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Abstract. Let L/K be a finite Galois extension of number fields of group G. In [4] the second
named author used complexes arising from étale cohomology of the constant sheaf 7 to define
a canonical element 7Q(L/K) of the relative algebraic K-group Ko(Z[G], R). It was shown that
the Stark and Strong Stark Conjectures for L/K can be reinterpreted in terms of 7Q(L/K),
and that the Equivariant Tamagawa Number Conjecture for the Q[G]-equivariant motive 1°(Spec
L) is equivalent to the vanishing of TQ(L/K). In this paper we give a natural description of
TQ(L/K) in terms of finite G-modules and also, when G is Abelian, in terms of (first) Fitting
ideals. By combining this description with techniques of Iwasawa theory we prove that
TQ(L/Q) vanishes for an interesting class of Abelian extensions L/Q.

Mathematics Subject Classifications (2000): 11R18, 11R23, 11R33.

Key words: Chinburg’s invariants, Galois module theory, values of motivic L-functions, Tate
motives, absolutely Abelian fields.

1. Introduction

In the seminal paper [1] Bloch and Kato give a conjectural formula for the leading
coefficient (up to sign) in the Laurent expansion at s = 0 of L-functions associated
to certain motives defined over number fields in terms of motivic realisations
and motivic cohomology groups. This “Tamagawa Number Conjecture’ of Bloch
and Kato has been reformulated and extended by Fontaine and Perrin-Riou in [13]
and by Kato in [18, 19] to the setting of mixed motives with commutative coefficients.
In [5-7] Flach and the second named author extended and reworked the conjectures
of [1, 13, 18, 19] to make clearer the consequences concerning equivariant structure
of lattices in the associated de Rham, Betti, and motivic cohomology spaces. In
particular, if L/K is a finite Abelian extension of number fields, then it was shown
that by considering #°(Spec L) as a motive defined over K and with coefficients
Q[Gal(L/K)] one obtains in this way a considerable strengthening of the conjecture
formulated by Chinburg in [10]. In [3] the ‘Equivariant Tamagawa Number Con-
jecture’ of [7] is generalized to the case of motives which are defined over number
fields and have coefficients which are not necessarily commutative.
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Now let L/K be any finite Galois extension of number fields of group G. For any
integral domain R and any field extension E of the quotient field of R, let
Ko(R[G], E) denote the Grothendieck group of the fibre category of the functor
— ®g E from the category of finitely generated projective left R[G]-modules to
the category of finitely generated left E[G]-spaces.

In [4] the second named author used complexes arising from étale cohomology
with compact support of the constant sheaf 7 on open subshemes of Spec Of to
define a canonical element TQ(L/K) of Ko(Z[G], R). It was shown that the Stark,
respectively Strong Stark, Conjecture for L/K is equivalent to asserting that
TQ(L/K) belongs to Ko(Z[G], D), respectively to the torsion subgroup of
Ky(Z[G],Q), and in addition that the central conjecture of [3] is for the
Q[G]-equivariant motive 4°(Spec L) equivalent to the equality TQ(L/K) = 0.

In this paper we give a natural description of TQ(L/K) in terms of finite
G-modules and also, when G is Abelian, in terms of (first) Fitting ideals. We then
restrict exclusively to the case that G is Abelian, and show how this description
of TQ(L/K) is amenable to investigation using Iwasawa theory. By means of an
explicit example, we combine this approach with refinements of arguments used
in [7] and [16] and prove the following result.

For each element x € Ko(Z[G], Q) and each prime p we write x,, for the component
of x in Ko(Z,[G], Q,) according to the canonical decomposition

Ky(ZIG), Q) = | [ Ko(Z,[G], Q).
P

For any natural number n we let {,, denote a choice of complex primitive n-th root of
unity. We write Q(n) in place of O({,,) and let Q(n)" denote its maximal real subfield.

THEOREM 1.1. Let [ and I, be distinct odd primes, a and b positive integers, and L
any subfield of QU)TQUS)*. If neither Iy or b splits in QUHYQUL)T/Q, then
TQ(L/Q), =0 for each odd prime p. In particular therefore, if L/Q is also of
odd degree, then TQ(L/Q) = 0.

Remarks 1.2. (i) If G is Abelian, then the equality 7Q(L/K) = 0 implies the
vanishing of Chinburg’s invariant Q(L/K, 3) (see also Remark 2.9(iii)). Theorem
1.1 therefore proves that the conjecture formulated by Chinburg in [10] is valid
for the extensions L/() under consideration.

(i1) In [26] Ritter and Weiss proved the Strong Stark Conjecture for all Abelian
extensions L/Q of odd conductor. Hence one knows that TQ(L/Q) belongs to
the torsion subgroup of Ko(Z[Gal(L/Q)], Q) for all such extensions L/Q (cf. Prop-
osition 2.1(iv)).

At the moment there are still very few explicit examples in which the equivariant

Tamagawa number conjecture (for any motive) has been completely verified,
and Theorem 1.1 represents a considerable improvement of what is known for
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motives of the form 4°(Spec L). In addition, by combining Iwasawa theoretic tech-
niques with a good deal of explicit computation, our proof of Theorem 1.1 provides
much new insight into the rather subtle nature of the general conjecture.

2. Tamagawa Numbers and Fitting Ideals

Throughout this paper all modules are considered as left modules.

In this section we describe the equivariant Tamagawa number TQ(L/K) of [4] in
terms of finite G-modules and also, in the case that G is Abelian, in terms of (first)
Fitting ideals. To do this we must first quickly review the Euler characteristic con-
struction introduced in [3]. For further details the reader is referred to [3] or to
the review given in [4].

Let R be an integral domain and F a field extension of the quotient field of R. Let "
be any finite group such that E[I'] is semisimple, and write Ky(R[I['], E) for the
Grothendieck group of the fibre category of the functor — @ E from the category
of finitely generated projective R[I']-modules to the category of finitely generated
E[I'-spaces (cf. [30, p. 215]). Recall that this group lies in a long exact sequence
of relative K-theory

Ki(R[I']) — K (E[I']) g Ko(RII'], E) —> Ko(R[I']) — Ko(E[I']) (D
(cf. loc. cit., Th. 15.5). If R=7 and E = R, resp. R=7 and E = Q, resp. R=7,
and E = Q,, then we shall abbreviate dgry£ to dr, resp. dr g, resp. orp.

For any finitely generated E[I']-spaces V' and W we write Isgr(V, W) for the set of
E[I'l-equivariant isomorphisms from V to W.If Isgry(V, W) is not empty, then there
exists a canonical rank one space dgrj(V, W) over the centre {(E[I']) of E[I'], and to
each ¢ € Isgry(V, W) there is associated a canonical ‘reduced determinant’
detgr(¢) which belongs to dgry(V, W). If I is Abelian, then

ogm(V, W) = Homgyr(detgr V', detgrm W)

and detgry(¢) is equal to the E[I']-determinant of ¢, but in general both 6 gry(V, W)
and detgry(¢) are defined via Galois descent. We set

S (Vs W): = {detgry(): ¢ € Isgry(V, W)} C dgry(V, W)

and refer to elements of this subset as ‘trivialisations’. If V' = W, then dgr)(V, V)
naturally identifies with {(E[I']) and, with respect to this identification,
52[1-](V, V) is equal to the subset {(E[['])*t of {(E[I'])* consisting of those elements
which are reduced norms of units of the semisimple E-algebra E[I']. Recall that
taking reduced norms induces an isomorphism K;(E[I']) = QETY T (cf. 11,
§45A]).

For any R-module X and any ring extension A of R we write X for the associated
A[I'l-module X ®r A. If ¢: X — Y is a morphism of R[I']-modules, then we write ¢,
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for the induced morphism Xy —> Y of A[l']-modules. If X and Y are finitely gen-
erated projective R[I'l-modules and ¢ € Isgr)(Xg, Yg), then the element [X, ¢, Y]
of Ko(R[I'], E) depends only upon the trivialisation T = detgry(¢) (cf. [4, Lem. 1.1.1]),
and so will occasionally be written [X, 7, Y].

For each complex C* we write C°, resp. H°(C*), for the direct sum of C’, resp.
Hi(C*), over all odd integers i, and C¢, resp. H¢(C*), for the direct sum of C’, resp.
H(C*), over all even integers i.

In [3] it is shown that to each pair consisting of a perfect complex of R[I']-modules
C* and an element t of 5§[r](H"(C')E, H¢(C*)p), one can associate a canonical
element y gy £(C*, ) of Ko(R[I'], E). To be more precise let P* be a bounded complex
of finitely generated projective R[I']-modules and a: P* — C* an R[[']-equivariant
quasi-isomorphism. Then « induces a bijection

Sr(H(C*) g, HY(C*) ) —> Sy (HO(P*) g, HY(P*) )

and we let 7, denote the image of t under this bijection, and choose
¢ € Isgry(H°(P*)g, H°(P*)g) such that detg(¢) =1,. In each degree i we let
Bi(P*), resp. Z(P*), denote the module of coboundaries, resp. cocycles, of P*. After
choosing in each degree E[I']-splittings of the canonical short exact sequences

0 —Z'(P*); —> P\, — B(P*); —>0, ()

0—>B'(P*)y —>Z!(P*)y — H'(P*); —>0, 3)
one obtains a composite isomorphism
P% N @(B2i+l(P.)E o) H2i+l(Po)E o) BZH—Z(PO)E)
i€Z

o (EB B"(P‘)E) & H'(P*);

i€?Z
1, .
e (@ B’(P')E) ® H(P"),
i€?,
N @(BZi(P.)E D HZi(Po)E D B2i+1(Po)E)
i€Z
— Py

(where the second and fourth listed isomorphisms are the obvious ones). The reduced
determinant t,(Py,) of this isomorphism is independent of the chosen splittings of
each sequence (2) and (3) and of the precise choice of ¢ and one sets

AR E(C®, 1): = [P?, 1,(Py), P°] € Ko(R[T'], E).

