
GABRIEL TOPOLOGIES ON DUBROVIN VALUATION RINGS

HIDETOSHI MARUBAYASHI
Department of Mathematics, Naruto University of Education, Naruto, Tokushima, Japan, 772-8502

e-mail: marubaya@naruto-u.ac.jp

and YANG ZHANG
Department of Applied Mathematics, University of Western Ontario, London, ON, Canada, N6A 5B7

e-mail: yzhang26@uwo.ca

(Received 3 February, 1999; accepted 26 February, 2001)

Abstract. All the Gabriel topologies on a Dubrovin valuation ring are classi-
fied in terms of its prime ideals. Furthermore, these Gabriel topologies are cogener-
ated by two kinds of indecomposable injective modules.

1991 Mathematics subject classification. 16D50, 16E60, 16H05.

Gabriel topologies have been investigated in the past 30 years by various
authors with many applications to non-commutative ring theory. For commutative
noetherian rings and commutative valuation rings, every Gabriel topology has a
simple form in terms of the prime ideals (see [14, Chapter VII] and [1, Theorem 3.3]).
However, in the noncommutative case, the situation is quite complex even if the ring
is noetherian (see [14, Chapter VII]). In [8], a similar question is discussed for chain
rings. In this paper, we classify in Theorem 5 all right Gabriel topologies on a
Dubrovin valuation ring R of a simple Artinian ring with finite dimension over its
center by using prime ideals, which is a generalization of the commutative valuation
ring case ([1, Theorem 3.3]). Our method is completely different from the commu-
tative ring case and we use the henselization technique. As an application of the
classification, we show that any right Gabriel topology on R is naturally cogenerated
by an indecomposable injective right R-module (Theorem 9).

Throughout this paper, we fix the following notation.
A ring will be an associative ring with unit element 1. Let C be a regular Ore set

of a ring R; that is, any element of C is regular and it is a right and left Ore set. We
denote by RC the quotient ring of R with respect to C. Let M be a right R-module.
An element m in M is called C-torsion if mc ¼ 0 for some c 2 C. It is well known that
the set tCðMÞ of all C-torsion elements of M is an R-submodule of M. If M ¼ tCðMÞ,
then M is called C-torsion. On the other hand, if tCðMÞ ¼ 0, then M is called C-tor-
sion-free. In the case in which C is the set of all regular elements of R, we simply say
that a right R-moduleM is torsion (resp. M is torsion-free) if M is C-torsion (resp. C-
torsion-free).

Let P be a prime ideal of R and let CðPÞ ¼ fc 2 R j c is regular mod Pg. If CðPÞ is
a regular Ore set of R, then the localization of R at P is denoted by RP. We denote
the center of R by ZðRÞ and the Jacobson radical of R by JðRÞ. As usual, SpecðRÞ is
the set of all prime ideals of R.
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We recall that an order R in a simple Artinian ring Q is called a Dubrovin
valuation ring if, for any q 2 Q n R ¼ fq 2 Qjq =2Rg, there exist r; r1 2 R such that
qr; r1q 2 R n JðRÞ, and R=JðRÞ is local; i.e., it is a simple Artinian ring.

Throughout this paper, R will be a Dubrovin valuation ring of a simple Artinian
ring Q with finite dimension over its center K and V ¼ ZðRÞ, a valuation ring of K.

We shall frequently use the following properties of a Dubrovin valuation ring
that have been proved by Dubrovin in [4] and [5].

(D1) The mapping P! } ¼ P \ V, where P 2 SpecðRÞ, is a bijection between
SpecðRÞ and SpecðVÞ. The inverse mapping is given by }! P ¼ JðR}Þ, where
} 2 SpecðVÞ ([12, Theorem 7.8]).

(D2) For any P 2 SpecðRÞ;Pn ¼ }R, for some natural number n. If P ¼ P2,
then P ¼ }R ([12, Theorem 7.8 and Corollary 13.11]).

(D3) For any P 2 SpecðRÞ, CðPÞ is a regular Ore set of R, RP ¼ R} and
P ¼ JðRPÞ ([12, Theorem 7.8]).

