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ABSTRACT. The astronomical data show that most of the mass in the 
Universe is dark. At present there are a few models of the dark matter: 
(i) the standard neutrino model, (ii) the model with unstable neutrinos, 
(iii) axion model. All models can be modified with Λ - term which plays 
role of the homogeneous component of the dark matter. In this paper the 
non-linear processes of gravitational instability are briefly discussed. 

1. INTRODUCTION 

The problem of dark matter has many different aspects, both 
observational and theoretical. In this report I consider one that 
concerna the non-linear evolution of density perturbations in their 
course to the formation of large scale objects: galaxies, clusters and 
superclusters of galaxies. It is assumed that most of the dark matter 
consists of some sort of weakly interacting particles: neutrinos, 
photinos, axions..., and the background universe model is based on the 
well known inflation scenario (for review see, for example 1 > 2 ) . 

The theory of the non-linear processes must be an essential part of 
future full theory of the formation of structure in the Universe, 
because the observed objects like clusters and super-clusters are the 
inhomogeneities of density in the non linear regime of evolution: 
όρ/ρ > 1. In recent years the accuracy of theoretical predictions 
became so high that some models (for example the universe dominated by 
stable neutrinos with rest mass about 30 ev) are claimed to be rejected 
because they cannot match the observations within a factor only about 2 
or 3. To make predictions of such quality one needs to possess the 
quantitative theory of non-linear processes. At present such theory is 
not fully developed. However the understanding of the non-linear stage 
of density perturbation growth has much improved recently. For this 
symposium the theoretical prediction that non-linear evolution of 
density perturbations goes different ways in the different models of 
dark matter is of particular interest, hence coupled with observations 
it can be a probe for these models. 

369 

J. Kormendy and G. R. Knapp (eds.), Dark Matter in the Universe, 369-377. 

© 1987 by the IAU. 

https://doi.org/10.1017/S0074180900150557 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900150557


370 S. F. SHANDARIN 

2. EVOLUTION OF PERTURBATIONS 

The failure to measure angular variations in the temperature of relic 
radiation (except the dipole component 3> i +) is interpreted as the 
absence of any noticeable density perturbations* at decoupling. On the 
other hand at present time the Universe is highly inhomogeneous on 
scales smaller than superclusters of galaxies M < 1 0 1 5 M Q . Thus there 
must be considerable amplification of density fluctuations probably 
present at decoupling. Remembering the fact that most of the mass in 
the Universe consists of particles interacting essentially only due to 
gravity one arrives to the conclusion that amplification must be due to 
gravitational instability. There is a rather long stage of linear 
growth of inhomogeneities when baryons, representing a small portion of 
the total mass ~ (0.1 ^ 0.01)pt move in the gravitational field of 
dark matter. Baryons can gravitationaly influence dark matter when 
their perturbations at some place reach the strongly non-linear regime: 
öPb^Pb ~ (^Pb/pb) o n t n e homogeneous background of dark matter or δρ^/ρ^ 
~ (6p v/p v)(p v/pb) (here density of the dark matter is conventionally 
marked by index "v"). The latter probably takes place in the central 
regions of galaxies but is hardly possible on scales of clusters and 
superclusters of galaxies. 

When density perturbations reach the non linear stage evolution can 
go in two principally different ways, depending on the spectrum of 
initial perturbations at the linear stage: they are called 
"fragmentation"5 and "hierarchical clustering"6. It is worth noting 
that in Nature the structure formation can possess the features of both 
processes, though it is useful to discuss them separately. 

3. FRAGMENTATION SCENARIO 

The standard inflation scenario of early universe predicts a Zeldovich 
spectrum of primordial adiabatic fluctuations, which in long wavelength 
limit (small k) has the form δ^2 α k n (here δ^ 2 is spectrum of density 
perturbations) independently of the type of collisionless particles 
dominating in the dark matter. The short wavelength part of the 
spectrum evolves differently depending on the kind of particles, that 
enables Dick Bond to introduce the terms "hot", "warm" and "cold" 
particles. These terms specify the largest scale of perturbations 
suffering the free streaming dissipation. 