It can be shown that this element is indeed independent of the precise choice of P*
and «. In effect, this ‘refined Euler characteristic’ construction can be used as a
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natural replacement for the Grothendieck—Knudsen—Mumford determinant functor
(which is used systematically in [7]) in the case that I' is not Abelian.

For any ring A, we shall say that a A-module is ‘perfect’ if it is both finitely gen-
erated and of finite projective dimension. For any such module N and any integer
m we write N[m] for the perfect complex which consists of N placed in degree
—m and {0} placed in all other degrees. We recall that if R is either Z or Z, for
some prime p, then a finitely generated R[I']-module is perfect if and only if its pro-
jective dimension is either 0 or 1.

We now let L/K be a finite Galois extension of number fields and set
G:= Gal(L/K). For any finite set S of places of K which contains the set S,, of
archimedean places of K we write S(L) for the set of places of L which lie above
the places in S, and write Op s for the ring of S(L)-integers in L (in the case
S = Se we write O, rather than Oy 5. ). We say that any such set .S is ‘admissible’
if it contains all places which ramify in L/K and is also sufficiently large to ensure
that Pic(OL s) = 0.

We let Yg denote the free Abelian group on the set S(L) and write X for the kernel
of the augmentation map Ys— Z. We also let Us denote the group O ¢ of
S(L)-units of L. Each of Yg, Xg and Us has a natural structure as G-module.

For any admissible set S there exist perfect Z[G]-modules W% and W and an exact
sequence of Z[G]-modules

0—Us —¥% 5wl x50 @)

which represents the canonical element cg(L/K) of EthG(X s, Us) defined by Tate in
[31]. We let W% denote the complex W$ — WL where the modules are placed in
degrees 0 and 1, and the cohomology is computed via the exact sequence (4). It
is shown in [6] that the most natural interpretation of W is in terms of the étale
cohomology with compact support of the constant sheaf Z on Spec O, but
we shall use no details of this aspect of the theory here.

For each place w of L we let | — |, denote the absolute value of w which is
normalised as in [32, Chap. 0, 0.2]. We let Rs: Usr — Xsr denote the R[G]-
equivariant isomorphism given by Rg(u) = — Zwesm log | u |, -w for each u € Us.

We let Lg(s) denote the S-truncated L-function which is associated to the motive
h°(Spec L), considered as defined over K and with coefficients Q[G] (cf. [12, 2.12]
or [4, §2] for a more explicit description). We write L%(0) for the leading coefficient
in the Laurent expansion of Lg(s) at s = 0. Then L§(0) € {(R[G])* and we choose
an element A € {(Q[G])* such that

A+ Li(0)* € {(R[G)*T, S
where here # denotes the R-linear involution of {(R[G]) induced by gi—g~! for each

g € G. (The existence of such an element A is guaranteed by the Weak Approximation
Theorem.)
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For simplicity we assume henceforth that S is sufficiently large so that each
element of {(R[G])*™ is the reduced norm of a unit of Endgg(Xs r). Then (5) implies
that t5(/): = AL}(0)" - detrg(R5") belongs to dfye(Xs.r, Usr). Following [4], we
set

TQ(L/K): = Y5 (ga e (P t5(D) = 3 d6.0(4p)) € Ko(Z[G]. R),
P

where here /¢, denotes the involution of Ky(Z[G], R) which is induced by the linear
duality functor RHomy(—, Z) and, for each prime p, 95, denotes the composite
. X ~ G.p

morphism  {(Q,[G])" «— Ki(Q,[G]) — Ko(Z,[G], Q,) C Ko(Z[G], Q) and 4,
denotes the image of 4 in ((Q,[G])*. Note that the summation term
in the formula for TQ(L/K) makes sense since for almost all p one has
Jp € UZpIG]* = ker(dg,p)

We now recall some basic properties of TQ(L/K). For any subgroup, resp. normal
subgroup, H we let

pe.u: Ko(Z[G], R) — Ko(Z[H], R),
Iesp.ng,6/H: K()(Z[G], R) —)K()(Z[G/H], R)

denote the natural restriction, resp. deflation, homomorphism. Following the usual
conventions, we shall refer to the conjecture [32, Ch. I, 5.1] as the ‘Stark Conjecture’,
and to [10, Conj. 2.2] as the ‘Strong Stark Conjecture’.

PROPOSITION 2.1. (cf. [4], or [7] if G is Abelian.). (i) TQ(L/K) depends only upon
the extension L/K.

(ii) For each subgroup H of G one has pg y TUL/K) = TQ(L/LY). For each normal
subgroup H of G one has ng.6/uTQ(L/K) = TQ(L? /K).

(iii)) TQ(L/K) belongs to Ko(Z[G], Q) if and only if the Stark Conjecture is true for

L/K.
(iv) TQ(L/K) belongs to the torsion subgroup of Ko(Z[G], Q) if and only if the
Strong Stark Conjecture is true for L/K. O

Let KyT(Z[G]) denote the Grothendieck group of the category of finite perfect
7Z|GJl-modules (with relations given by short exact sequences). Each finite perfect
7[G]-module X has a resolution 0 - P~!' = P* - X — 0 in which P~' and P°
are finitely generated projective 7Z[G]-modules, and the association
X |—>[P‘1,x//Q,1i°] induces a well defined isomorphism of Grothendieck groups
te: KoT(Z]|G]) — Ko(Z[G], Q). We now use ¢ to describe TQ(L/K) in terms of
finite G-modules.
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Recall first that the standard method of constructing an explicit extension of the
form (4) is to take a resolution of Xg

0— Xg(=2) —F' —F!' — X3 —0, (6)

in which F* and F! are Z[G]-projective, and then consider the pushout of this
sequence along a G-morphism ¢g: Xs(—2) — Us which represents cs(L/K) when
ExtzG(X s, Us) is computed by means of (6). We shall use the following two lemmas
to refine this construction.

LEMMA 2.2. For all sufficiently large (admissible) sets S there exists an exact
sequence

0— Xs(=2) —F -5 F— X5 —0 )
in which F is a finitely generated free 7[G]-module.
Proof. For any (admissible) set S” we take a truncated free resolution
0 —> ker(0) —=> Z[G] - Z[G] > Xg —>0

of Xg and without loss of generality we assume that s > r. Then

0—> ker(0) —=> Z[6T 23 7167 © Z[67" =X X¢ @ Z[GT —0

is a truncated free resolution of Xg @ Z[G]*™". Butif §” is any set of s — r places of K
which do not belong to S” and are fully split in L/K, then Xg & Z[G]™" ~ X with
S=SUSs". U

Remarks 2.3. (i) Proposition 2.1(i) implies that TQ(L/K) is in particular indepen-
dent of the choice of admissible set S and, hence, it can always be computed by
using a resolution of the form (7).

(i1) For any given (admissible) set S a resolution of the form (7) need not exist.
However, for comparatively small sets S there often exists such a resolution as
a consequence of a ‘generation theorem’ of Swan (cf. [25, Lem. 7] and [17, 7.3]).

LEMMA 2.4. ( Assuming that S is sufficiently large) fix a resolution of Xs asin (7),
and use this to compute ExtzG(XS, Us). Then for each element o, € ExtzG(XS, Us) there
exists an injective G-morphism ¢: Xs(—2) — Us which represents o.

Proof. The resolution (7) implies that the Q[G]-spaces Xs(—2)p and X5
are isomorphic, and hence that there exists an injective G-morphism
V: Xs(=2) — Us. If now ¢: Xs(—2) — Ug is any G-morphism which represents «,
then ¢ + N - also represents « if N is any integer which is divisible by |G|. If
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in addition —N is not an eigenvalue of ("o @) ® O, then it follows that ¢ + N is
injective. O

Assuming S to be sufficiently large we now fix a resolution of Xg of the form (7)
and an injective G-morphism ¢@g: Xs(—2) — Us which represents cs(L/K), and
we consider the following commutative diagram of exact sequences

0 0
| |
0 — Xg(-2) —2 F d L P T 43 Xs— 0
N
0 —Us — 0 R 78 y Xs — 0 ®)

l !

cok(ps) — cok(yps)

l l

0 0.