(D4) Let P 2 SpecðRÞ. Then P is principal as a right (or left) R}-module if and
only if P 6¼ P2 ([12, Lemmas 6.9 and 13.1]).

(D5) R-ideals of Q are linearly ordered by inclusions ([12, Proposition 6.4]).
Let = be a right Gabriel topology on a ring S. Then there exists an injective right

S-module E satisfying = ¼ fI : right ideal of SjHomSðS=I;EÞ ¼ 0g by [14, Proposi-
tion 3.7 and Theorem 5.7, Chapter VI]. We say that = is cogenerated by E and that E
generates =. Let I be a right ideal of a ring S and r 2 S. Then we use the following
notation: r�1 � I ¼ fx 2 Sjrx 2 Ig. We refer the reader to [7] and [14, Chapter VI] for
the definition and some elementary properties of right Gabriel topologies.

We begin with the following general properties of right Gabriel topologies. The
first three lemmas are implicitly known. However we shall give the complete proofs,
since we cannot find the proofs in any papers or any books.

Lemma 1. Let A be an ideal of a ring S and let = be a right Gabriel topology on S.
Set ~SS ¼ S=A. Then ~== ¼ fJ0jJ0 is a right ideal of ~SS and J0 � ~II; for some I 2 =, where
~II ¼ Iþ A=Ag is a right Gabriel topology on ~SS.

Proof. Let ~rr 2 ~SS and J0 2 ~==. Then there exists I 2 = such that J0 � ~II. It is easy to
check that ~rr�1 � ~II � gr�1 � Ir�1 � I. Since r�1 � I 2 =, ~rr�1 � J0 2 ~==.

Next, let ~II 2 ~==, I 2 = and ~JJ be a right ideal of ~SS such that ~aa�1 � ~JJ 2 ~== for any
a 2 I. Set J ¼ ’�1ð ~JJÞ, where ’ : S! S=A ¼ ~SS is the canonical homomorphism. Then
it is clear that fr 2 S j ~aa ~rr 2 ~JJg ¼ a�1 � J � A for any a 2 I. Hence ~aa�1 � ~JJ ¼ ga�1 � Ja�1 � J.
Thus a�1 � J 2 =, and so J 2 =. This implies that ~JJ 2 ~==. Hence ~== is a right Gabriel
topology on ~SS by [14, Lemma 5.2, VI]. &

Let = be a right Gabriel topology on a ring S and let M be a right S-module. An
element m 2M is said to be =-torsion if mI ¼ 0 for some I 2 =. The set t=ðMÞ of all
=-torsion elements in M is an S-submodule of M, and t=ðMÞ is called the =-torsion
submodule. If t=ðMÞ ¼M or t=ðMÞ ¼ 0, then M is called =-torsion or =-torsion-free,
respectively. We say that = is trivial if either all modules are =-torsion or =-torsion-
free; that is, either = 3 ð0Þ or = ¼ fSg. In the case of semiprime Goldie rings, we have
the following result.

Lemma 2. Let S be a semiprime Goldie ring with quotient ring Q, a semi-simple
Artinian ring. Then any non-trivial right Gabriel topology on S consists of essential
right ideals of S.
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Proof. Let = be a non-trivial right Gabriel topology on S and assume that there
exists I 2 = such that I is not an essential right ideal of S. Then there is a uniform
right ideal U of S such that I \U ¼ 0. By Zorn’s Lemma, we can choose J that is a
maximal element in the set fHjH is a right ideal of S;H � I and H \U ¼ 0g. Then
J 2 = and J is a complement right ideal of S in the sense of Goldie with
dimS=J ¼ dimS� dimJ ¼ 1. Here dimM is the uniform dimension of a module M.
Since S=J is torsion-free as a right S-module, we have a natural embedding:
S=J,!S=J�Q. Now let dimS ¼ n. Then �n � S=J,!�n � S=J�Q � Q as a right
S-module and Q is an essential extension of �n � S=J. Hence there exists
x 2 �n � S=J such that annSðxÞ ¼ fs 2 Sjxs ¼ 0g ¼ 0. This implies that ð0Þ 2 =,
because x is a =-torsion element, a contradiction. Hence = consists of essential right
ideals of S. &

Lemma 3. Let = be a right Gabriel topology on a ring S and subset C of ZðSÞ
consisting of elements that are regular in S. Then =C ¼ fIjI is a right ideal of SC such
that I \ S 2 =g is a right Gabriel topology on SC, where SC is the central localization of
S with respect to C.

