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Corrections to the parton model in QCD

In Ch. 8, factorization was formulated for DIS. The proofs were, however, restricted to
non-gauge theory. But the results remain true in QCD, with some complications to be
treated in Ch. 11.

So in this chapter we will simply assume factorization holds in QCD, and on that basis
introduce methods of applying it phenomenologically. In QCD, with an unpolarized target,
we will calculate: (a) the first correction terms to the hard scattering for DIS, and (b) the
leading term in the kernel for DGLAP evolution of quark and gluon densities. These are
the primary phenomenological tools for quantitatively analyzing DIS in QCD.

The calculations also provide an opportunity to introduce some of the complications
that arise in QCD and that must be taken into account in a correct proof of factorization.

The results on which this chapter depends are: factorization for the hadronic tensor,
(8.81); factorization for the structure functions (8.83); the decomposition of the partonic
hard scattering tensor in terms of parton structure functions (8.82); the definition of parton
densities in QCD in Sec. 7.5; the structure of their renormalization (8.11); the corresponding
DGLAP evolution equations, from Sec. 8.4.

9.1 Lowest order

The parton-model calculation in (2.28) gives the first terms in the expansion of the partonic
structure functions in powers of αs :

F̂1j (Q2, x/ξ ; αs, μ) = e2
j

2
δ(x/ξ − 1)+O(αs), (9.1a)

F̂2j (Q2, x/ξ ; αs, μ) = e2
j δ(x/ξ − 1)+O(αs), (9.1b)

and of course F̂jL = 0+O(αs). These are the lowest-order (LO) terms, and they apply to
quarks; the gluonic coefficients start at order αs .

9.2 Projections onto structure functions

In Feynman-graph calculations we will use projectors of a hadronic or partonic tensor onto
corresponding structure functions. In the partonic case these follow simply from (8.82). It

284

https://doi.org/10.1017/9781009401845.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.009


9.3 Complications in QCD 285

is convenient to use the longitudinal structure function:

F̂Lj
def= F̂2j − 2

x

ξ
F̂1j = 8(x/ξ )3

Q2
k̂μ

1

2
Tr C

μν
j k̂ν, (9.2a)

F̂2j = x/ξ

1− ε

(
−gμν

1

2
Tr C

μν
j

)
+ 3− 2ε

2− 2ε
F̂jL, (9.2b)

where we give the result for a general space-time dimension 4− 2ε, as needed later. The
factor 1

2 Tr projects onto the partonic tensor for an unpolarized parton.

9.3 Complications in QCD

9.3.1 Use of on-shell quarks and gluons

It would be possible to obtain hard-scattering coefficients and DGLAP kernels from direct
use of the subtractive methods of Ch. 8. Instead we use a method where we start from
calculations of structure functions and parton densities with massless quarks and gluons
used as the target states.

Now starting from calculations of structure functions and parton densities on some set
of target states, we can use the factorization and renormalization formulae to deduce the
hard-scattering coefficient functions and the renormalization factors (of parton densities).
From the renormalization factors, we deduce the DGLAP kernels. It is the coefficient
functions and the DGLAP kernels that are of actual phenomenological interest, since they
are perturbative.

Because these quantities are independent of the target state, we are entitled to use what-
ever targets are convenient for calculations. This leads us to use single on-shell quarks
and gluons as the target states, with all calculations done in low-order perturbation the-
ory. Moreover, the quantities to be calculated are independent of mass, so we also set
masses to zero everywhere, since this considerably simplifies calculations of Feynman
graphs.

Thus a noteworthy feature of many QCD calculations is that they use on-shell quarks
and gluons as the target state. This is in striking contrast to the fact that (as far as is currently
known) all true particle states in QCD are composites, i.e., bound states like the proton.
Moreover there are IR and collinear divergences in perturbative calculations with on-shell
massless target states. These can be regulated satisfactorily and cancel in the calculations
of the coefficients, which are all short-distance dominated.

9.3.2 Choice of gauge

Another complication in QCD concerns the choice of gauge. We could use A+ = 0 gauge,
in which case the structure of the leading regions, for renormalization and for factorization,
appears to be simplified to be the same as in a non-gauge theory (Ch. 8). However,
calculations are plagued by divergences associated with the 1/k+ singularity in the gluon
propagator. The divergences cancel, but in a non-trivial manner. This of course indicates
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286 Corrections to the parton model in QCD

that extensions are needed for the proofs of factorization and renormalization that we gave
in Secs. 8.3.6 and 8.9.

The alternative, which we will adopt here, is to use Feynman gauge (or a standard
covariant gauge). The necessary proofs will come later. For the purposes of calculations,
we simply rely on the full statement of renormalization (and factorization) applied with
gauge-invariant parton densities. We will in fact still find extra divergences, characterized
as rapidity divergences. We will see that the rapidity divergences cancel, non-trivially. The
Feynman gauge lends itself better to good derivations of renormalization and factorization
than the A+ = 0 gauge.

It is interesting that there was a long-standing disagreement for calculations at two-
loop order for the DGLAP kernels. This was between a calculation in light-cone gauge
(Furmanski and Petronzio, 1980), and ones in Feynman gauge (Floratos, Ross, and Sachra-
jda, 1979; Gonzalez-Arroyo and Lopez, 1980; Floratos, Lacaze, and Kounnas, 1981). It
turned out that the light-cone gauge calculation is the correct one. The actual calculations are
done with massless quarks and gluons; one has a choice between on-shell calculations and
off-shell calculations. As we will see, on-shell calculations are much easier algorithmically,
but suffer from various kinds of IR and collinear divergence that need to be disentangled
from the UV divergences of interest. Off-shell, there are extra parton-density-like objects
defined by operators other than the gauge-invariant ones needed in physical matrix ele-
ments. A subtle interaction between the IR problems and the non-gauge-invariant operators
needed to be sorted out (Hamberg and van Neerven, 1992; Collins and Scalise, 1994), over
a decade later than the original calculations. See Sec. 11.4 for some more details.

These problems will not affect our one-loop calculations.

9.4 One-loop renormalization calculations in QCD

In this section, we calculate the one-loop renormalization of the parton densities in QCD,
starting from the definitions (7.40) and (7.43) for the bare parton densities. Then we
will deduce one-loop values for the DGLAP kernels, which are phenomenologically very
important in determining the evolution of parton densities with scale. The results are also
essential to calculations of the hard-scattering coefficient functions.

9.4.1 General principles of calculation

Just as in our calculations in Yukawa theory, Sec. 8.7, we work with target states that
are in turn a gluon or any flavor of quark. The primary new feature is that each parton
density has a Wilson line, for which the Feynman rules were given in Figs. 7.10–7.12. The
renormalization coefficients are adjusted so that the renormalized parton densities defined
by (8.11) have no UV divergences. The general notation for the expansions in αs was given
in (8.49), and the relation between the n-loop expansion of the bare and renormalized parton
densities was given in (8.52).
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k

p

(a)

(b) (c) (d)

Fig. 9.1. (a) One-loop graph for renormalization of density of quark in gluon. (b)–(d)
Graphs that are zero when the gluon polarization is chosen to obey e+p = 0.

At one loop this is simple, because of the trivial zero-loop terms (8.50) and (8.51)
for the renormalization and the parton densities. The factorized form for renormaliza-
tion thus shows that the one-loop renormalized parton density in a quark or gluon tar-
get is the sum of the one-loop bare parton density and the one-loop renormalization
coefficient:

f
[1]
j/k(ξ ) = (Z−1

2j f )[1]
(0)j/k(ξ )+ (Z2jZ)[1]

jk (ξ, g, ε)

= (Z−1
2j f )[1]

(0)j/k(ξ )+ Z
[1]
2j δjkδ(ξ − 1)+ Z

[1]
jk (ξ, g, ε). (9.3)

To obtain this, we wrote the bare parton density as Z2j (Z−1
2j f(0)j/k), where Z2j is the wave

function renormalization for the field for parton j . Then we separated out the one-loop
terms for the Z2j and for (Z−1

2j f(0)j/k). The reason is that (Z−1
2j f(0)j/k) is the parton density

defined with renormalized fields instead of bare fields, so that it is a natural object to
compute in perturbation theory.

We now apply the above formula to each possibility for j and k.