In this diagram ‘Pg denotes the pushout of 15 and ¢g, ‘P}q = F, d is the morphism
which is induced by d’' and the central row is an extension of the form (4).
Furthermore, since ¢ represents cs(L/K) it induces isomorphisms in all dimensions
of Tate cohomoldc,)gy, and so cok(¢y) is both finite and Z[G]-perfect. Let F* denote
the complex F — F given by the top row of diagram (8), with the modules placed
in degrees 0 and 1. Then diagram (8) induces a G-equivariant distinguished triangle
of perfect complexes

F* —Y§ —cok(pg)[0]. 9

Since cok(¢g)[0]g is acyclic this triangle induces a quasi-isomorphism F, —'¥§ i
and, hence, t5(2) induces a trivialisation t5(4), € St (H (F*)p, HO(F*)R).
We  set Z5(4),,: = 15(4), (FR) € Ofygy(Fr, Fr) — ((R[GD™". More explicitly
therefore, if ¢ € Isgig(Xs,r, Us,r) satisfies detrig(¢) = ts5(4), then %S(i)% is
equal to the reduced determinant of the composite isomorphism (reading from left
to right)

) (05kopid) on
Fr g Xsp®Br —  Xs(-2)p ® Br ) Fr (10)

where here pu is any choice of Q[G]-equivariant section to the natural

projection Fp — H'(F*)g = Xs.0, B:=ker(n) =Im(d’) and o is any choice of
QI[G]- equivariant section to the differential db: Fo — Bp.
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If E =R, resp. E = ), then we write ég, resp. 5&@, for the composite morphism

UEIG)™ <~ Ki(EIG]) 5 Ko(ZIG). E).
PROPOSITION 2.5. Let S be admissible and sufficiently large that Xs has a
resolution of the form (7). Fix such a resolution of Xs and let ¢g: Xs(—2) — Us
be an injective G-morphism which represents cs(L/K) when Extz(;(Xs, Us) is computed
via the chosen resolution. Then cok(¢py) is a finite perfect Z|Gl-module and if A is any
element of {(Q[G))* which satisfies (5), then

Ve(TQL/K)) = to(cok(y)) + do(Es(2),,) — Y _ da,(p) € Ko(ZIG], R).
P

Proof. We have already seen that the choice of ¢g ensures that cok(¢pg) is both
finite and Z[G]-perfect. In addition, the definition of rg(/l)(/,s ensures that, in the
language of [3, Def. 1.2.6], the triangle (9) underlies a distinguished triangle of
perfect trivialised complexes (F*, t5(4),,.) — (Y%, 15(4)) —> (cok(¢4)[0], 1), and so
[3, Th. 1.2.7] implies that

Ps

1716\ R (P, T5(2) = 1716 R(F*, 15(A)y) + A 2161, r(COK(@5)[0], 1). (11
Now if ¢ € Autg[g(Fr) satisfies detrg(¢) = Ts(4),,., then

Ps>
1216 RE* T5(A)y ) = [F, ¢, F]
= 06([Fr, ¢])
= 0G(s(2)y,)-

and for any finite perfect Z[G]-module N one has 16(N) = 776, =(N[0], 1). Hence,
(11) implies that

Ve TUL/K)) = 171612 (F5, T5(2) = ) 36.p(7)
p

= 16(cok(g)) + do(is(2)p,) — Y dG,p(p)- O
V4

In the remainder of this section we assume (often without explicit comment) that G
is Abelian. We will show that in this case Proposition can be rephrased in terms of
determinants and (first) Fitting ideals, and in later sections we shall find that this
description renders TQ(L/K) more amenable to investigation using techniques of
Iwasawa theory.

Let R be any commutative ring. Recall that a graded invertible R-module is a pair
(L, o) consisting of an invertible (that is, rank one projective) R-module L and a
locally-constant function «:SpecR — 7. The category P(R) of graded invertible
R-modules and isomorphisms of such is a symmetric monoidal category with tensor
product (L, 2) ® (M, f) = (L ®g M, « + f5), unit object (R, 0), the usual associativity
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constraint and a commutativity constraint specified via the ‘Koszul rule’ (cf. [7, (4)]).
For each finitely generated projective R-module P one sets

Detg(P): = (detg(P), rkr(P))

where detg(P) denotes the highest exterior power of the R-module P and rkg(P) is the
locally constant function given by the R-rank of P. For each (L, o) € Ob(P(R)) one
sets L~!:= Homg(L, R) and (L,2)"":= (L', —a) € Ob(P(R)). For each bounded
complex P* of finitely generated projective R-modules one defines

DetgP*: = ® Detg(P) D™
i€?,

(Here we use the normalisation of [5-7] rather than [20].) Let D’(R) denote the
derived category of the homotopy category of bounded complexes of R-modules.
In [20] it is shown that Dety extends to give a well defined functor from the sub-
category of D’(R) consisting of perfect complexes and where morphisms are restric-
ted to quasi-isomorphisms, to the category P(R).

If N is any perfect R-module, then we set Detgr(N): = DetgN[—1]. If each
cohomology module of a perfect complex P* is itself a perfect R-module, then there
is a canonical morphism in P(R) (cf. [20, Rem. b) following Th. 2])

DetzP* —> Q) Detr(H'(P*) ", (12)
i€Z,

Any isomorphism 6: P, — P of finitely generated projective R-modules induces a
canonical morphism in P(R)

Ouiv: Detr(P1) ® Detr(P2)~' — (R, 0)
given by
Ouiv((P1 ® ¢, 0)) = (P,(detr(0)(p1)), 0)

for each p; € detg(P;) and ¢, € detg(P;)~". On occasion, we shall identify graded
invertible modules of the form (L, 0) with the underlying invertible R-module L.

The following lemma describes explicitly the link between elements of Ky(Z[G], E),
determinants and Fitting ideals.

LEMMA 2.6. Let G be Abelian. (i) Let X and Y be finitely generated projective
Z[G]-modules and ): Xg — Yg an isomorphism of E[G]-spaces for some extension
field E of Q. Then the association [X, A, Y] |+ilriv(Det%[G](X)®Det;z[G](Y)71)
induces an isomorphism 1g g between Ko(Z|G), E) and the group of invertible
Z|G)-submodules of E[G].

(i) If [X, 4, Y] € Ko(Z][G], Q), then

16.0((X. 4, Y]) = Fittziq)(Y/U) - Fittzq(A(X)/U) ",
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where here U is any full projective Z[Gl-sublattice of Y N A(X). In particular, if M is
any finite perfect Z[Gl-module, then 16 o(tg(M)) is equal to the (first) Fitting ideal
Fittz[g](M) of M.

Proof. For any finitely generated projective Z[G]-module X we abbreviate
detzjg(X) to D(X), and for any isomorphism /: V — W of finitely generated
E[G]-spaces we abbreviate detgg (1) to D(A).

To prove (i) we recall that every element of Ky(Z[G], E) is of the form [X, 4, Y]
with X and Y finitely generated projective Z[G]-modules and A: Xg —> Yg an
isomorphism of E[G]-spaces (cf. [30, Lem. 15.6]), and that

[X, 4, Y] =[D(X), D(4), D(Y)] € Ko(Z[G], E) (13)
(cf. [7, Lem. 1(c)]). This implies in particular that in Ky(Z[G], E)

[X1, 41, Y11+ [X2, 22, Y2]
=X1®0X3, 1D A, Y1 @ Y]
= [D(X1 @ X2), D(41 @ 42), D(Y1 @ Y>)]
= [D(X1) ®z16) D(X2), D(41) ®E[6) D(42), D(Y1) ®z6) D(Y2)].

(14)

Now [D(Y)™',1,D(Y)™']1 =0 € Ko(Z[G], E) and hence one has

X, 2, Y1 2 [D(X), D(2), DY) + [D(Y) ™", 1, D(Y) ]

D D) ®26 DY), D(2) ®161 1. DY) @261 DY) ']

= [hriv (Detzia)(X) ® Detzig(¥)™). 1, Z[G]),
where the last equality follows because Ayiy = &y wiv 0 (D(A) g 1) and
ey,uiv(Detzig(Y) ® Detz[G](Y)’l) = 7Z[G] with ¢y equal to the identity
automorphism of D(Y)q. This shows that every element of Ko(Z[G], E) is of the
form [L, 1, Z[G]] with L an invertible Z[G]-sublattice of E[G]. Furthermore, [7, Lem.
1(b)] implies [L, 1, Z[G]] = 0 € Ko(Z|G], E) & L = Z|[G], and if L; and L, are any
invertible Z[G]-sublattices of E[G], then (14) implies that

(L1, 1, ZIGN) + [L2, 1, ZIG]| = [L1 Lo, 1, Z[G]].

Claim (i) is now clear.
To prove (ii) we note that in Q[G]

lG,Q([X, A Y] = iy (Detz,[G](X) ® Detz[(;]( Y)il)
= &y.uiv(Detzg(A(X)) ® DetZ[G](Y)_I)
= Detyg(Y/U)™' ® Detyg(A(X)/ V).
Using these equalities both assertions of (ii) follow from the fact that

Detzjg(N) = (Fittzig(N), 0)~! for any finite perfect Z[G]-module N. To prove this
last equality we let n: Z[G]' — N be a G-epimorphism and set Q: = ker(rn). Since
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N is Z|G]-perfect Q is Z[G]-projective. Hence one has
Detz(g)(N) = Detyg(Q)™"' ® Detyg)(Z[GY) = Detyg(Q)~" < (Z[G], 0),

and this is equal to (Fittzg(N), 0)~! as an easy consequence of the definition of first
Fitting ideal (cf. [23, App. 4]). ]

Since G is Abelian one has ((R[G])** = {(R[G])* and so the condition (5) is sat-
isfied by setting 4 = 1. We write 75 and g in place of t5(1) and 7s(1) respectively,
and note that 7g is equal to the canonical isomorphism

L5(0)* - detrig)(R5"): detrie(Xs.r) — detri(Us. ).
We write F°[1] for the left shift of F* and let
Hos): (DetzigF*[1)a — (RIG].0)
denote the composite morphism
(DetzigF*[1Dg
(1—2)>DetR[G](XS(—2)R) ® Detpjq(Xs,r) ™"

detrig)(@s R)®!1 _
—" Detgiq(Us,r) ® Detrig(Xsr) ™"

—1
("-'5 )triv

— (R[G], 0).

