Canad. Math. Bull. Vol. 59 (2), 2016 pp. 271–278 http://dx.doi.org/10.4153/CMB-2016-006-6 © Canadian Mathematical Society 2016

Artinianness of Composed Graded Local Cohomology Modules

Fatemeh Dehghani-Zadeh

Abstract. Let $R = \bigoplus_{n\geq 0} R_n$ be a graded Noetherian ring with local base ring (R_0, \mathfrak{m}_0) and let $R_+ = \bigoplus_{n>0} R_n$. Let M and N be finitely generated graded R-modules and let $\mathfrak{a} = \mathfrak{a}_0 + R_+$ an ideal of R. We show that $H_{\mathfrak{b}_0}^j(H_{\mathfrak{a}}^i(M, N))$ and $H_{\mathfrak{a}}^i(M, N)/\mathfrak{b}_0 H_{\mathfrak{a}}^i(M, N)$ are Artinian for some i s and j s with a specified property, where \mathfrak{b}_o is an ideal of R_0 such that $\mathfrak{a}_0 + \mathfrak{b}_0$ is an \mathfrak{m}_0 -primary ideal.

1 Introduction

Throughout this paper, we assume that $R = \bigoplus_{n\geq 0} R_n$ is a graded Noetherian ring with local base ring (R_0, \mathfrak{m}_0) . In addition, we use \mathfrak{a}_0 and \mathfrak{b}_0 to denote two proper ideals of R_0 such that $\mathfrak{a}_0 + \mathfrak{b}_0$ is an \mathfrak{m}_0 -primary ideal. We set $R_+ = \bigoplus_{n>0} R_n$, the irrelevant ideal of R, $\mathfrak{a} = \mathfrak{a}_0 + R_+$, and $\mathfrak{m} = \mathfrak{m}_0 + R_+$. Also, we use M, N to denote non-zero, finitely generated, graded R-modules. It is well known that, for each $i \in \mathbb{N}_0$ (where \mathbb{N}_0 denotes the set of all non-negative integers), the *i*-th generalized local cohomology module $H^i_{\mathfrak{a}}(M, N)$ of M and N with respect to \mathfrak{a} inherits natural grading. For each $n \in \mathbb{Z}$ (where \mathbb{Z} denotes the set of integers), we use the notation $H^i_{\mathfrak{a}}(M, N)_n$ to denote the *n*-th graded component of $H^i_{\mathfrak{a}}(M, N)$. Then, according to [7], for each $i \ge 0$, the R_0 -module $H^i_{\mathfrak{a}}(M, N)_n$ is finitely generated in certain cases and vanishes for all $n \gg 0$. Therefore, the asymptotic behavior of $H^i_{\mathfrak{a}}(M, N)_n$ when $n \to -\infty$ holds a lot of interest.

The concept of tameness is the most fundamental concept related to the asymptotic behavior of cohomology modules. A graded *R*-module $T = \bigoplus_{n \in \mathbb{Z}} T_n$ is said to be *tame* or *asymptotic gap-free* ([2, Definition 4.1]) if either $T_n = 0$ for all $n \ll 0$ else $T_n \neq 0$ for all $n \ll 0$. It is well known that any graded Artinian *R*-module is tame [1, Remark 4.2]. In this paper, we study the Artinianness of modules $H_{b_0}^{i}(H_{a}^{i}(M,N))$ and $H_{a}^{i}(M,N)/b_{0}H_{a}^{i}(M,N)$ for some *i* s and *j* s with a specified property. At first we show that if *t* is smallest positive integer such that $H_{a}^{i}(M,N)$ is not Artinian, then $H_{a}^{i}(M,N)$ is a-cofinite and Artinian for all i < t (see Theorem 2.2). We also prove that if $H_{a}^{i}(M,N)$ is a-cofinite for all i < r, then $H_{b_0}^{j}(H_{a}^{i}(M,N))$ is Artinian a-cofinite for all i < r and all $j \ge 0$. Moreover, $\Gamma_{b_0R}(H_{a}^{r}(M,N))$ is Artinian and a-cofinite and $H_{a}^{i}(M,N)/mH_{a}^{i}(M,N)$ is Artinian for all $i \le r$ (see Corollaries 2.4 and 2.6). The generalized homological finite length dimension and cohomological dimension of M and N with respect to a is denoted by $g_{a}(M,N)$ and $cd_{a}(M,N)$), respectively.

Received by the editors February 23, 2014; revised October 29, 2015.

Published electronically February 11, 2016.

AMS subject classification: 13D45, 13E10, 16W50.

Keywords: generalized local cohomology, Artinian, graded module.

Also, $q_{\mathfrak{a}}(M, N)$ is the largest non-negative integer *i* such that $H^{i}_{\mathfrak{a}}(M, N)$ is not Artinian. We show that $H^{i}_{\mathfrak{a}}(M, N)/\mathfrak{b}_{0}H^{i}_{\mathfrak{a}}(M, N)$ is Artinian for all $i \ge q_{\mathfrak{a}}(M, N)$ and $\Gamma_{\mathfrak{b}_{0}}(H^{i}_{\mathfrak{a}}(M, N))$ is tame for all $i \le g_{\mathfrak{a}}(M, N)$ (see Theorems 2.8 and 2.9). Furthermore, we prove that if $cd_{\mathfrak{a}}(M, N) = 2$, then $H^{i}_{\mathfrak{b}_{0}}(H^{2}_{\mathfrak{a}}(M, N))$ is Artinian if and only if $H^{i+2}_{\mathfrak{b}_{0}}(H^{1}_{\mathfrak{a}}(M, N))$ is Artinian (see Theorem 2.13).

