian extension M=Q with
conductor m and any integer a with �a;m� � 1 we write s�a� for the associated
element of Gal�Q�m�=Q� ' �Z=mZ�� and also for its restriction to M. For a char-
acter c of Gal�M=Q� we will usually write c�a� in place of c�s�a��.

The Stickelberger element for L0n=Q is de¢ned by

yn:� 1
pn�1la1 l

b
2

X
0<s<pn�1 la

1
lb
2

�s;pl1 l2��1

ss�s�ÿ1 2 Q�Gal�L0n=Q��:

(cf. [33, ½6.2]). By using the argument of [33, Prop. 7.6] one shows that
oxÿ1�yn� 2 Zp�x��Gp �Gal�Ln=L�� and that oxÿ1�ym� maps to oxÿ1�yn� for each
mX n under the projection which is induced by the restriction morphism
Gal�Lm=L� ! Gal�Ln=L�. Hence we can de¢ne an element

F :� ÿ lim
n
 ÿ

oxÿ1�yn� 2 L�x��Gp�:

Let c be any character of G which extends x and write focÿ1 for the (primitive)
Iwasawa power series which is associated to the p-adic L-function Lp�s;c� (note
that in [33, Th. 7.10] focÿ1�T � is denoted f �T ;c�).
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LEMMA 3.15. Let c be any non-trivial Abelian character of G. Then

cÿ1�F � � ÿ lim
n
 ÿ

ocÿ1�yn�

�
�1ÿ oÿ1c�l2��focÿ1 �T �; if fc � ls1; s > 0;

�1ÿ oÿ1c�l1��focÿ1 �T �; if fc � lt2; t > 0;

focÿ1�T �; if fc � ls1l
t
2; s > 0; t > 0:

8>><>>:
Proof. By the construction of focÿ1 (cf. [33, ½. 7.2]) it suf¢ces to show

cÿ1�yn� �
�1ÿ oÿ1c�l2��cÿ1�y�pn�1ls1��; if fc � ls1; s > 0;
�1ÿ oÿ1c�l1��cÿ1�y�pn�1lt2��; if fc � lt2; t > 0;
cÿ1�y�pn�1ls1lt2��; if fc � ls1l

t
2; s > 0; t > 0;

8<:
where we set y�q� � 1

q

P
0<s<q;�s;q��1 ss�s�ÿ1. This is a straightforward computation

which we leave to the reader. &

The assumptions of Theorem 3.7 ensure that the Euler factors which occur in
Lemma 3.15 are units in Zp�c�. Indeed, if for example fc � ls1 with s > 0, then
oÿ1c is a character of Gal�K 01=Q�. But the decomposition group of l2 in K 01=Q
is generated by s�l2�, and so the assumption of Theorem 3.7 implies that
oÿ1c�l2� is a (non-trivial) root of unity whose order is not a power of p.

For any commutative Zp-algebra R we let � denote the involution of
R��T ���Gp� � R��G���Gp� which is induced by g 7!o1�g�gÿ1 for g 2 G and s 7!sÿ1

for s 2 Gp. Note that c�F �� � cÿ1�F �� for any non-trivial character c of G.
The required equality (26) is an immediate consequence of the following two

results.

THEOREM 3.16. FittZp�x��Gp��Bx� � �F ��0��:

THEOREM 3.17.

FittZp�x��Gp� �
Y
vjp
O�v;p= �C�x

 !
� �F ��0��:

Proof of Theorem 3.16. By Lemma 3.14 and [23, App. 4] it is enough to show that
FittL�x��Gp��Yx� � �F ��: The key to proving this equality is a purely algebraic obser-
vation of Greither. Indeed, [16, Lem. 3.7] implies it is suf¢cient for us to prove that

(i) FittL�c��Yc� � �c�F ��� for all characters c of G which extend x,
(ii) Yx=pYx is finite

For a character c of G and a torsion L�c�-module M we write char�M� for the
characteristic ideal of M over the two-dimensional regular local ring L�c�. By [16,
Lem. 3.5] and Kummer duality one has FittL�c��Yc� � char�Yc� � char�X1;w��;
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where X1 � lim cl�L0n�p is the Galois group of the maximal Abelian unrami¢ed pro-p
extension of L01 and w:� ocÿ1: From the proof of the Iwasawa conjecture in this
case (cf. [23], [34]) one has char�X1;w�� � fw�T ��, and so Lemma 3.15 implies that

FittL�c��Yc� � �fw�T ��� �
��1ÿ oÿ1c�l2��ÿ1c�F ���; if fc � ls1; s > 0;
��1ÿ oÿ1c�l1��ÿ1c�F ���; if fc � lt2; t > 0;
�c�F ���; if fc � ls1l

t
2; s > 0; t > 0:

8<:
This implies (i) because the factors �1ÿ oÿ1c�li�� are units of Zp�c� for both
i 2 f1; 2g:

Finally we observe that, just as in [16], the ¢niteness of Yx=pYx can be deduced by
using Kummer duality and the Theorem of Ferrero-Washington. &

Proof of Theorem 3.17. From [33, Th. 7.10] and Lemma 3.15 one has

c�F ���0� � cÿ1�F ���0�

�
�1ÿ oÿ1c�l2��Lp�1;c�; if fc � ls1; s > 0;
��1ÿ oÿ1c�l1��Lp�1;c�; if fc � lt2; t > 0;
Lp�1;c�; if fc � ls1l

t
2; s > 0; t > 0:

8><>: �27�

Let EL;p denote the torsion subgroup of �Zp 
Z OL��. Since Lv=Qp is unrami¢ed for
places v j p the module

Q
vjpO�v;p is canonically isomorphic to the quotient

�Zp 
Z OL��=EL;p. Now Zp 
Z OL '
Q

vjpOLv and so [24, Satz (5.5)] implies that
the p-adic logarithm induces a G-equivariant isomorphism

�Zp 
Z OL��=EL;p ÿ!' p�Zp 
OL�:

In order to specify an explicit Zp�G�-generator of Zp 
Z OL we recall the main
result of [21] as it is stated in [9, pp. 124^5] (see also [22]). For the moment, let
N=Q be any ¢nite Abelian extension with group G. For each complex Abelian char-
acter w of G we decompose the conductor fw of w as a product fw � fw;t � fw;w with
fw;t:�

Q
p p; where here the product extends over the primes p such that p j fw

and p2 j= fw, and we write ew for the idempotent jGjÿ1Pg2G w�gÿ1�g ofC�G�. Complex
Abelian characters w and f are said to be equivalent if fw;w � ff;w. For each equiv-
alence class F of this relation we set eF:�Pf2F ef, fF:� lcmfff:f 2 Fg and
ker�F�:�Tf2F ker�f�: To each character f 2 F one associates a Gauss sum
tF�f�:�

P
x2�Z=fF�� f�x�zxfF and sets

TF:� 1
�Nker�F�:Q�

X
f2F

tF�f�:

Then Leopoldt's famous `Hauptsatz' is the equality

ON � A�N=Q�
X
F

TF

 !
�28�
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where here F runs over the equivalence classes of complex Abelian characters of G
and A�N=Q� is the Z-order

P
F eFZ�G� in Q�G�.

LEMMA 3.18. Let N=Q be a ¢nite Abelian extension and set

y:�
X
F

1
jker�F�jTF;

where here F runs over the equivalence classes of complex Abelian characters of
Gal�N=Q�. Then for each prime p which does not ramify in N=Q the element y
is a Zp�Gal�N=Q��-generator of Zp 
Z ON .

Proof. Set G:� Gal�N=Q�, and ¢x a prime p which does not ramify in N=Q. One
has eFTC � dF;CTC (Kronecker delta) and so (28) implies that it suf¢ces to prove
p j=jker�F�j and Zp 
Z A�N=Q� � Zp�G�.

Let fN � pe11 � � � pess be the conductor ofN and set F :� N \Q�fF�. Then we have the
following diagram of ¢elds:

The de¢nition of fF implies that �Q�fN �:Q�fF�� � pf11 � � � pfss with 0W fi < es for each
i with 1W iW s, and hence p does not divide �N:F �. In addition [22, Lem. 1d] implies
that F � Nker�F� and so p j=j ker�F�j.

Regarding eF as an idempotent in Qp�Gal�F=Q�� it is therefore enough to prove
that eF 2 Zp�Gal�F=Q��. Let f 0F denote the maximal square-free divisor of fF and
set F 0:� N \Q�f 0F�. Then p j= �Q�fF�:Q�f 0F�� and so p j= �F 0�. It follows that
Zp�Gal�F=F 0�� is the maximal Zp-order in Qp�Gal�F=F 0�� and so it suf¢ces to prove
that eF belongs to Qp�Gal�F=F 0�� � Qp�Gal�F=Q��: This is in turn an easy exercise
which we leave to the reader. &

We now return to the proof of Theorem 3.17 and use Lemma 3.18 to de¢ne an
isomorphism a: �Zp 
Z OL��=EL;p ÿ!� Zp�G� by logp�u� � pa�u� � y for each
u 2 �Zp 
Z OL��: This isomorphism implies that the ¢rst Fitting ideal of
��Zp 
Z OL��=EL;p�= �C
ÿ �

x in Zp�x��Gp� is equal to

x�a� �C�� � hx�a�Z1��; x�a�Z2��; x�a�Z3��iZp�x��Gp�:
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LEMMA 3.19. Let c be any non-trivial complex Abelian character of G. Then one
has:

�a� c�a�Z1�� � �L:K1� 1
pÿc�p�c�l2�Lp�1;c�; if fc � ls1; s > 0;

0; otherwise;

�

�b� c�a�Z2�� � �L:K2� 1
pÿc�p�c�l1�Lp�1;c�; if fc � lt2; t > 0;

0; otherwise;

�

�c� c�a�Z3�� �
ÿc�ilb2 � jla1� 1

pÿc�p�Lp�1;c�; if fc � ls1l
t
2; s > 0; t > 0;

c�ilb2 � jla1 � 1
pÿc�p� �c�l2� ÿ 1�Lp�1;c�; if fc � ls1; s > 0;

c�ilb2 � jla1 � 1
pÿc�p� �c�l1� ÿ 1�Lp�1;c�; if fc � lt2; t > 0:

8><>:
Proof. For each k 2 f1; 2; 3g we set bk:� pa�Zk� 2 Zp�G� so that logp�Zk� � bky.

These de¢nitions imply thatX
s2G

�c�s� logp�sZk� � c�bk� �
X
s2G

�c�s�sy: �29�

By an entirely standard computation one ¢nds that if c 2 C, thenX
s2G

�c�s�sy �
X

x2�Z=fC��
�c�x�zxfC � tC� �c�:

Note that the Gauss sums tC� �c� are usually not primitive. Indeed, according to the
conductor of c, one has

X
s2G

�c�s�sy �
ÿ �c�l2�t� �c�; if fc � ls1; s > 0;
ÿ �c�l1�t� �c�; if fc � lt2; t > 0;
t� �c�; otherwise,

8<: �30�

where here t� �c� denotes the primitive Gauss sum as de¢ned in [33, Th. 5.18].
Multiplying (29) by t�c�=fc we deduce from [33, Lem. 4.7 and 4.8] that

t�c�
ls1

P
s2G �c�s� logp�sZk� � ÿ �c�l2� � c�bk�; if fc � ls1; s > 0;

t�c�
lt2

P
s2G �c�s� logp�sZk� � ÿ �c�l1� � c�bk�; if fc � lt2; t > 0;

t�c�
ls1l

t
2

P
s2G �c�s� logp�sZk� � c�bk�; otherwise.

�31�

We must now compute more explicitly the left-hand side of (31). Recalling
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Z1 � NQ�la1 �=K1�1ÿ zla1 � 2 K1 one ¢nds that

X
s2G

�c�s� logp�sZ1� � �L:K1�
P

y2�Z=ls1��
�c�y� logp�1ÿ zyls1 �; if fc � ls1; s > 0;

0; otherwise.

�
�32�

There is a completely analogous result for k � 2 in (31).
Finally we have to consider the above sum for Z3 � NQ�la1 lb2 �=L�1ÿ zila1 z

j
lb2
�. In this

case, a standard computation (depending on the precise choice of i and j as in (18))
leads to equalitiesX

s2G
�c�s� logp�sZ3�

�

�c�l2� ÿ 1� P
y2�Z=ls1��

�c�y� logp�1ÿ zyls1 �; if fc � ls1; s > 0;

�c�l1� ÿ 1� P
y2�Z=lt2��

�c�y� logp�1ÿ zylt2
�; if fc � lt2; t > 0;

c�ilb2 � jla1 �
P

y2�Z=ls1lt2��
�c�y� logp�1ÿ zyls1lt2

�; if fc � ls1l
t
2; s > 0; t > 0:

8>>>>>>><>>>>>>>:
�33�

For k � 1 we derive from (31), (32) and [33, Th. 5.18] that

c�b1� � �L:K1�c�l2� 1ÿ c�p�
p

� �ÿ1
Lp�1;c�; if fc � ls1; s > 0;

0; otherwise.

8<:
Analogously we get

c�b2� � �L:K2�c�l1� 1ÿ c�p�
p

� �ÿ1
Lp�1;c�; if fc � lt2; t > 0;

0; otherwise.