9.4.2 Quark in gluon

The simplest calculation is for the order g2 off-diagonal gluon-to-quark term, i.e., in (9.3)
we set k to a gluon and j to any quark flavor. The target state is a on-shell gluon with
a physical polarization vector e

μ
p that has zero plus and minus components. The single

graph we need is shown in Fig. 9.1(a). Since e+p = 0, graphs (b)–(d), in which the gluon
attaches to the Wilson line, are zero. [Generally the polarization vector of a on-shell gluon
(or photon) of momentum p must obey p · ep = 0, and ep · e∗p = −1. It is arbitrary up to
a gauge transformation, i.e., up to the addition of a multiple of p. The choice of a gauge
condition on the polarization vector may be made separately for each on-shell gluon. We
have chosen the condition e+p = 0.]
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A straightforward application of the Feynman rules gives the value of the bare graph
(before renormalization):

g2

16π2
f

[1]
(0),q/g(ξ ) = −TF g2μ2ε

∫
dk− d2−2ε kT

(2π )4−2ε

2πδ
(
(p − k)2 −m2

q

)
(k2 −m2

q)2

× Tr
γ+

2
(/k +mq)/ep(/k − /p +mq)/e∗p(/k +mq).

= g2TF (4πμ2)ε

8π2�(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

(k2
T +m2

q)2

×
{

(k2
T +m2

q)

[
1− 2ξ (1− ξ )

1− ε

]
+m2

q

2ξ (1− ξ )

1− ε

}

= g2TF

8π2

(
m2

q

4πμ2

)−ε

�(ε)
[
(1− ξ )2 + ξ 2

]
. (9.4)

The overall minus sign in the first line arises because of the fermion loop. For information
about TF and other group theory coefficients, see Sec. A.11. The dependence on the direction
of the polarization vector has dropped out because of invariance under rotations around the
z axis. Unlike the case of our later calculations we have kept a non-zero mass.

The renormalization counterterm Z[1]
qg in (9.3) is added to give a finite result at ε = 0. In

the MS scheme

g2

16π2
Z[1]

qg (z) = −g2TF

8π2

Sε

ε

[
(1− z)2 + z2

]
. (9.5)

From the QCD version of (8.33), the corresponding term in the DGLAP kernel is

g2

16π2
P [1]

qg (z) = g2TF

8π2

[
(1− z)2 + z2

]
. (9.6)

To this order the finite renormalized density of a quark in a gluon is

g2

16π2
f

[1]
q/g(ξ ) = g2TF

8π2

[
(1− ξ )2 + ξ 2

]
ln

μ2

m2
q

. (9.7)

This calculation, with its non-zero quark mass, will appear as a subtraction component
in calculations of hard-scattering coefficients for heavy quark production. But the MS
renormalization coefficient is independent of mass, so its calculation can equally well be
performed with a zero quark mass. Moreover hard-scattering calculations, which we will
examine later, are considerably simplified when masses are neglected with respect to the
hard scale Q. So we now examine what happens when we set mq = 0. The bare graph’s
integral is now

g2TF (4πμ2)ε

8π2�(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

k2
T

[
1− 2ξ (1− ξ )

1− ε

]
. (9.8)
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l
p − l

p

+ h.c. k

p

+ h.c. k

p

(a) (b) (c)

Fig. 9.2. One-loop graphs for renormalization of density of quark in quark. Hermitian
conjugates of (a) and (b) should be added. As explained in the text, graphs with a quark
self-energy graph need not be considered explicitly, and graphs where the gluon connects
the Wilson line to itself are zero.

The integral is of a simple power of kT, which is elementary compared to (9.4), with its
beta function. However, the integral has an extra divergence at kT = 0. This is a collinear
divergence, since it happens when the quark and antiquark are parallel to the gluon. Dimen-
sional regularization regulates both the UV and the collinear divergence, but only by going
in opposite directions in ε. Even so, such integrals can be consistently defined (e.g., Collins,
1984, Ch. 4) and it is a theorem that integrals of a power of the integration variable are
zero in dimensional regularization. Thus the collinear and UV divergences are equal and
opposite. The UV pole can be obtained by examining the part of the integral in (9.8) from
a non-zero value of kT to infinity. Then the renormalized value of the graph is the negative
of the UV pole:

g2

16π2
f

[1]
q/g(ξ ; m = 0) = g2

16π2
f

[1]
(0)q/g(ξ ; m = 0)+ g2

16π2
Z[1]

qg (z)

= 0− g2TF

8π2

Sε

ε

[
(1− ξ )2 + ξ 2

]
. (9.9)

That the renormalized value is collinear divergent reflects the masslessness of both the
quark and the gluon, and that the asymptotic scattering states do not obey the standard
rules. Of course, neither the massless limit (for quarks) nor the existence of an isolated
gluon (or quark) is a feature of real QCD. As already stated, such massless calculations are
useful as components of calculations of hard-scattering coefficients, for which the massless
limit does exist, as we will verify explicitly. Thus the existence of a collinear (or other kind
of IR) divergence in a renormalized partonic matrix element is not a fundamental problem.

9.4.3 Quark in quark

We next apply the same principles to the density of a quark in a quark, for which the
one-loop graphs are shown in Fig. 9.2, with virtual gluon emission in graph (a) and real
gluon emission in graphs (b) and (c). There is, in principle, a term where both ends of the
gluon attach to the Wilson line. But as we will review below, this term is effectively zero.

We do not include a self-energy correction for the incoming quark, since its renormal-
ization is done by a counterterm in the Lagrangian. Indirectly its effects will appear, in the
renormalization factor of the parton density, because of the Z2 term in (9.3).
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Gluon polarization sum

In the graphs with real gluon emission, we use a physical gluonic final state, so that the sum
over gluon polarizations, is a sum over physical (transverse) polarizations for the gluon.
However, very generally, the sum over physical final states can be extended to a sum over
all final states (including when necessary ghost-antighost pairs, which will not concern
us here). This is shown in field theory textbooks (e.g., Ch. 11 of Sterman, 1993) under
the heading of “Unitarity of the S-matrix”. Thus we may replace the sum over transverse
gluon polarizations in Figs. 9.2(b) and (c) by the same numerator −gαβ that appears in the
Feynman-gauge gluon propagator. Since g++ = 0, graphs where both ends of the gluon
attach to the Wilson line are zero, so we omit these graphs.

The proof at the level of the emission of one gluon of momentum l goes as follows.
Representatives of physical polarizations obey l · e = 0, and it is easy to check that the
polarization sum obeys∑

phys pols.

eα(eβ)∗ = −gαβ + lαbβ + bαlβ = −gαβ + terms giving zero by WI, (9.10)

where b is some vector. The terms with a factor l give zero by a Ward identity, after a sum
over graphs.

Virtual correction

The virtual gluon correction in Fig. 9.2(a) (with its hermitian conjugate) gives

g2

16π2
f

(a+a†)
(0),q/q (ξ ) = 2δ(p+ − ξp+)

−ig2CF μ2ε

(2π )4−2ε

×
∫

d4−2ε l
Tr γ+

2
/lγ+ /p

2

(l2 + i0)[(p − l)2 + i0](−p+ + l+ + i0)

= −δ(1− ξ )
g2CF (4πμ2)ε

4π2�(1− ε)

∫ 1

0
dα

α

1− α

∫ ∞
0

dl2
T

l−2ε
T

l2
T

, (9.11)

where α = l+/p+. The missing steps are to express the integral in light-front coordinates,
and then to perform the l− integral by contour methods. We have chosen to do the calculation
with all masses set to zero. As before, the transverse-momentum integral is of the scale-free
kind that gives zero. The negative of the UV divergence gives the graph’s contribution to
the renormalization:

g2

16π2
(Z2Z)(a+a†)

qq (z, g, ε) = g2CF Sε

4π2ε
δ(1− z)

∫ 1

0
dα

α

1− α
. (9.12)

Notice that we have now explicitly needed to show the factor of Z2 in the renormalization
factor.

An important new feature is that there is an unregulated divergence in the integral over
α at α = 1. We will see that the divergence cancels against a similar divergence in graph
(b), but it is first worth examining the source of the divergence. There are multiple sources
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of divergence in the integral in the last line of (9.11), and they each have a different status
for our ultimate phenomenological uses of the results of our calculations. So we need to
make their nature apparent. We first insert non-zero quark and gluon masses, mq and mg ,
in the calculation to regulate with the IR problems. It is readily checked that the effect is to
replace the 1/l2

T factor in (9.11) by

1

l2
T +m2

gα +m2
q(1− α)2

. (9.13)

Now, when the gauge symmetry is non-abelian, as in QCD, a non-zero gluon mass is
not allowed. However, to understand the divergences we temporarily consider the same
calculation in an abelian theory, where a non-zero gauge boson mass can be used.

