BULL. AUSTRAL. MATH. SOC. VOL. 34 (1986) 283-292

A CHARACTERIZATION OF CHAOS

K. JANKOVÁ AND J. SMÍTAL

Consider the continuous mappings f from a compact real interval to itself. We show that when f has a positive topological entropy (or equivalently, when f has a cycle of order $\neq 2^n$, n = 0, 1, 2, ...) then f has a more complex behaviour than chaoticity in the sense of Li and Yorke: something like strong or uniform chaoticity, distinguishable on a certain level $\varepsilon > 0$. Recent results of the second author then imply that any continuous map has exactly one of the following properties: It is either strongly chaotic or every trajectory is approximable by cycles. Also some other conditions characterizing chaos are given.

Denote by $C^{\mathcal{O}}(I,I)$ the class of continuous mappings $I \to I$, where I is a compact real interval. An $f \in C^{\mathcal{O}}(I,I)$ is said to be chaotic in the sense of Li and Yorke [5], when there is an uncountable set $S \subseteq I$ such that for any $x, y \in S, x \neq y$, and any periodic point p of f,

(1)
$$\limsup_{n \to \infty} |f^n(x) - f^n(y)| > 0$$

Received 25 November 1985.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/86 \$A2.00 + 0.00. 283

284 K. Janková and J. Smítal

(2)
$$\liminf_{n \to \infty} |f^{n}(x) - f^{n}(y)| = 0$$

(3)
$$\limsup_{n \to \infty} |f^n(x) - f^n(p)| > 0$$

Here f^n denotes the *n*-th iterate of f. Any set S whose points satisfy condition (1) - (3) is called a scrambled set for f.

In [10] is given the following stronger concept: given $\varepsilon > 0$, a set $S \subseteq I$ is an ε -scrambled set for some $f \in C^{O}(I,I)$ if for any $x, y \in S, x \neq y$, and any periodic point p of f,

(4)
$$\limsup_{n \to \infty} |f^{n}(x) - f^{n}(y)| > \varepsilon$$

(5)
$$\limsup_{n \to \infty} |f^{n}(x) - f^{n}(p)| > \varepsilon$$

and (2) is true.

Moreover, in [10] it is shown that for any $f \in C^{\mathcal{O}}(I,I)$ with zero topological entropy (or equivalently, without cycles of order divisible by an odd prime, see [6]) the chaoticity in the sense of Li and Yorke is equivalent to the existence of a perfect non-empty ε -scrambled set, for some $\varepsilon > 0$. The following main result of this paper shows that this is also true for mappings with positive topological entropy.

THEOREM 1. Let $f \in C^{O}(I,I)$ have a cycle of order divisible by an odd prime. Then for some $\varepsilon > 0$, f has a non-empty perfect ε scrambled set S.

In the proof we use methods of symbolic dynamics, see, for example, [2] or [7] . First we recall the following well-known result.

LEMMA 1. (Block [1], see also [12]). If $f \in C^{O}(I,I)$ has a cycle of order $\neq 2^{n}$, n = 0, 1, 2, ..., then there are closed disjoint intervals $J_{O}, J_{I} \subseteq I$ and an integer m > 0 such that

(6)
$$f^{m}(J_{O}) \cap f^{m}(J_{1}) \supseteq J_{O} \cup J_{1}$$

Next we give a generalization of this lemma.

LEMMA 2. Let f, J_0 , J_1 and m be as in Lemma 1. Then there are closed intervals

$$J_0 = J_0^0 \supseteq J_1^0 \supseteq J_2^0 \supseteq \dots \quad \text{and} \quad J_1 = J_0^1 \supseteq J_1^1 \supseteq J_2^1 \supseteq \dots$$

and a sequence $\{m(k)\}_{k=0}^{\infty}$ of positive integers such that for every $k = 0, 1, 2, \ldots$ and j = 0, 1,

(7)
$$m(k)$$
 is divisible by $k!$ and m ,

(8)
$$f^{m(k)}(J_k^j) \ge J_0 \cup J_1$$

(9)
$$\mu(J_{k+1}^{j}) < \frac{1}{2} \mu(J_{k}^{j})$$
,

where μ is the Lebesgue measure.

