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MALTSEV CONDITIONS FOR GENERAL CONGRUENCE
MEET-SEMIDISTRIBUTIVE ALGEBRAS

MIROSLAV OLŠÁK

Abstract. Meet semidistributive varieties are in a sense the last of the most important classes in
universal algebra for which it is unknown whether it can be characterized by a strong Maltsev condition.
We present a new, relatively simple Maltsev condition characterizing the meet-semidistributive varieties,
and provide a candidate for a strong Maltsev condition.

§1. Introduction. The tame congruence theory (TCT) [3], a structure theory of
general finite algebras, has revealed that there are only five possibly local behaviors
of a finite algebra:

(1) algebra having only unary functions,
(2) one-dimensional vector space,
(3) the two-element Boolean algebra,
(4) the two-element lattice,
(5) the two-element semilattice.
If there is a local behavior of type (i) in an algebra A, the algebra is said to have

type (i). A variety V has type (i) if there is an algebra A ∈ V that has (i). If an algebra
or variety does not have a type (i), it is said to omit type (i). The set of “bad” types
that are omitted in a variety is an important structural information; for instance, it
plays a significant role in the fixed-template constraint satisfaction problem [2]. The
“worst” type is type (1) and omitting it has been characterized in many equivalent
ways, one of which is given in the following theorem.

Theorem 1.1 [9]. A locally finite variety V omits type (1) if and only if there is
an idempotent WNU (weak near unanimity) term in V , that is a term satisfying the
following identities:

• idempotence: t(x, x, x, ... , x) = x,
• weak near unanimity:

t(y, x, x, ... , x) = t(x, y, x, ... , x) = ··· = t(x, ... , x, y)

for any x, y ∈ A in every A ∈ V .

Such a characterization of varieties of algebras by means of the existence of terms
satisfying certain identities is in general called Maltsev conditions. More precisely,
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a strong Maltsev condition is given by a finite set of term symbols and a finite
set of identities. A given strong Maltsev condition is satisfied in a variety V if we
can substitute the term symbols by actual terms in the variety in such a way that
all the identities are satisfied. A general Maltsev condition is then a disjunction of
countably many strong Maltsev conditions (as in the example of Theorem 1.1).

Whenever a variety V satisfies a certain Maltsev condition and W is interpretable
intoW , thenW satisfies the Maltsev condition too. For the notion of interpretability,
we refer the reader to [3]. There are the following relations between types of locally
finite varieties and the interpretability.

• Any variety that has type (1) is interpretable into any variety.
• Any variety is interpretable into a variety that has type (3).
• Any variety that has type (5) is interpretable into a variety that has type (4).

Therefore, it is reasonable to ask for the Maltsev conditions for the following classes:

M{1},M{1,2},M{1,5},M{1,2,5},M{1,4,5},M{1,2,4,5},

where MS is the class of all the algebras that omit all the types from the set S. There
is an appropriate Maltsev condition for all six classes.

It was proved that M{1} and M{1,2} can be characterized by strong Maltsev
conditions. Recall that idempotent term is a term t satisfying the equation
t(x, x, ... , x) = x.

Theorem 1.2 [7]. A locally finite variety omits type (1) if and only if it has an
idempotent 4-ary term s satisfying s(r, a, r, e) = s(a, r, e, a).

Theorem 1.3 [8, Theorem 2.8]. A locally finite variety omits types (1) and (2) if
and only if it has 3-ary and 4-ary idempotent terms w3, w4 satisfying the equations

w3(yxx) = w3(xyx) = w3(xxy) = w4(yxxx)

= w4(xyxx) = w4(xxyx) = w4(xxxy).

In the same paper [8] the authors have demostrated that the remaining classes,
that is M1,5,M1,2,5,M1,4,5,M1,2,4,5, cannot be characterized by strong Maltsev
conditions.

Although types in the TCT are defined only for locally finite varieties (because
only finite algebras are assigned types), the type-omitting classes have alternative
characterizations which do not refer to the type-set. They are shown in the following
table taken from [8].

Type Omitting Class Equivalent property

M{1} satisfies a nontrivial idempotent Maltsev condition
M{1,5} satisfies a nontrivial congruence identity
M{1,4,5} congruence n-permutable, for some n > 1
M{1,2} congruence meet semidistributive
M{1,2,5} congruence join semidistributive

M{1,2,4,5}
congruence n-permutable for some n and congruence
join semidistributive
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1434 MIROSLAV OLŠÁK

Each of the properties in the right column of the table is characterized by an
idempotent Maltsev condition [3] for general (not necessarily locally finite) varieties.
However, Theorems 1.2 and 1.3 giving strong Maltsev conditions are not guaranteed
to work. Indeed, there is an example of an idempotent algebra that satisfies a
non-trivial Maltsev condition, but has no term s(r, a, r, e) = s(a, r, e, a), see [4].
However, it turned out that the first property is characterized by another strong
Maltsev condition.

Theorem 1.4 [10]. An idempotent variety satisfies a non-trivial Maltsev condition
if and only if it has a term t such that

t(yxx, xyy) = t(xyx, yxy) = t(xxy, yyx).

The finite counterexamples to strong Maltsev conditions for

M{1,5},M{1,2,5},M{1,4,5},M{1,2,4,5}

work as counterexamples for the general case, so the remaining question is the
following.

Question 1.1. Is there a strong Maltsev condition that is equivalent to congruence
meet-semidistributivity?

1.1. Congruence meet-semidistributivity. By Con(A) we denote the lattice of
congruences of A. A varietyV is said to be congruence meet-semidistributive (shortly
SD(∧)) if for any A ∈ V , and any three congruences α, �, � ∈ Con(A) such that

α ∧ � = � ∧ �,
we have

α ∧ � = � ∧ � = (α ∨ �) ∧ �.
This property has many equivalent definitions, see Theorem 8.1 in [6]; we mention

some of them.

Theorem 1.5. Let V be a variety. The following are equivalent.

• V is a congruence meet-semidistributive variety.
• No member of V has a non-trivial abelian congruence.
• [α, �] = α ∧ � for all α, � ∈ Con(A) and all A ∈ V , where [α, �] denotes the

commutator of congruences.
• The diamond latticeM3 is not embeddable in Con(A) for any A ∈ V .
• V satisfies an idempotent Maltsev condition that fails in any finite one-dimensional

vector space over a non-trivial field (equivalently in any module).

In this paper, we are going to study the Maltsev conditions satisfied by every
SD(∧) variety. Not only is it not known whether there is a strong Maltsev condition
characterizing the SD(∧) varieties, but the known Maltsev conditions for SD(∧)
were quite complicated. Probably the simplest Maltsev condition for SD(∧) which
was available before this work is the following one.

Let [n] denote the set {1, 2, ... , n}. Consider some n, and a self-inverse bijection
ϕ : [2n] → [2n] without fixed points, such that whenever i < j < ϕ(i), then also
i < ϕ(j) < ϕ(i). Such a bijection corresponds to a proper bracketing sequence
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with n opening and n closing brackets. Then the bracket terms are ternary terms
b1, ... , b2n satisfying the following identities:

b1(x, y, z) = x, b2n(x, y, z) = z,

b2i(y, x, x) = b2i–1(y, x, x), b2i(x, x, y) = b2i+1(x, x, y),

bi(x, y, x) = bϕ(i)(x, y, x),

for any i where it makes sense.

