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A CHARACTERIZATION OF CHAOS

K. JANKOVA AND J. SMITAL

Consider the continuous mappings f from a compact real interval

to itself. We show that when / has a positive topological

entropy (or equivalently, when f has a cycle of order

^ 2 j n = 0, 1, 2, ...) then f has a more complex behaviour

than chaoticity in the sense of Li and Yorke: something like

strong or uniform chaoticity, distinguishable on a certain level

e > 0 . Recent results of the second author then imply that any

continuous map has exactly one of the following properties:

It is either strongly chaotic or every trajectory is approximable

by cycles. Also some other conditions characterizing chaos are

given.

Denote by &(1,1) the class of continuous mappings I •* I , where

I is a compact real interval. An f e CT(I3I) is said to be chaotic in

the sense of Li and Yorke [5], when there is an uncountable set S e_ I

such that for any x, y e S, x ^ y , and any periodic point p of f ,

(1) lim sup \f(x) - f(y) | > 0
n •*• °°
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(2) lim inf \f(x) - f(y) \ = 0
n -> °°

(3) lira sup \f (x) - fl(p)\ > 0
n ->• °°

Here f denotes the M-th iterate of / . Any set S whose points

satisfy condition (1) - (3) is called a scrambled set for f .

In [70] is given the following stronger concept: given e > 0 , a

set S £ I is an e-scrambled set for some / e u (IaI) if for any

x, y e. S, x ̂  y , and any periodic point p of f ,

(4) lim sup \f(x) - f(y) | > e
n -*• °°

(5) lim sup \fl(x) - fl(p)\ > e
n -*•<*•

and (2) is true.

Moreover, in DO] it is shown that for any / e &(1,1) with zero

topological entropy (or equivalently, without cycles of order divisible

by an odd prime, see [6]) the chaoticity in the sense of Li and Yorke is

equivalent to the existence of a perfect non-empty e-scrambled set, for

some e > 0 . The following main result of this paper shows that this is

also true for mappings with positive topological entropy.

THEOREM 1. Let f e u(1,1) have a oyale of order divisible by

an odd prime. Then for some z > 0 , f has a non-empty perfect e-

sorambled set S.

In the proof we use methods of symbolic dynamics, see, for example,

[2] or [7] . First we recall the following well-known result.

LEMMA 1. (Block V\, see also \_]2V. If f e (P(I3I) has a cycle

of order / 2 ; n = 0, 1, 2, ..., then there are closed disjoint

intervals J-3 J~ c_I and an integer m > 0 sueh that

(6) f(JQ) n f(Jt) ^JQ u J2 .

Next we give a generalization of this lemma.
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LEMMA 2. Let f, J', J1 and m be as in Lemma 1. Then there are

closed intervals

and a sequence {m(k)},_n of positive integers such that for every

k = 03 1, 2, ... and j = 0, 1,

(7) m(k) is divisible by k! and m ,

(8) f(

(9) v(4+1) < \ k

where \i is the Lebesgue measure.

Proof. Put m(0) = m and assume by induction that m(k), J, and

J, are defined for kin. Choose a closed interval U. 5_ J such that
K Q n

f(n)(U.) = J. , for 3 = 0, 1 . Then at least one of the sets VQ, ^

has Lebesgue measure less than -r- \i(J ) . Denote this set by J 7 and

put m(n + 1) = m(n) + p , where p > m is choosen such that (7) is true

for k = n + 1 . Then by (6)

since p is divisible by m . Similarly we find J - . D

In the sequel the following notation will be useful. Let X(k) be

the set {0, 1} of all ordered fe-tuples and X = {0, 1} the set of

all sequences of two symbols 0, 1. If a e X(k) , 6 e X(s) then

aB £ X(k + s) is the concatenation of a and B . For a e X(k) or

a e X, a(j) will denote the j'-th coordinate of a . Assume X is

equipped with the topology of pointwise convergence (given for example by

the metric p (a, 8) = I 2~n \a(n) - &(n)\) .
n

LEMMA 3. There is a perfect, non-empty set Y c_ x such that any
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a e Y has infinitely many O's and 1's, and for any two a., B e Y ,
a / 6 implies a(n) ^ 8(n) for infinitely many n.

Proof. Let £ be an irrational number. Define T : 10, 11 -*• X

in the following way: For t € 10, 11 , i(t) = i^(k)},_^. , where

r 0
= {

<• 1

if S(t + Vi) £ 10, 1/2)
a(k) {

< if N(t + &.) e 11/2, 1)

Here N(x) e L03 1) is the fractional part of x . Considering the well-

CO

known fact that {W(?/cJ L , is uniformly distributed and hence dense in

[0j 11 , we can easily verify that i(t) (n) ^ x(s)(n) for infinitely many

n , whenever t, s e [0, 11, t ̂  s .

Next observe that T has at most a countable set of discontinuity

points: for each k there is exactly one t e [0, 11 so that

N(t + E,k) = 1/2 . Denote this t by t(k) . Clearly T is continuous

on B = LO, 11 \ {t(k)},_- . Since B is a Borel set we have that

i(B) ^_ X is analytic and uncountable and by 141 it contains a non-empty

perfect set P .

