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Abstract

Compressible anisothermal flows, which are commonly found in industrial settings such as combustion chambers and
heat exchangers, are characterized by significant variations in density, viscosity, and heat conductivity with
temperature. These variations lead to a strong interaction between the temperature and velocity fields that impacts
the near-wall profiles of both quantities.Wall-modeled large-eddy simulations (LESs) rely on awall model to provide
a boundary condition, for example, the shear stress and the heat flux that accurately represents this interaction despite
the use of coarse cells near the wall, and thereby achieve a good balance between computational cost and accuracy. In
this article, the use of graph neural networks for wall modeling in LES is assessed for compressible anisothermal flow.
Graph neural networks are a type of machine learning model that can learn from data and operate directly on complex
unstructured meshes. Previous work has shown the effectiveness of graph neural network wall modeling for
isothermal incompressible flows. This article develops the graph neural network architecture and training to extend
their applicability to compressible anisothermal flows. The model is trained and tested a priori using a database of
both incompressible isothermal and compressible anisothermal flows. The model is finally tested a posteriori for the
wall-modeled LES of a channel flow and a turbine blade, both of which were not seen during training.

Impact Statement

The use of graph neural networks wall models for compressible anisothermal flows has the potential to
significantly enhance the accuracy and efficiency of large-eddy simulation in industrial settings. This innovation
can lead to improvements in design optimization in various industries, notably in the transportation, aeronautics,
and energy sectors, and thus contribute to global sustainability goals by helping to decarbonize these sectors.

1. Introduction

It is often computationally impractical to simulate all scales of motions in turbulent fluid flows. The
computational requirements are less stringent if only the larger turbulent scales are resolved, and the
smaller ones modeled. This is the basis of large-eddy simulation (LES). By modeling the effect of the
more expensive small-scale motions, LESs enable the study of more complex flow configurations than
allowed by direct computation. The LES of compressible anisothermal flow, in particular, is useful in
many industrial applications, such as combustion chambers, high-pressure turbines, rocket engines, or
heat exchangers (Chassaing et al., 2013). In these flows, the variations of density, viscosity, or heat

©TheAuthor(s), 2024. Published byCambridgeUniversity Press. This is anOpenAccess article, distributed under the terms of the Creative Commons
Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the
original article is properly cited.

Data-Centric Engineering (2024), 5: e10
doi:10.1017/dce.2024.7

https://doi.org/10.1017/dce.2024.7 Published online by Cambridge University Press

https://orcid.org/0000-0002-6585-8062
mailto:dorian.dupuy@cerfacs.fr
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/dce.2024.7
https://doi.org/10.1017/dce.2024.7


conductivity with temperature are large and lead to a strong coupling between the fields of temperature
and velocity. The near-wall profiles of velocity and temperature are influenced by this coupling (Huang
et al., 1995; Serra et al., 2012; Toutant and Bataille, 2013). LES should thus accurately represent the
interaction between temperature and turbulence. There are two ways to approach the simulation of wall-
bounded compressible anisothermal flow. The first approach, hereafter referred to as wall-resolved large-
eddy simulation (WRLES), resolves the large-scale turbulent structures in the entire boundary layer,
including the viscous and conductive sublayers. Since the turbulent structures decrease in size near walls,
this can be costly at high Reynolds numbers and for complex configurations. The second approach,
hereafter referred to as wall-modeled large-eddy simulation (WMLES), models all turbulent structures in
the viscous and conductive sublayers. This can be achieved using a wall model that imposes either the
shear stress, conductive heat flux, slip velocity, or temperature at the wall as a boundary condition.

Various wall models have been proposed in the literature. Differential wall models can be devised by
combining large-eddy simulation with Reynolds-average Navier–Stokes (RANS) near the walls. Hybrid
methods based on an embedded grid, zonal methods, and seamless methods such as detached-eddy
simulation may fall into this category (Cabot, 1995; Balaras et al., 1996; Davidson and Peng, 2003;
Temmerman et al., 2005; Piomelli, 2008). This type of approach can handle non-equilibrium effects
(Kawai and Larsson, 2013; Park andMoin, 2014) andmay take into account the effects of compressibility
and temperature variations, provided that relevant RANS models are used (Benarafa et al., 2007; Rani
et al., 2009; Zhang et al., 2013; Mettu and Subbareddy, 2018; Iyer and Malik, 2019). However, the
computational cost can be large as it requires amesh that resolves the viscous and conductive sublayers for
the RANS computation. To reduce computational costs, an integral wall model based on a parameterized
velocity profile was introduced by Yang et al. (2015) for incompressible flows and extended to
compressible anisothermal flows by Catchirayer et al. (2018). The family of algebraic wall models
includes some of the most widely used and classical wall models (Larsson et al., 2016; Bose and Park,
2018). The simplest such model uses the incompressible law of the wall locally and instantaneously,
following a statistical equilibrium assumption, to impose the wall shear stress (Deardorff, 1970;
Schumann, 1975). The approach may be adapted to the modeling of the conductive heat flux using a
wall function for temperature (Kader and Yaglom, 1972; Han and Reitz, 1997; Nichols and Nelson, 2004;
Berni et al., 2017). The law of the wall for temperature fields has been analyzed by Huang et al. (1995).
The article also introduced the semi-local scaling analysis, which is relevant for wall modeling (Patel
et al., 2015, 2016, 2017). The models for velocity and temperature should necessarily be coupled in flows
with strong temperature variations, as for example was proposed by Cabrit and Nicoud (2009). This
coupled wall model has been validated and compared to uncoupled wall modeling approaches and
differential wall models in various physical configurations (Maestro et al., 2017; Kraus et al., 2018; Muto
et al., 2019, 2021; Indelicato et al., 2021; Potier et al., 2022). Finally, machine-learning wall models have
recently emerged following the development of machine-learning technologies in image classification,
speech recognition, natural language processing as well as turbulence simulation and modeling (LeCun
et al., 2015; Duraisamy et al., 2019; Brunton et al., 2020). Data-driven wall-stress models were developed
and assessed for various incompressible flow configurations, including fully developed wall turbulence
and separated turbulent flows (Huang et al., 2019; Yang et al., 2019; Lozano-Durán and Bae, 2020, 2022;
Bhaskaran et al., 2021; Radhakrishnan et al., 2021; Zangeneh, 2021; Zhou et al., 2021; Bae and
Koumoutsakos, 2022; Dupuy et al., 2023a). For complex configurations, Dupuy et al. (2023b) introduced
a machine-learning wall model that can directly operate on the unstructured grid of a LES, based on a
graph neural network (GNN) architecture (Battaglia et al., 2018; Pfaff et al., 2020; Zhou et al., 2020). The
relevance of the approach was demonstrated a priori and a posteriori for the modeling of the wall shear
stress in incompressible isothermal flows.

In this article, theGNNwallmodeling approach is extended to themodeling of thewall shear stress and
wall conductive heat flux in compressible anisothermal flows. The objective is to assess the capability of
graph neural network to address the wall modeling of complex anisothermal flows, as well as to evaluate
the generalization capabilities of such models. The graph neural networks are based on an Encode-
Process-Decode architecture (Battaglia et al., 2018) with no global features that ensure the spatial locality
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of the prediction. Due to the GNN architecture, the model is able to directly operate on unstructured
meshes and can be applied in complex geometries with angles or curvature without a prior interpolation of
the inputs. Moreover, the GNN architecture encodes the translational invariance of the prediction, is
inherently biased toward locality and suited to massively parallel computation. The inputs of the model
are augmented and scaled to ensure in addition the Galilean invariance of the model and the equivariance
of the model under orthogonal transformations and to Mach number variations. Although the GNN
approach is in principle not restrictive in terms of mesh elements, the present analysis is restricted to
coarse tetrahedral meshes, as this type of mesh is commonly used to simulate complex industrial flows.
The graph neural networks wall models are validated a priori, based on filtered numerical data from direct
numerical simulations (DNS) and wall-resolved LESs, and a posteriori, based on wall-modeled LESs
coupled with the GNN models. The models are trained and tested on coarse tetrahedral meshes in both
cases. We use an uncoupled velocity-temperature algebraic wall model and the coupled velocity-
temperature algebraic wall model of Cabrit and Nicoud (2009) as baseline wall models in both cases.
The a priori database used to train and evaluate the models include six incompressible isothermal flows
(two channel flows, a diffuser, two backward-facing steps, and a linear blade cascade) and five
compressible anisothermal flows (two symmetrically cooled channel flows, two asymmetrically
cooled/heated channels flows, and a cooled high-pressure turbine blade). In a posteriori tests, the model
is first assessed for a channel flow to verify that the graph neural network model is able to perform at least
as well as algebraic models devised for this type of simulation. Themodel is then validated a posteriori for
the simulation of the high-pressure turbine blade VKI LS1989, specifically for test case MUR235 of Arts
et al. (1990), which features a complex physics that strongly departs from equilibrium wall modeling
assumptions. It relies on the coupling strategy of Serhani et al. (2022) to couple themassively parallel flow
solver (Schönfeld and Rudgyard, 1999) to the graph neural network in the wall-modeled LESs.