Theorem 1.6 [1, Theorem 1]. A variety V satisfies the SD(∧) property if and only
if it has some bracket terms.

1.2. The new terms. In this paper we define (m1 +m2)-terms as a triple of
idempotent terms (f, g1, g2), where g1 is m1-ary, g2 is m2-ary, f is (m1 +m2)-ary,
and they satisfy the identities

f(x, x, ... , x, y
i
, x, ... , x) = g1(x, x, ... , x, y

i
, x, ... , x) for any i = 1, ... , m1,

f(x, x, ... , x, y
n1+i
, x, ... , x) = g2(x, x, ... , x, y

i
, x, ... , x) for any i = 1, ... , m2.

We prove the following theorem.

Theorem 1.7. A variety V is congruence meet-semidistributive if and only if it has
(3 +m)-terms for some m.

Checking the backward implication is easy. For a contradiction, assume that the
identities of (m1 +m2)-terms were satisfied in some nontrivial unitary module. That
means that f, g1, g2 are represented by linear combinations. In particular, let

f(x1, x2, ... , xm1+m2) = a1x1 + ··· + am1+m2xm1+m2 ,

g1(x1, x2, ... , xm1) = b1x1 + ··· + bm1xm1 ,

g2(x1, x2, ... , xm2) = c1x1 + ··· + cm2xm2 .

By plugging x = 0 and y �= 0 into the identities for f and g1, we get ai = bi for i =
1, ... , m1. If we make the same substitution in the second identity, we get am1+i = ci
for i = 1, ... , m2. Moreover, idempotence enforces

m1+m2∑
i=1

ai =
m1∑
i=1

bi =
m2∑
i=1

ci = 1.

Therefore we get

1 =
m1+m2∑
i=1

ai =
m1∑
i=1

bi +
m2∑
i=1

ci = 2,

which contradicts that our field was non-trivial. Thus, we proved the backward
implication.

To prove the forward implication, we take a detour through a generalized version
of (m1 +m2)-terms. Given n,m, we define n × (n + 1) ×m-terms as follows.

Let i have values from 1 to n, j have values from 1 to n + 1, and k have values from
1 to m. The n × (n + 1) ×m-terms are idempotent (n + 1)m-ary termsfi (variables
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1436 MIROSLAV OLŠÁK

are indexed by pairs (j, k)) and idempotent nm-ary terms gj (variables are indexed
by pairs (i, k)) such that for every i, j, k they satisfy the equation

fi(x, x, ... , x, y
(j,k)
, x, ... , x) = gj(x, x, ... , x, y

(i,k)
, x, ... , x).

By definition, 1 × 2 ×m-terms are equivalent to the (m +m)-terms. On the other
hand, for large enough n,m, it is simple to derive the n × (n + 1) ×m-terms from
another Maltsev condition not satisfiable in vector spaces.

Proposition 1.1. Let V be an SD(∧) variety. Then V has n × (n + 1) ×m-terms
for some n,m.

Proof. By Theorem 1.6, there are bracket terms b1, ... , b2n in V corresponding to
a bijectionϕ : [2n] → [2n]. Notice that sinceϕ forms a proper bracketing,ϕ(i) has a
different parity than i for any i. Let �(i) = ϕ(2i – 1)/2 and �′(i) = (ϕ(2i) + 1)/2.
In other words, we split [2n] to odd and even parts and label them as [n]; then �
corresponds to the mapping ϕ odd → even, and �′ to its inverse. We construct
n × (n + 1) × 3-terms as follows. We set

g1(x1,1, ...) = x1,1,

gi(... , xi,1, ... , x�(i),2, ... , xi–1,3, ...) = b2i–1(xi,1, x�(i),2, xi–1,3),

gn+1(... , xn,3) = xn,3,

fi(... , xi,1, ... , x�′(i),2, ... , xi+1,3, ...) = b2i(xi,1, x�′(i),2, xi+1,3).

All the n × (n + 1) × 3-identities follow directly from the bracket identities. �

1.3. Outline. The rest of the proof is divided into two sections. In Section 2
we show that in n × (n + 1) ×m-terms, we can decrease n by one increasing m
enough. It follows that any SD(∧) variety has (m +m)-terms for large enough m.
In Section 3, we improve that result to (3 +m)-terms. Section 4 then provides a
few counterexamples showing that requesting (2 +m)-terms would be too strong.
Finally, in Section 5 we discuss the remaining open questions.

§2. Simplifying n × (n + 1) ×m-terms.

2.1. Semirings. We will need some basic facts about semirings for our first proof.
Semiring is a general algebra A = (A,+, ·, 0, 1) where (A,+, 0) is a commutative

monoid, (A, ·, 1) is a monoid, zero absorbs everything in multiplication (0 · x =
x · 0 = 0), and distributive laws are satisfied, that is, a · (b + c) = a · b + a · c and
(a + b) · c = a · c + b · c. As usual, the binary multiplication operation · is often
omitted writing ab instead of a · b.

Let A be an alphabet. The elements of the free monoid A∗ generated by A are
represented by finite words in the alphabet, multiplication concatenates the words,
and the constant 1 corresponds to the empty word. Finally, the elements of the free
semiring generated by A are represented as finite multisets (formal sums) of words
in A∗. The addition in the free semiring is defined as sums (disjoint unions) of the
corresponding multisets, and the product p · q is defined as piecewise product of the
monomials, that is {u · v : u ∈ p, v ∈ q}.
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Let F be the free semiring generated by some alphabet A, and E be a set of
equations of the form e1 = 1, e2 = 1, e3 = 1, ...where ei ∈ F. We are going to provide
a description of the congruence on F generated by E.

Take a monomial u ∈ A∗. By a single expansion of u we mean any element of F
of the form veiw where vw = u. A single expansion on a general element of F is
then defined as performing a single expansion on one of its summands. Finally, we
say that p is an expansion of q if we can obtain p by performing consecutive single
expansion steps starting from q.

Proposition 2.1. For any pair (p, q) of elements in F, these two elements are
congruent modulo the congruence generated by E if and only if there is a common
expansion r of both p and q.

Proof. The backward implication is obvious: If r is an expansion of p, then r is
clearly congruent to p. Analogously, r is congruent to q, therefore p is congruent to
q. We are going to prove the forward implication.

For p, q ∈ F we define a relation p ∼ q if there is a common expansion of p and
q. Clearly each ei ∼ 1. To show that ∼ includes the congruence generated by E, it
remains to prove that ∼ is a congruence. Symmetry and reflexivity are apparently
satisfied, so we have to prove that ∼ is transitive and compatible with the operations.
To do that, let us introduce some notation.

Let p ≤ q denote that q is an expansion of p and let p � q denote that q can be
obtained by applying single expansion steps on a subset of summands of p. So p � q
is stronger than p ≤ q but weaker than q being a single expansion of p.

These orderings are clearly closed under addition. In particular, if p =
∑n
i pi ,

q =
∑n
i qi , and pi � qi , then p � q. �

Claim 2.1. For any p, q, r, s ∈ F such that p � q we have rps � rqs .