For notation and terminology not given in this paper, the reader is referred to [3,4], if necessary.

2 Main Results

We keep the notation and hypotheses given in the introduction and continue with the following definition.

Definition 2.1 (i) An *R*-module *T* is said to be \mathfrak{a} -cofinite if Supp $T \subseteq V(\mathfrak{a})$ and $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}, T)$ is finitely generated *R*-module for all $i \geq 0$.

(ii) For a graded ideal \mathfrak{a} in R, the generalized homological finite length dimension of N and M with respect to \mathfrak{a} is defined as

 $g_{\mathfrak{a}}(M,N) = \inf \left\{ i \in \mathbb{N}_0 \mid \ell_{R_0} H^i_{\mathfrak{a}}(M,N)_n = \infty \text{ for finitely many } n \in \mathbb{Z} \right\},\$

where we denote by $\ell_{R_0} T$ the length over R_0 of T for an R_0 -module T. Also, the notation $q_{\mathfrak{a}}(M, N)$ is the largest non-negative integer i such that $H^i_{\mathfrak{a}}(M, N)$ is not Artinian R-module.

In addition, for an ideal \mathfrak{a} in R, the cohomological dimension of M and N with respect to \mathfrak{a} is denoted by $cd_{\mathfrak{a}}(M, N)$. Thus, $cd_{\mathfrak{a}}(M, N)$ is the largest non-negative integer i such that $H^i_{\mathfrak{a}}(M, N)$ is non-zero and finiteness dimension of M and N with respect to \mathfrak{a} , denoted $f_{\mathfrak{a}}(M, N)$, is defined by

$$f_{\mathfrak{a}}(M,N) = \inf \{ i \in \mathbb{N}_0 \mid H^i_{\mathfrak{a}}(M,N) \text{ is not finitely generated} \}.$$

Theorem 2.2 Let t be a non-negative integer such that $H^i_{\mathfrak{a}}(M, N)$ is Artinian for all i < t. Then $H^i_{\mathfrak{a}}(M, N)$ is a-cofinite for all i < t.

Proof We prove this by induction on $t \ge 0$. If t = 0, then the result is clear. Assume that t > 0, and the result holds for t-1. In view of [5, Corollary 2.3] and our hypotheses, in conjunction with the fact that $H^i_{\mathfrak{a}+Ann(M)}(M, N) \cong H^i_{\mathfrak{a}}(M, N)$, we see that $\Gamma_{\mathfrak{a}}(N)$ is Artinian. Therefore,

$$\operatorname{Ext}_{R}^{i}(M, \Gamma_{\mathfrak{a}}(N)) \cong H_{\mathfrak{a}}^{i}(M, N)$$

is Artinian for all $i \ge 0$. From the exact sequence $0 \to \Gamma_{\mathfrak{a}}(N) \to N \to N/\Gamma_{\mathfrak{a}}(N) \to 0$, we get the long exact sequence

$$H^{i}_{\mathfrak{a}}(M,\Gamma_{\mathfrak{a}}(N)) \xrightarrow{\phi_{i}} H^{i}_{\mathfrak{a}}(M,N) \xrightarrow{\psi_{i}} H^{i}_{\mathfrak{a}}(M,N/\Gamma_{\mathfrak{a}}(N)) \xrightarrow{\lambda_{i}} H^{i+1}_{\mathfrak{a}}(M,\Gamma_{\mathfrak{a}}(N))$$

for all $i \ge 0$. We split the above exact sequence into the following two exact sequences:

$$0 \longrightarrow \operatorname{im} \phi_i \longrightarrow H^i_{\mathfrak{a}}(M, N) \longrightarrow \operatorname{im} \psi_i \longrightarrow 0,$$

$$0 \longrightarrow \operatorname{im} \psi_i \longrightarrow H^i_{\mathfrak{a}}(M, N/\Gamma_{\mathfrak{a}}(N)) \longrightarrow \operatorname{im} \lambda_i \longrightarrow 0.$$

Note that im ϕ_i and im λ_i are Artinian and finitely generated *R*-module. It follows that for all $i \ge 0$, $H^i_{\mathfrak{a}}(M, N)$ is Artinian and \mathfrak{a} -cofinite if and only if the same is true for $H^i_{\mathfrak{a}}(M, N/\Gamma_{\mathfrak{a}}(N))$. Hence, we assume that $\Gamma_{\mathfrak{a}}(N) = 0$. Then the ideal \mathfrak{a} contains an element *x* that avoids all members of Ass *N*. Therefore, the exact sequence

$$0 \longrightarrow N \xrightarrow{x} N \longrightarrow N/xN \longrightarrow 0$$

induces a long exact sequence

$$H^{i-1}_{\mathfrak{a}}(M, N/xN) \longrightarrow H^{i}_{\mathfrak{a}}(M, N) \xrightarrow{x} H^{i}_{\mathfrak{a}}(M, N) \longrightarrow H^{i}_{\mathfrak{a}}(M, N/xN).$$

By using the above exact sequence in conjunction with the inductive hypothesis we see that the *R*-module $(0:_{H^i_{\mathfrak{a}}(M,N)}x)$ is Artinian and \mathfrak{a} -cofinite. Therefore, in view of [9, Theorem 4.1], $H^i_{\mathfrak{a}}(M,N)$ is \mathfrak{a} -cofinite and Artinian.