With the non-zero masses, there is no longer a divergence at lT = 0, but we still have a
divergence at α→ 1. Relative to the simpler parton densities which we calculated earlier,
the 1/(1− α) singularity arises from the Wilson-line denominator. After a contour defor-
mation, the divergence occurs when the (+,−, T) components of the gluon momentum
are of order ((1− α)p+, l2

T/((1− α)p+), lT), for fixed lT. The rapidity of the gluon goes
to−∞; the gluon can in fact be regarded as collinear to the Wilson line, which has rapidity
y = 1

2 ln(n+/n−) = −∞. The quark goes far off-shell here.
So we call the divergence at α = 1 a rapidity divergence. The region evidently has

nothing to do with the parton-model physics that a parton density is supposed to capture.
When we investigate transverse-momentum-dependent parton densities, we will need to
use a Wilson line with a finite rapidity to get an appropriate definition with no rapidity
divergence. But for an integrated density we will see a cancellation.

Notice from the denominator in (9.13) that if the gluon mass is zero, there is in addition
a divergence at lT = 0 and α = 1. This is just like the IR divergence in QED. Finally, if
also the quark mass is zero, there is also a divergence when the gluon is collinear to the
initial state (at lT = 0 and α �= 0, 1).

Real correction, first part

Figure 9.2(b) plus its hermitian conjugate give

g2

16π2
f

(b+b†)
(0),q/q (ξ ) = 2

−g2CF μ2ε

(2π )4−2ε

∫
d2−2ε kT dk− 2πδ((p − k)2)

Tr γ+
2

/kγ+ /p

2

k2(p+ − k+)

= g2CF (4πμ2)ε

4π2�(1− ε)

ξ

1− ξ

∫ ∞
0

dk2
T

k−2ε
T

k2
T

, (9.14)

The minus sign in the first line arises from the gluon numerator, which is−gαβ in accordance
with the discussion around (9.10). Notice that this formula is almost the same as the
integrand for the virtual correction, which comes from a graph related by moving the final-
state cut. In fact, we can get the virtual term from the above formula by: (1) changing ξ to
α and integrating over it; (2) changing the label of the transverse momentum; (3) inserting
a delta function; (4) reversing the sign. If we integrated over ξ (from 0 to 1 of course), there
would be a perfect cancellation.
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The corresponding contribution to the renormalization is

g2

16π2
Z(b+b†)

qq (z, g, ε) = −g2CF Sε

4π2ε

z

1− z
. (9.15)

9.4.4 Cancellation of divergence: the plus distribution

All of the quantities involved – parton densities, renormalization factors, DGLAP kernels –
have rapidity divergences in individual graphs. For a systematic treatment, we must regard
all of these quantities not as ordinary functions, but as a generalized functions. That is, they
only have numerical values when integrated with a smooth test function. After this, we will
see a cancellation of the rapidity divergences.

So we integrate the sum of graphs (a) and (b) (plus conjugates) with a smooth function
T (ξ ), to obtain

g2

16π2
f

(a+b+h.c.)
(0),q/q [T ]

def= g2

16π2

∫
dξ f

(a+b+h.c.)
(0),q/q (ξ ) T (ξ )

= g2CF (4πμ2)ε

4π2�(1− ε)

∫ 1

0
dξ

ξ [T (ξ )− T (1)]

1− ξ

∫ ∞
0

dk2
T

k−2ε
T

k2
T

. (9.16)

To obtain the contribution from the virtual graph, we used the δ(ξ − 1) factor to perform
the ξ integral, and then changed the name of the variable α to ξ . The divergence at ξ → 1
has now canceled.

To express these graphs directly in ξ space, it is convenient to define the so-called plus
distribution: ∫ 1

0
dx

(
1

1− x

)
+

T (x)
def=
∫ 1

0
dx

T (x)− T (1)

1− x
. (9.17)

We will often meet this distribution multiplied by polynomials in ξ , in which case we will
put the + subscript on the denominator:∫ 1

0
dx

A(x)

(1− x)+
T (x)

def=
∫ 1

0
dx

A(x)T (x)− A(1)T (1)

1− x
. (9.18)

Then the combination we need in the sum of graphs is∫ 1

0
dξ

[T (ξ )− T (1)]ξ

1− ξ
=
∫ 1

0
dξ

[
ξT (ξ )− T (1)

1− ξ
+ T (1)

]

=
∫ 1+

0
dξ

[
ξ

(1− ξ )+
+ δ(ξ − 1)

]
T (ξ ), (9.19)

so that the sum of graphs (a) and (b) is

g2

16π2
f

(a+b+h.c.)
(0),q/q (ξ ) = g2CF (4πμ2)ε

4π2�(1− ε)

[
ξ

(1− ξ )+
+ δ(ξ − 1)

] ∫ ∞
0

dk2
T

k−2ε
T

k2
T

. (9.20)
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Real correction, second part

Figure 9.2(c) gives no such complications. Its value is

g2

16π2
f

(c)
(0),q/q (ξ ) = −g2CF μ2ε

(2π )4−2ε

∫
d2−2ε kT dk− 2πδ((p − k)2)

Tr γ+
2

/kγ μ /p

2 γμ/k

(k2)2

= g2CF (4πμ2)ε

8π2�(1− ε)
(1− ξ )(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

k2
T

. (9.21)

Total one-loop value for renormalization and DGLAP kernel

We can now combine the UV divergences from the various graphs with the Z2 term in (9.3),
whose value is in (3.23). Then the one-loop renormalization of the quark density is

g2

16π2
Z

[1]
jk (z; quark) = −g2CF δjk

8π2

Sε

ε

[
1+ z2

(1− z)+
+ 3

2
δ(z− 1)

]
. (9.22)

From (8.31) and (8.33), the resulting DGLAP kernel is

g2

16π2
P

[1]
jk (z; quark) = g2CF δjk

8π2

[
1+ z2

(1− z)+
+ 3

2
δ(z− 1)

]

= g2CF δjk

8π2

[
2

(1− z)+
− 1− z+ 3

2
δ(z− 1)

]
. (9.23)

9.4.5 Gluon-in-gluon and gluon-in-quark

Similar calculations can be done for the case of a gluon in a gluon, and for a gluon in a
quark. The actual calculations we leave as an exercise, with the results being (Altarelli and
Parisi, 1977)

g2

16π2
P [1]

gg (z) = g2

8π2

{
2CA

[
z

(1− z)+
+ 1− z

z
+ z(1− z)

]
+ δ(z− 1)

11CA − 4nf TR

6

}
,

(9.24)

g2

16π2
P [1]

gq (z) = g2CF

8π2

[
1+ (1− z)2

z

]
. (9.25)

9.5 One-loop renormalization by subtraction of asymptote

We saw in Sec. 3.4 that UV renormalization, at least at one-loop order, could be imple-
mented by subtraction of the asymptotic large transverse-momentum asymptote of a Feyn-
man graph. This enabled us to give a strictly four-dimensional interpretation of minimal
subtraction.
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In this section we show how to apply this method to the renormalization of parton
densities. This will serve two aims. One is to show how to make a physically appropriate
choice of the renormalization scale μ. The second aim concerns calculations of hard-
scattering coefficients, which normally employ massless quarks and gluons. At intermediate
stages of the calculations, collinear and soft divergences appear, which cancel in the final
result. Generally dimensional regularization is used to regulate the divergences, but it is
useful to show how to work with a purely four-dimensional integral. One virtue of this
method is to allow the immediate use of the compendium of purely four-dimensional
amplitudes in Gastmans and Wu (1990).

It is important that our results have extra finite counterterms compared with the illustra-
tive example in Sec. 3.4.