THEOREM 2.7. Let G be Abelian. Then with the same assumptions and notation of
Proposition 2.5 one has

Fittzg(cok(py)) = $@s)(DetzqF*[1]) - 16, (b (TAL/K))) € Z[G].

Proof. Choose ¢ € Autrig)(Fr) such that detgrjg(¢) = rg»l(pS(F'[l]). Then Lemma
2.6(1) implies
da(ts),.) = 6Fr. ¢]
=[F, ¢, F]
= [¢yiv(Detzq F*[1]), 1, Z[G]]
so that

—16,2(06(25.95)) = Dyiv(Detzia FI1]). (15)

In addition, after unwinding the explicit construction of (12) one finds that
Quiv = Hepg). The theorem therefore follows upon combining equality (15) with
the formula of Proposition 2.5 (with A =1) and the final assertion of Lemma

2.6(ii). O
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COROLLARY 2.8. If G is Abelian, then TQ(L/K) = 0 if and only if
Fittzg(cok(pg)) = 8(ps)(DetzF[1) € ZIG].
Proof. This is an immediate consequence of Theorem 2.7 and the fact that

16, R(WG(TUL/K))) = Z[G] <= Y(TL/K)) =0 0
<« TQ(L/K)=0.
Remarks 2.9. (1) The ‘Equivariant Tamagawa Number Conjecture’ discussed in [3]
and [4] predicts that TQ(L/K) = 0 for all finite Galois extensions L/K.
(i1) If Stark’s Conjecture is true for L/K, then Corollary 2.8 can be rephrased
completely in terms of Fitting ideals by using Proposition 2.1(iii) and Lemma 2.6(ii).
(iii) Since F is Z[G]-free 9(@g)(DetzgF*[1]) is a principal ideal of Z[G]. The for-
mula of Corollary 2.8 therefore predicts that Fittzg(cok(eg)) is a principal ideal
of Z[G], and it is not difficult to show that (if G is Abelian, then) this is equivalent
to the original conjecture formulated by Chinburg in [10].

3. Abelian Fields

In this section we use the approach described in Section 2 to prove Theorem 1.1.
In particular, we show how the description of Theorem 2.7 renders TQ(L/K)
more amenable to investigation using Iwasawa theory. It is possible that our
approach could be used to compute TQ(L/Q) for Abelian extensions L/ which
are more general than those in Theorem 1.1, but we do not pursue this point
further here.

3.1. REVIEW OF KNOWN RESULTS

In this subsection we quickly review some known results concerning 7Q(L/Q) for
finite Abelian extensions L/Q.

Since Stark’s Conjecture is known to be valid for all such extensions (cf. [32])
Proposition 2.1(iii) implies that TQ(L/Q) belongs to Ko(Z[Gal(L/Q)], Q). In
addition, under a very mild ramification restriction, Ritter and Weiss have verified
the Strong Stark Conjecture for L/(Q). More specifically, in conjunction with
Proposition 2.1(iv) the result of [26, Th. A] implies the following.

PROPOSITION 3.1. If L is a finite Abelian extension of Q of odd conductor, then
TQ(L/Q) belongs to the torsion subgroup of Ko(Z[|Gal(L/Q)], Q). In particular,
if p JIL: Q] then TQ(L/Q), = 0. O

At the moment, finer results have only been proved for much more restricted
classes of extensions L/Q). For example, if the ideal class group cl(L) of L is
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7|Gal(L/Q)]-perfect, then the necessary computations are greatly simplified. Such
extensions L/ have been systematically studied in [14], [15] and [2] and motivated
by these earlier results the following is proved in [7, §8].

PROPOSITION 3.2. Let L/Q be an Abelian extension of odd prime power degree. If
L/Q is of prime power conductor or is the compositum of two linearly disjoint
extensions of prime power conductor and both primes which ramify in L/Q have
decomposition subgroup equal to Gal(L/Q), then TQ(L/Q) = 0. O

If one relaxes the degree restriction on any extension L/Q in Proposition 3.2, then
cl(L) need no longer be Z[Gal(L/Q)]-perfect, and the situation becomes considerably
more complicated.

To discuss an explicit example we now take L to be Q(/)" for any prime / and any
exponent a. Then one can choose a set S = {py, ..., py} consisting of rational primes
which are fully split in L/Q and such that S = {co, [, p1, ..., py} is admissible. Let [
be the unique prime of L above / and choose a prime p; above p; for each i with
1 <i<ys. Let py, be the archimedean place of L which is induced by sending {;
to exp(2mi/l*). Then

Xs = Z[Gl(rs — ) & ) ZIGI(p; — D)
i=1

is a free Z[G]-module so that Exté(XS, Us) = 0. This means that one can take any
exact sequence of the form

0

0—Xs — ZIGI T — ZIGI T = Xg—0

for the resolution (7) and any injective G-morphism ¢g: Xg — Us for the map
in Theorem 2.7 (with K = Q). Following [16], we specify ¢¢ by means of the
conditions

Ps(Poo =D = (1 = L)1 = i),
osh;—D=x;, i=1,...,5,
where here x; is a choice of generator of the principal O;-ideal p/ with 4 equal to the
class number of L. By using Iwasawa theoretic techniques Greither has computed
that Fittyg(cok(pyg)) = (24*) (cf. loc. cit., Th. 6.1), and on the other hand it is a
straightforward exercise to verify that

Y0 5)(Detya(ZIGP+) ® Detyg(ZIGE 1)) = (2h°).

The next result follows directly by combining these computations with Corollary 2.8
and Proposition 2.1(ii).
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PROPOSITION 3.3. If L is a real absolutely Abelian field of prime power conductor,
then TQ(L/Q) = 0. O

There are two further results which should be mentioned in this context. Let E/Q
be a tamely ramified Abelian extension of odd prime degree. If the conductor of
E/Q is equal to the product of two (necessarily distinct) primes, then [27, §1, Th.]
implies that TQ(E/Q) =0 (cf. [4, Prop. 2.3.3]). Also, Greither and Kucera have
very recently generalised this result by removing the restriction on the number
of primes which divide the conductor of E/Q.

3.2. PROOF OF THEOREM 1.1

In this section we reduce the proof of Theorem 1.1 to an explicit computation of
Fitting ideals. The necessary computation is then made in subsequent sections
by using Iwasawa theory.

For any Abelian group H and Q;—valued character y of H we write Z,() for the
ring extension of 7Z, generated by the values of . For a Z,[H]-module M and
an Abelian character Y we set My:= Z,(y) ®7,m M where H acts on Z,(})) via
Y. In general this is a quotient of Z,(}) ®7, M but if p [|H| and e, denotes the
idempotent [H|™'Y,_,; w(h~h of Zy(Y)[H], then My naturally identifies with
the direct summand ey (Z,(})) ®z, M) of Z,() ®z, M.

Let [}, I, a and b be as in Theorem 1.1. Taking into account Proposition 2.1(ii) it
suffices to consider the field L: = Q(/{)* Q(/5)". We set G: = Gal(L/Q). Proposition
3.1 implies it is enough to consider primes p which divide |G|, and for any such
p we write G = G, x G’ with G, equal to the Sylow p-subgroup of G. We fix a
set of representatives Y of the orbits of the action of Gal(Q;/ Q,) on
Hom(G', Q;X). The group ring 7Z,[G] decomposes canonically as 7Z,[G]=
Dy Zp(9)IG,] and this induces in turn a canonical isomorphism

Ko(Z,[Gl, Q) =~ €D Ko(Zp(OIGpl, (9. (16)

EeY

For each (e Y we let TQ(L/Q),: denote the component of TQ(L/Q), in
Ko(Zp(ONGp), Qp(&)) under the decomposition (16). Then one has TQ(L/Q), =0
ifand only if TQ(L/Q), - = 0 foreach ¢ € Y. We first show that the results of Section
4.1 imply TQ(L/Q), : = 0 for certain pairs (p, &).

We assume until further notice that p //;/>. For any field F we set F' = F({,) and
write w: Gal(Q'/Q) ~ Gal(L'/L) — Z; for the p-adic Teichmiiller character which
is characterised by o({,) = Cfp”(”). We set A: = Gal(Q'/Q) and H: = G’ x A and note
that ¢ ' is an odd character of H for any character ¢ of G'.
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The following diagram of fields clarifies the situation.

LI

We set Ki: = Q)" and K»: = Q(5)" so that L = K1 K, and K; N K> = Q, and we
write G; and G, for Gal(L/K;) and Gal(L/K>) respectively.

PROPOSITION 3.4. Let p be an odd prime which does not divide Il and let | € {I;, l}.
Let D be the decomposition group of | in Gal(L'/Q) and suppose that the character
& Yw is trivial on DN H. Then TQ(L/Q), = 0.

Proof. It suffices to show that under the stated conditions & is trivial or factors
through a character of either Gal(K, /Q) or Gal(K,/Q). Indeed L /Q is an extension
of the form considered in Proposition 3.2, and so for all such characters & Pro-
positions 2.1(ii), 3.2 and 3.3 combine to imply that 7Q(L/Q), : = 0.

Without loss of generality we assume / = /;. We suppose first that p | /; — 1. Then
D =G because I; splits completely in Q'/Q. Therefore DNH =G and so
E=¢(w! g is trivial.