Proof. Put m(0) = m and assume by induction that m(k), J_k^0 and J_k^1 are defined for $k \le n$. Choose a closed interval $U_j \subseteq J_n^0$ such that $f^{m(n)}(U_j) = J_j$, for j = 0, 1. Then at least one of the sets U_0, U_1 has Lebesgue measure less than $\frac{1}{2}\mu(J_n^0)$. Denote this set by J_{n+1}^0 and put m(n + 1) = m(n) + p, where $p \ge m$ is choosen such that (7) is true for k = n + 1. Then by (6)

$$f^{m(n+1)}(J^{0}_{n+1}) = f^{m(n)+p}(J^{0}_{n+1}) = f^{p}(J_{0}) \ge J_{0} \cup J_{1}$$

since p is divisible by m. Similarly we find J^{1}_{n+1} .

In the sequel the following notation will be useful. Let X(k) be the set $\{0, 1\}^k$ of all ordered k-tuples and $X = \{0, 1\}^N$ the set of all sequences of two symbols 0, 1. If $\alpha \in X(k)$, $\beta \in X(s)$ then $\alpha\beta \in X(k + s)$ is the concatenation of α and β . For $\alpha \in X(k)$ or $\alpha \in X$, $\alpha(j)$ will denote the *j*-th coordinate of α . Assume X is equipped with the topology of pointwise convergence (given for example by the metric $\rho(\alpha, \beta) = \sum_{n} 2^{-n} |\alpha(n) - \beta(n)|$).

LEMMA 3. There is a perfect, non-empty set $Y \subseteq X$ such that any

 $\alpha \in Y$ has infinitely many 0's and 1's, and for any two α , $\beta \in Y$, $\alpha \neq \beta$ implies $\alpha(n) \neq \beta(n)$ for infinitely many n.

Proof. Let ξ be an irrational number. Define $\tau : [0, 1] \rightarrow X$ in the following way: For $t \in [0, 1]$, $\tau(t) = \{\alpha(k)\}_{k=1}^{\infty}$, where

$$\alpha(k) = \begin{cases} 0 & \text{if } N(t + \xi k) \in [0, 1/2) \\ \\ 1 & \text{if } N(t + \xi k) \in [1/2, 1) \end{cases}$$

Here $N(x) \in [0, 1)$ is the fractional part of x. Considering the wellknown fact that $\{N(\xi k)\}_{k=1}^{\infty}$ is uniformly distributed and hence dense in [0, 1], we can easily verify that $\tau(t)(n) \neq \tau(s)(n)$ for infinitely many n, whenever $t, s \in [0, 1], t \neq s$.

Next observe that τ has at most a countable set of discontinuity points: for each k there is exactly one $t \in [0, 1]$ so that $N(t + \xi k) = 1/2$. Denote this t by t(k). Clearly τ is continuous on $B = [0, 1] \setminus \{t(k)\}_{k=1}^{\infty}$. Since B is a Borel set we have that $\tau(B) \subseteq X$ is analytic and uncountable and by [4] it contains a non-empty perfect set P.

For any $\alpha \in P$ write

 $\alpha^* = \alpha(1) \ 0 \ \alpha(2) \ 1 \ \alpha(3) \ 0 \ \alpha(4) \ 1 \ \alpha(5) \ 0 \ \dots$

and let $Y = \{\alpha^*; \alpha \in P\}$. It is easy to see that Y is closed (as the intersection of closed sets) and has no isolated points, that is Y is perfect.

LEMMA 4. Let f have a cycle of order divisible by an odd prime. Then there is a set $\{I_{\alpha} : \alpha \in X(k)\}_{k=1}^{\infty}$ of closed intervals and a sequence $\{n(k)\}_{k=1}^{\infty}$ of positive integers such that, for every k, s, k > s, (10) $I_{\alpha\beta} \subseteq I_{\alpha}$ for $\alpha \in X(k - s)$, $\beta \in X(s)$, (11) $f^{n(k)}(I_{\alpha}) = J_{k}^{\alpha(k)}$ whenever $\alpha \in X(k)$,

(12) n(k) - n(s) is divisible by s!;

286

here J_k^i are the intervals from Lemma 2.

Proof. Keep the notation from Lemma 2. Since $f^{m(0)}(J_0^j) \ge J_0 \cup J_1$, there is a closed interval $I_j \subseteq J_0^j = J_j$ such that $f^{m(0)}(I_j) = J_j$, j = 0, 1. Put n(1) = m(0).