The article is organized as follows. The dataset and the preparation of the data for the machine-learning
model are presented in Section 2. The strategies used to enforce the equivariances of the model are
described in Section 3. The baselinewall models and the graph neural networkwall model are described in
Section 4. The a priori results are discussed in Section 5 and the a posteriori results in Section 6.

2. Database

Data-driven wall modeling hinges on the development of datasets that can specify the wall behavior of
fluids. These datasets may either be based on high-fidelity experimental or numerical data, and should
involve a large diversity of flow phenomena in order to build a model that can operate in a wide variety of
configurations. Building such dataset is a challenging task, even if the problem is restricted to incom-
pressible flows. The effect of compressibility and fluid-property variations adds several dimensions to the
problem, for instance, the effect of the Prandtl number, the Mach number, the equation of state, or the
viscosity law, such that fully specifying the problem is yet elusive. For practical purpose, small regions of
the problem space, of practical interest, could however be described by such a dataset. The present study
uses a dataset of 12 high-fidelity numerical simulations, 6 incompressible isothermal simulations, and
5 compressible anisothermal simulations. All compressible simulations involve an ideal gas, with
properties close to that of air in terms of Prandtl number, assumed constant. The simulations were
performed by various research groups using various CFD solvers and numerical methods. Demonstrating
an ability to learn from such an heterogeneous database is crucial for the further development of machine-
learning wall models with much larger datasets. The six incompressible isothermal simulations are the
same as found in Dupuy et al. (2023b), as summarized in Table 1: two fully developed channel flows at
friction Reynolds number Re τ = 180 (CF1, (Agostini and Vincent, 2020) and Re τ = 950 (CF2, (Del
Álamo and Jiménez, 2003; Lozano-Durán and Jiménez, 2014; Lozano-Durán and Jiménez, 2015); a
three-dimensional diffuser corresponding to the geometry “Diffuser 1” of Cherry et al. (2008) (3DD,
(Ercoftac, 2022); a backward-facing step (BFS, (Pouech et al., 2019, 2021); a curved backward-facing
step (APG, (Ercoftac, 2022); and a NACA 65–009 blade cascade on a flat plate such as studied
experimentally by Ma et al. (2011) and Zambonini et al. (2017) at an incidence angle of 4° and
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7° (N65) (Dupuy et al., 2023b). The five compressible anisothermal simulations are the simulations of two
fully developed asymmetrically cooled/heated channel flows at friction Reynolds number Re τ = 180
(AC1, (Dupuy et al., 2018) and Re τ = 395 (AC2, (Dupuy et al., 2019), with a temperature ratio of
2 between the two walls; two fully developed symmetrically cooled channel flows at friction Reynolds
number Re τ = 320 (SC1, Appendix A) and Re τ = 1150 (SC2, Appendix A), with a temperature ratio
between the bulk flow and the walls of 1.1 and 3 respectively; and a cooled high-pressure turbine blade
which corresponds to the test case MUR235 of Arts et al. (1990) (L89, (Dupuy et al., 2020). The SC1
simulation aims to provide a case where the coupling between the velocity and temperature fields is small,
while the SC2, AC1, andAC2 simulations provide cases where this coupling is strong. The channel flows
simulations (CF1, CF2, AC1, AC2, SC1, SC2) provide data for fully developed attached turbulence,
whereas the spatially inhomogeneous simulations (3DD, BFS, APG, N65, L89) provide data in non-
equilibrium conditions, including regionswith adverse pressure gradients, separated boundary layers, and
laminar-turbulent transition. The N65 and L89 simulations feature laminar and transitional boundary
layers on the blade surface. The 3DD simulation includes an intermittently laminar-separated region
(Ohlsson et al., 2010). The numerical parameters of each simulation are summarized in Table 1.

2.1. Data preparation

The fields in the numerical database are processed to prepare the data for the machine-learning wall models.
The goal of this preprocessing step is to produce fields that are similar in some ways to the fields of a wall-
modeled LES. Namely, the fields are filtered to attenuate large frequencies that cannot be resolved in a wall-
modeled LES and resampled onto coarse tetrahedral meshes that could be used for WMLES computations.
The present machine-learning methodology does not make any assumption regarding the nature of the
function that should be learned by the model and can only operate in the range of mesh resolution that was
seen during training. This operating range effectively determines the range of Reynolds number that can be
addressed a posteriori at moderate computational cost. Since the exact mesh resolution required for unseen
test cases is not known, it is important to consider a wide range of mesh refinements to train the model. For
each simulation, 12 tetrahedralWMLESmeshes with varyingmesh resolution are generated using themesh
adaptation library MMG3D (Dobrzynski and Frey, 2008; Dapogny et al., 2014; Balarac et al., 2021), with
nominal edge length in the range25≤ e + ≤ 80, inwall units,where the classicalwall-unit scaling is based on

Table 1. Numerical parameters of the numerical simulations are included in the training database

Simulation Scheme Flow type Fluid Viscosity law Nominal y+ Mesh size

CF1 FE Isothermal — — 0.25 0.07 M cells, ℙ5 (×)
CF2 FC Isothermal — — 0.03 100 M cells
N65 FE Isothermal — — 0.7 273 M cells
DD FE Isothermal — — 0.37 250 M cells
BFS FE Isothermal — — 0.4 40 M cells
APG FE Isothermal — — 1.3 15 M cells, ℙ3 (+)
AC1 FD Anisothermal Air Sutherland 0.05–0.13 39 M cells
AC2 FD Anisothermal Air Sutherland 0.1–0.25 201 M cells
SC1 FE Anisothermal H2-O2-12S Power law 0.9 2 M cells
SC2 FE Anisothermal H2-O2-12S Power law 0.9 78 M cells
L89 FE Anisothermal Air Sutherland 0.6–1.8 587 M cells

Note. The acronym FC denotes a Fourier-Chebyshev spectral method, FE denotes a finite-element method and FD denotes a finite-difference method.
ℙn indicates the use of a high-order method with polynomial order n. The “nominal y + ” is the height of the first point off the wall, in wall units, in the
channel (CF1, CF2, SC1, SC2), the boundary layer upstream of the blade (N65), the inlet duct flow (3DD), the boundary layer before the step (BFS,
APG), the bottom (cold) and top (hot) walls (AC1, AC2), the blade surface on the pressure and suction sides (L89). An “isothermal” flow type implies
that the temperature variations within the flow are negligible but does not imply an incompressible numerical method. In the case where a compressible
numerical solver is used to simulate an incompressible isothermal flow, we do not report the fluid and viscosity law since it is not of practical relevance.