Proof. Let I 2 =C and � ¼ sc�1 2 SC, where s 2 S and c 2 C. Then
s�1 � ðI \ SÞ � ��1 � I \ S and s�1 � ðI \ SÞ 2 =. Hence ��1 � I 2 =C. Let J be a right
ideal of SC such that ��1 � J 2 =C for any � 2 I. Then for any a 2 I0 ¼ I \ S, we have
a�1 � J \ S 2 =. Set J0 ¼ �a2I0aða

�1 � J \ SÞ, a right ideal. Then a�1 � J \ S � a�1 � J0
for any a 2 I0 implies that J0 2 =. Hence J 2 =C since J0 � J. Therefore =C is a right
Gabriel topology on SC by [14, Lemma 5.2, VI]. &

Let P 2 SpecðRÞ. Then we have the following two kinds of right Gabriel topol-
ogies on R:

=P ¼ fI j I is a right ideal with I \ CðPÞ 6¼ ;g and
=P ¼ fI j I is a right ideal with I � Pg if P ¼ P2.

Lemma 4. Let R be a rank one Dubrovin valuation ring of Q with P ¼ JðRÞ ¼ P2,
i.e., SpecðRÞ ¼ fP; ð0Þg. Then any right Gabriel topology on R is one of the following:

=P;=P;=ð0Þ and =ð0Þ, where =P ¼ fRg and =ð0Þ are trivial.

Proof. Let = be any right Gabriel topology on R. If P =2= , then = does not
contain any maximal right ideal and so = ¼ =P ¼ fRg.

If = contains a non-zero ideal A different from P, then 0 ¼ \An by [12, Propo-
sition 13.7 ], because R is rank one. Let B be any non-zero ideal of R. Then B � An

for some n > 0 and so = � =ð0Þ since R is a prime PI ring. Hence either = ¼ =ð0Þ or
= ¼ =ð0Þ by Lemma 2. Thus we may assume that = does not contain non-zero ideals
different from P and that P 2 =. It is clear that =P � = and we shall prove that
=P ¼ =.

Assume that =P 6¼ =. Let E be an injective right R-module that generates = and
let Vh be the henselization of V. Then Vh=V is a torsion-free V-module since
Vh \ K ¼ V and so Vh=V is flat as a V-module (see [12, Lemma 11.6(1)]). It follows
that Vh=V ¼ lim! Li, the direct limit of Li, where Li is a finitely generated free
V-module. From the exact sequence 0! V! Vh ! Vh=V! 0, we derive the
exact sequence 0! E! E� Vh ! E� Vh=V! 0. Since E is injective,
E� Vh ffi E� ðE� Vh=VÞ as a right R-module. Note that E� Vh=V is a direct limit
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of a finite number of copies of E since Vh=V is torsion-free and V is a valuation ring.
Set Rh ¼ R� Vh. Then it is a Dubrovin valuation ring of Qh ¼ Q� Kh with JðRhÞ ¼

JðRÞ � Vh by [12, Lemmas 4.4, 9.1, Theorems 9.8, 12.3], where Kh ¼ K� Vh. Note
that JðRhÞ is also idempotent. Let Qh ¼MnðD

hÞ, an n� n matrix ring over Dh, where
Dh is a division ring. Since Vh is a henselian valuation ring, there exists an invariant
valuation ring �h of Dh with Zð�hÞ ¼ Vh (see [12, Corollary 8.3]). Since any one-
sided ideal of �h is two-sided, it follows that there are four different kinds of right
Gabriel topologies on �h. This is proved in exactly the same way as in the commu-
tative case (see [1, Theorem 3.3]). By [12, Proposition 5.14], we may assume that
Rh ¼Mnð�

hÞ. Then there are four different kinds of right Gabriel topologies on Rh

by [15, x2]; that is, =Ph , =Ph , =ð0hÞ and =ð0hÞ, where Ph ¼ P� Vh. Now, let =h be the
right Gabriel topology on Rh cogenerated by the injective hull of E� Vh as a right
Rh-module. It is easily checked that =h � fJ� VhjJ 2 =g by [14, Proposition 5.5, VI].
Let I be a right ideal of R with I 2 = and I=2=P. Then we may assume that I � P and
so I� Vh 2 =h. It follows from [12, Lemma 11.6] that I� Vh \ R ¼ I, which implies
that I� Vh=2=Ph . Thus =h � =ð0hÞ follows. Hence for any non-zero ideal A of R, we
have A� Vh 2 =h. But this implies by [14, Proposition 5.5, VI] that xA 6¼ 0 for any
non-zero x 2 E. Hence A 2 =, a contradiction. Therefore = ¼ =P. &

Let A be an ideal of R with P ¼
ffiffiffiffi
A

p
, the prime radical of R. It follows from [12,

(13.1)] that P ¼
ffiffiffiffi
A

p
is a prime ideal of R. We say that A is right primary if xRy � A,

where x; y 2 R, implies x 2 A or y 2
ffiffiffiffi
A

p
. Similarly, a left primary ideal is defined,

and an ideal A is primary if it is right and left primary. Note that an ideal is right
primary if and only if it is left primary. See [12, Corollary 13.4].

A prime ideal P of R is said to be branched if there exists a P-primary ideal dif-
ferent from P. If P is the only P-primary ideal of R, then P is said to be unbranched.
Let P be branched and let A be P-primary with A 6¼ P. Then P0 ¼ \1n¼1A

n is a prime
ideal such that there is no prime ideal P0 with P � P0 � P0. We say that P0 is the
prime ideal next to P. If P is unbranched, then P ¼ [fP�jP� 2 Spec(R) with P� � Pg
(see [12, Theorem 13.10]).

Now we are in a position to prove the main theorem of this paper.

Theorem 5. Let R be a Dubrovin valuation ring of a simple Artinian ring Q with
finite dimension over its center K and let = be a right Gabriel topology on R. Then
there exists P 2 SpecðRÞ such that either = ¼ =P or = ¼ =P and P ¼ P2.

Proof. We may assume that = is non-trivial; that is, there exists I 2 = with I 6¼ R
and 0 =2=. Then = consists of essential right ideals of R by Lemma 2.

Consider the set P ¼ fP0 2 SpecðRÞjP0 � A for any two-sided ideal A 2 =g and
set P ¼ [P02PP

0. Then P 2 SpecðRÞ by [12, Lemma 13.9]. It is easy to check the
following facts:

(1) P � A for any ideal A 2 =.
(2) P � P0 and P0 2 SpecðRÞ imply P0 2 P.
We shall prove that either = ¼ =P or = ¼ =P and P ¼ P2. The proof will be

divided into several steps.

Step 1. We claim that if B is an ideal of R with P � B, then B 2 =.
Define P1 ¼ \fP0 2 SpecðRÞjP0 � Bg. Since P1 � B � P, by the construction of

P, there exists an ideal A 2 = such that P1 � A. For any x 2 P1 n A ¼

320 HIDETOSHI MARUBAYASHI AND YANG ZHANG

https://doi.org/10.1017/S0017089501030117 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501030117


fx 2 P1jx 62 Ag, set I ¼ RxR. Then I ¼ rS ¼ Sr for some r 2 I by [12, Lemma 7.10],
where S ¼ OrðIÞ ¼ fq 2 QjIq � Ig. Since x =2A, I � A and so I 2 =. Since I is princi-
pal as an S-module and I � P1, by [12, Proposition 13.7], we have that P2 ¼ \1n¼1I

n

is a prime ideal and P1 � P2. If P2 � B, then P2 � P1 by the construction of P1, a
contradiction. Therefore P2 � B. Assume that In � B for all n. Then P2 � B, a
contradiction. Hence there exists n such that In � B and In 2 =. Thus B 2 =.