For any a e P write

a* = a.(l) 0 a(2) 1 a(S) 0 <x(4) 1 a(S) 0 ...

and let J = {a* ; a e P} . It is easy to see that Y is closed (as

the intersection of closed sets) and has no isolated points, that is Y

is perfect. D

LEMMA 4. Let f have a cycle of order divisible by an odd prime.

Then there is a set {I ; a e X(k) }™ , of closed intervals and a

sequence ^(k)}-,_^ of positive integers such that, for every k, s,

k > s ,
(10) I „ c i for a e X(k - s), B e X(s) ,

ap — a

(11) f(k]] (IJ = J^" whenever a e. X(k) ,

(12) n(k) - n(s) is divisible by s! ;
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here J1, are the intervals from Lemma 2.

jn(O)
Proof. Keep the notation from Lemma 2. Since f (<r) £_ J u J ,

there is a closed interval I. c jJ = J. such that f (I.) = J . ,

3 - 0 3 3 3

3=0, 1 . Put n(l) = m(0) .

Now assume by induction that we have defined intervals
{J ; a e X(r)} and n(r) . Let a e X(r + 1) . Then a = &0 or
a

a = 61 where $ e XfrJ . By the hypothesis, f1 (I ) = J^

and Lemma 2 gives

Hence there is a closed interval J c J such that f (I ) =
a — 3 a

«̂ j.7 • If we take n(r + 1) = n(r) + m(r) , then by (7) and hypothesis,

(12) if true for k = r + 1 . The other conditions are clearly satisfied.Q

Now we are ready to give

Proof Of Theorem 1. Keep the notation from Lemmas 1 - 4 . Write

F, = u{J ; a e X(k)} and A = n F, . Define a mapping <)> : A -*• X
K a k=1 K

in the following way:

For any x e A let $(x) = a e X be such that x e M , where

Ma = Ia(D " Ia.(l)<x(2) n Jari;ar2;ar3;n "•

(it is easy to see that for every x there is exactly one a with

x e M ) , Since M ^ 0 for every a , <j> is surjective.
ex a

The mapping <|> is also continuous. Indeed, let 0(a) be a

neighbourhood of a e X . Then there is an n such that

0(a) 2_0n(a) = (6 e X; $(k) = a(k) for k = 1, . .., n} .

Write G = I ,j. , . . Let x e A with <j>(x.) = a. Then G is a

relatively open neighbourhood of x in A , and clearly <j>(GJ £ 0fcJ .

Note that for every a, M is closed and connected, and <j) is

constant on M . Let x be the left-end point of M . Then clearly
a a a x
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B = {x ; a £ X} c A is an uncountable Borel set and <(> restricted to
ot

B is a bijection S •*• A , Therefore if) fYj n S is an uncountable Borel

set. Hence there is a non-empty perfect set S c_ <\> (Y) n B (see [4];

here Y is the set from Lemma 3) .

It remains to verify that S is the desired e-scrambled set for

f , where

e = 4 dist (J., J J > 0 .
o (J J.

Let x3 y e S, x ̂  y . Then 4?(x) = a , i>(y) = 6 , where a / J ,

oij 3 e Y • Hence by Lemma 3 and (11) , for infinitely many k either

)eJ0 and f(k)(y)eJ1

Ji(k) , , T , ji(k), , T

j (a;; e J and / (y; e c7.

since ê . £ J. for every •£, j . Thus (4) is true.
0 v

Again by Lemma 3 and (11) , for in f in i t e ly many k we have

/7 1 on 1 J ,. Jt(k) , , J%(k) , , TaC/cj ,8Cfc,) . , ,„,
a(k) = §(k) , and thus f (x), f (y) e J, = J, , hence by (9)

\f(k)(x) - f(k)(y)\ < V(J
a
k
(k)) < 2~k

for every such k and this implies (2) .

Finally, let x e S and let pel be a periodic point of

Let s be the period of p . For k > 8 we have

f(k)(p) = fi(k)-n(s)(jn(s)(p)) = ^(k

since q has period s and s divides n(k) - n(s) (see (12)). Let

r e {0, 1} be such that dist (J , {q

a = §(x), a(k) = v . Then by (11) ,

r e {0, 1} be such that dist (J , {q}) > e . Choose k > s so that for

) _ f(k)(v)\ s dist (J^

Since k can be choosen arbitrarily large we obtain (5) and our theorem

is proved. Q

Before we state the next result, we recall some terminology (see
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[JO]). Let / e (P(I, I) . We say that an interval J c_J is an / -

periodic interval of order k if j(J) = J and f'(J) n f3 (J) = 0 for

i ^ j , i3 j = 13 . . . , k . Two points u, V e J are /-separable if there

are disjoint periodic intervals J , J c J with u e J , v e J .
U V — u V

Otherwise u, V are /-nonseparable. The set of all limit points of a

trajectory {7 (x) }j,_7 is called the attractor of f and x , and is

denoted by LJx) .