e10-4 Dorian Dupuy, Nicolas Odier and Corentin Lapeyre

https://doi.org/10.1017/dce.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.7


the friction velocity and the kinematic viscosity at the wall, namely e+ = euτ=νω, with e the nominal edge
length, uτ = τ=ρωð Þ0:5 the friction velocity, τ the wall shear stress, ρω the wall density, and νω the wall
kinematic viscosity. This range of e + implies that the first point off thewall of theWMLESmesh is typically
within the logarithmic layer or the upper part of the buffer layer, in the case of a fully developed turbulent
boundary layer. It is suitable for instance in turbomachinery-flow simulations (Leonard et al., 2016;
Dombard et al., 2020; Odier et al., 2021). Indeed, while real turbomachines are typically not instrumented
for boundary-layer measurements, experimental measurements, and high-fidelity LESs show that the
friction Reynolds number based on boundary-layer thickness is in the range of 600–1000 in academic
linear blade cascadeswith realistic operating conditions in terms ofReynolds andMach numbers (Arts et al.,
1990; Ma et al., 2011; Gao et al., 2015; Zambonini et al., 2017; Dupuy et al., 2020). However, this implies
that the trained models are not applicable for cell sizes larger than Δ+ = 80, which would make their use in
flows with a very large friction Reynolds number (104 or above) impractical. It would in principle be
possible to train the model on a wider range ofmesh resolutions. However, it should be noted that this range
would remain limited by the Reynolds number of the high-fidelity simulations in the training database. For
instance, using a direct numerical simulations of a channel with a friction Reynolds number of 10,000
(Hoyas et al., 2022), the present method could be used to train amodel that can operate up to a cell size in the
order of a thousand wall unit, but not an order of magnitude more.

To filter the data, the instantaneous fields of the numerical database are first linearly interpolated on fine
tetrahedral meshes. The resulting fields are used to compute the filtered variables on the coarse tetrahedral
meshes. A surface filter is used for wall quantities while a volume filter is used outside the walls:

1. The surface filter (�
_

S) is defined as

ϕ
S
p0ð Þ=

X
p∈wS

p0

CS
p0
Spe

� rp�rp0

2 σSp0ð Þ2ϕ pð Þ, (1)

with ϕ
S
p0ð Þ a filtered variable on a point p0 of the target coarse mesh, ϕ pð Þ the corresponding unfiltered

variable on a point p of the source fine mesh,CS
p0
a normalization constant, Sp the nodal area associated

with node p on the source fine mesh, rp and rp0 the position vector associated with point p and p0,

respectively, σSp0 =
~Δ
S
p0
=
ffiffiffiffiffi
12

p
the standard deviations of the surface Gaussian kernel, ~Δ

S
p0
= ~S

1=2
p0

the

local filter width, ~Sp0 the nodal area of node p0 on the target coarse mesh and

wS
p0
= p∈Pf : ∥rp� rp0∥≤ ~Δ

S
p0

� �
∧ DW,p = 0
� �n o

the isotropic window of the surface filter, where

Pf is the set of points of the source mesh andDW,p the shortest distance between p and the target walls
W.

2. The volume filter (�
_
) is defined as

ϕ p0ð Þ=
X

p∈wp0

Cp0Vpe
� rp�rp0

2 σp0ð Þ2ϕ pð Þ, (2)

with Cp0 a normalization constant, Vp the nodal volume associated with node p on the source fine

mesh, σp0 =
~Δp0=

ffiffiffiffiffi
12

p
the standard deviations of the volume Gaussian kernel, ~Δp0 = ~V

1=3
p0

the volume

filter width, ~Vp0 the nodal volume of node p0 on the target coarse mesh and

wp0 = p∈Pf : ∥rp� rp0∥≤ ~Δp0

� �
∧ jDW,p�DW,p0 j≤ 1

2
~Δp0

� �n o
the window of the volume filter,

restricted in the wall-normal direction. The volume Gaussian filter is corrected to compensate any
bias on the mean profiles induced by the filter. The corrected filtered field may be expressed as

ϕ
∗
= ϕ+ 〈ϕ〉� 〈ϕ〉, where 〈�〉 denotes a time average.
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This filtering operation verifies the properties of (1) the conservation of constants a∗ = a, for any constant
a; (2) linearity ϕ+ψ

∗
= ϕ

∗
+ψ∗, for any ϕ and ψ; and (3) DNS-convergence, lim ~Δp0!0ϕ= ϕ, that is, the

filter has no effect in the limit of an arbitrarily small filter size. It should, however, be noted that the filter
does not commutewith spatial derivation, since it is a discrete approximation of a truncatedGaussian filter
(Sagaut, 2006).

The filtered fields are partitioned to produce contiguous chunks of consistent size that can be used to
train themodel. The chunks only include nodes that are separated from the targetwallsW byNH = 3 edges
or less. The partitioning is performed using the library METIS (Karypis and Kumar, 1998).

3. Scaling and data augmentation

To develop a model that can operate in a wide variety of flow configurations, it is critical to encode some
prior physical knowledge of the flow dependencies in the learning process. Indeed, learning the wall
behavior of fluids purely from data is only achievable using a dataset that includes a large diversity of
physical phenomena and also encompasses a wide range of scales of length, velocity, temperature, or
pressure. The present dataset only involves 10 configurations, which is undeniably too little to properly
specify the problem along each of those dimensions purely from data. The present study combines input
feature scaling and data augmentation to increase the generalizability of the model to other flows
configurations. The approach is based on a low Mach number hypothesis that is only approximately
verified in some real flows.

3.1. Mach-number equivariance

First, we give some theoretical background on the behavior of low Mach number flows, that will be
relevant to construct the input features.Wewill show how, under some assumptions, modifying the scales
of velocity, density, viscosity, and length does not change the underlying flow physics and thus should
accordingly not alter the behavior of the model.

Consider a flowmodeled using the compressible Navier–Stokes equations without body forces or heat
sources and the ideal gas equation of state,

∂ρ
∂t

+
∂ρuj
∂xj

= 0, (3)

∂ρui
∂t

+
∂ρujui
∂xj

= � ∂p
∂xi

+
∂σij
∂xj

, (4)

∂p
∂t

+
∂ujp
∂xj

= � γ�1ð Þ∂qj
∂xj

+ p 1� γð Þ∂uj
∂xj

, (5)

p= rρT , (6)

where ρ is the density, t the time, p the pressure, γ the adiabatic index of the fluid, r is the ideal gas-
specific constant, ui the ith component of velocity, and xi the Cartesian coordinate in ith direction. The
shear-stress tensor σ and the conductive heat flux q are assumed to be of the form
σij = μ Tð Þ ∂jui + ∂iuj

� �� 2=3ð Þ∂kukδij
� �

and qj = � λ Tð Þ∂jT respectively, where the dynamic viscosity
μ Tð Þ and the heat conductivity λ Tð Þ are functions of temperature. Dissipation has been neglected in the
pressure evolution equation (5), as this term vanishes in the low Mach number limit (Paolucci, 1982).
The dynamic viscosity μ Tð Þ is monotonous increasing in terms of T and separable, μ kTð Þ= h�1 kð Þμ Tð Þ,
which is for instance the case for a power law μ Tð Þ= μ0 T=T0ð Þk. The thermal conductivity is given by
λ Tð Þ= μ Tð ÞCp=Pr, with Cp the isobaric heat capacity of the fluid and Pr the Prandtl number of the fluid,
both assumed constant. Suppose that this flow is characterized by a density scale ρb, a velocity scale ub,
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and a pressure scale pb. The nondimensional numbers associated with the flow are the Reynolds number
Re= ρbubxb=μ Tb

� �
, the Prandtl number Pr = μ Tb

� �
Cp=λ Tb

� �
, and theMach numberMa = ub=cb, with xb

a length scale characterizing the geometry, and cb =
ffiffiffiffiffiffiffiffiffi
γrTb

p
the typical speed of sound.