Step 2. We claim that =P � =.
Set } ¼ P \ V. Then R} ¼ RP and for any I 2 =P; IR} ¼ R}; i.e., there exists

c 2 V n } such that c 2 I. Since c =2P, I � cR � P. By Step 1, cR 2 = and so I 2 =.
Hence =P � =.

Thus we have either =P ¼ = or =P � =.

Step 3. We claim that if =P � =, then =P � =.
Let E be the injective right R-module which cogenerates =. It follows from the

assumption that there exists I 2 = such that IRP � RP, and so we may assume that I
satisfies the following:

I ¼ IRP \ R and IRP is a maximal right ideal of RP.

Then we have an exact sequence: 0! R=I! RP=IRP. Assume that there exists
a nonzero map f: RP=IRP ! E and choose 0 6¼ x ¼ ½rc�1 þ IRP# 2 RP=IRP such that
fðxÞ 6¼ 0, where r 2 R; c 2 V n }. Since cR 2 =P � = and E is =-torsion-free by [14,
Proposition 5.5, VI], we have that 0 6¼ fðxÞc ¼ fðxcÞ; xc 2 R=I. Hence f jR=I, the
restriction map to R=I, is non-zero. This is a contradiction. Therefore,
HomðRP=IRP;EÞ ¼ 0 and so RP=IRP is =-torsion. Thus RP=P

0 is also =-torsion,
where P0 ¼ JðRPÞ ¼ P. Since R=P � RP=P

0, we have P 2 = and so =P � =.

Step 4. We claim that if =P � =, then =P ¼ =.
We assume that =P � = and consider the following three cases.

Case 1. Assume that P 6¼ P2. Then P ¼ aRP ¼ RPa, for some a 2 R, and so
P=P2 ffi RP=P. Note that we have proved that RP=P is =-torsion in Step 3. Thus
P2 2 =, contradicting the choice of P. Hence it follows that P ¼ P2.

Case 2. P ¼ P2 and P is branched.
Since =P � =, there exists I 2 = such that I =2=P, and so P 2 = implies that

I \ P 2 =. Thus we may assume that I � P. Furthermore, let P0 be the prime ideal
next to P and set }0 ¼ P0 \D.

If Iþ P0 ¼ P, then I}0
þ P0}0

¼ R}0
and so I}0

¼ R}0
, by Nakayama’s

lemma. Thus there exists c 2 V n }0 such that cR � I and cR � P0. Therefore
P � I � P0.

If Iþ P0 � P, then P � Iþ P0 � P0 and Iþ P0 2 =. Hence, in both cases, we
may assume that there exists I 2 = such that P � I � P0.

Furthermore, if I} ¼ P, then for any p 2 P there exists c 2 V n } with pc 2 I.
Since c =2P, we have cR � P and so pP � pcR � I. Thus P ¼ P2 � I, a contradiction.
Hence we may also assume that I} � P. Then, by using Lemma 3, we may assume
that R ¼ R}, i.e., JðRÞ ¼ P.

Set ~RR ¼ R=P0. Then ~RR is a rank one Dubrovin valuation ring with ~== � = ~PP,
where ~PP ¼ P=P0. It is easy to check that Cð ~PPÞ ¼ gCðPÞCðPÞ. Hence ~==P ¼ = ~PP and ~II � ~PP
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follows. Thus ~II 2 ~== but ~II =2= ~PP. Therefore, by Lemma 4, either ~== ¼ =
ð~00Þ or

~== ¼ =
ð~00Þ � =

ð~00Þ. This implies that for any ideal A with P0 � A � P, ~AA 2 ~== and so
A 2 =, a contradiction. Hence = ¼ =P.