To verify that, let p =
∑P
j pj , q =

∑P
j qj , r =

∑R
i ri , s =

∑S
k sk , where ri , pj, sk

are monomials and pj � qj . Then

rps =
R∑
i

P∑
j

S∑
k

ripjsk, rqs =
R∑
i

P∑
j

S∑
k

riqjsk.

Since pj � qj , we can write pj = ujvj so that qj = ujxjvj where xj � 1, that is,
xj = 1 or xj is one of the elements ei . So we can write ripjsk = (riuj)(vjsk) and
riqj = (riuj)xj(vjsk). Therefore ripjsk � riqjsk and thus rps � rqs .

Claim 2.2. For any p, q, r ∈ F such that r � p and r � q there exists s ∈ F such
that p � s and q � s .

First, we prove the claim if r is a monomial. So polynomials p, q are constructed
by inserting p′, q′ somewhere into r, respectively, where p′, q′ � 1. Without loss of
generality, q′ is inserted at the same position as p′ or later, so we can write r = uvw,
p = up′vw, q = uvq′w. Now we choose s = up′vq′w. By Claim 2.1 and p′, q′ � 1
we get the required

p = (up′v)(w) � (up′v)q′(w) = s, q = (u)(vq′w) � (u)p′(vq′w) = s.
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For a general r =
∑n
i ri where ri are monomials, we decompose p =

∑n
i pi , q =∑n

i qi so that ri � pi , qi . Therefore, we find elements si such that si � pi , qi , and
eventually s =

∑n
i si � p, q.

We are finally ready to prove the transitivity of ∼ and compatibility with
operations.

Claim 2.3. If x, r, y ∈ F, x ∼ r, and r ∼ y, then x ∼ y.
By definition of ∼, there are p, q ∈ F such that x, r ≤ p and r, y ≤ q. We break

the expansion r ≤ p into finite number of single expansion steps getting a sequence

r = s0,0 � s1,0 � ··· � sP,0 = p.

Similarly, there is a sequence

r = s0,0 � s0,1 � ··· � s0,Q = q.

By repeated application of Claim 2.2, we fill in the matrix (si, j) ∈ FP×Q in such a
way that si, j � si+1, j and si, j � si, j+1 where they are defined. Eventually, we get
s = sP,Q such that s ≥ p, q. Therefore s ≥ p ≥ x and s ≥ q ≥ y, so x ∼ y.

Compatibility of ∼ with addition and multiplication is straightforward. For
p1, q1, p2, q2 ∈ F such that p1 ∼ q1 and p2 ∼ q2, there are r1, r2 such that p1, q1 ≤ r1
and p2, q2 ≤ r2. Thus p1 + p2 ≤ r1 + r2 and q1 + q2 ≤ r1 + r2. Therefore p1 + p2 ∼
q1 + q2, so ∼ is compatible with addition.

Regarding multiplication, consider any p, q, s ∈ F such that p ∼ q. There is r such
that p, q ≤ r. By Claim 2.1, we get sp, sq ≤ sr and ps, qs ≤ rs . Therefore sp ∼ sq
and ps ∼ qs .

This is sufficient for compatibility with multiplication: If p1 ∼ q1 and p2 ∼ q2,
then p1p2 ∼ q1p2 ∼ q1q2, so p1p2 ∼ q1q2 by transitivity.

2.2. Decreasing n.

Theorem 2.4. Let A be an idempotent algebra with n × (n + 1) ×m-terms for
some n > 1, m > 0. Then there exists m′ such that A has (n – 1) × n ×m′-terms.

For proving the theorem, we first make a few assumptions without loss of
generality. We assume that m ≥ 2—if m = 1, we introduce dummy variables.
Moreover, we assume that n × (n + 1) ×m-terms f1, ... , fnm, g1, ... , g(n+1)m are
the only basic operations of A, and A is free idempotent algebra generated by
two symbols 0 and 1 modulo the equations describing the n × (n + 1) ×m-terms.

Consider the subuniverseR ≤ A� generated by all the infinite sequences that have
the element 1 at exactly one position and the element 0 everywhere else.

Notice that R is invariant under all permutations of � and since A is idempotent,
every sequence in R has only finitely many nonzero values.

By Â = (Â,+, 0) we denote the free commutative monoid generated by all the
non-zero elements of A. We identify the element 0 ∈ A with the neutral element in
Â. For x̄ ∈ R, let x̂ denote the sum of all nonzero values of x̄, and let R̂ be the set
{x̂ : x̄ ∈ R}.

Claim 2.5. To prove Theorem 2.4, it suffices to find

x1, x2, ... , xn–1, y1, y2, ... , yn ∈ R̂
such that x1 + ··· + xn–1 = y1 + ··· + yn.
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If that happens, we can choose large enoughm′ and express the elementsxi , yi ∈ Â
as follows:

xi =
n∑
j

m′∑
k

zi, j,k for any i = 1, ... , n – 1,

yj =
n–1∑
i

m′∑
k

zi, j,k for any j = 1, ... , n,

where zi, j,k ∈ A for i = 1, ... , n – 1, j = 1, ... , n, k = 1, ... , m′. Since elementsxi are
in R̂, there are (nm′)-ary terms f′

i such that if we put the element 1 at the position
(j, k) and zeros otherwise in f′

i , we get zi, j,k . Similarly, since elements yj are in R̂,
there are ((n – 1)m′)-ary terms g ′j such that if we put 1 at the position (i, k) and zeros
otherwise into the term g ′j , we get zi, j,k . So the equations of (n – 1) × n ×m′-terms
are satisfied by terms f′

i , g
′
j if variables x, y are substituted by 0 and 1, respectively.

Then the equations are satisfied in general, since 0, 1 are the generators of the free
algebra A. This finishes the proof of the claim.

Every element of A is a binary function t(0, 1) on A in variables 0, 1. We regard
them as unary functions t(1) where 0 is a constant and 1 is the variable. With this
viewpoint, there is a multiplication on A defined as usual function composition.
(t1t2)(1) = t1(t2(1)). This defines a structure of monoid on A where 1 is the neutral
element and 0 is an absorbing element. For i = 1, ... , n, j = 1, ... , (n + 1), k =
1, ... , m, let bi, j,k ∈ A be the element of the monoid defined by

bi, j,k = fi(0, 0, ... , 0, 1
(j,k)
, 0, ... , 0) = gj(0, 0, ... , 0, 1

(i,k)
, 0, ... , 0),

and let B be the submonoid generated the elements bi, j,k .
We first prove two lemmas showing that the free idempotent algebra A does not

satisfy certain unexpected equations relevant for B.

Lemma 2.6. B is the free monoid generated by bi, j,k .

Lemma 2.7. Let h be a basic operation of A, and assume that h(x1, ... , xd ) = x,
where x ∈ B. Then eitherx1 = ··· = xd = x, or there is i ∈ {1, ... , d} such that xi ∈ B
and xj = 0 for all j �= i .