The typical "hot" particles are electronic neutrinos with rest mass 
about 30 eV. The dissipation scale in this case is about Mv ~ 1 0 1 5 M Q 
and approximately coincides with the masses of superclusters7*8. In the 
"hot" particle model of dark matter the fragmentation scenario is 
typical. Owing to the sharp cutoff in the spectrum on scales smaller 
than M v, the objects formed first have just this size and the very 
specific shapes of irregular pancakes. This was predicted by Zeldovich 
in 1970 9. Later it was found that other kinds of objects, both 
elongated and compact ones form as well as pancakes 1 0. They can be 
classified as typical (generic) singularities in accordance with 
catastrophe theory. Numerical simulations ( 2 D 1 1 » 1 2 as well as 3D 1 3"" 1 6) 
have shown that flattened, elongated and compact objects form a distinct 
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cellular or network structure depending on the density contrast level. 
In the frame of this scenario it is natural to suppose that 

galaxies form later by fragmentation of the baryon component of the 
pancakes and/or filaments and compact clusters5. However at present 
there is no good quantitative theory for this process. 

What we can be sure of is our understanding of causes of the 
cellular structure formation 1 7 - 1 9. The cellular structure originates 
inevitably at the non-linear stage of gravitational instability if the 
spectrum of density perturbations at linear stage has a sharp cutoff on 
short wavelengths and the scale of the cutoff X c is much greater than 
the Jeans length Xj ; X c » Xj. As the smaller the temperature of the 
medium the less the Jeans scale becomes this inequality is easier to 
satisfy in cold medium at Τ -> 0. Thus one who likes paradoxes can say 
the cellular structure originates in the cold medium of "hot" 
particles. 

Considering different scenarios one usually tries to find the stage 
in the evolution which is the best fit to the present Universe. In the 
fragmentation scenario the cellular structure is quite distinct at this 
stage. What will happen to it later? The answer to this question will 
help us to understand the process of hierarchical clustering better. 

Evolution of density perturbations in a cold medium (X c » Xj) can 
be expressed with the Zeldovich formalism9 

here r^ and q-̂  are Eulerian and Lagrangian coordinates of particles, 
a(t) is a scale factor of Friedmann universe, b(t) is the growing 
solution of the linear density perturbations (if Ω 0 = 1, Λ = 0, Ρ = 0, 
then b(t) « a(t) « t 2 / 3 ) ; <i>(q) is a function conserving full information 
about the growing mode of perturbations. In the linear regime δρ/ρ = 
b(t)A<ï>. At the non-linear stage 

here α, β, γ are the eigenvalues of the tensor 32Φ/8qi3ς^· The 
important result of the Zeldovich formalism is that the structure 
forming at the beginning of the non-linear stage is determined by the 
spatial structure of the functions α, β, γ (mostly by the largest 
one) 5. Unfortunately this formalism is not applicable at the non-linear 
stage when the cellular structure begins to disrupt. 

4. HEIRARCHICAL CLUSTERING 

The traditional approach6 to the heirarchical clustering process is 
based on the calculation of the density perturbations at the scale 
M ~ p-k"3 

r i = a(t)-( q i - b(t) Vq<ï>(q)) (1) 

p/p = (1 - b-αΓ 1 (1 - b-3)" 1 (1 - b-γ)" 1 (2) 

3+n 

^ (M) « (/ 6^-k2-dk)1/2 « M 6 
(3) 
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if ok « kn and η > - 3 . Combining this with the linear law of 
perturbation growth and assuming that after reaching the non-linear 
stage (δρ/ρ ~ 1 ) the perturbation on the scale M virializes and ceases 
growing one easily finds the typical mass of the objects at time t 
(Ω 0 - 1 , b(t) = a(t)) 

6 4 

M(t) « a

 n + 3 « t n + 3 (4) 

If η > 4 one must take into account the non-linear generation of long 
wave perturbations with spectrum δ^ Œ k1* that results in limit law Μ <* 
a6/7 α t W 7 e v e n at η > 4. 

However this approach is not fully non-linear, because it actually 
considers generation of long waves only "once" at some moment tg and 
later they are assumed to grow in agreement with the linear law. But it 
cannot be true, because non-linear generation continues to work later at 
t > tg as well as at tg. 

Recently a rather simple but fully non-linear model has been 
developed (based on the Burgers equation, well known in the theory of 
turbulence) for the evolution of cellular structure at a stage when it 
disrupts 2 0. Mass flows from the walls of the cells (originated as 
pancakes) to the ribs of the cells and from ribs to the compact 
concentrations in the apicies of the cells. Soon most of the mass 
concentrates in clusters whose mean mass grows continuously by the 
merging of clusters. This process is in fact hierarchical clustering. 