If on the other hand p [/, — 1, then G, € G’ C H. Moreover G, C D because all
primes of K} above /; are totally ramified in L'/K). Therefore ¢ |g,= ol g, is

2

trivial and so ¢ factors through a character of Gal(K,/Q). O

To compute TQ(L/Q), ; for pairs (p, ¢) which do not satisfy the condition of Prop-
osition 3.4 we shall use the approach described in Section 2. To do this we first recall
some results from [2, §6] and [7, §8].

We let g1, resp. g2, denote the generator of Gy, resp. G,, which restricts to give the
Frobenius of /; on K5, resp. of L, on K;. In addition, for i€ {1,2} we set
Y= deGl_g € 7Z[G;]. We let "= {py,...,py} be a set of rational primes which
are fully split in L/Q and such that S = {oo, [, b, p1,...,py} is admissible for
L/Q. Let I} and [, denote the unique primes of L above /; and [, and choose primes
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Pi1» - - -, Py above the rational primes py, .. ., py respectively. It is shown in [2, §6] that
there is an exact sequence

—1 1
0—Xs(-2) 5 F L F L xg—0 (17)

with

Xs = 2L — 1) ® Z[G)(pos —11) & € ZIG)(p; — 1),
i=1
F — Z[G]Sq’z,
Xs(=2)=<(g2— 1,21 —1,0),(Z1,0,0), (0, Z2,0), wy, ..., wy >z
where w;: = (0, 0, ¢;) with e; equal

to the ith unit vector of Z[G]"

0'(x, y, 11,y 19) = €)= 1) + 1(Poo = 1) + D 1i(p; — 1),
i=1

(e = augmentation map),
a(xvyv Zlv ceey tS’) = ((gr1 - l)x - (g2 - l)y’ O’ 0),

0~' = inclusion.
Following [7, §8] we fix integers i and j such that
b = 1(mod ),  jI¢=' = 1(mod L) (18)
and define

= Nogoyx (1 = () € Ky,
My = NQ(zg)/Kz(l - ng) € K;,
mi= NQ(/;'zg)/L(l - Cflﬂ%) €L

Then (18) implies that Zi1; = (g2 — 1)y, Zan3 = (g1 — 1)1, and so there exists an
injective G-morphism ¢@g: Xs(—2) — Us which satisfies the conditions

¢ps((g2— 1,81 —1,0)) =ns,
¢s((Z1,0,0) =1y,

?s5((0, X2, 0)) = 15,

@g(w;) = x; foreach i € {1, ..., 5}

(19)

where here x; is any choice of generator of the principal O;-ideal p/ with / equal to
the class number of L.
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LEMMA 3.5. If ExtzG(XS, Us) is computed via the resolution (17), then ¢g
represents the canonical class cs(L/Q).

Proof. For each prime p we set &, = Extz,zp[G](XS ®z Zp, Us @7 1) =
Exté(XS, Us) ®7 Z,, and we write ¢, for the element of £, represented by
¢s ®z 2, when &, is computed via the resolution Ry of X5 ®z Z, obtained by
applying — ®z 7, to (17). It suffices to show that ¢, is equal to the image ¢(L),
of ¢s(L/Q) in &, for each prime divisor p of |G|, and we prove this by using results
from [2, §6].

Regarding p as fixed, we write N; and N, for the maximal subfields of K; and K,
which are of p-power degree over Q. We let N denote the compositum of N,
and N, set P:= Gal(N/Q) and H:= Gal(L/N), write Usn,p, Xsn, and c(N),
for the analogues of Us®z Z,, Xs ®7 7, and ¢(L), for the field N, and set
Enpi= EthZ,p[p](Xs,N,p, Us,np). Since p [|H|, the Hochshild—Serre spectral sequence
induces a canonical isomorphism Jy:&, =&y, It is well known that
on(c(L),) = c¢(N), and so it suffices to prove dy(ep) = c¢(N),.

To compute dy(e,) explicitly, one can proceed in the following manner. Let
Vg € Homg(Xs(—2), Us) be the homomorphism which differs from ¢g only in that
Ys(wi) =0foreachie{l,..., s}, andsetyg ;=Yg ®7 Z,. By taking H fixed points
of R} one obtains a resolution Rj . of Xsy,, and dy(e,) is represented by the
restriction l,bg » of Yg, to (Xs(=2)®z Z,,)H when €y, is computed via R} .
Now N/Q is an extension of the form considered in [2, §6] (with the group G
and primes /,p and ¢ of loc. cit. now replaced by P,p,[l; and [, respectively),
1//1; , can be naturally identified with the p-completion of the morphism ¢ described
in [loc. cit., Lem. 6.2], and the resolution R}  can be obtained from the resolution
of [loc. cit., (6.4)] by adding a free Z[P]-module of rank s to each term of the latter
(with an obvious change of differentials), and then applying — ®z7 Z,. The argument
which begins at the top of [loc. cit., p. 899] thus proves that ¢(N), is represented by
1//1; » When €y is computed via R} r, as was required. O

The last result confirms that ¢g can be used in the context of Corollary 2.8. In
addition, by using a simple adaptation of the computations which prove [7, Lem.
8 and 9] one obtains the following result.

LEMMA 3.6. %(¢s)(DetyqF°[1]) = k). O

Taking into account Proposition 3.4 and Lemmas 3.5 and 3.6, the proof that
TQ(L/Q), = 0 for all primes p f2/1/> is completed by combining Corollary 2.8 with
the following result.

THEOREM 3.7. Let p be any prime which does not divide 21,15, and let D\ and D,
denote the decomposition groups in Gal(L'/Q) of | and I respectively. Let & be a
non-trivial character of G' such that ¢ 'w is non-trivial on D;N\H for both
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ie{l,2}. Then
Fitty, i6,1((cok(ps) ®2 Z,);) = (h°). (20)

Theorem 3.7 is proved in Section 3.4 after some preparations in Iwasawa theory
which are given in Section 3.3.

The proof of Theorem 1.1 is then completed in Section 3.5 where we shall prove
that TQ(L/Q), = 0 for both p =/, and p = b.

3.3. IWASAWA THEORETIC PRELIMINARIES

In this subsection we prove the results in Iwasawa theory which are essential for the
proof of Theorem 3.7 given in Section 3.4. We keep the notation of Section 3.2
and continue to assume that p does not divide 2/, /.

For each non-negative integer n we let Q,, denote the n-th p-cyclotomic extension
of Q and set L,: = LQ,. Since p [/;/; the groups Gal(L],/Q,) and Gal(L'/(QQ) are nat-
urally isomorphic via restriction. Let M, denote the maximal Abelian p-ramified
pro-p-extension of L, and write B, for the Galois group of M, /L,. As usual we
let A= 7Z,[[T]] denote the Iwasawa algebra and for a (Q);—valued character y of
G we set A(y):= Z,(xI[T]]. We define

Quo:= OQ"’ Loo:=LQ,, and M,:= OM"'
n=0 n=0

Then L is the cyclotomic Z,-extension of L and we set I': = Gal(L,,/L). We let ¥
denote the Galois group of M /L. and note that Y is a module over the group
ring A[G].

The key to applying Iwasawa theory in the context of Theorem 3.7 is the following
observation.

THEOREM 3.8. Let & be a non-trivial character of G' which satisfies the assumptions
of Theorem 3.7. Then the projective dimension of Y: over the ring A(E)[G,] is at most
one.

The proof of this theorem is based on the following result.

PROPOSITION 3.9. Let & be a non-trivial character of G' which satisifies the
assumptions of Theorem 3.7 and set y:= ¢ 'w. Then cl(L}), is G,-cohomologically
trivial for all n = 0.

We will give the proof of Proposition 3.9 at the end of this subsection.
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Proof of Theorem 3.8. Given the result of Proposition 3.9, the proof of Theorem
3.8 is completely analogous to the proof of [16, Prop. 5.1], but for the convenience
of the reader we briefly recall the arguments.

By [16, Th. 2.2] it suffices to show that Y¢ is Z,-torsion free and cohomologically
trivial over G, (note the assumption that G is cyclic in [16, Th. 2.2] is unnecessary).
By Kummer duality (cf. for example the argument in [33, pp. 292-3]) Y: is the
Pontryagin dual of A,, where here A4 is the direct limit of 4, = cl(L}), and
7 =& 'w. It follows that Y; is Z,-torsion free since 4, is divisible.

Proposition 3.9 implies that 4, is cohomologically trivial over G,. Since Q,/7Z, is
Zp-injective we have Extz,(4,, Q,/Z,) = 0, and hence [29, Ch.IX, Th.9] implies that
Y: ~ Homy,(4,,Q,/Z,) is also cohomologically trivial over G,,. O

Remark 3.10. In general the projective dimension of Y: over A(&)[G,] is greater
than one.

We prepare for the proof of Proposition 3.9 by first proving three lemmas. For
these, we continue to use the notation and assumptions of Proposition 3.9. In
addition, for any group I, any I'-module M and any integer i we write
H(, M) for the Tate cohomology group in dimension i. In the case that
I' = Gal(E/F) for a Galois extension of fields E/F we also use the notation
HI(E/F, M) in place of H'(T, M).

LEMMA 3.11. Let n be a strictly positive integer, and let | be any prime of Q,, above
either Iy or L. If D denotes the decomposition subgroup of in Gal(L,/Q,), then
% is non-trivial on DN H.