9.5.1 Quark in gluon

The unsubtracted one-loop integral for the density of a quark in a gluon is (9.4). The
renormalized value is given by adding an MS counterterm, obtained from the renormaliza-
tion term (9.5) by substituting z �→ ξ . We write the counterterm as the integral over the
asymptote of the original integrand plus a finite correction Rq/g , to be determined:

− g2TF

8π2

Sε

ε
[1− 2(1− ξ )ξ ]

=− (4πμ2)ε

�(1− ε)

g2TF

8π2

∫ ∞
μ2

dk2
T

(k2
T)1+ε

[
1− 2(1− ξ )ξ

1− ε

]
+ Rq/g

=− g2TF

8π2

(4π )ε

ε�(1− ε)

[
1− 2(1− ξ )ξ

1− ε

]
+ Rq/g, (9.26)

where Sε is given in (A.41). Hence

Rq/g = −g2TF

8π2

Sε

1− ε
2(1− ξ )ξ

ε→0→ −g2TF

8π2
2(1− ξ )ξ. (9.27)

Only the value of Rq/g at ε = 0 is needed in a purely four-dimensional formula.
With this method the renormalized density at ε = 0 is

g2

16π2
f

[1]
q/g(ξ ) = g2TF

8π2

{∫ ∞
0

dk2
T

[
1− 2ξ (1− ξ )

k2
T +m2

q

+ m2
q2ξ (1− ξ )

(k2
T +m2

q)2

− θ (kT − μ)
1− 2ξ (1− ξ )

k2
T

]
− 2(1− ξ )ξ

}
. (9.28)

It can be checked that this is the same as the previously calculated value (9.7), but the
integrals are algorithmically simpler, because they do not involve the beta functions that
arise with the dimensionally regulated integrals. Because of the extra term 2(1− ξ )ξ , it
cannot be literally said that the integrated parton density is the integral of the unintegrated
density with a cutoff at kT = μ, even for large μ. This is contrary to statements that appear
in the literature (e.g., Watt, Martin, and Ryskin, 2003).
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9.5.2 Other cases

The remaining cases are left as an exercise (problem 9.3) with the results:

Rg/q(ε = 0) = −g2CF

8π2
4ξ, (9.29)

Rq/q(ε = 0) = −g2CF

8π2
4(1− ξ ), (9.30)

Rg/g(ε = 0) = 0. (9.31)

9.6 DIS on partonic target

To calculate the hard-scattering coefficients for DIS, we observe that the factorization the-
orem applies to any target state, while the coefficient functions Cμν are target independent.
Therefore we apply the factorization theorem in perturbation theory with targets that are
on-shell quark or gluon states. Computing both the structure functions and the parton den-
sities on partonic targets up to some order in perturbation theory enables us to deduce the
hard-scattering coefficients to the same order. Moreover, since the coefficient functions are
independent of masses, we will set masses to zero everywhere.

We organize perturbation expansions as we did for the renormalization of parton densities
in Sec. 8.7.3. Define W

μν
j to be the hadronic tensor for DIS with a massless on-shell partonic

target of flavor j . We write perturbation expansions of W
μν
j and C

μν
j as

W
μν
j (x,Q) =

∞∑
n=0

(
g2

16π2

)n

W
[n], μν
j (x,Q), (9.32a)

C
μν
j (x,Q) =

∞∑
n=0

(
g2

16π2

)n

C
[n], μν
j (x,Q). (9.32b)

The nth order term in the factorization theorem (8.81) is

W
[n],μν
j (x,Q) =

n∑
n′=0

∑
j ′

∫ 1+

x−

dξ

ξ
C

[n′],μν
j ′ (x/ξ,Q)⊗ f

[n−n′]
j ′/j (ξ ). (9.33)

Since masses are set to zero, the power-suppressed corrections in (8.81) are not present.
Throughout our calculations we will work with the unpolarized case, so the partonic density
matrix ρ is dropped.

We deduce a formula for the nth order hard-scattering coefficient:

C
[n],μν
j (z,Q) = W

[n],μν
j (z,Q)−

n−1∑
n′=0

∑
j ′

∫ 1+

z−

dζ

ζ
C

[n′],μν
j ′ (z/ζ,Q)f [n−n′]

j ′/j (ζ ). (9.34)

Here, to avoid confusion with symbols used when the coefficient function is substituted in
the factorization formula (8.81) for a hadronic target, the names of partonic variables were
changed to z and ζ . In the factorization formula, z would be replaced by x/ξ .
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q
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l
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l
(a) (b) (c)

Fig. 9.3. Graphs for NLO gluon coefficient function for DIS. There are, in addition, three
other graphs with the direction of the arrow on the quark loop reversed. The hooks on the
quark lines in the subtraction graph (c) indicate where a parton-model approximation is
made.

Equation (9.34) provides an effective recursive procedure for calculating the nth order
term in C starting from the case n = 0, for which the result was given in (2.28), with
corresponding structure functions in (9.1). At next-to-leading order (NLO) we have

C
[1],μν
j (z,Q) = W

[1],μν
j (z,Q)−

∑
j ′

∫ 1+

z−

dζ

ζ
C

[0],μν
j ′ (z/ζ,Q)f [1]

j ′/j (ζ ). (9.35)

Our calculations in Sec. 9.4 of renormalized one-loop parton densities gave the values of
f

[1]
j ′/j (ζ ).

Perturbation theory for W and f in massless QCD suffers from IR and collinear diver-
gences. So the radius of convergence1 in g for these quantities goes to zero as the IR
regulator ε goes to zero. But this is sufficient to obtain the perturbation expansion of the
hard-scattering coefficients C. Since divergences cancel in the coefficient functions, their
radius of convergence remains non-zero as ε → 0.

9.7 Computation of NLO gluon coefficient function

Applied to the NLO gluon coefficient, (9.35) requires us to compute the graphs of Fig. 9.3.
The external gluons are massless and on-shell, with zero transverse momentum, and the
internal quarks are massless and have a sum over flavors. Figure 9.3(c) implements the
subtraction in (9.35), and we will call it a double-counting-subtraction graph, since it
cancels the contribution in the first two graphs that is taken into account in the lowest-order
parton model.

9.7.1 Kinematics

Let k1 and k2 be the momenta of the final-state quark and antiquark, and let l be the
momentum (l+, 0, 0T) of the gluon, so that k2 = q + l − k1. The scalar kinematic variables

1 Strictly speaking, perturbation series are expected to be asymptotic series but not convergent, so the term “radius of
convergence” should be replaced by some better terminology concerning the region of coupling where perturbation
theory has some chosen accuracy.
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relevant to the problem are Q and

z = Q2

2l · q =
−q+

l+
, (9.36a)

ŝ = (k1 + k2)2 = Q2(1− z)

z
, (9.36b)

t̂ = (l − k2)2 = −Q2(1+ cos θ )

2z
, (9.36c)

û = (l − k1)2 = −Q2(1− cos θ )

2z
, (9.36d)

where θ is the scattering angle in the photon-gluon center of mass. Of these variables, only
three are independent, of course.

9.7.2 Calculation of unsubtracted graphs

Graph (a) of Fig. 9.3 gives

−
∑

j

g2e2
j TF

32π2

(
16π2μ2

ŝ

)ε ∫
d�

4π

Tr /k1γ
ν(/l − /k2)/e(−/k2)/e∗(/l − /k2)γ μ[

(l − k2)2
]2 , (9.37)

where d� represents the integration over the angle of the quarks in the photon-gluon center
of mass, and eμ is the (transverse) polarization vector of the gluon. The overall minus sign
is for a fermion loop, and the normalization arises from the 1/(4π) in the definition of Wμν ,
and from two-body phase space (A.43). We choose the sum over j to be over flavors of quark
only (not over antiquarks). Then we must add, to this and the terms for the other graphs, the
contribution with the quark line reversed; this is obtained simply by exchanging k1 and k2.

Similarly graph (b) gives

−
∑

j

g2e2
j TF

32π2

(
16π2μ2

ŝ

)ε ∫
d�

4π

Tr /k1γ
ν(/l − /k2)/e(−/k2)γ μ(/k1 − /l )/e∗

(l − k2)2 (l − k1)2
. (9.38)

We are only treating unpolarized processes, so we average over gluon polarizations:

1

2− 2ε

∑
ei(ej )∗ = δij

2− 2ε
, (9.39)

with a Kronecker delta in the transverse dimensions. Then we use standard Dirac algebra,
and use (9.2) to project the sum of the terms for the two graphs onto the tensor structures for
F̂Lg and F̂2g . The integrands are now independent of the azimuthal direction of the quark
momenta, so we use (A.36) and (A.37) to give

F̂Lg =
∑

j

g2e2
j TF

4π2

(
16πμ2z

Q2(1− z)

)ε
2z2(1− z)

(1− ε)�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

ε→0→
∑

j

g2e2
j TF

4π2
4z2(1− z), (9.40)
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F̂2g =
∑

j

g2e2
j TF

4π2

(
16πμ2z

Q2(1− z)

)ε
z

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

×
{

1

sin2 θ

[
1− 2z(1− z)

1− ε

]
+ −2+ 5ε

4(1− ε)2
+ 3− 2ε

(1− ε)2
z(1− z)

}

− term from graph (c), (9.41)

up to higher-order corrections (O(g4)). In F̂Lg , we have omitted the subtraction from graph
(c), since that involves the lowest-order parton-model hard scattering, for which there is no
contribution to FL, with fermion quarks.