Case 3. P is unbranched; that is, P ¼ [P�ðP� 2 SpecðRÞ with P� � PÞ.
As in Case 2, there exists I 2 = with I � P. Assume that I 2 =P�

for all �; that is,
there exists c� 2 V n }� such that c�R � I for all �. Set A ¼ ��c�R, an ideal properly
containing P�. Then we have I � A � P, a contradiction. Thus there is P� 2 SpecðRÞ
such that P � P� and I =2=P�

. If Iþ P� ¼ P, then I}�
þ P�}�

¼ P}�
¼ R}�

, where
}� ¼ P� \ V. This implies that I}�

¼ R}�
, a contradiction. Thus we may assume that

P � I � P�, I 2 = and ~II ¼ I=P� is not an essential right ideal of ~RR ¼ R=P�. Since ~RR is
a prime Goldie ring, we see from Lemma 2 that ~00 2 ~==. This implies that P� 2 =, a
contradiction. Hence = ¼ =P follows.

Thus, we have proved that either = ¼ =P or = ¼ =P, for some P 2 SpecðRÞ. It
remains to show that P ¼ P2 if = ¼ =P. However, if P 6¼ P2, then P2 2 = as has been
shown in Case 1. This is a contradiction. Therefore P ¼ P2. &

Corollary 6. The set of all right Gabriel topologies on a Dubrovin valuation ring R
is linearly ordered by inclusion. In particular, if P is an unbranched prime ideal, then
=P ¼ \=P�

, where P� 2 SpecðRÞ with P� � P.

Proof. The first part follows from Theorem 5. Assume that P is unbranched.
Then it is clear that =P � \=P�

. To prove the converse inclusion, let I 2 =P�
for any

P� 2 SpecðRÞ with P� � P. Then since I}�
¼ R}�

, there exists c� 2 V n }� with c� 2 I.
Set A ¼

P
c�R. Then A � I and A � P�, for all P� with P� � P. Hence A � P and

so A 2 =P. Therefore I 2 =P. &

For any right R-module M, we denote by ERðMÞ (or simply EðMÞ) the injective
envelope of M. Let E be an indecomposable injective right R-module. Then it is easy
to see that E is either torsion or torsion-free. If E is torsion, then E ¼ EðR=IÞ for
some meet-irreducible, essential right ideal I, and if E is torsion-free, then E is iso-
morphic to a minimal right ideal of Q.

The following lemma is due to Matlis [13] in the case of commutative domains.

Lemma 7. Let I and J be essential right ideals of R.
(1) Assume that EðR=IÞ is indecomposable. Then EðR=IÞ ffi EðR=JÞ if and only if

s�1 � I ¼ t�1 � J, for some s 2 R n I and t 2 R n J.
(2) Assume that I � JðRÞ. Then
(a) EðR=IÞ ¼ EðQ=IÞ;
(b) EðR=IÞ ffi EðR=cIÞ, for any regular element c 2 R.

Proof. (1) This is well known (see [10, Proposition 2.2]).
(2) (a) It suffices to prove that Q=I is an essential extension of the right R-module

R=I. Let �qq ¼ ½qþ I # be any non-zero element of Q=I, where q 2 Q n R. Then there
exists r 2 R with qr 2 R n JðRÞ. Since I � JðRÞ, it follows that qr =2 I and so
�00 6¼ �qqr 2 R=I.

(b) Since cQ ¼ Q, for any regular element c 2 R, the homomorphism
Q=I! Q=cI given by ½qþ I # ! ½cqþ cI # is an isomorphism as a right R-module.
Hence we have EðR=IÞ ¼ EðQ=IÞ ffi EðQ=cIÞ ¼ EðR=cIÞ by (a). &
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We have shown in Theorem 5 that any right Gabriel topology = on R is either
=P or =P for some P 2 SpecðRÞ. Next we shall prove that = is naturally cogenerated
by the indecomposable injective right R-module E with P ¼ AssRðEÞ, the associated
prime ideal of E.

Let M be a uniform right R-module. We define AssRðMÞ ¼ fr 2 RjNr ¼ 0, for
some non-zero R-submodule N of Mg. It is clear that AssRðMÞ is an ideal of R.

Lemma 8. Let M be a uniform right R-module. Then AssRðMÞ is a prime ideal
of R.