At the low Mach number limit, modifying the scales of the flows does not modify the flow in a
nondimensional sense, provided that the Reynolds and Prandtl number are kept constant. Indeed, consider
another similar flow with a different Mach number and different scales of length, velocity, and tempera-
ture but the same Reynolds and Prandtl number, as follows:

x0b = βxb; ρ0b = 1=αð Þρb;
u0b = αϖ=βð Þub; T 0b = h ϖð ÞTb;

μ0b = μ T 0b
� �

=ϖμb; λ0b = μ0bCp=Pr
0 =ϖλb;

Re0 = Re; Ma0 = αϖ=βð ÞMa,

Pr0 =Pr;

where α, β, and ϖ are constant scalars characterizing the transformation. At low Mach number, the
nondimensionalized density and velocity are independent of the Mach number while the Mach number
dependence of pressure cannot be neglected. Namely, u=ub ≈bu0, ρ=ρb ≈bρ0 and p=pb ≈bp0 +Ma2bp1, wherebu0, bρ0, bp0, and bp1 do not depend on the Mach number (Lions and Moulden, 1996; Meister, 1999; Munz
et al., 2003). The zeroth-order nondimensionalized pressure bp0 can be shown to be constant in space by
injecting these asymptotic developments into the Navier–Stokes equations. It is therefore useful to
decompose pressure in a thermodynamical pressure p0 = p

bbp0 and a mechanical pressure
p1 = p�p0 = p

bMa2bp1. Hence, the thermodynamical and mechanical pressures are given by

p00 = p
0bbp0 = h ϖð Þ=αð Þp0 and p01 = p

0bα2Ma2bp1 = αϖ2=β2
� �

p1.
Based on these insights, let us consider the change of variables x= 1=βð Þx0, t = αϖ=β2

� �
t0,

u= u0β= αϖð Þ, ρ= αρ0, p0 = α=h ϖð Þð Þp00, p1 = p10β2= αϖ2ð Þ, T = 1=h ϖð Þð ÞT 0, μ = μ0=ϖ, and λ= λ0=ϖ. Here-
after, we refer to this change of variable as a Mach-number transformation, since this change of variable
modifies the Mach number of the flow. Introducing the change of variables in equations (3)–(6) leads to:

∂ρ0

∂t0
+
∂ρ0u0j
∂x0j

= 0, (7)

∂ρ0u0i
∂t0

+
∂ρ0u0ju

0
i

∂x0j
= �∂p10

∂x0i
+
∂σ0ij
∂x0j

, (8)

∂p01
∂t0

+
∂u0jp

0
1

∂x0j
= � γ�1ð Þ α2ϖ2

h ϖð Þβ2
∂qj
∂x0j

+ p01 1� γð Þ� γp00
α2ϖ2

h ϖð Þβ2
	 


∂u0j
∂x0j

� α2ϖ2

h ϖð Þβ2
∂p00
∂t0

, (9)

p00 +
h ϖð Þβ2
α2ϖ2

p01 = rρ
0T 0: (10)

At the limit of a lowMach number, the terms involving p01 in equations (9) and (10) vanish and the system
of equations (7)–(10) tends to the low Mach number equations of Paolucci (1982):

∂ρ0

∂t0
+
∂ρ0u0j
∂x0j

= 0, (11)

∂ρ0u0i
∂t0

+
∂ρ0u0ju

0
i

∂x0j
= �∂p01

∂x0i
+
∂σ0ij
∂x0j

, (12)
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0 = � γ�1ð Þ∂qj
∂x0j

� γp00
∂u0j
∂x0j

�∂p00
∂t0

, (13)

p00 = rρ
0T 0: (14)

This system of equations does not depend on any of the scalar parameters α, β, or ϖ. Hence, the Mach-
number transformation is parameterized by α, β, andϖ does notmodify the system of equations. It follows
that the solution of the system of equations (11)–(14) with different scales of velocity, density, viscosity,
and length can be deduced from such transformation.

To summarize, a relevant corollary with respect to the machine learning model is that under a Mach-
number transformation of its the input features,

ě= e=β, ρ̌= αρ,

ǔ = uβ= αϖð Þ, Ť = T=h ϖð Þ,
μ̌= μ=ϖ, λ̌= λ=ϖ,

(15)

the model’s prediction should undergo the same transformation. Namely, the norm of the shear stress
vector τ =Σ � en� en �Σ � enð Þen, where Σ= μ ∇u+ ∇uð ÞT � 2=3ð Þ ∇ �uð ÞId

� �
is the viscous stress tensor

and en a unit wall-normal vector, and the norm of the heat flux at the wall should undergo the
transformation

τ̌ = ατ β= αϖð Þð Þ2, q̌= qβ= ϖh ϖð Þð Þ: (16)

This property will thereupon will be referred to as theMach-number equivariance of the model. Particular
cases of the Mach-number transformation are the α-transformation, β-transformation, and ϖ-transform-
ation, which respectively correspond to β =ϖ= 1, α=ϖ= 1, and α = β = 1. The equivariance of the model
under a Mach-number transformation is not exact for real flows, including the flows in the numerical
database, as it relies on several approximations, most notably that of a low Mach number and constant
adiabatic index. It is nevertheless useful to introduce this approximate equivariance in the learning process
to build with limited data a model that can generalize to flows with different scales of velocity, density,
viscosity, and length. The a priori results should demonstrate that these approximations are not critical for
the performance of the model.

3.2. Strategies for equivariance enforcement

There are at least to two ways to leverage the equivariance of the model to a transformation P within the
training process: the invariant feature strategy and the data-augmentation strategy. In the invariant-feature
strategy, the model is expressed in terms of invariant trainable functions by algorithmically constructing
invariant features from the input data X (Villar et al., 2021, 2022). One particular way to construct these
invariant features is to use a reference to restrict the input space of the model. For instance, a privileged
direction and an intrinsic velocity reference can be used to enforce rotational invariance and Galilean
equivariance respectively. For machine-learning wall modeling, the wall may provide such references for
the α- andϖ-transformations. In the data-augmentation strategy, the input space of the model is increased
by using the transformation P to create modified copies of the training samples. For instance, arbitrary
rotations and translations can be used to enforce rotational invariance and Galilean equivariance
respectively. The two strategies are represented schematically in Figure 1. The invariant-feature strategy
is generally more costly than the data augmentation in terms of training time. However, it adds a pre-
processing and post-processing step to the model at inference time, which may hinder its implementation
in a CFD code.

In the present study, the equivariance of the model under an orthogonal transformation, a Galilean
transformation, and the α-, β-, andϖ-transformations defined in Section 3.1 are considered. Since the walls
are assumed to be isothermal, the dynamic viscosity is constant at the walls assuming that dynamic viscosity
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is only function of temperature. Accordingly, it is straightforward to define a ϖ-transformation that scales
dynamic viscosity. In contrast, the wall density may vary due to variations of pressure and accordingly, it is
difficult to equivocally select a particular value of the wall density to define an α-transformation that scales
density. Indeed, the density at each grid point is used for predictions at several wall locations. In light of the
above, a strategy based on data augmentation has been selected to impose the equivariance of the model
under aϖ-transformation while a strategy based on the scaling of input features has been selected to impose
the equivariance of the model under an α-transformation. Data augmentation is also used to ensure that the
prediction of the model does not depend on the coordinate system. Table 2 summarizes the strategy used to
enforce the equivariance of the model under each transformation considered:

• Orthogonal equivariance is ensured by augmenting the dataset with arbitrary three-dimensional
rotations and reflections of the axes.

• Galilean equivariance is ensured by expressing the input velocity relatively to the wall motion.
• α-equivariance is ensured by augmenting the dataset with arbitrary α-transformations, with α
sampled from the log-uniform distribution with range ρmin=〈ρ〉W,ρmax=〈ρ〉W½ �, where 〈∥ρ∥〉W is
the mean wall density and where ρmin,ρmax½ � is the desired density range of the model.

• β-equivariance is ensured by scaling the input data using the average edge length of the graph,
denoted 〈∥e∥〉G, that is by applying a β-transformation with β = 〈∥e∥〉G.

• ϖ-equivariance is ensured by scaling the input data using the wall dynamic viscosity μwall, that is by
applying a ϖ-transformation with ϖ= μwall.