Proof. To prove the claims, we consider the free monoid M = {M, ·, 1} generated
by all the symbols bi, j,k for i = 1, ... , n, j = 1, ... , (n + 1), k = 1, ... , m. Let ϕ
denote the monoid homomorphism M → B generated by bi, j,k �→ bi, j,k . We define
an algebra M′ with the signature of A on the setM ∪ {0,⊥}. The basic operations
are defined as follows:

h(x, ... , x) = x for basic operation h and x ∈M,
fi(0, 0, ... , 0, x

(j,k)
, 0, ... , 0) = bi, j,k · x for x ∈M,

gj(0, 0, ... , 0, x
(i,k)
, 0, ... , 0) = bi, j,k · x for x ∈M,

h(...) = ⊥ otherwise.
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It is straightforward to check that the algebra M′ is idempotent and satisfies the
equations of n × (n + 1) ×m-terms, and note that every basic operation is at least
ternary since n,m ≥ 2. Therefore, there is an algebra homomorphism � : A → M′

generated by 0 �→ 0, 1 �→ 1. By the defined behavior of M′, we have �(ϕ(x)) = x
for any x ∈ M. Therefore, ϕ is injective, hence an isomorphism, proving Lemma
2.6. Lemma 2.7 will follow from the following claim proven by induction. �

Claim 2.8. If �(x) = 0, then x = 0. If �(x) ∈ M, then x = ϕ(�(x)).

We prove Claim 2.8 by induction on complexity of x. For x = 0, 1, it is satisfied
trivially as 0 �= 1 in M′ (and so 0 �= 1 in A as well). Let us now assume that x =
h(x1, ... , xd ) for an elementary operation h, and Claim 2.8 is satisfied forx1, ... , xd by
induction assumption. If �(x) = ⊥, it is satisfied for x trivially. Assume �(x) �= ⊥.
By the definition of basic operations on M′, there are three options:

1. �(x1) = ··· = �(xd ) = �(x), or
2. h = fi , and �(x1,1) = ··· = �(xn+1,m) = 0 except one �(xj,k) ∈M , or
3. h = gj , and �(x1,1) = ··· = �(xn,m) = 0 except one �(xi,k) ∈M .

In the first case, Claim 2.8 yields from the induction hypothesis. The other two cases
are analogous, so we focus on just the second one. From the induction hypothesis,
all x1,1 = ··· = xn+1,m = 0 except xj,k = ϕ(�(xj,k)). Therefore,

x = bi, j,k(xj,k) = ϕ(bi, j,k · �(xj,k)) = ϕ(�(x)),

where the second equation follows from the fact that ϕ is a homomorphism, and
the second from the definition of fi in M′. We obtained x = ϕ(�(x)) finishing the
claim.

Lemma 2.7 follows from similar reasons. We consider x = h(x1, ... , xd ) such that
x ∈ B. Options for�(x) split into three cases as before. We already know that� has
unique preimages on B ∪ {0} from Claim 2.8, so the three cases directly translate
into the cases of Lemma 2.7. �

We continue with the translation of the original problem about the commutative
monoid Â into the language of semirings. Let B̂ = (B̂,+, ·, 0, 1) be the additive
submonoid of Â generated by elements of B with multiplicative structure inherited
from the monoid B. Since B = (B, ·, 1) is a free monoid by Lemma 2.6, and Â =
(Â,+, 0) is defined to be a free commutative monoid, B̂ is the free semiring generated
by elements bi, j,k .

We equip the semiring B̂ with equations E of the form
n∑
i

m∑
k

bi, j,k = 1 for all j = 1, ... , (n + 1),

n+1∑
j

m∑
k

bi, j,k = 1 for all i = 1, ... , n.

In other words, these equations say that

gj(1, 0, ... , 0) + gj(0, 1, ... , 0) + ··· + gj(0, 0, ... , 1) = 1.

fi(1, 0, ... , 0) + fi(0, 1, ... , 0) + ··· + fi(0, 0, ... , 1) = 1.

Let ∼ be the congruence generated by these equations E.
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Lemma 2.9. If p, q ∈ B̂ such that q is a single expansion of p using equations E and
p ∈ R̂, then also q ∈ R̂.

Proof. Let t be a term in � variables (using just finitely many of them) that take
the generators of R and outputs some r̄ ∈ R such that r̂ = p. We prove the claim
by induction on the complexity of t. Let p = uv + s and q = uev + s where u, v are
monomials, s is a polynomial, and e is a single expansion of 1. If u = 1, we prove
the claim directly. Any single expansion e of 1 is of the form

h(1, 0, ... , 0) + h(0, 1, 0, ... , 0) + ··· + h(0, ... , 0, 1),

where h is a basic operation of A. Let us denote the arity of h as d and the summands
as bi for i = 1, ... , d . So we can write e =

∑d
i=0 bi . We take d different representations

r̄1, ... r̄d ∈ R that differ only in the position of v (if there are multiple v in r̄, we vary
the position of one of them and fix the rest). Then h(r̄1, ... , r̄d ) correspond to the
polynomial ev + s = q.

If u �= 1, we use the induction hypothesis. Assume that r̄ = h′(r̄1, ... , r̄d ′) for an
elementary operation h′, where all the construction terms for r̄1, ... , r̄d ′ are simpler.
For j = 1, ... , d ′, and i = 1, 2, ..., let us denote rji the jth position of r̄i , and rj

denote the jth position of r̄. By Lemma 2.7, all rji ∈ B ∪ {0}, so all r̄i ∈ B̂.
Without loss of generality, r1 = uv. There are two options given by Lemma 2.7.

1. r11 = ··· = r1
d ′ = uv, or

2. all r11 , ... , r
1
d ′ are zeros except one r1i ∈ B.

Case 1. Let uev = x1 + ··· + xd where x1, ... , xd are monomials. Define

r̄′i = (x1, ... , xd , r
2
i , r

3
i , ...).

By induction hypothesis, since r̄i ∈ R, also r̄′i ∈ R for all i = 1, ... , d ′. Therefore
also

h′(r̄1, ... , r̄d ′) = (x1, ... , xd , r
2, r3, ...) ∈ R,

which is a representative of q, so Case 1 is finished.

Case 2. In this case, r1i = u2v, where u = u1u2 and u1 is one of the generators of
B. Let u2ev = x1 + ··· + xd , where x1, ... , xd are monomials. Let

r̄′i = (x1, ... , xd , r
2
i , r

3
i , ...).

By induction hypothesis r̄′i ∈ R since r̄i ∈ R. We define the others r′j for j �= i as

r̄′j = (0, ... , 0︸ ︷︷ ︸
d

, r2j , r
3
j , ...),

they are also in R as they are just rearrangements of sequences r̄j . Finally, r̄′ =
h(r̄′1, ... , r̄

′
d ) ∈ R and q = r̂′. �

Claim 2.10. To prove the theorem, it suffices to show that n – 1 ∼ n in B̂.