Theorem 2.3 Let r be a non-negative integer and let X be an arbitrary R-module such that for all $n \in \mathbb{N}$, $\operatorname{Ext}_{R}^{i}(R/\mathfrak{a}^{n}, X)$ is finitely generated for any $i \leq r$. Let $H_{\mathfrak{a}}^{i}(M, X)$ be \mathfrak{a} -cofinite for all i < r. Then $H_{\mathfrak{a}}^{i}(M, X)/\mathfrak{a}H_{\mathfrak{a}}^{i}(M, X)$ and $\operatorname{Hom}(R/\mathfrak{a}, H_{\mathfrak{a}}^{i}(M, X))$ are finitely generated for all $i \leq r$.

Proof If i < r, then the conclusion is clear by [10, Corollary 1.2]. Thus, we consider the case where i = r. We argue by induction on r. If r = 0, then $H^0_{\mathfrak{a}}(M, X) \cong$ Hom $(M, \Gamma_{\mathfrak{a}}(X))$. Hence, the result is true by the assumption as well as [3, Theorem 1.2.11] and [9, Theorem 2.1]. Now, inductively assume that r > 0 and that the assertion has been proved for r - 1. Since $H^i_{\mathfrak{a}}(M, \Gamma_{\mathfrak{a}}(X)) \cong \operatorname{Ext}^i_R(M, \Gamma_{\mathfrak{a}}(X))$, by using the exact sequence $0 \to \Gamma_{\mathfrak{a}}(X) \to X \to X/\Gamma_{\mathfrak{a}}(X) \to 0$ and our hypotheses, we have that $H^i_{\mathfrak{a}}(M, X)$ is a-cofinite for all i < r if and only if $H^i_{\mathfrak{a}}(M, X/\Gamma_{\mathfrak{a}}(X))$ is a-cofinite for all i < r. On the other hand, Hom $(R/\mathfrak{a}, H^i_{\mathfrak{a}}(M, X/\Gamma_{\mathfrak{a}}(X))$ is finitely generated for all $i \le r$. Thus, we may assume that $\Gamma_{\mathfrak{a}}(X) = 0$. Let *E* be an injective hull of *X* and put L = E/X. Then $\Gamma_{\mathfrak{a}}(E) = 0$. Consequently, $\operatorname{Ext}^i_R(R/\mathfrak{a}^n, L) \cong \operatorname{Ext}^{i+1}_R(R/\mathfrak{a}^n, X)$ and $H^i_{\mathfrak{a}}(M, L) \cong H^{i+1}_{\mathfrak{a}}(M, L)$ or all $i \ge 0$. Now the induction hypothesis yields that Hom $(R/\mathfrak{a}, H^{i-1}_{\mathfrak{a}}(M, L))$ and $H^{r-1}_{\mathfrak{a}}(M, L)$ are finitely generated, and hence

Hom
$$(R/\mathfrak{a}, H^r_\mathfrak{a}(M, X))$$
 and $H^r_\mathfrak{a}(M, X)/\mathfrak{a}H^r_\mathfrak{a}(M, X)$

are finitely generated.

Corollary 2.4 Let r be a non-negative integer. Let $H^i_{\mathfrak{a}}(M, N)$ be \mathfrak{a} -cofinite for all i < r. Then $H^i_{\mathfrak{a}}(M, N)/\mathfrak{m}H^i_{\mathfrak{a}}(M, N)$ is Artinian for all $i \leq r$.

Proof Using Theorem 2.3, $H^i_{\mathfrak{a}}(M, N)/\mathfrak{a}H^i_{\mathfrak{a}}(M, N)$ is finitely generated for all $i \leq r$. So, $R_0/\mathfrak{b}_0 \otimes H^i_{\mathfrak{a}}(M, N)/\mathfrak{a}H^i_{\mathfrak{a}}(M, N)$ is finitely generated for all $i \leq r$. Therefore, since the radical of annihilator of $H^i_{\mathfrak{a}}(M, N)/(\mathfrak{b}_0 + \mathfrak{a})H^i_{\mathfrak{a}}(M, N)$ equals $\mathfrak{m} = \mathfrak{m}_0 + R_+$, the *R*-module $H^i_{\mathfrak{a}}(M, N)/\mathfrak{m}H^i_{\mathfrak{a}}(M, N)$ is Artinian for all $i \leq r$. This proves the claim.

Theorem 2.5 Let T be an \mathfrak{a} -torsion and \mathfrak{a} -cofinite module. Then $H^i_{\mathfrak{b}_0}(T)$ is Artinian and \mathfrak{a} -cofinite for all $i \ge 0$.