Proof. Without loss of generality we assume that [ | /;. Since p f/;]; the inertia
group of /; in Gal(L,/Q) is equal to G, viewed as a subgroup of Gal(L;/Q). Setting
I'y:=Gal(Q,/Q) and Gy:= G x G», we have the following diagram of fields:

L,
[ xGp
(L)% | H
(L)%
(Ly)"
(LI)(GPXGQ)
Q.
Q

Letlbea prime of L;H above I. Then G} is the inertia group of lin Gal(L,,/ L;H )and
so DNH=< Fr(f, L;G/Z/L;H) > xG),. Now [L;:L;H] is coprime to [L;H:Q] and
hence restriction induces an isomorphism between G) and the inertia group of /|
in Gal(L'°/Q), and also between the decomposition groups of 1 in
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Gal(L,% /L") and of I in Gal(L'‘®*%/Q). It follows that if y is trivial on D N H,
then it is trivial on the decomposition group of /; in Gal(L’°”/Q) and this cannot
happen since ¢ satisfies the assumptions of Theorem 3.7. O

For any Abelian group I' we let I', denote its p-completion limI'/p"I".
LEMMA 3.12. Let U be a subgroup of G, and set E = (L;,)U. Then

cl(L,)’, = cl(E), .

Proof. The situation is clarified by the following diagram.

Note that there is a natural action of Z,(¢)[H] on objects coming from either L), or
E.

For any number field N we write Iy for its group of fractional ideals and Py for the
subgroup of Iy consisting of those ideals which are principal. We consider the natu-
ral short exact sequence of Gal(L,/Q,)-modules 0 — Py, — Iy, —>cl(L;) —>0.
Taking y-eigenspaces (which is exact since (|H|, p) = 1) and then U-invariants yields
the exact sequence

0_)Pg;,x —>ILLfM —>cl(Lj7)7f/ —H\(U, Pr ), 1)

where we omit the index p which usually stands for p-completion. Let J be the
subgroup of I, which is generated by the primes above /; and /, (these are exactly
the primes that ramify in L, /F).

Since y is non-trivial on D N H one has J, = 0 and hence ILUX = Ig,. As a conse-
quence of (21), it is therefore sufficient to show that

Py =Pp, and H'(U Py, =0. (22)
To that end we consider the exact sequence
0—0Of, — L, — P, —0.

By taking y-eigenspaces and U-invariants Hilbert’s Theorem 90 yields the long exact
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cohomology sequence

0—0},—E'—P} —H'U, 0} )—0—H(U, Py,
— XU, 0}, ).

From [33, Th. 4.12] we deduce that (’)Z 4= wLy), x (’)(L Vo (recall that we always
work with p-completion for an odd prime p). Slnce y is odd we have
(’)z 4 =Ly, But w(Ly), = u(L,),, =< (pn >=1, since G’ acts trivially on
Cpm € Q) and ¢ is non-trivial. Consequently Hi(U, (’)X,, ) =0 for all integers i
and (22) follows. L]

LEMMA 3.13. Let E and F be fields with L;GI’ C ECF CL, and such that there
exists a chainof fields E = Fy C F) C F, C ... C F; = Finwhich F\/Fy is unramified,
and for each integer i with 2 < i< s the extension F;/F;_\ contains no non-trivial
unramified subextension. Then I:IO(F/E, cl(),) = 0.

Proof. From Lemma 3.12 and [33, Th. 10.1] we derive
H(F/E, cl(F),) = c(E),/Np,£(cl(F1),),

and by global class field theory one has cl(E)/Ng, ,g(cl(F1)) 2 Gal(F1/E). Now since
Gal(F,/Q,) is Abelian, the group H C Gal(E/Q,) acts trivially on Gal(F,/E)
and hence Gal(Fi/E), =0. This therefore implies that cl(E), = Npg/£e(cl(F1)),
and hence that HO(F/E cl(F),) =0. 0

Proofof Proposition 3.9. By [8, Th. 9] it suffices to show that I:Ii(U, cl(L,),) = 0 for
both i € {0,1} and all subgroups U of G,. We fix a subgroup U of G, and set
E = L;U. For each i € {1, 2} let F; denote the inertia field of primes above /; in
L, /E and set F:= F) N F,. With obvious notation we have the following diagram
of fields.

Ki

n
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We observe that all primes above /, are totally ramified in L], /F,, that all primes
above /] are totally ramified in F>/F and that F/FE is unramified. Therefore Lemma
3.13 implies that H°(U, cl(L;),) =0.

So we are left to show that H! (U, cl(L}),) = 0. The inflation-restriction exact
sequence for the subgroup U, = Gal(L,,/F) gives

0— H"(U/ Uy, (L)) — H'(U, N(L)),) — H'(Uy, el(L}),),
and so it is certainly sufficient to show that both

() H'(Upel(L),) =0
(i) H'(U/UL, (L)) =0.

To prove (i) we set U,:= Gal(L]/F>) and consider the exact sequence
0— H'(U1/ Uy, (L)) — H' (U}, el(L}),) — H' (Un, cI(L}),). (23)

By Lemma 3.12 we have cl(L’) = cl(F2),. The groups HO(Ul/Uz,cl(Fz)A) and
HO(Uz,cl(L’) ,) are both trivial as a consequence of Lemma 3.13. Since U,/U,
and U, are cychc a Herbrand quotient argument therefore implies that the second
and fourth terms in (23) are trivial, and this proves (i).

We now choose a chain of subfields E = Ey C E; C ... C E, = F such that each of
the extensions E;./E; is cyclic. Then inflation-restriction together with Lemma 3.12
leads to exact sequences

0 — HY(E\/E, l(Ey),) — H"(U/ Uy, cl(F),) — H'(F/Ey, cI(F),).

By Lemma 3.13 we have HO(El/E cl(E1),) = 0 and since E;/E is cyclic this implies
that H' (E1/E,cl(Er),) =0. To prove (ii) it therefore remains to show that
H YF/E;, cl(F ),) =0 and to prove this one can proceed by induction (over 7). []

We conclude this subsection with the following observation. Set B: = Gal(M,/Ly).

LEMMA 3.14. For any non-trivial character £ of G' there is a canonical isomorphism
Bi ~ Yg/TYCj.

Proof. By Iwasawa theory one has Gal(My/Ly) >~ Y/TY (cf. [33, p. 291]). In
addition, G acts trivially on I" since L.,/(Q is Abelian and hence the lemma follows
upon taking &-eigenspaces of the canonical extension

0—Gal(My/Ly) —B—T —0. O

3.4. PROOF OF THEOREM 3.7

In this section we prove Theorem 3.7. We continue to use the notations of Sections
3.2 and 3.3. In particular, p is a prime which divides |G| and is coprime to 2/,/.
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We fix a character ¢ of G’ which satisfies the assumptions of Theorem 3.7. Our proof
of this theorem closely follows [16, §7].

Let T be a set of finite places of L which contains all places above p and also
S(L)\ Soo(L). For a finite place v of L we write L for the multiplicative group
of the completion L, of L with respect to v. We let L, denote the p-completion
of L and define an idele group

Jp,TZ: l_[ ZPXHL;(,P’

veT,v|p v|p
By global class field theory one has

Gal(F/L) ~ J./L* [ | U..
vip

where J; denotes the ideles of L and F the maximal Abelian extension of L
unramified outside p (cf. [33, proof of Th. 13.4]). By taking p-completion one shows
that

HVYP ZI’ X 1_IVIp va,p
= .

B~

Since S is admissible and S(L) \ Se(L) C T it easily follows that B ~ J, r/Ur, where
(by abuse of notation) Ur denotes the group of T'U S,.(L)-units of L and overbar
stands for ‘closure of image’. We define

J {Jp,S(L)\Smm, . ifpes,
HveS(L)\Sm(L) Zy x ]_[v‘p O‘,’p, otherwise,

where OF is the p-completion of the multiplicative group of the valuation ring O, of
L,. Since S is admissible one checks that in both cases J, 7/ Ur =~ J'/Us. Recall now
the definition of ¢g in (19) and set

Pr=1im(pg) = (11, 12, M3, X1, - - -4 X¢) 7165
C:= (11, 2. 13) 21605

so that cok(¢g) = Us/P. By using the fact that (n,) = [; and (11,) = I one can show
that there is a natural exact sequence

1 — ((]‘[ 0@,)/&) — (J'/P), — (Z,[S D)/ - Z,[S'(D)]), —O0. (24)
¢

vip
(In this context we remark that the sequence (10) in [16] is only correct after

multiplying by e: where ¢ is a non-trivial character G'.) Note that Z,[S'(L)] is a
free 7Z,[G]-module of rank s'.
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On the other hand one has an obvious exact sequence

1_>(7S/P)g—>(J//P)5_’(J//75)g: B: —1. (25)
The precise choice of S ensures Xg , ¢ is cohomologically trivial and the exactness of
diagram (8) therefore implies that the same is true for both Us,: and
Xs(=2), . Since @g is injective it follows that P, is cohomologically trivial and
since P = C & xiZ[G] D...0 x;Z,[G] this means that C, ¢ is also cohomologically trivial.
Finally, the module [],, O}, ~ indgv Oy, is cohomologically trivial since p is
unramified in L, and so (24) implies that (J'/ P): is cohomologically trivial. It follows
that all terms in (24) and (25) are of projective dimension at most 1 over Z,(£)[G,],
and so [16, Cor. 1.2] implies that

Fittz, o6, <( Us/P ),;,5)

s . x = . -1
=h" - Fittz, 6, (((H 0;,)/ C)g) - (Fittz,op6,1(B2)) -

vip

It therefore remains to prove that

Fittz,y6,(Be) = Fittz, ¢y, <((H o)/ ék) ~ (26)

vip

Still following [16] we will prove (26) by explicitly computing the left and right hand
sides in terms of Iwasawa power series. For a finite Abelian extension M/Q with
conductor m and any integer a with (¢, m) =1 we write o(a) for the associated
element of Gal(Q(m)/Q) ~ (Z/mZ)* and also for its restriction to M. For a char-
acter  of Gal(M/Q) we will usually write y(a) in place of Y(a(a)).