Indeed, if n – 1 ∼ n, there is a common expansion s by Proposition 2.1. Since s is
an expansion of n – 1, there are x1, ... , xn–1 such that

∑n–1
i xi = s , and every xi is an

expansion of 1. Similarly, since s is an expansion of n, there are y1, ... , yn such that
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i yi = s , and every yi is an expansion of 1. Therefore all the elements xi , yi ∈ R̂

by Lemma 2.9 and the assumptions of Claim 2.5 are satisfied.
Now we translated the original problem into the language of the semiring B̂

modulo∼. Before general reasoning, we show the idea on the example1 n = 2, m = 1.
So B̂ is generated by b11, b12, b13, b21, b22, b23, congruence ∼ is generated by

1 ∼ b11 + b12 + b13 ∼ b21 + b22 + b23 ∼ b11 + b21 ∼ b12 + b22 ∼ b13 + b23,

and we want to prove 1 ∼ 2. Clearly 2 ∼ 3 since

2 ∼ (b11 + b12 + b13) + (b21 + b22 + b23) = (b11 + b21) + (b12 + b22) + (b13 + b23) ∼ 3.

Now, let us expand 1 a bit.

1 ∼ b11 + b12 + b13 ∼ b11(b21 + b22 + b23) + (b11 + b12 + b13)b12 + (b11 + b12 + b13)b13

= b11(b22 + b12 + b23 + b13) + ··· ∼ 2b11 + ··· .

We managed to get 2b11 in the expanded 1. Since 2 ∼ 3, we get an extra b11, and
then collapse the expression using the reverse process. Therefore 1 ∼ 1 + b11. But
there is nothing special about the generator b11, If we swapped b11 ↔ b21, b12 ↔ b22,
b13 ↔ b23, we would get 1 ∼ 1 + b21 by the same reasoning. Therefore

1 ∼ 1 + b21 ∼ (1 + b11) + b21 = 1 + (b11 + b21) ∼ 2.

Now, let us return to the general setup with generators bi, j,k for i = 1, ... , n,
j = 1, ... , (n + 1), and k = 1, ... , m, and the congruence ∼ is generated by

1 ∼
n∑
i

m∑
k

bi, j,k for all j = 1, ... , (n + 1),

1 ∼
n+1∑
j

m∑
k

bi, j,k for all i = 1, ... , n.

From the equations, we derive n ∼ n + 1

n ∼
n∑
i

⎛
⎝n+1∑
j

m∑
k

bi, j,k

⎞
⎠ =

n+1∑
j

(
n∑
i

m∑
k

bi, j,k

)
= n + 1.

We fix i ′, j′, k′. To prove that (n – 1) ∼ (n – 1) + bi′, j′,k′ it suffices to getnbi′, j′,k′ ∼
(n + 1)bi′, j′,k′ in an expanded form of n – 1.

In the following calculations, by x ≥ y we mean (∃z : x = y + z).

n – 1 ∼ (n – 1)
n+1∑
j

m∑
k

bi′, j,k ≥ (n – 1)bi′, j′,k′ +
n+1∑
j �=j′

m∑
k

bi′, j,k

= bi′, j′,k′ ·
n∑
i �=i′

1 + 1 ·
n+1∑
j �=j′

m∑
k

bi′, j,k

1Although we have forbiddenm = 1 at the beginning of the proof in order to prevent formal difficulties
with Lemmas 2.6 and 2.7, it serves well for the example of semiring calculations.
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∼ bi′, j′,k′

⎛
⎝ n∑
i �=i′

n+1∑
j

m∑
k

bi, j,k

⎞
⎠ +

⎛
⎝n+1∑
j

m∑
k

bi′, j,k

⎞
⎠

⎛
⎝ n+1∑
j �=j′

m∑
k

bi′, j,k

⎞
⎠

≥ bi′, j′,k′

⎛
⎝ n∑
i �=i′

n+1∑
j �=j′

m∑
k

bi, j,k +
n+1∑
j �=j′

m∑
k

bi′, j,k

⎞
⎠

= bi′, j′,k′

⎛
⎝ n+1∑
j �=j′

n∑
i

m∑
k

bi, j,k

⎞
⎠ ∼ bi′, j′,k′ ·

n+1∑
j �=j′

1 = nbi′, j′,k′ .

Hence n – 1 ∼ n – 1 + bi, j,k for any i, j, k. We finally get the desired congruence

n – 1 ∼ n – 1 + b1,1,1 ∼ n – 1 + b1,1,1 + b1,2,1 ∼ ··· ∼ n – 1 +
n+1∑
j

m∑
k

b1, j,k ∼ n.

Corollary 2.1. Every SD(∧) variety has (m +m)-terms for some m.

§3. Getting to (3 +m)-terms. In this section, we prove the following theorem.

Theorem 3.1. Every SD(∧) variety V has a (3 +m′)-terms for large enough m′.

By Corollary 2.1 we know that the variety has the (m +m)-terms for some
m, and denote them f, g1, g2. For simplicity, we may assume that m ≥ 2, the
idempotent terms f, g1, g2 are the only basic operations of the variety, and they
satisfy only idempotence, (m +m)-equations and their consequences. Let A be the
V-free algebra generated by elements 0, 1.

We start with a syntactical lemma.

Lemma 3.2. Let o be an elementary operation, and x = o(x1, ... , xk). If at least
one xi �= 0, then x �= 0. If at least one xi �= 1, then x �= 1.

Proof. There is an automorphism on A swapping 0 and 1, so it suffices to show
the first part:x �= 0 if somexi �= 0. Let M = ({0, 1}, fM, gM

1 , g
M
2 ) wherefM, gM

1 , g
M
2

are defined as maxima of arity 2m, m, m, respectively. They are idempotent and
satisfy the equations of (m +m)-terms, so there is a homomorphismϕ : A → M. By
induction on the term complexity, we show that for every x, if x �= 0, then ϕ(x) = 1.
It is clearly satisfied for x = 0, 1. Now consider any x′ = o′(x′1, ... , x

′
k′) where o′

is an elementary operation and assume that the claim is satisfied for x′1, ... , x
′
k′ . If

x′ �= 0, then at least one x′j �= 0. By induction hypothesis, ϕ(x′j) = 1, so

ϕ(x) = max(ϕ(x′1), ... , ϕ(x′j), ... , ϕ(x′k′)) = 1.

This proves that 0 is the only preimage of 0 in φ. Finally, we prove the lemma.
Since at least one xi �= 0, ϕ(xi) = 1 and we get ϕ(x) = o(ϕ(x1), ... , ϕ(xk)) = 1.
Therefore, x �= 0 as ϕ(0) = 0. �

Similarly as in the proof of Theorem 2.4, we define Rn to be an n-ary relation
generated by tuples with exactly one element 1 and zeros everywhere else, where
n ∈ {1, 2, ... , �}.
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For an algebra B ∈ V , we define a B-pendant to be any subuniverse P ⊂ B × A�

that is invariant under all permutations of the � positions on A� .
For any B-pendant P we define P|0, P|1 ≤ B as follows:

P|0 = {b ∈ B : (b, (0, 0, ... , 0)) ∈ P}, P|1 = {b ∈ B : ∃r̄ ∈ R� : (b, r̄) ∈ P}.
If P|0 and P|1 intersect, we call the pendant P zipped. For a subuniverse C ≤ B and
an element b ∈ B, let C [b] denote the smallest B-pendant P satisfying C ≤ P|0 and
{b} ×R� ≤ P.