Proof It is enough, in view of $H_{\mathfrak{b}_0}^i(T) \cong H_{\mathfrak{b}_0}^i(\Gamma_{\mathfrak{a}}(T)) \cong H_{\mathfrak{m}}^i(T)$, to show that the *R*-module $H_{\mathfrak{m}}^i(T)$ is Artinian and a-cofinite. We use induction on *i*. Since *T* is a-cofinite, $\Gamma_{\mathfrak{m}}(T)$ is Artinian and a-cofinite by [10, Corollary 1.8]. Thus, $T/\Gamma_{\mathfrak{m}}(T)$ is a-cofinite. Now suppose, inductively, that i > 0 and we have shown that $H_{\mathfrak{m}}^{i-1}(T')$ is Artinian and a-cofinite for any a-cofinite *R*-module *T'*. Now $H_{\mathfrak{m}}^i(T) \cong$ $H_{\mathfrak{m}}^i(T/\Gamma_{\mathfrak{m}}(T))$ for i > 0. We can assume that $\Gamma_{\mathfrak{m}}(T) = 0$. Then $\mathfrak{m} \notin \operatorname{Ass}(T)$, and since the set $\operatorname{Ass}(T)$ is finite (see [10, Corollary 1.4]), we can, by prime avoidance, take an element $x \in \mathfrak{m} - \bigcup_{\mathfrak{p} \in \operatorname{Ass} T} \mathfrak{p}$. From the exact sequence

$$0 \longrightarrow T \xrightarrow{x} T \longrightarrow T/xT \longrightarrow 0,$$

we get that T/xT is a-cofinite. This yields the exact sequence

$$H^{i-1}_{\mathfrak{m}}(T/xT) \longrightarrow H^{i}_{\mathfrak{m}}(T) \xrightarrow{x} H^{i}_{\mathfrak{m}}(T) \longrightarrow H^{i}_{\mathfrak{m}}(T/xT).$$

One can deduce from the above exact sequence, by using the inductive hypothesis, that the *R*-module $(0:_{H^i_{\mathfrak{m}}(T)}x)$ is Artinian and \mathfrak{a} -cofinite. It follows $H^i_{\mathfrak{m}}(T)$ is Artinian and \mathfrak{a} -cofinite by [9, Proposition 4.1].

Corollary 2.6 Let r be a non-negative integer. Let $H^i_{\mathfrak{a}}(M, N)$ be \mathfrak{a} -cofinite for all i < r. Then $H^j_{\mathfrak{b}_0}(H^i_{\mathfrak{a}}(M, N))$ is Artinian and \mathfrak{a} -cofinite for all i < r and $j \ge 0$. In addition, $\Gamma_{\mathfrak{b}_0R}(H^r_{\mathfrak{a}}(M, N))$ is Artinian and \mathfrak{a} -cofinite.

Proof If i < r, then, in view of Theorem 2.5, $H^j_{\mathfrak{b}_0R}(H^i_\mathfrak{a}(M, N))$ is Artinian and \mathfrak{a} -cofinite for all $j \ge 0$. On the other hand, using Theorem 2.3, $\operatorname{Hom}(R/\mathfrak{a}, H^r_\mathfrak{a}(M, N))$ is finitely generated. This fact implies that

 $\Gamma_{\mathfrak{m}_{0}R}(\operatorname{Hom}(R/\mathfrak{a}, H^{r}_{\mathfrak{a}}(M, N))) \cong \Gamma_{\mathfrak{m}_{0}R}(0:_{H^{r}_{\mathfrak{a}}(M, N)}\mathfrak{a})$ $\cong (0:_{\Gamma_{\mathfrak{m}_{0}R}(H^{r}_{\mathfrak{a}}(M, N))}\mathfrak{a}) \cong (0:_{\Gamma_{\mathfrak{b}_{0}R}(H^{r}_{\mathfrak{a}}(M, N))}\mathfrak{a})$

has finite length, by [3, Theorem 7.1.3]. Now, it follows from [9, Proposition 4.1] that $\Gamma_{\mathfrak{b}_0 R}(H^r_{\mathfrak{a}}(M, N))$ is Artinian and \mathfrak{a} -cofinite.

Proposition 2.7 Let $i \ge 0$. Then the *R*-modules $H^i_{\mathfrak{a}}(\Gamma_{\mathfrak{b}_0}(N))$ and $H^i_{\mathfrak{a}}(M, \Gamma_{\mathfrak{b}_0}(N))$ are Artinian and tame.

Proof Using [3, Theorem 7.1.3], $H^i_{\mathfrak{a}}(\Gamma_{\mathfrak{b}_0}(N)) \cong H^i_{\mathfrak{a}+\mathfrak{b}_0}(\Gamma_{\mathfrak{b}_0}(N)) \cong H^i_{\mathfrak{m}}(\Gamma_{\mathfrak{b}_0}(N))$ is Artinian. In view of [6, Theorem 2.1], $H^i_{\mathfrak{a}}(M, \Gamma_{\mathfrak{b}_0}(N))$ is Artinian and tame.

Theorem 2.8 Let $i \ge q_{\mathfrak{a}}(M, N) = q$. Then $H^{i}_{\mathfrak{a}}(M, N)/\mathfrak{b}_{0}H^{i}_{\mathfrak{a}}(M, N)$ is Artinian and tame.