Proof. Since EðMÞ is uniform and AssRðMÞ ¼ AssRðEðMÞÞ, we may assume that
M is an indecomposable injective right R-module. If M is torsion-free, then
AssRðMÞ ¼ 0, a prime ideal, and so we may assume that M is torsion. It follows
from the proof of [6, Theorem 2.1] that } ¼ AssVðMÞ ¼ fv 2 VjannMðvÞ 6¼ 0g is a
prime ideal of V, because annMðvÞ ¼ fm 2Mjmv ¼ 0g is a right R-submodule of M.
Since M is C-torsion-free, where C ¼ V n }, it follows that M is an injective right R}-
module (see [9, Corollary 9.16]). We shall prove that P ¼ AssRðMÞ, where
P 2 SpecðRÞ with } ¼ P \ V. Since } � AssRðMÞ, we have }R � AssRðMÞ. Assume
that AssRðMÞ is not contained in P. Then AssRðMÞ \ CðPÞ 6¼ ; and so
AssRðMÞ \ V n } 6¼ ;, because RP ¼ R}. Thus we have AssVðMÞ � }, a contra-
dication. Hence }R � AssRðMÞ � P follows. We know that Pn ¼ }R for some
n > 0.

If n ¼ 1, then we have P ¼ AssRðMÞ. If n > 1, then P 6¼ P2 and so
P ¼ pR} ¼ R}p for some p 2 P, and there exists a non-zero R-submodule N of M
such that Npn ¼ 0. Hence we may assume that Npm ¼ 0 and Npm�1 6¼ 0 for some
mð1 $ m $ nÞ. Then 0 ¼ NpmR} ¼ Npm�1R}p. This implies that p 2 AssRðMÞ and so
P ¼ pR} � AssRðMÞ. Hence P ¼ AssRðMÞ follows.&

Remark. Let E be an indecomposable injective right R-module with
P ¼ AssRðEÞ. Then E is an indecomposable injective right RP-module as it is seen in
the proof of Lemma 8, because RP ¼ R}, where if P = (0), then RP ¼ Q. Further-
more, we have the following two types.

(A) There exists a non-zero x 2 E such that xP ¼ 0.
(B) xP 6¼ 0 for any non-zero x 2 E.

Theorem 9. Let R be a Dubrovin valuation ring of Q and let P 2 SpecðRÞ.
(1) =P is cogenerated by an indecomposable injective right R-module E such that

P ¼ AssRðEÞ and E is of type (A).
(2) Assume that P2 ¼ P. Then =P is cogenerated by an indecomposable injective

right R-module E such that P ¼ AssRðEÞ and E is of type (B).

Proof. (1) =P is cogenerated by EðR=PÞ ¼ ERP
ðRP=PÞ (see [11, Lemma 8] and

[10, Corollary 3.10]). Let I0 be a maximal right ideal of RP (if P ¼ ð0Þ, then RP ¼ Q)
and let I ¼ I0 \ R. It is clear that RP=I

0 is an essential extension of R=I as a right R-
module, ERP

ðRP=PÞ is a finite number of copies of EðRP=I
0Þ and P ¼ AssRðEðRP=I

0ÞÞ.
Hence =P is cogenerated by EðR=IÞ since EðR=IÞ ¼ ERP

ðRP=I
0Þ, which is indecom-

posable. It is also clear that EðR=IÞ is of type (A).
(2) Case 1. 0 6¼ P ¼ P2 and P is branched.
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Set } ¼ P \ V and let P0 be the prime ideal of R next to P. For any fixed
� 2 } n }0, where }0 ¼ P0 \ V, set A ¼ �R} and define AssRðEðR=AÞÞ ¼
fr 2 RjNr ¼ 0 for some non-zero R-submodule N of EðR=AÞg. Since R=A is C-tor-
sion-free, where C ¼ V n }, EðR=AÞ is a right R}-module by [9, Corollary 9.16]. To
prove that P ¼ AssRðEðR=AÞÞ, let r 2 AssRðEðR=AÞÞ and assume that r=2P. Then
Ir � A for some right ideal I with I 6� A, and so I � I}R} ¼ I}R}rR} ¼

ðIRrRÞ} � A} ¼ A, a contradiction, because JðR}Þ ¼ P. Hence P � AssRðEðR=AÞÞ.
Conversely, let p 2 P and set B ¼ R}pR}. Then Bn � A for some n > 0 by [12,