9.7.3 Double-counting-subtraction graph

The subtraction graph (c) is obtained from the rules for the quark density and the LO hard
scattering, which contributes only to F2. Using the integral from (9.4) at mq = 0, we get

F̂2g(graph (c)) = −
∑

j

g2e2
j TF

4π2

(4πμ2)εz

�(1− ε)

∫ ∞
0

dk2
T

k−2ε
T

k2
T

[
1− 2z(1− z)

1− ε

]

+
∑

j

g2e2
j TF Sεz

4π2ε
[1− 2z(1− z)] , (9.42)

where the second line is the MS counterterm for the UV divergence. As announced earlier,
both of (9.41) and (9.42) are collinear divergent, at θ = 0 and θ = π , and at kT = 0.
Dimensional regularization with ε negative regulates the divergence. By making the change
of variable k2

T = (ŝ/4) sin2 θ , we can see that the collinear singularities in the integrands
are equal and opposite, and that the cancellation includes the explicit ε dependence. The
cancellation is guaranteed by the construction of the subtraction term (c) to cancel the
collinear contribution in the other graphs, to prevent double counting with the parton-
model term. [When checking the cancellation, note that two values of θ correspond to a
single value of kT. Note also that the maximum value of k2

T for graphs (a) and (b) is ŝ/4,
whereas the integral for graph (c) extends to kT = ∞.]

9.7.4 Total

The cos θ integral in (9.41) gives a beta function, with a pole at ε = 0 caused by the collinear
divergence. The kT integral in (9.42) gives zero, leaving the UV counterterm. So we get the
NLO gluonic coefficient function

F̂2g(Q2, x/ξ ; αs, μ)

ε=0=
∑

j

g2TF e2
j

4π2
z

{ [
(1− z)2 + z2

]
ln

[
Q2(1− z)

μ2z

]
− 1+ 8z(1− z)

}
+O(g4).

(9.43)
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There is a somewhat complicated pattern of divergences at ε = 0, which can be summarized
as follows:

Graph Collinear UV total

(a) −1 0 −1
(b) 0 0 0

(c) graph +1 −1 0
(c) counterterm 0 +1 +1

where the coefficients apply to the factor
∑

j [1− 2z(1− z)] g2TF e2
j /(4π2ε). Since the

transverse momentum integral in the subtraction term is exactly zero, it could be said that
the MS counterterm cancels the collinear divergence. It is, in fact, a common misconception
that this represents the true state of affairs. However, it is also profoundly misleading.

For example, suppose one retained the quark mass in the calculation, as might be
appropriate for a quark of large mass. Then the collinear region would no longer give an
actual divergence. Instead, graph (a) would be finite, but with a logarithmic enhancement
from the region of small transverse momentum. Graph (c) (without its counterterm) would
now be non-zero, with a UV divergence. The counterterm cancels the UV divergence. For
the dominant part of the collinear contributions (that give divergences at mq = 0) there
is a cancellation between graphs (a) and (c). The collinear cancellation is guaranteed by
the nature of the subtraction term: (c) is to prevent double counting of the parton-model
contribution.

9.7.5 Use of subtraction of asymptote for UV divergence

We can also use the method of subtraction of the asymptote for the renormalization of the
UV divergence, from Sec. 9.5. This gives

F̂2g(NLO)
?=
∑

j

g2TF e2
j

4π2
z

∫ 1

−1
d cos θ

[
1− 2z+ 2z2

sin2 θ
− 1

2
+ 3z(1− z)

]

+
∑

j

g2TF e2
j

4π2
z

[
2z(1− z)−

∫ μ2

0

dk2
T

k2
T

(1− 2z+ 2z2)

]
, (9.44)

where the 2z(1− z) on the second line is from Rq/g(z) in (9.27). Each integral is separately
divergent, hence the query on the equality sign. To make the integrals correspond, we
convert them to use a common variable k2

T = (ŝ/4) sin2 θ . Then

F̂2g(NLO) =
∑

j

g2TF e2
j

4π2
z

⎧⎨
⎩(1− 2z+ 2z2)

∫ ∞
0

dk2
T

k2
T

⎡
⎣ θ (k2

T,max − k2
T)√

1− k2
T/k2

T,max

− θ (μ2 − k2
T)

⎤
⎦

− 1+ 8z(1− z)

⎫⎬
⎭ , (9.45)
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where k2
T,max = Q2(1− z)/(4z). It can be checked that this agrees with the previous result,

(9.43). The advantage of this integral is that it is a fundamentally an integral in the physical
space-time dimension. It also enables us to gauge the general order of magnitude of the
coefficient.

9.8 Choice of renormalization scale μ

It is necessary to choose the renormalization scale μ when applying a factorization theorem.
As can be seen from an example calculation, e.g., (9.43), hard-scattering coefficients depend
logarithmically on Q/μ. The general situation follows from the DGLAP equation for the
μ dependence of parton densities. Since structure functions are RG invariant, the hard-
scattering coefficients obey an inverse DGLAP equation. It follows that at order αn

s the
hard-scattering coefficients have dependence on ln(Q/μ) that is polynomial with a highest
term lnn(Q/μ).

The effective expansion parameter of the hard scattering is therefore αs(μ) ln(Q/μ), and
to make optimal use of perturbative calculations one should choose μ of order Q. Then the
expansion parameter is αs(Q).

However, we need more precise information about an appropriate value for the ratio μ/Q.
To see that this is a non-trivial problem, consider a change of scheme for renormalizing
QCD and the parton densities. A concrete example is to replace Sε in the MS scheme by
Sεe

2cε for some constant c. Call this the c scheme. It is related to the MS scheme by a simple
substitution: μMS = μce

c, so that ln(μMS/Q) = ln(μc/Q)+ c. Then if we set μc = Q, the
coefficients of the perturbative expansion are made arbitrarily large simply by making c

large.
Evidently we can remove these large coefficients by setting μc to a suitable factor times

Q, e.g., μc = Qe−c. But this provokes the question of what is so special about the MS
scheme that in this scheme one should choose equality of μ and Q (a common choice in
practice).

An answer is suggested by the method of renormalization subtraction of the asymptote
given in Sec. 9.5. We found that μMS is like a cutoff at kT = μMS, rather than some factor
times this.

The method was applied to a coefficient function in (9.45), where there is a subtraction of
the collinear region (e.g., by Fig. 9.3(c)), and then a renormalization of the UV divergence
in the subtraction. After that there remains only a contribution from transverse momenta of
some natural scale associated with Q, provided that z is not close to 0 or 1, and provided
that μ is at this same scale. So the integral is of order unity, and is multiplied by the standard
prefactor g2/4π2, and a group theory factor. This justifies the choice that μMS is within a
modest factor of Q.

If instead we used the c scheme, then Sec. 9.5 shows that an appropriate choice would
now be μc = Qe−c. Naturally, there is no need to require exactly one particular value of
μ. The exact value of a structure function (or cross section) is independent of μ. Changing
μ by a factor of 2 (for example) in a finite-order calculation of the hard scattering changes
the numerical value of a computed structure function by an amount corresponding to the
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expected truncation error of the perturbative calculation. Thus the effect of a modest change
in μ is within the expected errors.

The simplest version of subtraction of the asymptote applies if there is no extra ε

dependence in the integrand. If there is extra ε dependence, then it results in an extra finite
term, as in the last line of (9.45). This can be regarded as being of a natural size for the
quantity under consideration, so it does not affect arguments about large logarithms.

The idea that the cutoff should be of the natural size of the transverse momentum for a
hard scattering (after subtraction of collinear and UV divergences) suggests that problems
can occur when z is close to 0 or 1. This is visible in the logarithm of (1− z)/z. An
obvious choice of scale would then be μ2 = Q2(1− z)/z, corresponding to the range of
the transverse-momentum integral.

However, in this case there are (at least) two very different physical scales in the hard
scattering. Besides Q2 there is the (square of) the photon-parton center-of-mass energy,
Q2(1− z)/z . Even if we removed the large logarithm in this particular calculation, because
it is dominated by the second scale, there would be other graphs with a natural scale Q.
An example is the virtual vertex correction Fig. 9.4(d), in whose calculation the range of
final-state energies is irrelevant. When different graphs need very different scales, a single
choice of μ cannot eliminate all large logarithms. Instead improved factorization theorems
are needed, for a genuinely fundamental solution of the problem.