For ease of interpretation, notice that the scaled input velocity may be expressed as

ǔ= ǔ + 〈∥e+ ∥〉G= αρwallð Þ, the scaled target wall shear stress as τ̌ = 〈∥e+ ∥〉2G= αρwallð Þ and the scaled wall

heat flux q̌ is proportional toCp Ť� Ťwall

� �
=Ťwall

� �
〈∥e + ∥〉G=T + , where + denotes the classical wall-unit

scaling, namely e+ = euτ=νω, u + = u=uτ , and T + = ρωCpuτ T�Twallð Þ=q. This scaling uniformizes the
length scale of the various simulations included in the training database, but it does not negate differences
in terms ofmesh resolution, which implies that ideally awide range ofmesh resolution need to be included

Figure 1. Schematic representation of the scaling and data augmentation strategies, where the input
space is formally decomposed into the dimension of a transformationP, with respect to which themodel is
assumed equivariant, and an intrinsic dimension, which represents of the physical content of the input
data, invariant under P. The red crosses represent different simulations seen during training or at

inference time. The blue areas are the portion of input space seen during training, which for illustrative
purpose is assumed to be a sphere in the feature space.
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in the training dataset. Similarly, the scaling uniformizes the viscosity scale of the various simulations
included in the training database, but it does not negate differences in terms of viscosity ratio between the
wall and bulk flow, which implies that ideally a wide range of such viscosity ratio should be found in the
training dataset.

4. Wall modeling

This section presents the architecture of the graph neural network wall model and the algebraic wall
models used as baselines.

4.1. Baseline wall models

Two algebraic wall models are used as baselines: an uncoupled velocity-temperature algebraic wall model
and the coupled velocity-temperature algebraic wall model of Cabrit and Nicoud (2009).

The uncoupled algebraic wall model provides a boundary condition for the wall shear stress and the
wall conductive heat flux without taking into account the coupling between the velocity and temperature
profiles. Namely, the wall shear stress is obtained by solving the incompressible law of the wall,

y + = u+ if y+ < y+c ,

1=κð Þ log y +ð Þ+C = u + if y+ ≥ y+c ,

�
(17)

and the wall heat flux is obtained by solving the temperature law

Pry+ = T + , if y + < y+c ,

Prt=κð Þ log y+ð Þ+CT = T + , if y + ≥ y+c ,

�
(18)

with κ = 0:41 the von Kármán constant, C = 5:5 a scalar constant, Prt = 0:85 the turbulent Prandtl number
and

CT = 3:85Pr1=3�1:3
� �2

+ 2:12 log Prð Þ (19)

a function of the Prandtl number (Kader, 1981). The threshold y +c = 11:445 is a critical value of the scaled
first point height separating the viscous and inertial sublayers. The scaled wall distance is y + = yuτ=νω, the
scaled temperature T + = T�Tωð Þ=T τ and the scaled velocity u + = u=uτ . The wall shear stress and
conductive heat flux are solved sequentially from equations (17) then (18) and the friction velocity and
friction temperature definitions, namely τ = ρωu

2
τ and qω = ρωCpuτT τ . The uncoupled algebraic model

does not take into account the effect of the temperature variations to determine the wall shear stress. It is
commonly used and accurate in flows with a negligible coupling between the fields of velocity and
temperature, for example, when the temperature variations are not large.

The coupled algebraic wall model of Cabrit and Nicoud (2009) is an algebraic model that takes into
account the coupling between the fields of velocity and temperature. In the case of a compressible non-

Table 2. Strategies used to enforce the equivariance of the machine-learning model to various
transformations, and references used to compute the scalings

Transformation Strategy Reference

Orthogonal Data augmentation —

Galilean Invariant features Wall velocity
α-transformation Data augmentation —

β-transformation Invariant features Mean edge length
ϖ-transformation Invariant features Wall dynamic viscosity
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reacting flow, the coupled wall model of Cabrit and Nicoud (2009) may be expressed by the following
system of equations.

• Velocity equation:

y+ = u+ if y+ < y+c ,

1
K
log y+ð Þ+C =

2
PrtBq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�KBq

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�T +Bq

q	 

if y+ ≥ y+c ;

8<: (20) (21)

• Temperature equation:

Prtu
+ +K = T + ; (22)

with Bq = T τ=Tω the anisothermicity factor, and K a function of the Prandtl number, given by

K =CT �PrtC +
Prt
κ

�2:12

	 

1�2 log 20ð Þð Þ, (23)

where CT is defined in equation (19). To solve this system of equations, a candidate friction velocity is
first computed by injecting y + = yuτ=νω and T + = T�Tωð Þ=T τ in equation (21). This candidate value is
discarded if the corresponding scaled first point height y+ is less than y+c , in which case uτ is solved using
(20). In any case, the friction temperature T τ is then computed by injecting u+ = u=uτ in equation (22). The
wall shear stress and conductive heat flux are deduced from the friction velocity and temperature
definitions, namely τ = ρωu

2
τ and qω = ρωCpuτT τ . The coupled algebraic model of Cabrit and Nicoud

(2009) takes into account the effect of the temperature variations to determine the wall shear stress. It is
relevant for fully developed turbulent boundary layers with large temperature variations.

4.2. Graph neural network wall model

A graph neural network is a class of artificial neural network designed to process graph-structured data,
that is a set of nodes and edges along with, optionally, node-valued or edge-valued fields. In the present
work, the “graph” corresponds to the numerical fields of an unstructured-mesh simulation. The nodes of
the graph are given by the nodes of themesh. The edges of the graph are given by the edges of themesh, or
in other words the mesh connectivity. The present graph neural network wall model uses the Encode-
Process-Decode architecture of Battaglia et al. (2018) and Dupuy et al. (2023b), represented schemat-
ically in Figure 2. This architecture has been selected for its ability to directly operate on the unstructured
data of the simulation, without requiring the prior interpolation of the inputs. The method is owing to this
property easily applicable in LESs of complex geometries, with angles, corners, or curvature. Further-
more, the architecture implicitly makes some physical assumptions that are relevant for the modeling of
the wall shear stress or wall heat flux. Namely, the prediction is invariant under a translation of the
computational domain and biased toward locality, meaning that the model will more easily use nearby
spatial locations for its prediction than far-away locations. The model will be trained to operate on mesh-
based data, and produce a field of the wall shear stress or the wall conductive heat flux. To this end, it will
leverage the inherent spatial relationships and dependencies found in the training database. Note that
while the present approach does not incorporate specific physical laws or equations as in the case of
physics-informed neural networks (PINN, (Raissi et al., 2019), it is not purely data-based since it is
combined with scaling and data augmentation techniques presented in Section 3.2 to improve the
generalizability of the model to other scales of length, velocity, temperature or pressure, and encode
relevant physical equivariances. Due to this, the model will encode the physical assumptions of Galilean
invariance, orthogonal equivariance that is the equivariance under a rotation or reflection of the
computational domain, and Mach-number equivariance that is the equivariance under a change of scale
that can be made under the assumption of a low Mach number. We accordingly assume that the effect of
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the Mach number on the boundary layer is not too large, which excludes hypersonic flows from the
domain of applicability of the method. Finally, we assume that the Prandtl number of the flow is constant
and that the variations of adiabatic index can be neglected for the temperature range of the flow.