Clearly, C ≤ C [b]|0 and b ∈ C [b]|1 and if b ∈ C , the pendant C [b] is zipped
since b is contained in both C [b]|0 and C [b]|1. It is even true that C = C [b]|0. This
follows from the fact that the set

B × (A� \ {(0, 0, ...)}) ∪ C × {(0, 0, ...)}
is a subuniverse of B × A� containing C [b]. Checking that it is a subuniverse is
straightforward using Lemma 3.2.

Claim 3.3. To prove the theorem, it suffices to show that the A3-pendantR3[(0, 0, 0)]
is zipped.

Indeed, the pendant P = R3[(0, 0, 0)] is just R� viewed as a subuniverse of A3 ×
A� . So when that pendant is zipped, there is a common element r̄3 ∈ P|0 = R3 and
r̄3 ∈ P|1. By expanding the definition of P|1, we get r̄� ∈ R� such that (r̄3, r̄�) ∈
P = R� . Let g ′1 be the term producing r̄3 from the generators of R3, g ′2 be the term
producing r̄� from the generators ofR�, andf′ be the term producing (r̄3, r̄�) from
the generators of R� . We can choose large enoughm′ such that g ′2 uses at most first
m′ generators and f′ uses at most first 3 +m′ of them. So we perceive g ′2 as m′-ary
and f′ as (3 +m′)-ary. Since

g1

⎛
⎝

⎛
⎝1

0
0

⎞
⎠

⎛
⎝0

1
0

⎞
⎠

⎛
⎝0

0
1

⎞
⎠

⎞
⎠ = r̄3, g2

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ ···

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ = r̄�,

f

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ ···

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠ =

(
r̄3
r̄�

)
,

the equations of (3 +m′)-terms are satisfied when we plug in x = 0 and y = 1.
However, the elements 0, 1 are the generators of a free algebra, so the equations are
satisfied in general.

Lemma 3.4. Consider B ∈ V , C ≤ B, and b ∈ B. Let P be a B-pendant such that
C ≤ P|0 and b ∈ P|1. Then (C [b])|1 ≤ P|1.

Proof. To see that, take an element (b, r̄�) ∈ P such that r̄� ∈ R�. Let r̄� be of
the form (x1, x2, ... , xn, 0, 0, ...) for some large enough n. Since P is invariant under
permutations on A� , it contains all the elements of the form

(b, (0, 0, ... , 0, x1, x2, ... , xn, 0, 0, ...)).
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We construct a homomorphism ϕ : A → An by mapping its generators

0 �→ (0, 0, ... , 0), 1 �→ (x1, ... , xn).

We naturally extend ϕ to mapping A� → (An)� = A� . Notice that ϕ is an
endomorphism of R� since it maps generators of R� into R� .

To finish the proof of the lemma, we take any b′ ∈ C [b]|1 and show that b′ ∈
P|1. There is r̄′� ∈ R� such that (b′, r̄′�) ∈ C [b]. Then ϕ(r̄′�) ∈ R� and moreover
(b′, ϕ(r̄′�)) ∈ P. The latter holds since the endomorphism � on B × A� defined by
�((y, x)) = (y, ϕ(x)) maps the generators of C [b] into P. In particular P contains
all the elements �(b, (0, ... , 0, 1, 0, ...)) for any position of 1, and �(c, (0, 0, ...) for
any c ∈ C . So b′ ∈ P|1 and this finishes the proof of the lemma. �

Now, let h be the binary term defined as

h(x, y) = f(xx ... x︸ ︷︷ ︸
m

, yy ... y︸ ︷︷ ︸
m

).

Lemma 3.5. For any B-pendant P and x ∈ P|0, y ∈ P|1, we have

h(x, y) ∈ P|1, h(y, x) ∈ P|1.

Proof. Without loss of generality, we may assume that (y, (1, 0, ... , 0)) ∈ P. If
not, we use Lemma 3.4 and work with (P|0)[y] instead of P. Then the lemma follows
from the identities

f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x ... x, y y ... y
0 0 ... 0, 1 0 ... 0
0 0 ... 0, 0 1 ... 0

...
...
...
. . .

...
0 0 ... 0, 0 0 ... 1
0 0 ... 0, 0 0 ... 0

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= g2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(x,y)
1 0 ... 0
0 1 ... 0
...
...
. . .

...
0 0 ... 1
0 0 ... 0

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

f

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y y ... y, x x ... x
1 0 ... 0, 0 0 ... 0
0 1 ... 0, 0 0 ... 0
...
...
. . .

...
...

0 0 ... 1, 0 0 ... 0
0 0 ... 0, 0 0 ... 0

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= g1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(y,x)
1 0 ... 0
0 1 ... 0
...
...
. . .

...
0 0 ... 1
0 0 ... 0

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The columns of the identities encode such sequences in B × A� that

• are contained in P: This is apparent from the left hand side,
• have elements h(x, y), h(y, x) at their first coordinates,
• the other part is contained in R� : This is apparent from the right hand side.

Therefore h(x, y), h(y, x) ∈ P|1. �
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Lemma 3.6. Consider B1,B2 ∈ V and let P be a (B1 × B2)-pendant. Assume that
there exist x, y ∈ B1 and u, v ∈ B2 such that (x, u), (y, u), (x, v) ∈ P|0 and (y, v) ∈
P|1. Then P is zipped.

Proof. The pair (h(x, y), h(v, u)) is in the intersection P|0 ∩ P|1. Indeed, it is
contained in P|0 since we can write(

h(x, y)
h(v, u)

)
= h

(
x y
v u

)
.

Alternatively, we can use the following expansion of (h(x, y), h(v, u)):(
h(x, y)
h(v, u)

)
= h

(
h

(
x x
v u

)
, h

(
y y
v u

))
.

By Lemma 3.5 used twice, the pair is also an element of P|1, which completes the
proof. �

Lemma 3.7. Consider B1,B2 ∈ V and let R be a subuniverseR ≤ B1 × B2. Assume
that there are elements x ∈ B1, u, v ∈ B2 such that (x, u), (x, v) ∈ R. Then for any
y ∈ B1 the (B1 × B2)-pendant R[(y, u)] is zipped if and only if the (B1 × B2)-pendant
R[(y, v)] is zipped.

Proof. It suffices to show the forward implication. Since R[(y, u)] is zipped,
there is some (y0, u0) ∈ R ∩R[(y, u)]|1. Consider the 4-ary relation

R′ = {(a1, a1, a2, a2) : (a1, a2) ∈ R},

and the (B2
1 × B2

2)-pendant P = R′[(x, y, u, v)]. Since (y0, u0) ∈ R[(y, u)]|1, we can
find a quadruple (x0, y0, u0, v0) in P|1 for some additionally generated elements
x0, v0. So

(x0, u0) ∈ R[(x, u)]|1, (x0, v0) ∈ R[(x, v)]|1, (y0, v0) ∈ R[(y, v)]|1.
Since (x, u), (x, v) ∈ R, also (x0, u0), (x0, v0) ∈ R. Let Q be the pendant R[(y, v)].
We have (x0, u0), (x0, v0), (y0, u0) ∈ Q|0 and (y0, v0) ∈ Q|1. Therefore, the pendant
Q is zipped by Lemma 3.6. �

Finally, we define a relation � on A as follows. We write x � y if there are u, v ∈ A
such that

(i) (x, u, v) ∈ R3,
(ii) the A3-pendant R3[(y, u, v)] is zipped.