8<:
Finally, for k � 3 we obtain from (31) and (33) together with [33, Th. 5.18]

c�b3� �

c�l2� 1ÿ c�p�
bp

� �ÿ1
�c�l2� ÿ 1�Lp�1;c�; if fc � ls1; s > 0;

c�l1� 1ÿ c�p�
p

� �ÿ1
�c�l1� ÿ 1�Lp�1;c�; if fc � lt2; t > 0;

ÿc�ilb2 � jla1 � 1ÿ c�p�
p

� �ÿ1
Lp�1;c�; if fc � ls1l

t
2; s > 0; t > 0:

8>>>>>>><>>>>>>>:
To conclude the proof we now observe that the congruences (18) imply that
c�ilb2 � jla1� � c�l2� if fc � ls1 and that c�ilb2 � jla1� � c�l1� if fc � lt2. &
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Note that x�ec� � 0 if c is not an extension of x and that ex �
P

cjx ec. From (27)
and Lemma 3.19 we conclude that

�a� x�a�Z1��

� x �L:K1� s�l2�
pÿ s�p� �1ÿ oÿ1�l2�s�l2��ÿ1F ��0�

X
c;fc�ls1

s>0

ec

0B@
1CA;

�b� x�a�Z2��

� x �L:K2� s�l1�
pÿ s�p� �1ÿ oÿ1�l1�s�l1��ÿ1F ��0�

X
c;fc�lt2

t>0

ec

0B@
1CA;

�c� x�a�Z3�� � x ÿ s�ilb2 � jla1�
pÿ s�p� F ��0�

X
c;fc�ls1 l

t
2

s>0;t>0

ecÿ

0BB@
s�ilb2 � jla1 �
pÿ s�p�

1ÿ s�l2�
1ÿ oÿ1�l2�s�l2�F

��0�
X
c;fc�ls1

s>0

ecÿ

s�ilb2 � jla1�
pÿ s�p�

1ÿ s�l1�
1ÿ oÿ1�l1�s�l1�F

��0�
X
c;fc�lt2

t>0

ec

1CA:
We now claim that x�a� �C�� is generated by F ��0�. To prove this we ¢rst observe

that the factor s�ilb2 � jla1�=�pÿ s�p�� is a unit in Zp�G�. Indeed, it obviously belongs
to Zp�G� and is a unit in the maximal Zp-orderM of Qp�G�, and this suf¢ces since
M� \Zp�G� � Zp�G��.

We next show that �F ��0�� is generated by x�a�Z3��. To that end we consider three
separate cases

�i� p j l1 ÿ 1
2

and p j l2 ÿ 1
2

;

�ii� p j l1 ÿ 1
2

and p j= l2 ÿ 1
2

;

�iii� p j= l1 ÿ 1
2

and p j l2 ÿ 1
2

:

In case (i) we have o�l1� � o�l2� � 1 and so it follows immediately that
�x�a�Z3��� � �F ��0��. In case (ii) we note that G1 � G0. Thus, if there exists a character
c which extends x and which has conductor fc � ls1 with s > 0, then x jG1� 1.
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Therefore the conductor of c is a non-trivial power of l1 for every extension of x, and
so (c) implies an equality of Zp�x��Gp�-ideals

�x�a�Z3��� � x
1ÿ s�l2�

1ÿ oÿ1�l2�s�l2�
� �

F ��0�
� �

:

It therefore suf¢ces to prove that both x�1ÿ s�l2�� and x�1ÿ oÿ1�l2�s�l2�� are units in
Zp�x��Gp�. But the arguments used immediately after Lemma 3.15 imply that these
elements are units in the maximal Zp�x�-order of Qp�x��Gp�, and this in turn implies
that they are units in Zp�x��Gp�.

Still considering the case (ii) we can now assume that no character cwhich extends
x has conducter of the form ls1 with s > 0. Then we derive from (c) and o�l1� � 1 an
equality of Zp�x��Gp�-ideals �x�a�Z3��� � �F ��0��:

The case (iii) is completely analogous to (ii).
So far we have proved that �x�a�Z3��� � �F ��0��. NowX

c;fc�ls1
s>0

ec � 1
jG1j

X
h2G1

hÿ 1
jGj

X
g2G

g;

and so

x
X
c;fc�ls1

s>0

ec

0B@
1CA � 1
jG1j x

X
h2G1

h

 !
2 Qp�x��G1;p� � Qp�x��Gp�:

It follows from equality �a� that x�a�Z1�� 2 �F ��0�� and analogously we obtain
x�a�Z2�� 2 �F ��0��.

This concludes the proof of Theorem 3.17 and hence also that of Theorem 3.7.

3.5. THE CASE p j l1l2

In this subsection we complete the proof of Theorem 1.1 by proving that
TO�L=Q�p � 0 if p is equal to either l1 or l2.

We set l � l1 and assume that p � l (the case p � l2 being completely analogous).
By Proposition 3.1 we may assume that l j jGj. We set F :� K2�zl��, so that
Gal�F=Q� ' G0 and �L:F � � laÿ1. We let F1 be the cyclotomic Zl-extension of
F , and we note that L � Faÿ1.