When does this situation arise? Since z = x/ξ and actual parton densities decrease with
increasing ξ , one should not expect the case that z is small to be a concern. But when x gets
large, the maximum qq̄ mass is restricted: the kinematic limits on z are x < z < 1. This
phenomenon is enhanced by the fact that typical parton densities fall rather rapidly with ξ

above about a half, which disfavors the larger masses and keeps z close to unity.
This subject has been under active investigation, with improved factorization methods

and resummation techniques being discovered. In any case the outcome is that when
the typical value of z gets too close to unity, simple factorization is not an optimal
technique.

9.9 NLO quark coefficient

To compute the NLO quark coefficient, we again use (9.35), but now with a quark target.
The necessary graphs, including subtractions, are shown in Fig. 9.4. In all the calculations,
we use (9.10) to replace the gluon polarization sum in the real-emission graphs by −gαβ .
Kinematics and normalization factors are the same as for the gluon-induced graphs (e.g.,
(9.36)) except for the replacement of the group theory factor TF by CF . We take the
quark to be unpolarized, and perform the integral over azimuthal angles, using (A.36)
and (A.37).

9.9.1 NLO quark coefficient for F̂Lj

The contribution to the longitudinal structure function is particularly simple. Because of
the factors of l in the projection (9.2a) onto F̂Lj , graphs (b)–(e) all have a factor of /l next

https://doi.org/10.1017/9781009401845.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.009


302 Corrections to the parton model in QCD

q
k1

l

+

l

q
k1

+ h.c. +

q

k1

l

)c()b()a(

k

l

q

+ h.c. +

q

l + h.c.

)e()d(

−
k

l

q

−
k

l

q

− h.c. −
k

l

q

)h()g()f(

Fig. 9.4. Graphs for NLO quark coefficient function for DIS. Graphs with quark self-
energies on the incoming quark line are not needed, since they cancel completely and
exactly between the graphs for DIS on a quark target and the subtraction terms.

to the /l factor for the incoming quark. Thus all these graphs give zero: (/l )2 = l2 = 0. The
subtraction graphs are also zero, because F̂Lj vanishes in the parton model. All that remains
is graph (a), which gives

F̂Lj ((a)) = − g2e2
jCF

64π2

(
16πμ2

ŝ

)ε
1

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

× 8z3

Q2

1
2 Tr /lγ α(/l − /k2)/l /k1/l (/l − /k2)γα

[(l − k2)2]2

ε→0= g2e2
jCF z2

8π2

∫ 1

−1
d cos θ (1− cos θ ). (9.46)

This has no divergences, so the limit ε → 0 is safe, and we get

F̂Lj =
g2e2

jCF z2

4π2
+O(g4). (9.47)
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9.9.2 Real-gluon graphs for F̂2j

We apply (9.2b) to the real-gluon graphs for F̂2j . For graph (a):

F̂2j (a) = g2e2
jCF

8π2

(
16πμ2

ŝ

)ε
1

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

×
{

z(1− z)(1− ε)

1+ cos θ
+ 4(3− 2ε)z2(1− cos θ )

}
. (9.48a)

The second part of the factor in braces arises from the F̂L term in (9.2b). For graph (b), we
have

F̂2j (b+ h.c.) = g2e2
jCF

8π2

(
16πμ2

ŝ

)ε
z

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε

×
{

z

1− z

1− cos θ

1+ cos θ
+ ε

}
, (9.48b)

where we include a factor 2 to allow for the hermitian conjugate graph. For graph (c)

F̂2j (c) = g2e2
jCF

8π2

(
16πμ2

ŝ

)ε
1

�(1− ε)

∫ 1

−1
d cos θ (sin θ )−2ε z(1− ε)

1− z
(1+ cos θ ).

(9.48c)

Positions of the divergences

Graph (a) simply has a divergence at θ = π , i.e., cos θ = −1. With the conventions by
which the momentum k2 is defined, this is where the gluon is collinear to the initial-state
quark. Accordingly it will cancel against the same collinear divergence in the subtraction
graph (f).

The other graphs have a more complicated pattern of divergences, involving soft gluons
and gluons collinear to the outgoing quark, as is evidenced by the divergence in both graphs
at z→ 1. Naturally, the divergence only fully manifests itself when we integrate over z.
To analyze this quantitatively, we use the principles explained in Sec. 9.4.4, where we
needed to treat parton densities as generalized functions. We now do the same for structure
functions and the coefficient functions. The existence of the extra divergence(s) indicates,
of course, that we will need to improve the proof of factorization. For the moment we just
examine the phenomena.

Since both the extra kinds of divergence occur at z = 1, some care is needed to identify
their kinematics correctly. The general nature of the divergences can be extracted, as always,
from the Libby-Sterman analysis. For this analysis, it is convenient to boost to the Breit
frame, where q+ = −Q/

√
2, q− = Q/

√
2, and qT = 0T. Then:

• An initial-state collinear divergence is at θ → π (i.e., cos θ →−1) with z fixed and not
equal to unity.

• A final-state collinear divergence is at z→ 1, with θ fixed and away from π . Each final-
state particle is in the minus direction with momentum fractions k−1 /q− = (1− cos θ )/2
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and k−2 /q− = (1+ cos θ )/2. Notice that the quark and gluon form an outgoing system,
and that θ is the polar angle of each particle in the Breit frame.

• A soft-gluon divergence is at θ → π and z→ 1.

It is misleadingly tempting to identify all of the z→ 1 divergences as soft.
Graph (b) has all three types of divergence, evidenced by its singularities at both z→ 1

and θ → π . But graph (a) has only an initial-state collinear divergence, and graph (c) only
a final-state collinear divergence. As can be seen from (9.48), dimensional regularization
with ε < 0 regulates all the divergences.

After integral

We know that after we average over x (or z), the final-state lines become effectively off-shell.
This will entail cancellation of final-state collinear and soft divergences between real and
virtual graphs. The initial-state collinear divergences cancel against the subtraction graphs.

We could exhibit the cancellation at the level of the integrands. Instead we will eval-
uate the graphs separately, with dimensional regularization, and see the cancellations
of the resulting poles at ε = 0. The graphs give the following values, all multiplied by
g2e2

jCF /(8π2):

(a) : − z(1− z)

ε
+ z(1− z)

[
T + ln

1− z

z
+ 1

]
+ 3z2, (9.49a)

(b) :
2

ε2
δ(z− 1)+ 2

ε

[
δ(z− 1) (−T + 1)− z2

(1− z)+

]

+ δ(z− 1)

(
T 2 − 2T + 4− π2

2

)
+

+ 2z2

[
1

(1− z)+
(T − 1)− ln z

1− z
+
(

ln(1− z)

1− z

)
+

]
, (9.49b)

(c) : − 1

2ε
δ(z− 1)+ 1

2
δ(z− 1) (T − 1)+ z

2(1− z)+
. (9.49c)

where we have dropped terms of order ε and beyond, and we have defined

T = ln
Q2

μ2
+ γ − ln(4π ). (9.50)

The integrals over cos θ were performed using (A.49). Then an expansion in powers of ε was
made using (A.47), (A.48), and (A.54). We again see the appearance of plus distributions,
which is very characteristic of QCD calculations.

The double pole in graph (b) is a result of the nesting between the soft and collinear
divergences.

9.9.3 Virtual-gluon graphs for F̂2j

We already calculated the on-shell vertex subgraph used in Fig. 9.4(d); see Sec. 4.2.3. But
now: (a) we have space-like instead of time-like q; (b) the trace with the external currents
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is slightly different. We add to the graph a counterterm for its UV divergence, which is
the lowest-order graph times −[g2e2

jCF /(16π2)]Sε/ε, times a factor of 2 to allow for the
hermitian conjugate graph. The result for graph (d) and its conjugate is

(d+ h.c.) : − 2

ε2
δ(z− 1)+ 2

ε
δ(z− 1) (T − 2)

+ δ(z− 1)

(
−T 2 + 4T − ln

Q2

μ2
− 8+ π2

6

)
, (9.51)

again times g2e2
jCF /(8π2). This has a double pole, a logarithm in the single pole, and a

double logarithm in the ε-independent term, all due to the combination of soft and collinear
divergences. All of these terms cancel against the corresponding terms for graph (b), which
is the only graph related by moving the final-state cut.