Proof When $i > q_{\mathfrak{a}}(M, N)$, the result is obvious by the definition of $q_{\mathfrak{a}}(M, N)$. So, it only remains to show that $H^{q}_{\mathfrak{a}}(M, N)/\mathfrak{b}_{0}H^{q}_{\mathfrak{a}}(M, N)$ is an Artinian *R*-module. We prove the result by induction on $d = \dim N$. If d = 0, then $H^{i}_{\mathfrak{a}}(N) = H^{i}_{\mathfrak{a}}(\Gamma_{\mathfrak{m}}(N)) = H^{i}_{\mathfrak{m}}(N)$ is Artinian for all $i \ge 0$. As a result of [6, Theorem 2.1], $H^{i}_{\mathfrak{a}}(M, N)$ is Artinian for all $i \ge 0$, and there is nothing to prove. So, suppose that d > 0 and that the result has been proved for d - 1. In view of the long exact sequence of generalized local cohomology modules that is induced by the exact sequence $0 \to \Gamma_{\mathfrak{b}_{0}}(N) \to N \to 0$

Artinianness of Composed Graded Local Cohomology Modules

 $N/\Gamma_{\mathfrak{b}_0}(N) \to 0$ and Proposition 2.7, we have $q_\mathfrak{a}(M, N) = q_\mathfrak{a}(M, N/\Gamma_{\mathfrak{b}_0}(N))$. Now, consider the exact sequence

$$H^{i}_{\mathfrak{a}}(M,\Gamma_{\mathfrak{b}_{\mathfrak{0}}}(N)) \xrightarrow{\psi} H^{i}_{\mathfrak{a}}(M,N) \longrightarrow H^{i}_{\mathfrak{a}}(M,N/\Gamma_{\mathfrak{b}_{\mathfrak{0}}}(N)) \xrightarrow{\phi} H^{i+1}_{\mathfrak{a}}(M,\Gamma_{\mathfrak{b}_{\mathfrak{0}}}(N)),$$

which induces the following two exact sequences

$$0 \longrightarrow \operatorname{im} \psi \longrightarrow H^{i}_{\mathfrak{a}}(M, N) \longrightarrow \ker \phi \longrightarrow 0,$$
$$0 \longrightarrow \ker \phi \longrightarrow H^{i}_{\mathfrak{a}}(M, N/\Gamma_{\mathfrak{b}_{0}}(N)) \longrightarrow \operatorname{im} \phi \longrightarrow 0$$

Therefore, we can obtain the following two exact sequences:

(2.1)
$$\longrightarrow R_0/\mathfrak{b}_0 \otimes \operatorname{im} \psi \longrightarrow R_0/\mathfrak{b}_0 \otimes H^i_\mathfrak{a}(M,N) \longrightarrow R_0/\mathfrak{b}_0 \otimes \ker \phi \longrightarrow 0$$

$$(2.2) \ R_0/\mathfrak{b}_0 \otimes \ker \phi \longrightarrow R_0/\mathfrak{b}_0 \otimes H^{\prime}_{\mathfrak{a}}(M, N/\Gamma_{\mathfrak{b}_0}(N)) \longrightarrow R_0/\mathfrak{b}_0 \otimes \operatorname{im} \phi \longrightarrow 0.$$

In view of Proposition 2.7, im ψ and im ϕ are Artinian, and hence so are im ψ/\mathfrak{b}_0 im ψ and im ϕ/\mathfrak{b}_0 im ϕ . According to the exact sequences (2.1) and (2.2), we can easily conclude that $R_0/\mathfrak{b}_0 \otimes H^i_\mathfrak{a}(M, N)$ is Artinian if and only if $R_0/\mathfrak{b}_0 \otimes H^i_\mathfrak{a}(M, N/\Gamma_{\mathfrak{b}_0}(N))$ is Artinian. We can assume that $\Gamma_{\mathfrak{b}_0}(N) = 0$. The last fact implies that there is an element $x \in \mathfrak{b}_0$ that is an *N*-sequence, and hence there is the following exact sequence of *R*-modules

$$(2.3) \qquad H^{i-1}_{\mathfrak{a}}(M, N/xN) \longrightarrow H^{i}_{\mathfrak{a}}(M, N) \xrightarrow{x} H^{i}_{\mathfrak{a}}(M, N) \longrightarrow H^{i}_{\mathfrak{a}}(M, N/xN).$$

Therefore, the exact sequence (2.3) yields $q_a(M, N/xN) \le q_a(M, N)$ and induces an exact sequence of *R*-modules and *R*-homomorphisms

$$(2.4) \qquad 0 \longrightarrow H^{q}_{\mathfrak{a}}(M,N)/xH^{q}_{\mathfrak{a}}(M,N) \longrightarrow H^{q}_{\mathfrak{a}}(M,N/xN) \xrightarrow{\lambda} H^{q+1}_{\mathfrak{a}}(M,N)$$

If we apply the functor $Tor_i^{R_0}(R_0/\mathfrak{b}_0, \mathfrak{)}$ to the exact sequence (2.4), we have the following exact sequence

$$Tor_1^{R_0}(R_0/\mathfrak{b}_0, \operatorname{im} \lambda) \longrightarrow R_0/\mathfrak{b}_0 \otimes H^q_\mathfrak{a}(M, N)/xH^q_\mathfrak{a}(M, N) \longrightarrow R_0/\mathfrak{b}_0 \otimes H^q_\mathfrak{a}(M, N/xN) \longrightarrow \operatorname{im} \lambda \otimes R_0/\mathfrak{b}_0 \longrightarrow 0.$$