Now assume by induction that we have defined intervals $\{I_{\alpha}; \alpha \in X(r)\}$ and n(r). Let $\alpha \in X(r+1)$. Then $\alpha = \beta 0$ or $\alpha = \beta 1$ where $\beta \in X(r)$. By the hypothesis, $f^{n(r)}(I_{\beta}) = J_{r}^{\beta(r)}$ and Lemma 2 gives

$$f^{n(r)+m(r)}(I_{\beta}) \stackrel{\scriptscriptstyle >}{=} I_0 \cup I_1$$

Hence there is a closed interval $I_{\alpha} \subseteq I_{\beta}$ such that $f^{n(r)+m(r)}(I_{\alpha}) = J_{r+1}^{\alpha(r+1)}$. If we take n(r+1) = n(r) + m(r), then by (7) and hypothesis, (12) if true for k = r + 1. The other conditions are clearly satisfied. Now we are ready to give

Proof of Theorem 1. Keep the notation from Lemmas 1 - 4. Write $F_k = \cup \{I_\alpha; \alpha \in X(k)\}$ and $A = \bigcap_{k=1}^{\infty} F_k$. Define a mapping $\phi : A \to X$

in the following way:

For any $x \in A$ let $\phi(x) = \alpha \in X$ be such that $x \in M_{\alpha}$, where

$$M_{\alpha} = I_{\alpha(1)} \cap I_{\alpha(1)\alpha(2)} \cap I_{\alpha(1)\alpha(2)\alpha(3)} \cap \cdots$$

(it is easy to see that for every x there is exactly one α with $x \in M_{\alpha}$), Since $M_{\alpha} \neq \emptyset$ for every α , ϕ is surjective.

The mapping ϕ is also continuous. Indeed, let $\theta(\alpha)$ be a neighbourhood of $\alpha \in X$. Then there is an n such that

$$O(\alpha) \geq O''(\alpha) = \{\beta \in X; \beta(k) = \alpha(k) \text{ for } k = 1, \dots, n\}$$

Write $G = I_{\alpha(1)...\alpha(n)}$. Let $x \in A$ with $\phi(x) = \alpha$. Then G is a relatively open neighbourhood of x in A, and clearly $\phi(G) \subseteq O(\alpha)$.

Note that for every α , M_{α} is closed and connected, and ϕ is constant on M_{α} . Let x_{α} be the left-end point of M_{α} . Then clearly

 $B = \{x_{\alpha} ; \alpha \in X\} \subseteq A \text{ is an uncountable Borel set and } \phi \text{ restricted to}$ $B \text{ is a bijection } B \neq A \text{, Therefore } \phi^{-1}(Y) \cap B \text{ is an uncountable Borel set.}$ Hence there is a non-empty perfect set $S \subseteq \phi^{-1}(Y) \cap B$ (see [4]; here Y is the set from Lemma 3).

It remains to verify that S is the desired arepsilon-scrambled set for f , where

$$\varepsilon = \frac{1}{3} \operatorname{dist} (J_0, J_1) > 0$$
.

Let $x, y \in S, x \neq y$. Then $\phi(x) = \alpha$, $\phi(y) = \beta$, where $\alpha \neq \beta$, $\alpha, \beta \in Y$. Hence by Lemma 3 and (11), for infinitely many k either

$$f^{n(k)}(x) \in J_0$$
 and $f^{n(k)}(y) \in J_1$

or

$$f^{n(k)}(x) \in J_1$$
 and $f^{n(k)}(y) \in J_0$

since $J_{j}^{i} \subseteq J_{i}$ for every i, j. Thus (4) is true.

Again by Lemma 3 and (11), for infinitely many k we have $\alpha(k) = \beta(k)$, and thus $f^{n(k)}(x)$, $f^{n(k)}(y) \in J_k^{\alpha(k)} = J_k^{\beta(k)}$, hence by (9)

$$|f^{n(k)}(x) - f^{n(k)}(y)| \le \mu(J_k^{\alpha(k)}) \le 2^{-k} \mu(J_0^{\alpha(k)})$$

for every such k and this implies (2) .

Finally, let $x \in S$ and let $p \in I$ be a periodic point of f. Let s be the period of p. For k > s we have

$$f^{n(k)}(p) = f^{n(k)-n(s)}(f^{n(s)}(p)) = f^{n(k)-n(s)}(q) = q$$

since q has period s and s divides n(k) - n(s) (see (12)). Let $r \in \{0, 1\}$ be such that dist $(J_{r}, \{q\}) > \varepsilon$. Choose k > s so that for $\alpha = \phi(x), \alpha(k) = r$. Then by (11),

$$|f^{n(k)}(x) - f^{n(k)}(p)| \ge dist (J_{r}, \{q\}) > \varepsilon$$

Since k can be choosen arbitrarily large we obtain (5) and our theorem is proved.