Graph (e) just involves a self-energy times the lowest-order hard scattering. As we saw
in e+e− total cross section, in Sec. 4.1, we apply the LSZ prescription. The dimensionally
regulated massless self-energy gives a zero contribution. There remains the UV wave-
function renormalization counterterm, which gives

(e+ h.c.) :
Sε

2ε
δ(z− 1) = 1

2ε
δ(z− 1)+ δ(z− 1) (ln(4π − γ )+O(ε). (9.52)

9.9.4 Subtraction graphs for F̂2j

The subtraction graphs (f)–(h) are simply a factor of e2
j z, for the parton-model coefficient

function, times the one-loop quark-in-quark density, with the external self-energies omitted,
all times a factor −1 because they are subtracted. As usual, the graphs themselves vanish
in the massless limit, by the use of dimensional regularization. So we just need the UV
counterterm, which is for Z2Zjj , the factor Z2 arising because we use the counterterm that
allows the use of renormalized fields. With the same conventions as before we get

(f–h) :
Sε

ε

[
z(1+ z2)

(1− z)+
+ 5

2
δ(z− 1)

]
. (9.53)

9.9.5 Total

Adding the contributions of all the graphs and taking the ε → 0 limit gives the quark
coefficient function. With the LO term, we have

F̂2j (Q2, z; αs, μ)

= e2
j δ(z− 1)+ g2e2

jCF

16π2
z

[
4

(
ln(1− z)

1− z

)
+
− 3

(
1

1− z

)
+
− 2(1+ z) ln(1− z)

− 2
1+ z2

1− z
ln z+ 6+ 4z−

(
2π2

3
+ 9

)
δ(1− z)

]
+O(g4). (9.54)
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9.10 Hard scattering with quark masses

In the calculations so far, we have set quark masses to zero, and some of the methods
relied on the property of dimensional regularization that scale-free integrals are zero. It is
useful to see how to bring in non-zero quark masses. One purpose is to allow the effects of
quark masses to be computed, although we will not give a detailed treatment of the effects
of quark masses here. A second purpose is to show that calculations of hard-scattering
coefficients are not tied to properties of the dimensional regularization scheme with massless
particles.

A convenient method to allow for heavy quarks in the hard scattering is to always
set to to zero the masses of external particles of the hard scattering, but to allow heavy
particles to circulate inside the hard scattering (Collins, 1998a). We will not try to justify
this prescription here.

We will restrict our attention to the simplest case of the gluon-induced NLO coeffi-
cient functions. The structure of the calculation is unchanged from that with massless
quarks; i.e., we use (9.35) to determine the one-loop coefficient function, with a projec-
tion onto individual structure functions by (9.2). The actual graphs are Fig. 9.3, just as
before.

Analytic calculations of one-loop graphs with masses are harder than with zero masses.
We first quote the results for the unsubtracted graphs (a) and (b), which can be deduced
from Aivazis et al. (1994). First for FL:

F̂Lg =
∑

j

g2e2
j TF z

4π2
θ (ŝ − 4m2

j )

{
4Q2�

(Q2 + ŝ)2
− L

8m2
jQ

2

(Q2 + ŝ)2

}
, (9.55)

where

L = 2 log

⎡
⎣
√

ŝ +
√

ŝ − 4m2
j

2mj

⎤
⎦ , (9.56)

� =
√

ŝ(ŝ − 4m2
j ), (9.57)

and ŝ = Q2(1− z)/z, as usual. There is a theta function implementing the quark-flavor-
dependent threshold in ŝ. In the general factorization formulae, like (8.83), the threshold
restricts ξ to the range x(1+ 4m2

j /Q
2) < ξ < 1.

Note that there are some differences in conventions for defining structure functions in
Aivazis et al. (1994), and that there appears to be a factor of TF missing from their formulae.
The result for F̂Lg reduces to the previous one, (9.40), in the limit that the quark masses are
zero.

https://doi.org/10.1017/9781009401845.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401845.009


9.11 Critique of conventional treatments 307

As for F2, we get

F̂2g =
∑

j

g2e2
j TF z

4π2

{
θ (ŝ − 4m2

j )

[
L

Q4 + ŝ2

(Q2 + ŝ)2
+ [4Q2ŝ − (ŝ −Q2)2]�

ŝ(Q2 + ŝ)2

+ L
4m2

j (ŝ − 2Q2 − 2m2
j )

(Q2 + ŝ)2
− 4m2

j�

(Q2 + ŝ)2

]

− [1− 2z(1− z)] ln
μ2

m2
j

}
+O(g4), (9.58)

where the logarithmic term in the last line is for the subtraction graph (c), calculated at (9.7),
here multiplied by 2 to include both the quark and antiquark contributions. The remaining
terms are for graphs (a) and (b), and were obtained from Aivazis et al. (1994). In the
massless limit, the logarithmic divergences cancel, and the limit reproduces the previous
calculation (9.43).

Observe the mismatch between the allowed ranges of z in the integrand. The term from
graphs (a) and (b) obeys a threshold condition, but the subtraction term allows z to go up to
unity, where ŝ = 0, i.e., to an unphysical value. The parton-model approximation applied
to a quark line is responsible for the mismatch. The approximation changes final-state
momenta, so that the approximated final state violates conservation of 4-momentum. The
same violation is present in the integrand for the parton-model formula, i.e., the LO cross
section.

Strictly speaking our formalism was derived for the inclusive cross section, integrated
over hadronic final states, and the results correctly apply to that situation. But if one wishes
to extend the formalism to observables more differential in the final state, the violation of
momentum conservation can have important consequences. Genuinely solving this issue
requires the avoidance of approximations on parton momenta when they are related to
final-state momenta. As seen in recent work (Collins and Jung, 2005; Collins, Rogers,
and Staśto 2008), one must rethink the whole formalism; new methods do not use parton
densities, but more general quantities, parton correlation functions, which do not have the
integral over k− and kT in their definition.

Note that the above calculation applies when the MS scheme is used. This is appropriate
for quarks whose mass is at most of order Q. For heavier quarks, a change in scheme is
appropriate. There are various ways proposed to do this. A method I prefer is a generalization
of the CWZ scheme of Sec. 3.10 to deal with parton densities and factorization; this is the
ACOT scheme of Aivazis et al. (1994), which is probably best used in a modified version
as given in Kretzer et al. (2004); Krämer, Olness, and Soper (2000). See Thorne and Tung
(2008) for a wider ranging review.

9.11 Critique of conventional treatments

Compared with our presentation so far, a very different approach to factorization is found in
much of the literature (e.g., Dissertori, Knowles, and Schmelling, 2003; Ellis, Stirling, and
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Webber, 1996). It involves a strong emphasis on the mass divergences in massless on-shell
partonic reactions, and it asserts that factorization is a method of absorbing mass divergences
into a redefinition of parton densities. In contrast, in our presentation the divergences were
canceled by subtraction terms that were needed to avoid double counting between, for
example, NLO contributions to hard-scattering coefficients and LO contributions.

In this section, we assess the other approach and see that it is physically misleading,
if not actually wrong. As such, it is a profound obstacle to further progress in applying
perturbative methods to more complicated situations in QCD. Luckily from a practical
point of view, the two approaches give the same results for hard-scattering coefficients
when parton masses are set to zero. Thus the physical errors do not propagate to numerical
results in phenomenology, at least for the simplest reactions.

The approach can be traced back to certain of the early literature on factorization, notably
Ellis et al. (1979) and Curci, Furmanski, and Petronzio (1980), and it can be summarized
as follows:

1. Assert that the structure function (or cross section) under consideration is a convolution
of a partonic structure function and parton densities:

W = partonic struct fn. ⊗ bare parton density

= W parton ⊗ f bare. (9.59)

The convolution is defined in (8.81). In view of later steps in the presentation, the parton
densities are called “bare parton densities”.

2. All parton masses in the partonic structure function are set to zero. The parton(s) entering
it from the parton density are set on-shell and massless, with zero transverse momentum.

3. There are IR/collinear divergences in the parton cross section. It was shown (Ellis et al.,
1979; Curci et al., 1980) that the partonic cross sections are a convolution of a divergence
factor and a finite cross section.

W parton = C ⊗D. (9.60)

4. The final factorization formula is obtained by use of the associativity of convolution to
allow the divergences to be absorbed into a redefinition of the parton densities.

W = (C ⊗D)⊗ f bare = C ⊗ (D ⊗ f bare
) = C ⊗ f ren, (9.61)

where f ren = D ⊗ f bare.

The final result is of the same form as the factorization formula in (8.81). Moreover, if the
collinear divergences are quantified by poles in dimensional regularization, their removal is
by the same formula as in our approach. This can be obtained from the remarks at the end of
Sec. 9.7.4. The factorization of collinear divergences in massless parton scattering, (9.60),
can in fact be obtained from factorization applied to a massless parton target, assisted by
the observation that loop graphs for massless parton densities in partonic targets are exactly
zero in dimensional regularization.
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However, the identity of the results should not obscure the profound problems with the
argument just presented.