Since im λ is Artinian, it is seen that $\operatorname{Tor}_{1}^{R_{0}}(R_{0}/\mathfrak{b}_{0}, \operatorname{im} \lambda)$ is Artinian. If

$$q_{\mathfrak{a}}(M, N/xN) = q_{\mathfrak{a}}(M, N),$$

by using last exact sequence in conjunction with the inductive hypothesis and $x \in b_0$, we see that the *R*-module

$$H^{q}_{\mathfrak{a}}(M,N)/\mathfrak{b}_{0}H^{q}_{\mathfrak{a}}(M,N) = R_{0}/\mathfrak{b}_{0} \otimes H^{q}_{\mathfrak{a}}(M,N)/xH^{q}_{\mathfrak{a}}(M,N)$$

is Artinian and tame. If $q_{\mathfrak{a}}(M, N/xN) < q_{\mathfrak{a}}(M, N)$, then $H^{q}_{\mathfrak{a}}(M, N/xN)$ is Artinian. Again we can use the above exact sequence to obtain the result.

Theorem 2.9 Let $i \leq g_{\mathfrak{a}}(M, N)$. Then $\Gamma_{\mathfrak{b}_0}(H^g_{\mathfrak{a}}(M, N))$ is tame. Furthermore, if $H^i_{\mathfrak{a}}(M, N)_n$ is a finitely generated R_0 -module for all $n \in \mathbb{Z}$, then $\Gamma_{\mathfrak{b}_0}(H^g_{\mathfrak{a}}(M, N))$ is an Artinian R-module.

Proof If $i < g_{\mathfrak{a}}(M, N)$, then in view of the definition of $g_{\mathfrak{a}}(M, N)$, $\ell_{R_0}H^i_{\mathfrak{a}}(M, N)_n$ is finite for all $n \ll 0$ and the result is clear. Consider the Grothendieck spectral sequence [10, Theorem 11.38]

$$(E_2^{p,i})_n = H^p_{\mathfrak{b}_{\mathfrak{a}}}(H^i_{\mathfrak{a}}(M,N)_n) \stackrel{p}{\Longrightarrow} H^{p+i}_{\mathfrak{m}}(M,N)_n.$$

It is easy to see that there exists $n_0 \in \mathbb{Z}$ such that, for all $n < n_0$, $(E_2^{p,i})_n = 0$ for all $i < g_{\mathfrak{a}}(M,N)$ and $p \in \mathbb{N}$. Now, the convergence of the above spectral sequence implies that $H^0_{\mathfrak{b}_0}(H^g_{\mathfrak{a}}(M,N)_n) \cong H^g_{\mathfrak{m}}(M,N)_n$ for all $n < n_0$. Since all graded Artinian *R*-modules are tame, it is seen that $H^0_{\mathfrak{b}_0R}(H^g_{\mathfrak{a}}(M,N))$ is tame. The last part of the theorem follows from Kirby's Artinian criterion [8, Theorem 1].

Theorem 2.10 Let t be a non-negative integer and let $H^i_{\mathfrak{b}_0 R}(H^j_\mathfrak{a}(M, N))$ be Artinian for all $j \neq t$ and for all i. Then $H^i_{\mathfrak{b}_0 R}(H^t_\mathfrak{a}(M, N))$ is Artinian for all i.

Proof Using [10, Theorem 11.38] there exists a Grothendieck spectral sequence

$$(E_2^{p,q})_n = H^p_{\mathfrak{b}_0}(H^q_{\mathfrak{a}}(M,N)_n) \Longrightarrow H^{p+q}_{\mathfrak{m}}(M,N)_n.$$

Also, there is a bounded filtration

$$0 = \phi^{n+1} H^n \subseteq \phi^n H^n \subseteq \dots \subseteq \phi^1 H^n \subseteq \phi^0 H^n = H^n_{\mathfrak{m}}(M, N)$$

such that $E_{\infty}^{i,n-i} = \phi^i H^n / \phi^{i+1} H^n$ for all $0 \le i \le n$, and hence $E_{\infty}^{p,q}$ is Artinian. Note that $E_{\infty}^{p,q} = E_r^{p,q}$ for large r and each p and q. It follows that there is an integer $\ell \ge 2$ such that $E_r^{p,q}$ is Artinian for all $r \ge \ell$. We now argue by descending induction on ℓ . Assume that $2 < \ell < r$ and that the claim holds for ℓ . Since $E_r^{p,q}$ is a subquotient of $E_2^{p,q}$ for all $p, q \in \mathbb{N}_0$, the hypotheses give that $E_r^{p+r,t-r+1}$ is Artinian for all $r \ge 2$. In addition,

$$E_{\ell}^{p,t} = \ker d_{\ell-1}^{p,t} / \operatorname{im} d_{\ell-1}^{p-\ell+1,t+\ell-2}$$

and im $d_{\ell-1}^{p-\ell+1,t+\ell-2}$ are Artinian for all $p \ge 0$. It follows that ker $d_{\ell-1}^{p,t}$ is Artinian for all $\ell > 2$ and $p \ge 0$. Let $r \ge 2$ and $p \ge 0$. We consider the sequence

$$0 \longrightarrow \ker d_r^{p,t} \longrightarrow E_r^{p,t} \longrightarrow E_r^{p+r,t-r+1}$$

Since both ker $d_{\ell-1}^{p,t}$ and $E_{\ell-1}^{p+\ell-1,t-\ell+2}$ are Artinian, it follows that $E_{\ell-1}^{p,t}$ is Artinian for $p \ge 0$. This completes the inductive step.