The Stickelberger element for L),/(Q is defined by

b= -t D w09 € QGalL,/O)L

T ntlja
V4 ll 12 ()<x<[,n+][;l[é?

(s, =1

(cf. [33, §6.2]). By using the argument of [33, Prop. 7.6] one shows that
wé 0, € 2,(OIG, x Gal(L,/L)] and that w&1(0,,) maps to wé~'(0,) for each
m >n under the projection which is induced by the restriction morphism
Gal(L,,/L) — Gal(L,/L). Hence we can define an element

Fi= —limwé ™ (6,) € AQ[G,].
Let y be any character of G which extends & and write qu for the (primitive)

Iwasawa power series which is associated to the p-adic L-function L,(s, ) (note
that in [33, Th. 7.10] f, ,(T) is denoted f(T, ¥)).

Y
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LEMMA 3.15. Let \ be any non-trivial Abelian character of G. Then
yU(F) = —lim oy (0,)
n

(1- w_]tp(lz))f(m/fl(T), if fy =04,5>0,
=1(1- w“zp(ll))qu(T), if fy =0,t>0,
Sy (T), if fy =Lb,s>0,¢t>0.

Proof. By the construction offw‘/,l (cf. [33, §. 7.2]) it suffices to show

(1 — o YLy~ O™ R), i fy =15 >0,
Y0 = (L= o™ WA O@" ), if fy =1, 1> 0,
Y O@ L)), if fy =0815,5>0,1>0,

whfare we set 0(q) = }120<5< 7=l so(s)”'. This is a straightforward computation
which we leave to the reader. ]

The assumptions of Theorem 3.7 ensure that the Euler factors which occur in
Lemma 3.15 are units in Z,(}). Indeed, if for example f;, =/ with s > 0, then
o1y is a character of Gal(K{/Q). But the decomposition group of 4 in Kj/Q
is generated by o(/), and so the assumption of Theorem 3.7 implies that
o "W(h) is a (non-trivial) root of unity whose order is not a power of p.

For any commutative Z,-algebra R we let * denote the involution of
RI[TTI[G,] = R[[T']l[G,] which is induced by yi—>wux(y)y~! for y €T and o1—>g~!
for ¢ € G,. Note that y(F*) = Y U(F)* for any non-trivial character { of G.

The required equality (26) is an immediate consequence of the following two
results.

THEOREM 3.16. Fittzp(é)[Gp](Bg) = (F*(0)).

THEOREM 3.17.

Fittz, 6,1 ((]’[ o5, /C)§> = (F¥(0)).

vip
Proof of Theorem 3.16. By Lemma 3.14 and [23, App. 4] it is enough to show that
Fittaey6,)(Ye) = (F*). The key to proving this equality is a purely algebraic obser-
vation of Greither. Indeed, [16, Lem. 3.7] implies it is sufficient for us to prove that
(i) Fittag)(Yy) = (@(F*)) for all characters y of G which extend ¢,
(i) Ye/pYe is finite

For a character yy of G and a torsion A(y)-module M we write char(M) for the
characteristic ideal of M over the two-dimensional regular local ring A(y/). By [16,
Lem. 3.5] and Kummer duality one has Fittag)(Yy) = char(Yy) = char(Xs )",
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where Xoo = limcl(L}), is the Galois group of the maximal Abelian unramified pro-p
extension of L and y:= oy~ !, From the proof of the Iwasawa conjecture in this
case (cf. [23], [34]) one has char(X ,)* =f,(T)", and so Lemma 3.15 implies that

(1 = o~ W) WEF*), if fy =§,5>0,
Fittay)(Yy) = (F(T)) = 1 (1 — o'W Y(F*), if fy =1.1> 0,
(W (F*)), if fy =B, 5s>0,1>0.

This implies (i) because the factors (1 —w 'y(l;)) are units of Z,(y) for both
ie{l,2}.

Finally we observe that, just as in [16], the finiteness of Y:/pY: can be deduced by
using Kummer duality and the Theorem of Ferrero-Washington. O

Proof of Theorem 3.17. From [33, Th. 7.10] and Lemma 3.15 one has

Y(F*)(0) =y~ (F)*(0)
(1- w—lxp(lz))Lp(l, V), iffy=104,5>0,
=1 (A= WAL, y), if fy =15,1>0,
L,(1,y), if fy =5K06,5s>0,1>0.

27)

Let £1, denote the torsion subgroup of (Z, ®z Or)*. Since L,/Q, is unramified for
places v|p the module [],,OF, is canonically isomorphic to the quotient
(Zy ®701) /ELp. Now Z, @7 O =~ Hvlp Oy, and so [24, Satz (5.5)] implies that

the p-adic logarithm induces a G-equivariant isomorphism
(Zy ®7 Op)* /€Ly —> P(Zy ® Op).

In order to specify an explicit Z,[G]-generator of Z, ®7 Op we recall the main
result of [21] as it is stated in [9, pp. 124-5] (see also [22]). For the moment, let
N/Q be any finite Abelian extension with group G. For each complex Abelian char-
acter y of G we decompose the conductor f, of y as a product f, =f,; - f;,w With
Soi= ]_[p p, where here the product extends over the primes p such that p|f,
and p? | f,, and we write ¢, for the idempotent |G|~ > e 2(g~Hg of C[G]. Complex
Abelian characters y and ¢ are said to be equivalent if £, ,, = f, ... For each equiv-
alence class @ of this relation we set ep:=} s q€p, fo:=lom{fy: ¢ € ®} and
ker(®): = ﬂ¢€® ker(¢). To each character ¢ € ® one associates a Gauss sum

10(9): = D sz /sy PV, and sets
1
To:= m%'@((ﬁ)-

Then Leopoldt’s famous ‘Hauptsatz’ is the equality

Oy = A(N/@)(Z T¢> (28)
[0}
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where here @ runs over the equivalence classes of complex Abelian characters of G
and A(N/Q) is the Z-order ) 4 e Z[G] in Q[G].

LEMMA 3.18. Let N/Q be a finite Abelian extension and set

1
Y= 2 @
where here @ runs over the equivalence classes of complex Abelian characters of
Gal(N/Q). Then for each prime p which does not ramify in N/Q the element y
is a Z,[Gal(N/Q)]-generator of Z, ®7 Oy.

Proof. Set G: = Gal(N/Q), and fix a prime p which does not ramify in N/Q. One
has ep Ty = d¢ y Ty (Kronecker delta) and so (28) implies that it suffices to prove
p [lker(®)| and Z, ®7 A(N/Q) = Z,[G].

Let fy = p}' - - - p% be the conductor of N and set F: = N N Q(fp). Then we have the
following diagram of fields:

Q(fn)
N
Qfs)
F
1 Nker('b)
Q

The definition of fg implies that [Q(fy): Q(fo)] =p’1‘ .- p’f with 0 < f; < e, for each
iwith 1 <i < s, and hence p does not divide [N: F]. In addition [22, Lem. 1d] implies
that F = N*® and so p /| ker(®)|.

Regarding eg as an idempotent in Q,[Gal(F/Q)] it is therefore enough to prove
that eq € Z,[Gal(F/Q)]. Let fy denote the maximal square-free divisor of fo and
set F:=NNQF). Then p[[Q(fe): Q(fy)] and so pf[F]. It follows that
Zp[Gal(F/F")] is the maximal Z,-order in Q,[Gal(F/F')] and so it suffices to prove
that eg belongs to Q,[Gal(F/F')] € Q,[Gal(F/Q)]. This is in turn an easy exercise
which we leave to the reader. O

We now return to the proof of Theorem 3.17 and use Lemma 3.18 to define an
isomorphism  o:(Z, ®2 Or)* /€L, - Z,[G] by log,(u) = pu(u)-y for each
ue(Z,®z0Or)*. This isomorphism implies that the first Fitting ideal of
((Zp ®2 OL)*[ELp)/ C). in Zp(E)]G,] is equal to

E@(C)) = (&), E(on,)). <@z, 06,
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LEMMA 3.19. Let y be any non-trivial complex Abelian character of G. Then one
has:

. 1 : __Js
@ WGt = | KTV L. fy =110

_ LK) L (L W), if fy =11 >0,
(®) Y(aln)) = 0, S TRV othlérwise;

Yl + 1) 5= Lp(1, ), if fy =KL, s>0,t>0,
© W(eny) = { WGl +)1) s (b () = DL,(L ), if fy =K,5 >0,
WGLS + 1) 5= W) — DL(L ), if fy =1, 1> 0.

Proof. For each k € {1, 2,3} we set f;:= pa(n,) € Z,[G] so that log,(n,) = iy
These definitions imply that

> (o) log,(om) = v(B) - Y P(o)oy. (29)

oeG oeG

By an entirely standard computation one finds that if y € ¥, then

ddeoy =Y WG, =Te).