The following theorem generalizes a result from [JO].

THEOREM 2. A function f e &(I, I) is chaotic in the sense of

Li and Yorke if and only if there is an infinite attractor LJx)

containing two f-nonseparable points u, v.

Proof. In [70] the theorem is proved for functions with zero

topological entropy. Thus in view of Theorem 1 it suffices to show that

any f e CT (I, I) with positive topological entropy has an infinite

attractor Ln(x) containing two /-nonseparable points u, V.

Hence assume / has a cycle of order divisible by an odd prime

(see [6]). By [H] or [72] there is an uncountable attractor LJx)

containing a cycle of / . Let the order of this cycle be m > 1 .

Clearly L~(x) contains two accumulation points u, V of L~(x) .

Assume that there are disjoint periodic intervals J,J,ue.JiveJ.

with periods m(u), m(v) S 1 (otherwise u and v would be /-non-

separable) .

Then there is a k such that j (x) e J , and hence LJx) c_
" J

m(u) £
Oxhjj ) = .u f(J), and similarly LJx) £ Orb JJ ) . Since J , J

are disjoint, we have m(u) > 1, m(v) > 1 . Consider the mapping

j restricted to J ; denote it /_ . By the periodicity of J 3

the set LJx) n J is uncountable (since f(L~(x)) = LJx)) . Choose
J ^ J T

two accumulation points u~, V^ e LJx) n J of LJx) . Assume there
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are disjoint /7-periodic intervals <J , J c J with periods m(u^),

m(v-) ^ 1 such that u~ e. J and v2 e *v ( ° t n e r w i s e ui> vi a r e

nonseparable) . Similarly as in the preceding step we can see that

m(u-) > 1 and m(v^) > 1 . Hence «/ is an /-periodic interval of

period m(u) .m(u^) > m(u) , and such that LJx) c^OrbJJ ) .

By repeating this construction we obtain /-periodic intervals

J •=> J D J =>...=>J^. where nil is the first index such that
u — u — u — — u

L~(x) <^_ OrhJj ) and m(u ) } the period of J , is greater than m ,

But this is a contradiction with the fact that L~(x) contains a cycle

of order m . Hence u i' v _-i a r e /-nonseparable. D

Now we can prove the following survey theorem summarizing conditions

equivalent to the chaoticity of mappings. Recall that for / e CT (I, I)

we say that the trajectory {j (x)}._ of x is approximable by cycles

if for any e > 0 there is a periodic point p of f such that

lim sup \f(x) - fl(p)\ < e .
n -*• °°

THEOREM 3. Let / e CT (I, I) . The following conditions are

equivalent:

(a) f is chaotic in the sense of Li and Yorke;

(b) f has an infinite attractov containing two f-nonseparable

points;

(a) for some e > 0 , f has a nonempty perfect e-scrambled set;

(d) f has a trajectory which is not approximable by cycles;

(e) f is topologically conjugate to a function which has a

scrambled set of positive Lebesgue measure;

(f) for some e > 0, f has a nonempty e-scrambled set.

Remark 1. We emphasize that, rather surprisingly, positive

topological entropy (or the existence of a cycle of order divisible by

an odd prime) is not equivalent to the chaoticity of a function / in
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the sense of Li and Yorke (an example is given in [10]). However, in

view of Theorem 1, positive topological entropy of / implies that

chaoticity of / .

On the other hand, existence of an infinite attractor does not

imply (but is clearly implied by) the chaoticity of f , see DO] .

Remark 2. The implication (a) -»• (e) in Theorem 3 generalizes

recent results [3], [7], [g], in which particular functions with large

(from a measure-theoretical point of view) scrambled sets are constructed.

However, this implication does not generalize the result from [9], in

which map g with a perfect scrambled set of positive Lebesgue measure

is given. This is because g can easily be modified to be of class

C (this possibility is not mentioned in [9]).

Proof Of Theorem 3. (a)<—>(b): This follows from Theorem 2.

(b) -»• (c) : This was proved in [JO] for functions having no cycles

of order divisible by an odd prime; for other functions use Theorem 1.

(c) •* (d) : This follows immediately from (5) .

(d) -»• (a v b) : For functions with zero topological entropy the

implication (d) -*• (b) is proved in [10], otherwise Theorem 1 gives the

validity of (a).

(c) -»• (e) : Let S ^ 0 be a perfect scrambled set for / . Let

h: I •*• I be a homeomorphism such that \i(h(S)) > 0 . Then h(S) is

clearly a scrambled set for g = h ° f ° h (first apply h ) .

(e) ->• (a) is trivial and since (f) is an another formulation of

(d) , also (d)<->(f) is true. Q

Problem. It is possible to show that for / e Cr (I', I) the

following condition also is equivalent to the chaoticity of / :

(g) f has a scrambled set containing two points.

However, our proof is rather complicated. But this result should be

probably provable in a simpler way. (Clearly, in view of Theorem 1 it

suffices to consider only mappings with zero topological entropy

satisfying the condition (g).)
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