The model architecture may be described as follows. The input of the model X is first encoded into a
latent space, processed iteratively by N identical message-passing steps, and finally decoded back to
physical space to produce the output Y :

Y = f γ Xð Þ= f δ ∘ f π ∘… ∘ f π ∘ f π|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
N times

∘ f ε Xð Þ, (24)

where f ε, f π , and f δ are learned functions associated respectively with the encoding, processing, and
decoding steps. The model input X is represented as a symmetric directed graph valued at both edges and
nodes. Namely, it is an ordered pair X = V ,Eð Þ, where V is the vector of the input features at the nodes of
the graph and E the vector of the input features at the edges of the graph. The encoder f ε is a set of two
multilayer perceptrons f Vε and f Eε that upscale the features at each edge or node independently. Specif-

ically, the encoded feature bV0
i at node vi is given by bV0

i = f
V
ε Við Þ and the encoded feature bE0

k at edge ek is

given by bE0
k = f

E
ε Ekð Þ, where Vi the input feature at node vi and Ek the input feature at edge ek. The

processor is the core part of the prediction. It consists of the successive application of message-passing

Figure 2. Graphical representation of the Encode-Process-Decode architecture. The scaling (pre-
processing) and unscaling (post-processing) steps correspond to the transformations as listed in Table 2.
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steps, which propagate the information through the edges and nodes of the graph. Namely, the message-
passing function f π is a set of twomultilayer perceptrons f Vπ and f Eπ with residual connections that updates
features at an edge from the nodes it contains and the features at a node from edges pointing to
it. Specifically, the updated features at iteration n are given by

bVn
i = bVn�1

i + f Vπ bVn�1
i ,

X
k∣R kð Þ= i

bEn
k

0@ 1A, (25)

bEn
k = bEn�1

k + f Eπ bEn�1
k , bVn�1

S kð Þ, bVn�1
R kð Þ

� �
, (26)

where each edge ek is assumed to point from node vS kð Þ to node vR kð Þ. The same message-passing
operations are learned and applied everywhere in the graph. The decoder f δ is a multilayer perceptron

that operates on node features only. The decoded output of the model at node vi is given by Yi = f δ bVN
i

� �
.

Following Dupuy et al. (2023b), the size of the latent space is dL = 128 at both nodes and edges and the
number of processing steps is N = 4 in the present study. This value implies that edge and node features
that are within a distance up to N = 4 neighbors away from a given target wall node will influence the
prediction. This value was found to be sufficient to discriminate non-equilibrium regions in Dupuy et al.
(2023b). The multilayer perceptrons f Vε , f

E
ε , f

V
π , and f

E
π are composed of nℓ = 2 layers while the multilayer

perceptron f Vδ is composed of nℓ + 1 hidden layers. Each layer is composed of dL neural units with a
rectified linear unit σ xð Þ= max 0,xð Þ as activation function and is followed by layer normalization
(Ba et al., 2016), except for the last layer of the multilayer perceptron f Vδ which is linear. The weights
of the multilayer perceptrons are learned using the Adam optimizer (Kingma and Ba, 2015) with a base
learning rate of 0.001.

Two graph neural network wall models are trained in order to model the wall shear stress and the wall
conductive heat flux respectively. In both cases, the following features are included in the input X of the
model:

• At the nodes: the three components of the velocity vector, the density, the dynamic viscosity, and a
target boundary mask χ equal to 1 on the target wall nodes W and 0 otherwise;

• At the edges: the three components of the edge displacement vector, and the length of the edge.

To provide the geometric information of the mesh to the model, we preferred to give the displacement
vector of the edges, instead of the node coordinates, because it implies that the input graphwill be the same if
the geometry is translated, ensuring the translational invariance of the prediction. The angle or distance to the
wall is not given to themodel as an input. However, it is possible for the model to reconstruct the distance to
thewall of an information at a given node, based on the displacement vectors of the various edges connecting
the point to the wall. The rationale is to alleviate the need tomanually define robust geometrical metrics that
can adapt to any complex geometry, and instead opts to let the network learn the optimal way to extract the
necessary information itself. The loss function is the mean squared error (MSE) between the output of the
model and the reference wall shear stress or wall conductive heat flux, that is either

Lτ = 〈χ τ̌
S
ref �Y

� �2
〉A,or (27)

Lq = 〈χ q̌
S
ref �Y

� �2
〉A, (28)

with 〈�〉A an average across graph nodes and samples. All the input and reference output variables are
scaled and/or augmented as described in Section 3.2. To minimize the loss, the learned function has to be
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resilient to a change of themesh. Indeed, the training databases prepared in Section 2.1 aggregates various
meshes with different resolutions for a given simulation, and the different geometries associated with the
different configurations. Furthermore, there are variations present within a given tetrahedral mesh as well.
An accurate prediction of the wall shear stress or wall conductive heat flux thus entails being robust to
mesh modifications. This will be confirmed in a priori tests.

5. A priori results

An a priori assessment of the graph neural network wall models is first performed, using filtered wall-
resolved simulations to assess the machine-learning procedure. Two machine-learning models are
investigated:

• a graph neural networkwall model, hereafter referred to as the Full GNNmodel, that is trained on the
incompressible channel flows (CF1, CF2), the three-dimensional diffuser (3DD), the NACA 65-009
blade cascade at an incidence angle of 4° (N65) and the cooled/heated channel flows (AC1, AC2,
SC1, SC2); and

• a graph neural network wall model, hereafter referred to as the ACSCGNNmodel, that is trained only
on the asymmetrically cooled/heated and symmetrically cooled channel flows (AC1,AC2, SC1, SC2).

For each simulation in the training simulation, a subset of the data is isolated for validation purpose. The
simulations that are not included in the training or validation dataset are referred to as test simulations. For
the Full GNN model, the test simulations are the BFS and APG simulations in the incompressible
isothermal case, and the L89 simulation in the compressible anisothermal case. For the ACSC GNN
model, the test simulations are all the incompressible isothermal simulations, and the L89 simulation in
the compressible anisothermal case.

The coefficient of determination between the reference wall shear stress or wall conductive heat flux
and themodel prediction Y gives an overview of themodel performance (Table 3). It is defined for thewall
shear stress model as

R2,τ = 1�
〈 τ̌

S
ref �Y

� �2
〉A

〈 τ̌
S
ref � 〈τ̌

S
ref 〉A

� �2
〉A

, (29)

and for the conductive heat flux model as

R2,q = 1�
〈 q̌

S
ref �Y

� �2
〉A

〈 q̌
S
ref � 〈q̌

S
ref 〉A

� �2
〉A

: (30)

It should be emphasized that the coefficient of determination is an imperfect measure of the model
performance, as it also depends on the underlying distribution of the data and cannot easily be compared
between different datasets. For instance, if two datasets are artificially combined to form an unique
dataset, the resulting coefficient of determination can be larger than the coefficient of determination
associated with each dataset, taken separately. Hence, an identical value of R2 may provide a satisfactory
performance for a given simulation but not for another. However, the values of determination coefficient
can readily be compared across differentmodels for a given simulation, since the dataset is fixed. Based on
the coefficient of determination, the validation performance of the ACSC model is satisfactory, as the
model is significantly more accurate than the baseline algebraic models in the training simulations AC1,
AC2, SC1, and SC2. Although no incompressible isothermal simulation was included in the training
dataset, the ACSC model generalizes well to an incompressible isothermal channel flow (case CF1 or
CF2). This is confirmed by the u+ y +ð Þ scatter plots in Figure 3a,b, in which it may be seen that the
predictions of the ACSC model are scatter around Reichardt’s law in the incompressible isothermal
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channels. Reichardt’s profile in Figure 3 is given by the following analytical expression of the incom-
pressible law of the wall (Reichardt, 1951):

u+ y +ð Þ= 1
κ
log 1+ κy+ð Þ+ 7:8 1� exp

�y+

11

	 

� y +

11
exp

�y +

3

	 
 �
, (31)

with κ = 0:41 the vonKármán constant. In the cooled/heated channels, the model prediction deviates from
Reichardt’s law due to the effect of the large temperature variations on the velocity profile, which is
consistent with the behavior of the reference filtered data (Figure 3g–j). Similarly, the reference mean
temperature profile may in the cooled/heated channels deviate from Kader’s law (Kader, 1981)

T + y+ð Þ=Pry+ exp �0:01 Pry+ð Þ4
1+ 5Pr3y+

 !
+ 2:12 log 1+ y +ð Þ+CT½ �exp � 1+ 5Pr3y+

0:01 Pry+ð Þ4
 !