0eG xe(Z/fw)"

Note that the Gauss sums r\y(lﬁ) are usually not primitive. Indeed, according to the
conductor of ¥, one has

_ —p(b)e(p). if fy =1F.5 >0,
YW@y = —ph)W), if fy =l 0, (30)

o€G (), otherwise,

where here 7:(1/_/) denotes the primitive Gauss sum as defined in [33, Th. 5.18].
Multiplying (29) by ©(y)/f, we deduce from [33, Lem. 4.7 and 4.8] that

—U(h) - WPy, if fy =K. s> 0,
() - W(B), if fy = 1.1 > 0, 31)
V(Py), otherwise.

W L seq V(@) logy(ony)
W e V(@) og,(ony)
T Loea V(@)1ogy(on)

We must now compute more explicitly the left-hand side of (31). Recalling
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n = N‘Q(li‘)/K](l — C[il) € K| one finds that

> o) log, (o)) = { LL: K X ey WO togy(1 = 8. i /i = o5 >0,

! 0, otherwise.

(32)

There is a completely analogous result for £ =2 in (31).

Finally we have to consider the above sum for 7; = N@(,tl,,g)/L(l — C}l, ’é). In this
case, a standard computation (depending on the precise choice of i and j as in (18))
leads to equalities

> (o) log,(on3)
oeCG
W) =1 ¥ dlog(=G).  iff=h.s>0,
Ye(Z/)*
_Jwi-1n ¥ dmlog,-8), i fy=H41>0,
ye(Z/15)" ?
WA+ Y log,(1 —Chy),  if fy =Ll s> 0,1 > 0.
ye(Z/E1)" 2

(33)

For k =1 we derive from (31), (32) and [33, Th. 5.18] that

~1
lp(ﬁl) — [ [L Kl]l,b(lz)(l — @) Lp(l, lp), lff;/, = li, s > 0,
0, otherwise.
Analogously we get
—1
W(p,) = { [L: Kz]n//(ll)<l _lﬂp(p)) L,(1,y), iffy,=051>0,
0, otherwise.
Finally, for k = 3 we obtain from (31) and (33) together with [33, Th. 5.18]
—1
wm@—%?)(wm—uuawx it fy, = f.s > 0,
—1
W(ps) = me‘W@)(wm—Ugawx it fy = 11> 0,
P -1
—xp(ilg —|—jlf)<1 — @) L,(1,y), if fy =010,5>0,1>0.

To conclude the proof we now observe that the congruences (18) imply that
Y(lh +jI9) = (b if £ = I and that YGl + jI¢) = w(h) if f, = 1. O
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Note that {(ey) = 0if ¥ is not an extension of ¢ and that e; = Zxﬁli ey. From (27)
and Lemma 3.19 we conclude that

(@)  &(a(n)

a(h)

=¢| [L: Kl]p ~ o)

(1= 0" (o) ' F(0) Y e |.

Uy =1

5>0

(b)  &(a(n2))

a(l1)
—a(p)

=l gl T = o et ) Y e ).
Uty =1t

a(il + jI¢
© oy ¢ _%F*(O)M%gew_

o(ilh +j19) 1 —a(h) .
= op) T=o ety @ 2 -

vihy=h

5>0

o +jlf) 1—olh) .o
p—o) 1= aiy” O 2

We now claim that &(a(C)) is generated by F*(0). To prove this we first observe
that the factor o—(ilé’ +jl{)/(p — a(p)) is a unit in Z,[G]. Indeed, it obviously belongs
to Z,[G] and is a unit in the maximal Z,-order M of (Q,[G], and this suffices since
M NZ, Gl = Z,|G]*.

We next show that (F£*(0)) is generated by &(«(173)). To that end we consider three
separate cases

. I —1 L—1

(1) pIT and p | 7
1 -1

) p1"5 L and p0 L
(iii) p,{’—llgl and p|l2g1.

In case (i) we have w(/;])=w(h)=1 and so it follows immediately that
(&(a(n3))) = (F*(0)). In case (ii) we note that G; C G'. Thus, if there exists a character
Y which extends & and which has conductor f;, =/ with s> 0, then & |g=1.
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Therefore the conductor of i/ is a non-trivial power of /; for every extension of &, and
so (c) implies an equality of Z,(&)[G,]-ideals

—a(l
o = (£( =ity ) FO).

It therefore suffices to prove that both &(1 — ¢(y)) and &(1 — w~'(l)a(y)) are units in
Z,(&)[G,]. But the arguments used immediately after Lemma 3.15 imply that these
elements are units in the maximal Z,(¢)-order of Q,(£)[G,], and this in turn implies
that they are units in Z,(&)[G,].

Still considering the case (ii) we can now assume that no character y which extends
¢ has conducter of the form /{ with s > 0. Then we derive from (c) and w(/;) =1 an
equality of Z,(O[G,]-ideals ((a(n3))) = (F7(0)).

The case (iii) is completely analogous to (ii).

So far we have proved that (&(a(n3))) = (F%(0)). Now

1 1
= — h__ 7
w;?ed/ |G1|1;G1 |G|g€ZGg

5>0

and so

1
(> e|= wé(lz h) € 0,(AIG1,] € Q,ONG,].
iy =t heG

It follows from equality (a) that &(x(y;)) € (F*(0)) and analogously we obtain

(a(ny)) € (F*(0)).
This concludes the proof of Theorem 3.17 and hence also that of Theorem 3.7.

3.5. THE CASE p | L1,

In this subsection we complete the proof of Theorem 1.1 by proving that
TQ(L/Q), =0 if p is equal to either /; or b.

We set / = [} and assume that p = / (the case p = /, being completely analogous).
By Proposition 3.1 we may assume that /||G|. We set F:= K>({;)", so that
Gal(F/Q) ~ G and [L:F] = [“"'. We let F,, be the cyclotomic 7;-extension of
F, and we note that L = F,,_;.

The strategy of proof is once again the same as in [16]. We write [ for the unique
prime of L above / and define an idéle group

I=L5x [ Z.
veS'(L)

Since the decomposition subgroup of / is G we may consider both L and O/ as
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Z|G]-modules. The [-adic valuation gives the short exact sequence of Z[G]-modules

0—Of —L —7Z—0. (34)

Taking /-completion and then &-eigenspaces for a non-trivial character ¢ (both
functors are exact) shows that L .= 0. In addition, O is a free
Z,(&)[Gj]-module. Indeed, since OIXM is torsion-free it is free over Z;(&)[G)] if
and only if it is cohomologically trivial over G;. But for U < G; the cohomology
sequence for (34) implies H'(U, Or): =0 by Hilbert’s Theorem 90 and
H(U, O); ~ HY(U, LY);. Furthermore, I:IO(U,AL[X) ~ Gal(L/LV). Since Li/Q,
is Abelian and ¢ is non-trivial we deduce that H'(U, O): = 0 for both i € {0, 1}
as required. »

Recall the modules P and C defined just prior to (24). There is a natural analogue
of the exact sequence (24)

0—(05y/C) . —(J/P) . —>(ZulS' L))/ - L[S (L)]); —0

in which all modules are of projective dimension 1 over Z;(¢)[G;]. By combining this
sequence with the obvious analogue of (25) we deduce that

. / . = . —1
Fittz, 61 (Us/P)ye) = I° - Fittz,6y((055/ O)e) - (Fittz,ep61(B:))

where Bis now the Galois group of the maximal Abelian /-ramified pro-/ extension of
L =F, ;. Taking into account Corollary 2.8, Lemma 3.6 and the fact that
Us/P = cok(gg) this equality means it suffices to show that

Fittz,e16(B:) = Fittz, 161 ((07/ 0)e). (35)
Just as in the proof of Lemma 3.14 we derive from [33, p. 291] that
B: >~ (Y/wa-1(T)Y),

where Y is the Galois group of the maximal Abelian /-ramified pro-/ extension of F,
and w,(T)=(1+T)" =1 for each n>0. Since the Iwasawa algebra A(¢) =
Z)( O[]l with I = Gal(Fy/F) is regular the Z;-torsion free A(&)-torsion
module Y: is of projective dimension at most one. Therefore the Fitting ideal
and characteristic ideal of Y: over A({) coincide by [16, Lem. 3.5]. The known
validity of the Iwasawa conjecture in this case therefore implies that
Fittae)(Ye) = (f,,-1(T)), where f, ..1(T) is the Iwasawa power series associated to
Ly(s, ¢). Now A(&)/wa—1(T)A(E) = Z()G] and B: = Ye/w,—1(T)A(S) and so [23,
App. 4] implies that Fitty,)c)(B:) is generated by the image of f .(T) in
A(Q)/wa—1(T)A(Q).

We now set Uy:=Ilim U,, where U, denotes the group of principal units
of the completion of (Fn with respect to the unique prime above /. Note
that U, 1 = O[;. Moreover, [33, Th. 13.56] or [28, §8] implies that
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Fitta)(Uso/ @oo)g = (f,:-1(T)), where Cy is the projective limit of the group of
cyclotomic units in Fj,.

For each integer n > 0 we set I',: = Gal(F/F,), and for any A(¢)-module M we
write Mr, for its I',-coinvariants M /w,(T)M. Using [23, App. 4] we conclude that
Fittzl(@[g,]((UOO/COO)HH) is generated by the image of f, (T) in A()/
wq—1(T)A(E) and so to prove (35) it is now enough to show that

(UOO/COO)Q“,FU,IZ ( ITI/C){
To that end it suffices to note that by [28, Th. 6.1] one has

(UOO)@:YF“—I: Ofl,ff’ (Coo)é»ru—l: Ce.
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