Without going into details of the model I just enumerate the main 
features of the process. In contrast to the initial period of the non-
linear stage when pancakes and the whole cellular structure is 
determined by the structure of the eigenvalues a, 3 and γ in Lagrangian 
space ( 2 ) the process of hierarchical clustering is determined by the 
structure of potential <Kq) ( 1 ) . The main result of this is a much 
stronger influence of the long wavelength part of the spectrum on the 
process of clustering - the so called long distance correlations. This 
becomes quite clear if one remembers that the spectrum Δ^ 2 of Φ (q) is 

This non-linear theory of hierarchical clustering predicts a growth 
of the typical mass of clusters which coincides with the standard linear 
theory in the case of rather flat spectra 

6 
2 n+T 

6k « k^ M <* A if - 1 < η < 1 . ( 5 ) 

At η > n c r = 1 there is a limit law Μ <* a 3 / 2 « t independently of n. In 
terms of non-linear generation of long wavelength perturbations it takes 
place because of continuity of the process. It is interesting that n c r 
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depends on the dimension of space: n c r(3D) = 1, n c r(2D) = 2 and 
n c r(lD) = 3 . If η < -1 the spectrum δ^ 2 must be bent down at some long 
wave λβ> otherwise there is too strong divergence in spectrum of Φ(ς) 
at k ·* 0; because Δ^ 2 Œ kn~^. At η < -1 clustering is not actually pure 
hierarchical, because even at the time when masses Μ « ~ Ρ βλ^ 3 

decouple from Hubble expansion there is an ordering influence of scale 
Xfc. This influence is the stronger the steeper the spectrum is and at 
the limit of big negative η (n < 0 and |n| » 1) it becomes pure pancake 
picture with characteristic scale λ^. 

Spectrum with η » -3 which naturally occurs in the axion model of 
the dark matter 2 2* 2 3 is extremely difficult to analyse and at present 
there is no good theory for the clustering process in this case. 
Nevertheless it is clear that influence of the scale at the bend of the 
spectrum must be rather strong so the formation of the large scale 
network structure seems to be quite possible, however it is probably a 
much less distinct one than that in the standard neutrino model. 

5. MODELS OF DARK MATTER AND SCENARIOS OF STRUCTURE FORMATION 

Now let us briefly discuss present models of dark matter with respect to 
the structure formation. At present any baryonic model of the dark 
matter encounters probably unsolvable problems. Therefore I discuss 
only hypotheses assuming that most of dark matter is in a form of weakly 
interacting particles or a positive Λ - term. 

As it has become clear from the above discussion the character of 
the large scale structure depends on the type of the spectrum of density 
perturbations at the linear stage after decoupling. In turn the 
spectrum of perturbations depends on the type of particles constituting 
the dark matter. 

5.1 Stable electronic neutrinos 

The model of the Universe dominated by stable electronic neutrinos with 
rest mass ~ 30 eV (standard neutrino model 5* 7) seems to be the most 
economical of modern cosmological models in the sense of the number of 
ad hoc hypotheses needed. In this picture the formation of the large 
scale structure is mostly developed. 

The spectrum of density perturbations is very simple: δ^2 « k on 
large scales M > 1 0 1 5 MQ and very sharp cutoff at smaller scales 2 1 ό\ς2 Œ 

k"Vi (μ ^ 12) Μ < 1 0 1 5 MQ . For this reason the structure originating at 
non-linear stage is very distinct. It is probably more distinct than 
the real structure observed in the distribution of galaxies. 

This model has several difficulties, widely discussed in the 
literature 2,5,2*+e Remembering the uncertainties of astronomical data 
and poor understanding of the process of galaxy formation none of them 
seems to be fatal to the model 2 5. However at present there is no 
positive solution to some of them. As the most severe of them I would 
like to mention: (i) the fast growth of the portion of the mass in the 
compact clusters 2 6 and (ii) too great M/L ratio in clusters. The 
problem of the correlation length becomes not so serious if the new 
results of Einasto et al. 2 7 are taken into account. 
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5.2 Unstable neutrinos 

As an attempt to solve the problems of standard neutrino model 
Doroshkevich and Khlopov 2 8 proposed the model with unstable neutrinos 
( VH * ^ + f ) * This model has succeeded in solving many problems of the 
standard model including the ones mentioned above 2 9* 3 0. However it 
operates with several additional parameters like: 1) ratio of mean 
densities of unstable and stable components, 2) mean density of the 
stable component, 3) ratio of masses of stable and unstable particles. 
In addition it probably has difficulty with the age of the Universe and 
appeals to the Λ -term. Compared with the standard model it is much 
less economic and its basic "investment" is an appeal to "fantastic" 
particles (term by A. Dolgov): unstable neutrino with rest mass about 
100 eV, as well as familon. 

Returning to the problem of the non-linear evolution one should say 
that the process of structure formation in this model is very much 
similar to that in the standard model. The only difference is that the 
process of the evolution of cellular structure slows down due to the 
decay of particles and the influence of a possible Λ-term. 