Notice that � is reflexive: Indeed for any x, there are u, v such that (x, u, v) ∈ R3.
Then also R[(x, u, v)] is zipped, so x � x.

Lemma 3.8. Consider c, x′, y′ ∈ A such that x � y, (x, c, x′) ∈ R3, and (y, c, y′) ∈
R3. Then y′ � x′.

Proof. Consider u, v as in the definition of the relation �. We will show that
y′ � x′ by finding appropriate u′, v′. We set u′ = c and v′ = y, so the condition
(i) is satisfied since (y′, c, y) ∈ R3 by symmetry of R3. To establish y′ � x′ we need
to prove that R3[(x′, c, y)] is zipped, equivalently, that R3[(y, c, x′)] is zipped. We
interpret A3 as A × A2 and use Lemma 3.7. We plug in

x �→ x, y �→ y, u �→ (u, v), v �→ (c, x′).
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Indeed (x, u, v), (x, c, x′) ∈ R3 and R3[(y, u, v)]| is zipped. So the assumptions of
Lemma 3.7 are satisfied, and consequently R[(y, c, x′)] is zipped. �

We are finally ready to prove the theorem. We start with g1(100 ... 0) � f(100 ... 0)
and get to 1 � h(1, 0) using Lemma 3.8 and the following triples in R3:⎛

⎝ g1(10 ...)
g1(010 ...)
g1(0011 ...)

⎞
⎠�

�

⎛
⎝ f(10 ...)
f(010 ...)
f(0011 ...)

⎞
⎠ ,

⎛
⎝f(0011 ...)

0
f(1100 ...)

⎞
⎠�

�

⎛
⎝g1(0011 ...)

0
g1(1100 ...)

⎞
⎠ ,

⎛
⎝ g1(110 ...)
g1(0010 ...)
g1(0001 ...)

⎞
⎠�

�

⎛
⎝ f(110 ...)
f(0010 ...)
f(0001 ...)

⎞
⎠ , ... ,

⎛
⎝h(0, 1)

0
h(1, 0)

⎞
⎠�

�

⎛
⎝g1(0 ... 0)

0
g1(1 ... 1)

⎞
⎠ .

So, there are u, v such that (1, u, v) ∈ R3 andR3[(h(1, 0), u, v)] is zipped. The only
element of R3 of the form (1, u, v) is (1, 0, 0). This is because the set

(1, 0, 0) ∪ (A \ {1}) × A × A

is a subuniverse of A3 containing R3. Checking that it is a subuniverse
is straightforward using Lemma 3.2. Therefore u = v = 0 and R3[(h(1, 0), 0, 0)]
is zipped. However, by Lemma 3.5 (h(1, 0), 0, 0) ∈ R3[(0, 0, 0)]|1, so R3[(0, 0, 0)] is
zipped (Lemma 3.4, universality of pendant construction), and the proof is finished
by Claim 3.3.

§4. A counterexample for (2 +m)-terms. Based on the result of the previous
chapter that some (3 +m)-terms are satisfied in every SD(∧) variety, one could
ask whether the result could be strengthened to (2 +m)-terms. However, as we
demonstrate in this section, such a generalization is not possible. Not only that
there is an algebra in an SD(∧) variety that does not have (2 +m)-terms but there
is even such an algebra that belongs to a congruence distributive variety.

Even stronger Maltsev condition than congruence distributivity is the existence
of a near-unanimity term. A near unanimity term (NU term for short) is a term t
satisfying

t(x, x, ... , x, y
i
, x, ... , x) = x

for any position i.
There is no algebra having an NU term and no (2 +m)-terms, since putting g2 to

be the NU term and f, g1 to be just the projections on the first coordinate meet the
requirements of the (2 +m)-terms. However, in our first example, we demonstrate
that one existence of an NU term does not imply (2 +m)-terms for a fixed m.

Consider the following symmetric n-ary operations tAn , t
B
n for n ≥ 5 on rational

numbers: Let x1 ≤ x2 ··· ≤ xn be a sorted input of such an operation. Then

tAn (x1, ... , xn) =
x2 + ··· + xn–1

n – 2
, tBn (x1, ... , xn) =

x3 + ··· + xn–2

n – 4
.

If the input is not sorted, we first sort it and then perform the calculation. These
operations are clearly NU, that is,

tAn (x, x, ... , x, y, x, ... x) = tBn (x, x, ... , x, y, x, ... x) = x

for any position of y.
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For proving key properties of t, we need a lemma.

Lemma 4.1. Let x1, ... , xn, y1, ... , yn ∈ Q be such that xi ≤ yi for all i = 1, ... , n.
Let x′1, ... , x

′
n be x1, x2, ... , xn sorted in increasing order, and let y′1, ... , y

′
n be sorted

y1, ... yn. Then x′i ≤ y′i for all i and the set {i : x′i < y
′
i} is at least as large as the set

{i : xi < yi}.

Proof. Without loss of generality, let the numbers xi be increasing in lexico-
graphical order. Therefore xi = x′i for all i. It is possible to sort the sequence yi by
consecutive application of sorting transpositions, that is swapping yi with yj if i < j
and yi > yj . An example of such a process is the well known bubble sort algorithm.
We show that one sorting transposition preserves the condition xi ≤ yi for all i,
and does not shrink the set {i : xi < yi}. In one such transposition, the swapped
positions i, j are independent of all the others, so we may assume that there are
no others. In particular n = 2, x1 ≤ x2, y1 > y2, x1 ≤ y1, x2 ≤ y2, y′1 = y2, and
y′2 = y1. First x1 ≤ x2 ≤ y2 and x2 ≤ y2 < y1, so x1 ≤ y′1 and x2 < y

′
2. This shows

that xi ≤ yi for all i. Now, let us investigate the number of strict inequalities. Since
x2 < y

′
2, the size of the set {i : x′i < y

′
i} is at least 1. If the size equals two, we

are done. Otherwise x1 = y′1, so x1 = x2 = y2. Since x2 = y2, the size of the set
{i : xi < yi} is at most one, so it is not larger than {i : x′i < y

′
i}. �

Claim 4.2. For any x1, ... , xn, y1, ... , yn ∈ Q such that xi ≤ yi for all i, we have
tAn (x1, ... , xn) ≤ tAn (y1, ... , yn). The inequality is strict if xi < yi for at least three i.

Indeed, we can assume that xi and yi are sorted by Lemma 4.1. The first part is
then clear from definition of tA. If xi < yi for at least three i, it happens for at least
one i �= 1, n, and that xi < yi causes the strict inequality.

Consider the algebras An = (Q, tAn ) and Bn = (Q, tBn ). For m ≥ 1 define the sets
U ⊂ Q2, Vm ⊂ Qm,Wm ⊂ Q2+m as follows:

U = {(a1, a2) : a1 + a2 = 1},
Vm = {(b1, ... , bm) : b1 ... bm ≥ 0 and there is a nonzero bi .}

Wm = {(a1, a2, b1, ... , bm) :

(a1 + a2 < 1 and b1 ...bm ≥ 0) or (a1 + a2 = 1 and b1 = ··· = bm = 0)}.

Claim 4.3. For any n ≥ 5, the set U is a subuniverse of A2
n.