Proposition 2.11 Let $f = f_{\mathfrak{a}}(M, N) = cd_{\mathfrak{a}}(M, N)$. Then $H^{j}_{\mathfrak{b}_{0}R}(H^{i}_{\mathfrak{a}}(M, N))$ is Artinian for all *i* and *j*.

Proof If i < f, then, in view of the definition of $f_{\mathfrak{a}}(M, N)$, $H^{i}_{\mathfrak{a}}(M, N)$ is an \mathfrak{a} -cofinite R-module. It follows from Theorem 2.5 that $H^{j}_{\mathfrak{b}_{0}}(H^{i}_{\mathfrak{a}}(M, N))$ is Artinian and \mathfrak{a} -cofinite. On the other hand $H^{j}_{\mathfrak{b}_{0}}(H^{i}_{\mathfrak{a}}(M, N)) = 0$ for all i > f. Therefore, in view of the spectral sequence

$$E_2^{p,q} = H^p_{\mathfrak{h}_{\mathfrak{a}}}(H^q_{\mathfrak{a}}(M,N)) \stackrel{p}{\Longrightarrow} H^{p+q}_{\mathfrak{m}}(M,N),$$

the result follows by similar argument as used in Theorem 2.10.

Artinianness of Composed Graded Local Cohomology Modules

As an application of Proposition 2.11, we have the following corollary.

Corollary 2.12 Let $cd_{\mathfrak{a}}(M,N) = 1$. Then $H^{j}_{\mathfrak{b}_0R}(H^{i}_{\mathfrak{a}}(M,N))$ is Artinian for all *i* and *j*.

Theorem 2.13 Let $i \in \mathbb{N}_0$ and $cd_{\mathfrak{a}}(M, N) = 2$. Then $H^i_{\mathfrak{b}_0}(H^2_{\mathfrak{a}}(M, N))$ is an Artinian *R*-module if and only $H^{i+2}_{\mathfrak{b}_0}(H^1_{\mathfrak{a}}(M, N))$ is an Artinian *R*-module.

Proof Using [10, Theorem 11.38] there exists a Grothendieck spectral sequence

$$E_2^{p,q} = H^p_{\mathfrak{b}_0}(H^q_{\mathfrak{a}}(M,N)) \Longrightarrow H^{p+q}_{\mathfrak{m}}(M,N).$$

Also, there is a bounded filtration

$$0 = \phi^{n+1}H^n \subseteq \phi^n H^n \subseteq \dots \subseteq \phi^1 H^n \subseteq \phi^0 H^n = H_{\mathfrak{m}}^{p+q}(M, N)$$

such that $E_{\infty}^{i,n-i} \cong \phi^i H^n / \phi^{i+1} H^n$ for all *i*, and hence $E_{\infty}^{p,q}$ is Artinian for all *p*, *q*. Note that $E_{\infty}^{p,q} = E_r^{p,q}$ for large *r* and each *p* and *q*. For all $r \ge 2$ and $p, q \ge 0$, we consider the exact sequence

(2.5)
$$0 \longrightarrow \ker d_r^{p,q} \longrightarrow E_r^{p,q} \xrightarrow{d_r^{p,q}} E_r^{p+r,q-r+1} \xrightarrow{d_r^{p+r,q-r+1}} \longrightarrow$$

In view of the definition of $cd_{\mathfrak{a}}(M, N)$, $(E_2^{p,q})_n = 0$ for all $n \in \mathbb{Z}$ and q > 2. On the other hand, $E_{r+1}^{p,q} \cong \ker d_r^{p,q} / \operatorname{im} d_r^{p-r,q+r-1}$ imply that $E_{r+1}^{i,r} \cong \ker d_r^{i,2}$ and

$$E_2^{i+2,1}/\operatorname{im} d_2^{i,2} \cong \ker d_2^{i+2,1}/\operatorname{im} d_2^{i,2} \cong E_3^{i+2,1}.$$

Now, we use the exact sequence (2.5) to obtain exact sequences

$$(2.6) 0 \longrightarrow (E_{\infty}^{i,2})_n \longrightarrow H^i_{\mathfrak{b}_0 R} (H^2_{\mathfrak{a}}(M,N))_n \longrightarrow \operatorname{im}(d_2^{i,2})_n \longrightarrow 0,$$

$$(2.7) \qquad 0 \longrightarrow \operatorname{im}(d_2^{i,2})_n \longrightarrow H^{i+2}_{\mathfrak{b}_0 R} \big(H^1_{\mathfrak{a}}(M,N) \big)_n \longrightarrow (E^{i+2,1}_{\infty})_n \longrightarrow 0,$$

which in turn yield the exact sequences

$$0 \longrightarrow (0:_{(E_{\infty}^{i,2})_{n}} R_{1}) \longrightarrow (0:_{H_{\mathfrak{b}_{0}R}^{i}(H_{\mathfrak{a}}^{2}(M,N))_{n}} R_{1}) \longrightarrow (0:_{\mathrm{im}(d_{2}^{i,2})_{n}} R_{1}),$$

$$0 \longrightarrow (0:_{\mathrm{im}(d_{2}^{i,2})_{n}} R_{1}) \longrightarrow (0:_{H_{\mathfrak{b}_{0}R}^{i+2}(H_{\mathfrak{a}}^{1}(M,N))_{n}} R_{1}) \longrightarrow (0:_{(E_{\infty}^{i+2,1})_{n}} R_{1}).$$