Before we state the next result, we recall some terminology (see

[10]). Let $f \in C^{0}(I, I)$. We say that an interval $J \subseteq I$ is an f-periodic interval of order k if $f^{k}(J) = J$ and $f^{i}(J) \cap f^{j}(J) = \emptyset$ for $i \neq j, i, j = 1, \ldots, k$. Two points $u, v \in I$ are f-separable if there are disjoint periodic intervals $J_{u}, J_{v} \subseteq I$ with $u \in J_{u}, v \in J_{v}$. Otherwise u, v are f-nonseparable. The set of all limit points of a trajectory $\{f^{k}(x)\}_{k=1}^{\infty}$ is called the attractor of f and x, and is denoted by $L_{f}(x)$.

The following theorem generalizes a result from [10].

THEOREM 2. A function $f \in C^{0}(I, I)$ is chaotic in the sense of Li and Yorke if and only if there is an infinite attractor $L_{f}(x)$ containing two f-nonseparable points u, v.

Proof. In [10] the theorem is proved for functions with zero topological entropy. Thus in view of Theorem 1 it suffices to show that any $f \in C^0(I, I)$ with positive topological entropy has an infinite attractor $L_f(x)$ containing two *f*-nonseparable points u, v.

Hence assume f has a cycle of order divisible by an odd prime (see [6]). By [11] or [12] there is an uncountable attractor $L_f(x)$ containing a cycle of f. Let the order of this cycle be $m \ge 1$. Clearly $L_f(x)$ contains two accumulation points u, v of $L_f(x)$. Assume that there are disjoint periodic intervals $J_u, J_v, u \in J_u, v \in J_v$, with periods $m(u), m(v) \ge 1$ (otherwise u and v would be f-non-separable).

Then there is a k such that $f^k(x) \in J_u$, and hence $L_f(x) \subseteq$ $\operatorname{Orb}_f(J_u) = \bigcup_{i=1}^{m(u)} f^i(J_u)$, and similarly $L_f(x) \subseteq \operatorname{Orb}_f(J_v)$. Since J_u , J_v are disjoint, we have m(u) > 1, m(v) > 1. Consider the mapping $f^{m(n)}$ restricted to J_u ; denote it f_1 . By the periodicity of J_u , the set $L_f(x) \cap J_u$ is uncountable (since $f(L_f(x)) = L_f(x)$). Choose two accumulation points $u_1, v_1 \in L_f(x) \cap J_u$ of $L_f(x)$. Assume there are disjoint f_1 -periodic intervals J_u^1 , $J_v^1 \in J_u$ with periods $m(u_1)$, $m(v_1) \ge 1$ such that $u_1 \in J_u^1$ and $v_1 \in J_v^1$ (otherwise u_1 , v_1 are fnonseparable). Similarly as in the preceding step we can see that $m(u_1) > 1$ and $m(v_1) > 1$. Hence J_u^1 is an f-periodic interval of period $m(u).m(u_1) > m(u)$, and such that $L_f(x) \subseteq \operatorname{Orb}_f(J_u^1)$.

By repeating this construction we obtain f-periodic intervals $J_u \ge J_u^1 \ge J_u^2 \ge \dots \ge J_u^n$, where $n \ge 1$ is the first index such that $L_f(x) \le \operatorname{Orb}_f(J_u^n)$ and $m(u_n)$, the period of J_u^n , is greater than m. But this is a contradiction with the fact that $L_f(x)$ contains a cycle of order m. Hence u_{n-1} , v_{n-1} are f-nonseparable.

Now we can prove the following survey theorem summarizing conditions equivalent to the chaoticity of mappings. Recall that for $f \in C^{\rho}(I, I)$ we say that the trajectory $\{f^{k}(x)\}_{k=1}^{\infty}$ of x is approximable by cycles if for any $\varepsilon > 0$ there is a periodic point p of f such that

$$\limsup_{n \to \infty} |f^{n}(x) - f^{n}(p)| < \varepsilon$$

THEOREM 3. Let $f \in C^{0}(I, I)$. The following conditions are equivalent:

(a) f is chaotic in the sense of Li and Yorke;

(b) f has an infinite attractor containing two f-nonseparable points;

(c) for some $\varepsilon > 0$, f has a nonempty perfect ε -scrambled set;

(d) f has a trajectory which is not approximable by cycles;

(e) f is topologically conjugate to a function which has a scrambled set of positive Lebesgue measure;

(f) for some $\varepsilon > 0$, f has a nonempty ε -scrambled set.