The claim follows from the fact that if x1, x2, ... , xn is non-decreasing, then also
1 – xn, ... , 1 – x2, 1 – x1 is non-decreasing.

Claim 4.4. For any n ≥ 5, 2m < n the set Vm is a subuniverse of Bmn .

Indeed, if all of x1, ... , xn are nonnegative and at least three non-zero, then tB

is also non-zero. Consider m-tuples x̄1, x̄2, ... , x̄n. Every m-tuple x̄i has a non-zero
position pi . Since 2m < n, one of the positions has to repeat three times, p = pi1 =
pi2 = pi3 . So the m-tuple t(x̄1, ... x̄n) has a non-zero element at the position p.

Claim 4.5. For any m ≥ 1, n ≥ 5, the setWm is a subuniverse of A2
n × Bmn .

For the same reason as in Claim 4.3, the projection ofWi to A2 is a subuniverse of
A2. The question is about subtle detail how it interacts with the Bm-part. Let us take
(2 +m)-tuples x̄1, ... , x̄n ∈Wm and show that t(x̄1, ... , x̄n) belongs toWm as well.
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Let ai, j , bi, j be matrices such that x̄j = (a1, j , a2, j , b1, j , ... , bm, j). We analyze
two cases:

1. For at most two columns j it happens that a1, j + a2, j < 1. Then all the
other columns have zero Bm-part, so tB(bi,1) = 0 for any B-row i. Hence
t(x̄1, ... , x̄n) ∈Wm.

2. For at least three columns j it happens that a1, j + a2, j < 1. In other words,
at these three positions j it happens that a1, j < 1 – a2, j while non-strict
inequality is satisfied everywhere. Thus, by Claim 4.2, we have

tA(a1,1, ... , a1,n) < tA(1 – a2,1, ... , 1 – a2,n) = 1 – tA(a2,1, ... , a2,n).

Equivalently,

tA(a1,1, ... , a1,n) + tA(a2,1, ... , a2,n) < 1,

so t(x̄1, ... , x̄n) belongs toWi .
So, in both cases, the result belongs toWm, and the claim is established.

We are now ready to construct the counterexamples.

Theorem 4.6. For any n,m such that n ≥ 5 and 2m < n, there is an algebra having
an n-ary NU-term, n ≥ 5, but no (2 +m)-terms.

Proof. The algebra is Cn = An × Bn. For a contradiction, suppose that Cn has
(2 +m)-terms f, g1, g2. These terms are common for all the algebras in the variety
generated by C. In particular, there are operations gA

1 , g
A
2 , f

A on An and gB
1 , g

B
2 , f

B

on Bn such that

gA
1 (1, 0) = fA(1, 0, 0, 0, 0, ... , 0, 0) = a1,

gA
1 (0, 1) = fA(0, 1, 0, 0, 0, ... , 0, 0) = a2,

gB
2 (1, 0, 0, ... , 0, 0) = fB(0, 0, 1, 0, 0, ... , 0, 0) = b1,

gB
2 (0, 1, 0, ... , 0, 0) = fB(0, 0, 0, 1, 0, ... , 0, 0) = b2,

...

gB
2 (0, 0, 0, ... , 0, 1) = fB(0, 0, 0, 0, 0, ... , 0, 1) = bm.

The tuple (a1, a2, b1, ... , bn) belongs to Wm since Wm contains all the columns on
the right hand side. Similarly, (a1, a2) ∈ U and (b1, ... , bm) ∈ Vm by left hand side.
But there is no such tupleWm that is composed of the tuples in U and Vm. �

Theorem 4.7. There is an algebra in a congruence distributive variety that has no
(2 +m)-terms.

Proof. The proof is similar, and we take the algebra C6 = A6 × B6. We just
modify it a bit to make Vm a subuniverse for any m. Let s be the following 4-ary
minor of t:

s(x, y, z, w) = t(x, y, z, w,w,w).

Consider the algebra C′ = (Q2, sC). The algebra C′ is congruence distributive, since
it has the following directed Jónsson terms written as minors of the term s:

s(xyzz) = t(xyzzzz),
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s(xxyz) = t(xxyzzz),

s(zzyx) = t(xxxyzz),

s(zyxx) = t(xxxxyz).

For the definition of directed Jónsson terms, we refer the reader to [5].
On the other hand, C′ does not have any (2 +m)-terms. For a contradiction, let us

assume that there are term operations fC, gC
1 , g

C
2 in the algebra C. So there are such

terms even in A′ = (Q, sA) and B′ = (Q, sB). We consider the same 2 +m equalities
as in the previous proof, resulting in a1, a2, b1, ... , bm. Since the basic operations of
algebras A′,B′ are defined from the operations of the algebras A,B, the set U is
still a subuniverse of (A′)2 and the set Wm is still a subuniverse of (A′)2 × (B′)m.
So (a1, a2) ∈ U and (a1, a2, b1, ... , bm) ∈Wm. We cannot directly use Claim 4.4 to
ensure that Vm is a subuniverse of (B′)m since the claim assumes 2m < 6. However,
it is still true. We can check it manually: If x̄, ȳ, z̄, w̄ ∈ V and wi > 0 for some i,
then even

sB(xi , yi , zi , wi) = tB(xi , yi , zi , wi , wi , wi) > 0,

so sB(x̄, ȳ, z̄, w̄) has a non-zero position. Therefore Vm is a subuniverse of (B′)m,
(b1, ... , bm) ∈ Vm, and we get the same contradiction as in the previous proof. �

§5. Further work. Since Question 1.1 remained open, the main objective is still
to find out whether or not the SD(∧) property is characterized by a strong Maltsev
condition. The (3 + n)-terms are general enough for SD(∧) while the (2 + n)-terms
are too strong. Therefore we suggest (3 + 3)-terms as the candidate for a strong
Maltsev condition, or a good starting point for proving the opposite.

Question 5.1. Is there an SD(∧) variety that does not have (3 + 3)-terms?

It is also reasonable to start with a stronger property than congruence
meet-semidistributivity, namely simple congruence distributivity, or the one in
Theorem 1.3.

Question 5.2. Are (3 + 3)-terms implied by
(a) directed Jónsson terms? (equivalent to congruence distributivity, see [5])
(b) 3-ary and 4-ary weak NU terms w3, w4 such that w3(y, x, x) = w4(y, x, x, x)?

Miklós Maróti with Ralph McKenzie (see [9, Theorem 1.3]) proved that
congruence distributivity implies the existence of all at least ternary weak NU
terms. However, the catalog of counterexamples is so weak, that even the “glued”
weak NU terms, as in item (b), are still plausible candidates for the strong Maltsev
condition too. On the other hand, congruence distributivity is the weakest general
condition under which we know about the weak NU terms. So we ask the following.

Question 5.3. Is the existence of a weak NU term implied by the SD(∧) property?
In particular, is it implied by (3 + 3)-terms?
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[10] M. Olšák, The weakest nontrivial idempotent equations. Bulletin of the London Mathematical
Society, vol. 49 (2017), no. 6, pp. 1028–1047.

FACULTY OF MATHEMATICS AND PHYSICS
CHARLES UNIVERSITY IN PRAGUE
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