, (32)

where CT is defined in equation (19), due to the effect of the coupling between velocity and temperature.
This is well reproduced by the ACSC model in the simulations AC1, AC2, SC1, and SC2 (Figure 4a–d).
This is confirmed by the scatter plots in Figure 6a–d, which show a good overall agreement between the
model prediction and the reference value in those simulations. However, the ACSC model may only
operate on channel flows and lead to a poor performance in non-equilibrium configurations for which it
has not been trained. For instance, the mean prediction of the ACSC model in the incompressible
isothermal test case BFS does not reproduce the spatial variations found in the reference filtered data
(Figure 7a). Nevertheless, the predictions of the ACSC model in the non-equilibrium simulations BFS,
APG, and L89 are at least as accurate as the algebraic coupled or uncoupled wall models, which are also
intended for equilibrium flow configurations. In particular, the mean wall shear stress prediction of the

Table 3. Coefficient of determination between the prediction of the graph neural network wall model
and the reference for the wall shear stress prediction and the wall heat flux prediction in each dataset

Baseline wall models Graph networks Baseline wall models Graph networks
Uncoupled Coupled ACSC Full Uncoupled Coupled ACSC Full

CF1 -0.33 -0.35 0.33 0.40
CF2 -0.13 -0.15 0.37 0.51
N65 -0.06 -0.03 0.40 0.53
3DD 0.47 0.47 -0.39 0.56
BFS 0.39 0.38 0.65 0.76
APG 0.55 0.56 0.67 0.77
AC1b -0.09 0.05 0.64 0.55 -0.02 0.23 0.71 0.59
AC1t -0.27 -0.36 0.28 0.02 -0.30 -1.10 0.41 0.29
AC2b -0.03 0.05 0.66 0.57 0.05 0.25 0.71 0.60
AC2t -0.19 -0.11 0.47 0.39 -0.03 -0.02 0.47 0.37
SC1 -0.27 -0.15 0.62 0.34 -0.07 0.09 0.54 0.34
SC2 -0.51 0.32 0.94 0.81 0.23 0.26 0.97 0.94
L89

0 0.5 1
0.19

0 0.5 1
0.32

0 0.5 1
0.34

0 0.5 1
0.81

0 0.5 1
-0.61

0 0.5 1
0.19

0 0.5 1
0.70

0 0.5 1
0.75

Note. The datasets AC1 and AC2 are split respectively into AC1b and AC2b, corresponding to the bottom (cold) wall, and AC1t and AC2t,
corresponding to the top (hot) wall. The cells are tinted in red if the simulation was included in the training or validation dataset of the corresponding
model and are tinted in blue otherwise, that is for test simulations. It should be noted that the value of the coefficient of determination associated with
two different simulations cannot be directly compared, as an identical value ofR2 may provide a satisfactory performance for a given simulation but not
for another.
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ACSC model is more accurate than that of the algebraic models throughout the domain in the APG
simulation (Figure 7b). Moreover, the mean conductive heat flux prediction of the ACSC model in the
L89 simulation is significantly more accurate than that of the algebraic models on both the pressure side
(s1 < 0) and the suction side (s1 > 0) of the blade, although themeanwall shear stress prediction is notmore
accurate (Figure 7c). This shows that the graph neural network wall model can generalize to non-
equilibrium flows at least as well as the two algebraic models investigated, but to a very limited extent
as only cooled/heated channel flows were included in the training dataset for the ACSC model. To
improve the capability of themodel, it is necessary to include amore varied physics in the training dataset.

The Full model, trained on a combination of cooled/heated channels and equilibrium and non-
equilibrium incompressible isothermal flows, is able to handle a wider range of flow configurations.

Figure 3. Scaled wall-tangential velocity u+ as a function of the scaled distance to the wall y+ in each
dataset using the local referencewall shear stress (top), the prediction of theACSCmodel (center), and the
prediction of the Full model (bottom) to compute the wall unit scaling (+ ). The red line is Reichardt’s law,
given by equation (31). The black line is themean profile of the reference simulation. It is given onlywhen
applicable that is in spatially homogeneous simulations. Twomean profiles are given in the case AC1 and

AC2, one for the top (hot) wall and one for the bottom (cold) wall.
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The coefficients of determination of the Full model on the cooled/heated channels are slightly lower than
those of the ACSC model, fitted specifically to these simulations. The validation performance of the Full
model in the training simulations AC1, AC2, SC1, and SC2 remains satisfactory. Indeed, the prediction of
the model is scattered around the mean velocity profile (Figure 3g,h,j) and the mean temperature profile
(Figure 4a,b,d) of the simulations AC1, AC2, and SC2. In the simulation SC1, which features a low
coupling between velocity and temperature, the Full model deviates too much from Kader’s law (32) in
the T + y +ð Þ scatter plot. The Full model also provides relevant predictions in the incompressible
isothermal channels CF1 and CF2 (Figure 3a,b). Finally, the Full model can accurately predict the wall
shear stress in non-equilibrium flow configurations. In particular, the behavior in the u + y+ð Þ scatter plots
of the training simulations N65 and 3DD (Figure 3c,d) and the test simulations BFS, APG, and L89
(Figure 3e,f,k) is qualitatively well reproduced by the Full model, although a non-negligible amount of
variance is not captured. Figures 5c–e,g,k and 6e show that the agreement between the model prediction
and the reference value is greater in these non-homogeneous configurations than either the algebraic
coupled or uncoupledwall models or theACSCmodel. Figure 7 demonstrates that, overall, the Full model
captures well the spatial variations of mean wall shear stress in the test simulations BFS and APG and the
spatial variations of both wall shear stress and conductive heat flux in the simulation L89. In the three
cases, the Full model provides a clear improvement compared to both the algebraic wall models and the
ACSC model. Overall, these a priori results suggest that the Full model can, within a reasonable range of
flow configurations, take into account both non-equilibrium effects, such as flow separation, and the
effect of large temperature variations on the wall shear stress and conductive heat flux prediction. The
performance of the trained model on the test simulations, for geometries and meshes not seen during
training, also proves the model is robust to variations of the mesh.

Figure 4. Scaled temperature T + as a function of the scaled distance to the wall y + in each dataset using
the local reference wall shear stress (top), the prediction of the ACSCmodel (center), and the prediction of
the Full model (bottom) to compute the wall unit scaling (+ ). The red line is Kader’s law, given by
equation ((32). The black line is the mean profile of the reference simulation. It is given only when

applicable that is in spatially homogeneous simulations. Twomean profiles are given in the case AC1 and
AC2, one for the top (hot) wall and one for the bottom (cold) wall.

Data-Centric Engineering e10-17

https://doi.org/10.1017/dce.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.7


6. A posteriori tests

The graph-based wall modeling approach has been assessed a posteriori in several configurations: two
symmetrically cooled channel flows (SC2 and SC3) and a cooled high-pressure turbine blade (L89). The
SC2 case aims to validate the ability of the graph neural network wall model to generalize from a priori
tests to a posteriori tests, as this is not trivial in LESs particularly for machine-learning models (Sagaut,
2006). The SC3 simulation aims to confirm the ability of the graph neural network wall model to
generalize for a different fully developed channel flow not seen during training. The L89 case aims to
demonstrate the ability of the graph neural network wall model to generalize to a complex test
configuration that was not included in the training or validation dataset, and a challenging physics that
strongly departs from asumptions of a fully developed equilibrium boundary layer.

Figure 5. Scatter plot between the target wall shear stress and the prediction of the uncoupled algebraic
wall model, the coupled algebraic wall model, the ACSCmodel, and the Full model. The red line is identity.

e10-18 Dorian Dupuy, Nicolas Odier and Corentin Lapeyre

https://doi.org/10.1017/dce.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.7


6.1. Numerical method

In all simulations, the flow is modeled as a continuous medium in local thermodynamic equilibrium using
the compressible LES equations and the ideal gas law. These equations may be expressed as follows:

∂tρ +∇ � ρUð Þ= 0, (33)

∂t ρUð Þ+∇ � ρU⊗Uð Þ= �∇P +∇ �S, (34)

∂t ρEð Þ+∇ � ρUHð Þ= �∇ �Q�∇ � UPð Þ+∇ � U �Sð Þ, (35)

P= rρT , (36)

where ρ is the density of the fluid, t is the time, U is the velocity, x is the Cartesian coordinate, P is the
pressure,Q is the conductive heat flux,E is the total energy per unit mass,H =E +P=ρ is the total enthalpy
per unit mass, and r is the specific ideal gas constant. The temperature is computed using tabulated data
from Stull and Prophet (1971) based on the internal energy e=E� 1

2UiUi. No external body forces or
volumetric heat sources are taken into account. The viscous stress tensor and conductive heat flux are
computed assuming a Newtonian fluid under Stokes’ hypothesis and Fourier’s law, while subgrid-scale
stresses are modeled using an eddy-viscosity model. The stress tensor Σ is given by:

Σij = μ+ μsgs
� �

∂Ui

∂xj
+
∂Uj

∂xi
�2
3
∂Uk

∂xk
δij

	 

, (37)

Figure 6. Scatter plot between the target wall conductive heat flux and the prediction of the uncoupled
algebraic wall model, the coupled algebraic wall model, the ACSC model, and the Full model. The red

line is identity.