The first problem is that the starting point, (9.59), is not given a proof. In Ellis et al.
(1979) a reference is given to the classic book on the parton model by Feynman (1972),
which very much predates knowledge of the complications caused by QCD. The bare parton
densities are also not defined; they cannot coincide with any of the parton densities we have
defined.

A serious physics issue is that the partonic structure function in (9.59) is exactly a
structure function initiated by an on-shell parton with zero transverse momentum. For
example, the first gluonic term has the form

⎛
⎜⎜⎝

l

q
k1

+

q

k1

l

⎞
⎟⎟⎠ ⊗ Bare gluon density (9.62)

Here, the gluon is set on-shell, just as in our calculations in Sec. 9.7. There the justification
was that there was a subtraction in the coefficient function and therefore it is dominated
by wide-angle scattering. We could therefore neglect small components of l with respect
to large components. But in (9.59) and (9.62) this is no longer justified, since there is no
subtraction. Indeed a gluon confined inside a hadron is not exactly on-shell, and therefore
the collinear divergence is cut off.

Similarly in a model theory where all the fields have mass, there are no true collinear
divergences. An approximation in which partons are made massless in unsubtracted NLO
graphs therefore introduces spurious divergences. In such a theory, parton densities defined
by the standard operator formulae have no collinear divergences, before or after renormal-
ization, so the idea of absorbing collinear divergences into a redefinition is not tenable.

Note carefully that there is terminological ambiguity between the two approaches. In
our approach “bare parton density” refers to a parton density before renormalization; renor-
malization is then strictly an issue of eliminating UV divergences by a suitable redefinition,
commonly with the MS scheme. In the other approach, “bare parton density” refers to the
undefined quantities in (9.59). The renormalization-like procedure applied in (9.61) is a
different procedure, even when the MS scheme is said to be used.

We conclude that it is entirely unphysical to describe the basis of factorization in terms
of moving collinear divergences from partonic structure functions or cross sections into
redefined parton densities. Naturally, attempting to extend an incorrect method to more
general situations leads to a conceptual morass. It is more by luck than good physics that
the same hard-scattering coefficients are obtained for standard reactions.

9.12 Summary of known higher-order corrections

Here I summarize the available information on the higher-order terms in the DGLAP kernels
and the coefficient functions for DIS. They are both known to order α3

s .
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The non-singlet part of DGLAP kernels was calculated to this order by Moch, Ver-
maseren, and Vogt (2004), and the singlet part by Vogt, Moch, and Vermaseren (2004). The
order α2

s kernel was found by Furmanski and Petronzio (1980). See also Hamberg and van
Neerven (1992) for some issues concerning the gauge invariance of the calculation. We
have already given the order αs kernels in (9.6), (9.23), (9.24), and (9.25).

The DIS coefficient functions were calculated by Vermaseren, Vogt, and Moch (2005)
to α3

s . The order α2
s calculation was by Zijlstra and van Neerven (1992) and by Moch and

Vermaseren (2000). We have already given the order αs coefficients in (9.40), (9.43), (9.47),
and (9.54), with the parton model (α0

s ) at (9.1).
It is also worth mentioning the results at order α2

s for the Drell-Yan process, in Anastasiou
et al. (2003, 2004), which are relevant to the same kind of precision phenomenology.

9.13 Phenomenology

Much of the predictive power of QCD is from factorization properties, both for inclusive
DIS and for many other reactions. The equations used are for factorization of structure
functions and cross sections, and for DGLAP evolution:

σ = σ̂ ⊗ f, σ = f1 ⊗ σ̂ ⊗ f2, (9.63)

df

d ln μ
= 2P ⊗ f. (9.64)

Here σ is a measurable cross section or structure function, σ̂ is a corresponding hard-
scattering coefficient, while f , f1 and f2 are parton densities. Factorization is accurate up
to power-law corrections in a hard scale Q. The second form of factorization applies to
hard reactions in hadron-hadron collisions, where there is a parton density in each hadron.

The hard-scattering coefficients and the DGLAP kernel P are perturbative calculable in
powers of the small coupling αs(Q), and so we regard them as approximately calculable
from first principles. The non-perturbative information is contained in the parton densities at
some chosen fixed large scale, since the evolution to other large scales is perturbatively con-
trolled. However, at present there is little ability to estimate or model the non-perturbative
parton densities from first principles.

The predictive power lies in the universality of the parton densities. Parton densities are
the same in all reactions, and, apart from the perturbative DGLAP evolution, they are the
same at all values of Q. Thus essentially the following scheme works:

• Fit parton densities for some value of the scale μ from data on a limited set of experiments
at one energy, using perturbatively calculated hard-scattering coefficients and DGLAP
kernels.

• Evolve the parton densities to other scales.
• Predict cross sections at other energies and for other reactions.

In reality, data is of limited precision, and data on each individual reaction is only useful
in determining some particular flavor combinations of parton densities. Therefore global
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Fig. 9.5. Jet cross section and QCD predictions at CDF experiment (Abe et al., 1996). The
figure is copyright (1996) by The American Physical Society, and reproduced by courtesy
of the CDF collaboration.

analyses are made to a wide variety of data, chosen for situations where the likely errors
on both theory and experiment are judged to be sufficiently small. Thus the global analyses
simultaneously fit parton densities and test QCD through measures of the goodness of fit.
The amount of data is large, so this is a non-trivial undertaking.

Currently the main global analyses are:

• by the members of the CTEQ collaboration (Tung et al., 2007);
• by a group in the UK going under the acronyms MRST and recently MSTW (Martin

et al., 2007);
• by Alekhin and collaborators (Alekhin, Melnikov, and Petriello, 2006).

In addition, the two ep collider experiments at DESY have made fits to their own data:
ZEUS (Chekanov et al., 2005) and H1 (Adloff et al., 2003). They have taken advantage of
the availability of charged-current processes to gain flavor separation of the parton densities.

Another group (Del Debbio et al., 2007) is working towards a global fit using rather
different calculational technique based on neural-network methods.

An example of the predictive power is shown in Fig. 9.5. Here a measurement (Abe et al.,
1996) by the CDF collaboration is shown for the production of jets of high transverse energy,
ET, in proton-antiproton collisions, and it is compared with QCD predictions. Although
this is now a rather old comparison, its importance is that there is a genuine prediction.
Parton densities at that period were measured in other processes and the perturbative hard-
scattering calculations are, of course, from QCD first principles.
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The agreement is good, except possibly at the largest values of ET, but even there
not outside the rather large errors. Since then it has been realized that this reaction is
a most sensitive one for measuring the gluon density at large parton ξ . Therefore later
work has frequently used jet data from hadron-hadron collisions in making global fits for
parton densities. Thus the QCD calculations presented with the latest data can no longer be
considered pure predictions. Results are available from both CDF (Abulencia et al., 2007)
and D0 (Abazov et al., 2008) collaborations.

There are many other processes where QCD predictions have been made, by and large
with success.

Exercises

9.1 Finish the calculations of the one-loop renormalization of parton densities by doing
the calculations for gluon-in-quark and gluon-in-gluon, thereby verifying (9.24) and
(9.25).

9.2 Verify the sum rules (8.41) and (8.42) for quark number and for momentum at one-loop
order.

9.3 Verify the results in Sec. 9.5.2.

9.4 Find the gluon-induced NLO correction in a version of QCD where quarks are scalars.

9.5 (***) Using pdfs from some standard fit, obtain some estimates of the typical value
of z in integrals of parton densities and hard scattering like those in (9.43), etc. You
can probably do this by obtaining diagnostics from a numerical quadrature, although
it should also be possible to obtain some order-of-magnitude results more analytically.
Draw some conclusions about the reliability of standard perturbative QCD calculations
under various kinematic conditions.

9.6 Consider the graph of Fig. 9.3(a) for the photon-gluon process, and suppose that
the quarks are given a mass mq . Show that the minimum fractional plus momentum
of the intermediate quark line is χ = x(1+ 4m2

q/Q
2). Fractional plus momentum

of the intermediate quark means (k+1 − q+)/P+. [See the definition given in Tung,
Kretzer, and Schmidt (2002) for the ACOT(χ ) scheme for treating heavy quarks in
factorization.]

9.7 Generalize the result of problem 9.6 to the case that the current is flavor changing
between quarks of different masses, m1 and m2.

9.8 Verify the calculations giving the NLO quark contribution to F2, i.e., (9.48).
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