5.3 Axion model 

The other alternative to the standard model is the widely discussed 
axion model 2 > 2 2 > 2 1 +. The spectrum of density perturbations in this model 
after decoupling in the long waves is the same δ^ 2 <* k; in the short 
wavelength limit it is δ^ Œ k"3 ln 2k 2 3 with a bend at M ~ 10 1 5 MQ . But 
the bend is very smooth, extended more than an order of magnitude. 

The process of structure formation starts from the origin of 
objects about 10 6 MQ (Jeans mass in baryons after decoupling) and 
extends to ~ 1 0 1 5 MQ at present time. This model has no principal 
difficulties with the epoch of galaxy and quasar formation. It is more 
economic in free parameters than the model of unstable neutrinos. 
Nevertheless it also appeals to "fantastic" particles and for a better 
fit of numerical parameters to Λ-term. 

As follows from section 4 in this model a dim network structure can 
naturally originate at the non-linear stage. 3D numerical simulations 
perhaps give some positive evidence for this 3 1. But to make adequate 
simulations of this model is an extremely difficult task, because in 
this case one needs to follow evolution of perturbations in very wide 
range of scales which is beyond the possibilities of modern numerical 
techniques. Nevertheless on the basis of available numerical data it 
was reported that in this scenario there is a difficulty with 
explanation of huge voids in distribution of galaxies in space 3 2. This 
must depend on the ratio of the power in k"~3 part and the less steep 
part of the spectrum at linear stage. 

6. DISCUSSION 

I have considered three of the presently most popular models of dark 
matter from a dynamical point of view at the non-linear stage of the 
density inhomogeneities. Comparison with the available astronomical 
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data shows that two of them: 1) model with unstable neutrinos and 2) 
axion model are in remarkably better positions than the standard 
neutrino model. However they have "missing" from the eyes of 
astronomers problems invoking "fantastic" particles like unstable 
neutrino, familon or axion as well as Λ-term of needed value. Will the 
"investments" in the form of additional hypotheses in this model bring 
enough "interest" in the form of better quantitative explanation of 
observational data to keep their positions of leaders on the rtmarket" of 
models we shall see in a few years. New neutrino experiments and the 
Space Telescope will bring answers to many key questions. 

Comparison of the structure originating at non-linear stage in 
different models with observational one seems to show that in neutrino 
models the structure is too distinct1*0 and in axion model too dim 3 2 than 
real one. The former problem could be solved if one assumes some kind 
of explosions at the stage of galaxy formation. Physically the 
explosions could be similar to ones proposed by Ostriker and Cowie 3 3 but 
occuring only inside pancakes. This process can throw some galaxies out 
of the pancakes, making the structure dimmer, reducing the correlation 
length and slowing down evolution of the observable structure. In this 
case the distribution of galaxies would not be the same as that of the 
dark matter. 

It is worth to mention the possibility of non-monotonic spectra of 
initial perturbations. Recently Kofman and Linde 3 1 4 found a mechanism to 
generate not only flat (in metrics) but also such kind of spectra during 
inflation. This gives new possibilities in the structure and galaxy 
formation but again by the price of introducing additional free 
parameters. The advantage of the spectra with two maxima is advocated 
by Dekel 3 5. To make the structure comparable with the real one, one 
needs to have a rather steep short wavelength slope (probably η < -3) of 
the long wavelength maximum. 

Finally I would like to make a short comment on works about 
percolation. I proposed 3 6 to use percolation parameter B c as a quantity 
characterizing topological properties of the large scale distribution of 
galaxies. The application1*0 of percolation technique to the data of CfA 
catalogue has shown its usefulness. Later Bhavsar, Barrow 3 7 and Dekel, 
West 3 8 criticized it as a cosmological test. However their criticism 
concerns mostly the method of estimation of B c used firstly in

3 6» 1 4 0. 
That method was based on the calculation of the length of the largest 
cluster, which is simple and works well in the case of region of cubic 
shape analysed i n 3 6 > 1 + 0

) but for regions of more complicated shape 
considered i n 3 7 > 3 8 it is not appropriate. Recently Klypin 3 9 has shown 
that the percolation parameter B c can be easily estimated in regions of 
arbitrary shape using the approach of phase transitions. His analysis 
of different samples confirms our previous results 3 6> 1 + 0. Percolation 
analysis provides a new practically independent on correlation analysis 
parameter of the real distribution of galaxies characterizing its 
topology and any model of the large scale structure formation can be 
tested by it as well as by the correlation analysis. 

I am grateful to A. Szalay for help. 
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