The strategy of proof is once again the same as in [16]. We write l for the unique
prime of L above l and de¢ne an ide© le group

J:� L�l;l �
Y

v2S0�L�
Zl :

Since the decomposition subgroup of l is G we may consider both L�l and O�l as
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Z�G�-modules. The l-adic valuation gives the short exact sequence of Z�G�-modules

0ÿ!O�l ÿ!L�l ÿ!Zÿ!0: �34�

Taking l-completion and then x-eigenspaces for a non-trivial character x (both
functors are exact) shows that L�l;l;x � O�l;l;x. In addition, O�l;l;x is a free
Zl�x��Gl �-module. Indeed, since O�l;l;x is torsion-free it is free over Zl�x��Gl � if
and only if it is cohomologically trivial over Gl . But for U WGl the cohomology
sequence for (34) implies Ĥ1�U;O�l �x � 0 by Hilbert's Theorem 90 and
Ĥ0�U;O�l �x ' Ĥ0�U;L�l �x: Furthermore, Ĥ0�U;L�l � ' Gal�Ll=LU

l �. Since Ll=Ql

is Abelian and x is non-trivial we deduce that Ĥi�U;O�l �x � 0 for both i 2 f0; 1g
as required.

Recall the modules P and C de¢ned just prior to (24). There is a natural analogue
of the exact sequence (24)

0ÿ! O�l;l= �C
ÿ �

x
ÿ! J= �P

ÿ �
xÿ! Zl �S0�L��=h �Zl �S0�L��� �xÿ!0

in which all modules are of projective dimension 1 over Zl�x��Gl �. By combining this
sequence with the obvious analogue of (25) we deduce that

FittZl �x��Gl � �US=P�l;x
ÿ � � hs

0 � FittZl �x��Gl � �O�l;l= �C�x
ÿ � � FittZl �x��Gl ��Bx�

ÿ �ÿ1
;

where B is now the Galois group of the maximal Abelian l-rami¢ed pro-l extension of
L � Faÿ1. Taking into account Corollary 2.8, Lemma 3.6 and the fact that
US=P � cok�jS� this equality means it suf¢ces to show that

FittZl �x��Gl ��Bx� � FittZl �x��Gl � �O�l;l= �C�x
ÿ �

: �35�

Just as in the proof of Lemma 3.14 we derive from [33, p. 291] that

Bx ' Y=oaÿ1�T �Y� �x

where Y is the Galois group of the maximal Abelian l-rami¢ed pro-l extension of F1
and on�T � � �1� T �ln ÿ 1 for each nX 0. Since the Iwasawa algebra L�x� �
Zl�x���G�� with G � Gal�F1=F � is regular the Zl-torsion free L�x�-torsion
module Yx is of projective dimension at most one. Therefore the Fitting ideal
and characteristic ideal of Yx over L�x� coincide by [16, Lem. 3.5]. The known
validity of the Iwasawa conjecture in this case therefore implies that
FittL�x��Yx� � �foxÿ1 �T ��; where foxÿ1�T � is the Iwasawa power series associated to
Ll�s; x�. Now L�x�=oaÿ1�T �L�x� ' Zl�x��Gl � and Bx ' Yx=oaÿ1�T �L�x� and so [23,
App. 4] implies that FittZl �x��Gl ��Bx� is generated by the image of foxÿ1 �T � in
L�x�=oaÿ1�T �L�x�.

We now set U1:� lim Un, where Un denotes the group of principal units
of the completion of Fn with respect to the unique prime above l. Note
that Uaÿ1 � O�l;l . Moreover, [33, Th. 13.56] or [28, ½8] implies that
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FittL�x��U1= �C1�x � �foxÿ1�T ��, where C1 is the projective limit of the group of
cyclotomic units in Fn.

For each integer nX 0 we set Gn:� Gal�F1=Fn�, and for any L�x�-module M we
write MGn for its Gn-coinvariants M=on�T �M. Using [23, App. 4] we conclude that
FittZl �x��Gl � �U1= �C1�x;Gaÿ1

ÿ �
is generated by the image of foxÿ1 �T � in L�x�=

oaÿ1�T �L�x� and so to prove (35) it is now enough to show that

U1= �C1
ÿ �

x;Gaÿ1
� O�l;l= �C
ÿ �

x
:

To that end it suf¢ces to note that by [28, Th. 6.1] one has

U1� �x;Gaÿ1� O�l;l;x; �C1
ÿ �

x;Gaÿ1
� �Cx:
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