Lemma 13.8] and so B � AssRðEðR=AÞÞ. Thus P ¼ AssRðEðR=AÞÞ follows. Since R=A
is an n-chain ring for some n > 0 by [4, Proposition 1 and Theorem 4, x 1], it follows
that R=A has a finite Goldie dimension, that is EðE=AÞ ¼ E1 � � � � � Ek for some
indecomposable injective right R-module Eið1 $ i $ kÞ. It follows that
AssRðEðR=AÞÞ ¼ AssREi for some i. To prove that E ¼ Ei is of type (B), assume that
rP � A for some non-zero ½rþ A# 2 R=A \ E. Set C ¼ R}rR}. Then we have
P ¼ }R} � C � A, because P ¼ JðR}Þ. CP � A ¼ �R} and P2 ¼ P imply that
��1C � OlðPÞ ¼ R} by [12, Lemma 6.8], where OlðPÞ ¼ fq 2 QjqP � Pg. Thus
C � A ¼ �R}, a contradiction. Therefore E is of type (B). Let = be a right Gabriel
topology on R cogenerated by E. Since E is of type (B) with P ¼ AssRðEÞ, it follows
by [14, Proposition 5.5 VI] that P 2 = and so = � =P. Assume that = 6¼ =P. Then, by
Theorem 5 and Corollary 6, = � =P0

. Set E ¼ EðR=IÞ for some meet-irreducible right
ideal I of R. Then for any 	 2 } n }0, there exists s 2 R such that s	 � I and s=2I.
Thus we may assume that 	 2 I, by Lemma 7. Since 	R � P0, it follows that
	R 2 =P0

� = and I 2 = follows. Hence HomRðR=I;EÞ ¼ 0, a contradiction. There-
fore = ¼ =P.

Case 2. P is unbranched; that is, P ¼ [fP�jP� 2 SpecðRÞ with P� � Pg.
Let P
 be any branched prime ideal with P
 � P. Then, as in Case 1,

set A ¼ �R} for any fixed � 2 }
 n ð}
Þ0, where }
 ¼ P
 \ V and ð}
Þ0 ¼

ðP
Þ0 \ V.
To prove that P ¼ AssRðEðR=AÞÞ, let p be any element in }. Then we have

EðR=AÞ ffi EðR=pAÞ by Lemma 7. Thus we may assume that R=pA is embedded in
EðR=AÞ. Now ½�þ pA# is non-zero with ½�þ pA#p ¼ �00 and thus } � AssRðEðR=AÞÞ.
Let x ¼ pr be any element in P ¼ }R, where p 2 } and r 2 R. Then there exists a
right ideal I of R such that Ip � A and I is not contained in A. Thus Ix � A and so
x 2 AssRðEðR=AÞÞ. Hence P � AssRðEðR=AÞÞ follows. The converse inclusion fol-
lows as in Case 1. Therefore P ¼ AssRðEðR=AÞÞ. Now we can find an indecompo-
sable injective right R-module E of type (B) with P ¼ AssRðEÞ in exactly the same
way as in Case 1. Let = be a right Gabriel topology on R cogenerated by E. Then we
have = � =P as in Case 1. Assume that = 6¼ =P. Then = � =P�

for some P� 2 SpecðRÞ
with P� � P, by Theorem 5 and Corollary 6. Since P is unbranched, there exists a
branched prime ideal P� with P � P� � P� . Note that ðP�Þ0 � P�. As in Case 1,
there exists a meet-irreducible right ideal I� and �� 2 I� \ }� n ð}�Þ0 such that
E ¼ EðR=I�Þ, where }� ¼ P� \ V and ð}�Þ0 ¼ ðP�Þ0 \ V. Since I� � ��R � ðP�Þ0, we
have ��R 2 =P�0

� = and so I� 2 =, a contradiction. Hence = ¼ =P.
Finally if P ¼ 0, then it is clear that =ð0Þ is cogenerated by E ¼ f0g, the zero R-

module. &

We shall give a more detailed structure of an indecomposable injective right
R-module E with P ¼ AssRðEÞ in the case in which R is Prüfer in a forthcoming
paper.
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