Remark 1. We emphasize that, rather surprisingly, positive topological entropy (or the existence of a cycle of order divisible by an odd prime) is not equivalent to the chaoticity of a function f in

the sense of Li and Yorke (an example is given in [10]). However, in view of Theorem 1, positive topological entropy of f implies that chaoticity of f.

On the other hand, existence of an infinite attractor does not imply (but is clearly implied by) the chaoticity of f, see [10].

Remark 2. The implication (a) \rightarrow (e) in Theorem 3 generalizes recent results [3], [7], [8], in which particular functions with large (from a measure-theoretical point of view) scrambled sets are constructed. However, this implication does not generalize the result from [9], in which map g with a perfect scrambled set of positive Lebesgue measure is given. This is because g can easily be modified to be of class C^{1} (this possibility is not mentioned in [9]).

Proof of Theorem 3. (a) \iff (b): This follows from Theorem 2.

(b) \rightarrow (c): This was proved in [10] for functions having no cycles of order divisible by an odd prime; for other functions use Theorem 1.

(c) \rightarrow (d): This follows immediately from (5).

(d) \rightarrow (a v b): For functions with zero topological entropy the implication (d) \rightarrow (b) is proved in [10], otherwise Theorem 1 gives the validity of (a).

(c) \rightarrow (e): Let $S \neq \emptyset$ be a perfect scrambled set for f. Let $h: I \rightarrow I$ be a homeomorphism such that $\mu(h(S)) > 0$. Then h(S) is clearly a scrambled set for $g = h \circ f \circ h^{-1}$ (first apply h^{-1}).

(e) \rightarrow (a) is trivial and since (f) is an another formulation of (d), also (d) \iff (f) is true.

Problem. It is possible to show that for $f \in C^{\rho}(I, I)$ the following condition also is equivalent to the chaoticity of f:

(g) f has a scrambled set containing two points. However, our proof is rather complicated. But this result should be probably provable in a simpler way. (Clearly, in view of Theorem 1 it suffices to consider only mappings with zero topological entropy satisfying the condition (g).)

K. Janková and J. Smítal

References

- [1] L. Block, "Homoclinic mappings of the interval", Proc. Amer. Math. Soc. 72 (1978), 576-580.
- [2] P. Collet and J. -P. Eckmann, Iterated maps of the interval as dynamical systems, Progress in Physics 1 (Birkhauser, 1980).
- [3] I. Kan, "A chaotic function possessing a scrambled set of positive Lebesgue measure", Proc. Amer. Math. Soc. 92 (1984), 45-49.
- K. Kuratowski, Topologie I, (PWN Polish Scientific Publishers, Warsaw 1968), p. 387.
- [5] T. Y. Li, J. A. Yorke, "Period three implies chaos", Amer. Math. Monthly 82 (1975), 985-992.
- [6] M. Misiurewicz, "Horseshoes for mappings of the interval", Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), 167-169.
- [7] M. Misiurewicz, "Chaos almost everywhere", Iteration Theory and its Functional Equations (editor Liedl et al.), Lecture notes in mathematics (Springer 1985).
- [8] J. Smital, "A chaotic function with some extremal properties", Proc. Amer. Math. Soc. 87 (1983), 54-56.
- [9] J. Smital, "A chaotic function with a scrambled set of positive Lebesgue measure", Proc. Amer. Math. Soc. 92 (1984), 50-54.
- [10] J. Smital, "Chaotic functions with zero topological entropy", Trans. Amer. Math. Soc. (to appear).
- [11] A. N. Sarkovskii, "Attracted and attracting sets" (Russian), Dokl. AN SSSR 160 (1965), 1036-1038 = (English) Soviet Math. Dokl. 6 (1965), 268-270.
- [12] A. N. Sarkovskii, "Behavior of a mapping in the neighborhood of an attracting set" (Russian), Ukrain. Math. Zh. 18 (1966) No. 2, 60-83 = (English) AMS Trans. (2) 97 (1970), 227-258.

Department of Mathematics Komensky University 842 15 Bratislava Czechoslovakia.