Note that for each $i, j \in \mathbb{N}_0$, $E_{\infty}^{i,j}$ is an Artinian graded *R*-module. Therefore, using Kirby's Artinian criterion ([8, Theorem 1]), we deduce that

$$\left(0:_{(E_{\infty}^{i+2,1})_{n}}R_{1}\right)=0=\left(0:_{(E_{\infty}^{i,2})_{n}}R_{1}\right)$$

for $n \ll 0$. Now, we can use the last two displayed exact sequences to see that $(0:_{H^i_{\mathfrak{b}_0}(H^2_{\mathfrak{a}}(M,N))_n}R_1) = 0$ for all $n \ll 0$ if and only if $(0:_{H^{i+2}_{\mathfrak{b}_0}(H^1_{\mathfrak{a}}(M,N))_n}R_1) = 0$ for all $n \ll 0$. In addition, since

$$H^{i}_{\mathfrak{b}_{0}R}(H^{j}_{\mathfrak{a}}(M,N))_{n} \cong H^{i}_{\mathfrak{b}_{0}}(H^{j}_{\mathfrak{a}}(M,N)_{n})$$

for all $i \ge 0$ and all $n \in \mathbb{Z}$, then $H^i_{\mathfrak{b}_0 R}(H^j_\mathfrak{a}(M,N))_n = 0$ for all $n \gg 0$. Again, using the fact that $E^{i,j}_{\infty}$ is an Artinian graded *R*-module, together with exact sequences (2.6) and (2.7), we see that $H^{i+2}_{\mathfrak{b}_0 R}(H^1_\mathfrak{a}(M,N))_n$ is an Artinian R_0 -module for all $n \in \mathbb{Z}$ if and only if $H^i_{\mathfrak{b}_0 R}(H^2_\mathfrak{a}(M,N))_n$ is an Artinian R_0 -module for all $n \in \mathbb{Z}$. Therefore, in view of [8, Theorem 1], the result follows.

Acknowledgments The author is deeply grateful to the referees for their careful reading and comments that improved to this paper.

References

- M. P. Brodmann, Asymptotic behaviour of cohomology: tameness, supports and associated primes. In: Commutative algebra and algebraic geometry, Contemp. Math., 390, American Mathematical Society, Providence, RI, 2005, pp. 31–61. http://dx.doi.org/10.1090/conm/390/07292
- [2] M. P. Brodmann and M. Hellus, Cohomological pattern of coherent sheaves over projective schemes. J. Pure Appl. Algebra 172(2002), no. 2–3, 165–182. http://dx.doi.org/10.1016/S0022-4049(01)00144-X
- M. P. Brodmann and R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications. Cambridge Studies in Mathematics, 60, Cambridge University Press, Cambridge, 1998. http://dx.doi.org/10.1017/CBO9780511629204
- [4] W. Bruns and J. Herzog, *Cohen-Macaulay rings*. Cambridge Studies in Mathematics, 39, Cambridge University Press, Cambridge, 1993.
- [5] L.Chu and Z. Tang, On the Artinianness of generalized local cohomology. Comm. Algebra 35(2007), no 12, 3821–3827. http://dx.doi.org/10.1080/00927870701511517
- [6] F. Dehghani-Zadeh, Finiteness properties generalized local cohomology with respect to an ideal containing the irrelevant ideal. J. Korean Math. Soc. 49(2012), no. 6, 1215–1227. http://dx.doi.org/10.4134/JKMS.2012.49.6.1215
- [7] M. Jahangiri, N. Shirmohammadi, and Sh. Tahamtan, Tameness and Artinianness of graded generalized local cohomology modules. Algebra Colloq. 22(2015), no. 1, 131–146. http://dx.doi.org/10.1142/S1005386715000127
- [8] D. Kirby, Artinian modules and Hilbert polynomials. Quart. J. Math. Oxford Ser. (2) 24(1973), 47–57.
- [9] L. Melkerson, Modules cofinite with respect to an ideal. J. Algebra, 285(2005), no. 2, 649–668. http://dx.doi.org/10.1016/j.jalgebra.2004.08.037
- [10] _____, Properties of cofinite modules and applications to local cohomology. Math. Proc. Cambridge Philos. Soc. 125(1999), no. 3, 417–423. http://dx.doi.org/10.1017/S0305004198003041
- J. J. Rotman, An introduction to homological algebra. Pure and Applied Mathematics, 85, Academic Press, New York-London, 1979.

Department of Mathematics, Yazd Branch, Islamic Azad University, Yazd, Iran e-mail: fdzadeh@gmail.com