Data-Centric Engineering e10-19

https://doi.org/10.1017/dce.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.7


where μ is the dynamic viscosity of the fluid, μsgs the subgrid-scale viscosity, and δij denotes the
Kronecker delta. The conductive heat flux is computed assuming Fourier’s law and an eddy-diffusivity
subgrid-scale contribution:

Q = � λ+ λsgs
� �

∇T , (38)

where T is the fluid temperature and λ the thermal conductivity of the fluid, computed using a constant
Prandtl number assumption. The subgrid-scale conductivity λsgs =Cpμsgs=Prsgs is computed assuming a
constant subgrid-scale Prandtl number Prsgs. The isobaric heat capacity Cp is computed from tabulated
data (Stull and Prophet, 1971).

The numerical simulations are performed by coupling the numerical resolution of equations (33)–(36)
via the compressible, unstructured, massively parallel flow solver AVBP (Schönfeld and Rudgyard,
1999), to the graph neural network wall model inference. The coupling, implemented via a message
passing interface (MPI), is described in Dupuy et al. (2023b). At each time step, data is extracted from the

Figure 7. Average prediction of the baseline wall models and the graph neural network wall models in
different test cases. The average is performed in both time and spanwise directions in the BFS simulation,

the APG simulation, and the L89 simulation. Both τ and q are given in dimensional units, namely
respectively Pa and W/m2.
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LES fields to create near-wall graphs and sent to the graph neural network for inference. The inference is
executed exclusively on graphics processing units (GPUs), concurrently to parts of the LES schemes ran
on CPUs. The calculation is distributed across multiple GPUs using a specific GPU partitioning that is
separate from the CPU partitioning. To make sure that the model prediction is not influenced by the
partitioning, the GPU partitions are overlapped by the number of message-passing steps N of the model.
This overlap ensures that each partition includes the receptive field required for the prediction of the wall
shear stress and wall heat flux. The predictions are then sent back to the main flow solver to set the
boundary conditions in the momentum and energy transport equations.

6.2. Symmetrically cooled channel flows

This section addresses the wall-modeled LES of symmetrically cooled channel flows. We first consider
the simulation SC2, included in the training database. The operating conditions of the wall-modeled
simulations are the same as in the wall-resolved simulation (Appendix A), namely, the temperature ratio
between the bulk flow and the walls is 3 and the friction Reynolds number is Re τ = 1150. In the wall-
modeled LESs, the size of the domain is 14h× 2h× 5:2h, with h the half-height. The WMLES mesh
contains 8 million tetrahedral cells. The average height of the first point off the wall, in wall units, is
y+ = 40. As in the wall-resolved simulation, the convective scheme is a two-step Taylor–Galerkin scheme
with third-order spatial and temporal accuracy (Colin and Rudgyard, 2000) and the diffusive scheme is a
centered second-order scheme. The subgrid-scale viscosity model is the Smagorinsky model
(Smagorinsky, 1963).

Wall-modeled LESs using the baseline uncoupled and coupled algebraic models, the ACSC and Full
graph neural network wall models are compared in Figure 8. Namely, the profiles of mean streamwise
velocity, mean temperature, standard deviation of streamwise velocity, and standard deviation of
temperature are provided using the classical wall scaling ( + ). The uncoupled algebraic model leads to
a mean temperature profile that is farther from the reference mean temperature profile than the other
investigated models, since it neglects the effect of the large temperature variations. The uncoupled
algebraic model and the two graph neural network wall models lead to profiles that are close to one
another. The profiles obtained using the Full model are slightly closer to the reference wall-resolved
profiles of temperature and velocity.With the Full model, the mean temperature profile is very close to the
reference profile above y+ = 200 while the slope of the profile is overestimated closer to the wall. The
mean velocity profile is shifted upward compared to the reference profile in the logarithmic region. This
behavior is alike the logarithmic layer mismatch that is classically obtained in wall-modeled LES, due to
numerical and subgrid-modeling errors in the first few grid points (Kawai and Larsson, 2012; Larsson
et al., 2016; Bose and Park, 2018). This is confirmed by the simulation of an incompressible channel in the
absence of thermal effects (Appendix B). The magnitude of the peak standard deviation of streamwise
velocity is well predicted by all wall-modeled LESs (Figure 8), but its height is overestimated compared to
the referencewall-resolved simulation. The peak standard deviation of temperature is also farther from the
wall than in the reference, and its magnitude is underestimated by around 10%. Both the standard
deviation of streamwise velocity and temperature are overestimated in the bulk of the channel in all wall-
modeled LESs. For all turbulence statistics investigated, the profiles obtained with the two graph neural
network wall models and with the baseline coupled algebraic model are very similar. To assess the
influence of the subgrid-scale model on this conclusion, we performed simulations of the cooled channel
SC2 using the Sigma subgrid-scale model (Nicoud et al., 2011). The simulations with the Sigma model
exhibit a more pronounced logarithmic-layer mismatch compared to the simulations with the Smagor-
insky model (Figure 9). This is consistent with studies from the literature, which have found that, in wall-
modeled simulations, the Smagorinsky model provides a more accurate wall shear stress prediction than
the Sigma model in a channel flow (Blanchard et al., 2021). The profiles obtained with the Full graph
neural network wall model and the baseline coupled algebraic model are similar to the Smagorinsky
model. This confirms that, for the simulation of the symmetrically cooled channel flow SC2 included in
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the training database, the graph neural network wall models can operate in an a posteriori configuration
and reach parity performance with a state-of-the-art algebraic model.

The graph neural network wall models are now assessed for the wall-modeled LES of the symmet-
rically cooled channel flow SC3, not included in the training database. As described in Appendix A, the
flow SC3 is similar to the flow SC2 but uses air as working fluid. In particular, the dynamic viscosity law,
the ideal gas specific constant, and the scales of velocity, density, and pressure are modified compared to
the case SC2. The mass flow rate is adjusted in order to preserve a similar mean friction Reynolds number
to the simulation SC2. The computation domain, the mesh, and the numerical method used in the wall-
modeled LESs are identical to those used for the simulation SC2. The numerical results are given in
Figure 10. Similar to the SC2 simulation, the uncoupled algebraic model leads to a more inaccurate mean
temperature profile than the coupled algebraic model, which is better suited to flows with large
temperature variations. The Full model and the coupled algebraic model lead to very similar profiles
for all turbulence statistics investigated. The mean velocity profile is as in the SC2 case overestimated in
the logarithmic region but, as opposed to the SC2 case, the mean temperature profile is also overestimated
in this region. Moreover, the standard deviation of both streamwise velocity and temperature is overesti-
mated in the center of the channel but as in the SC2 simulation its peak magnitude is reasonably well
predicted (less than 10% error). Thewall-modeled LESwith the ACSCmodel lead to a less accurate mean
velocity profile than the simulation with the Full model. Overall, the Full model seems able to generalize
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Figure 8. Mean streamwise velocity, standard deviation of streamwise velocity, mean temperature, and
standard deviation of temperature in large-eddy simulations of the symmetrically cooled channel flow
SC2 with algebraic wall models and graph neural network wall models. The wall-resolved simulation

presented in Appendix A is given for comparison.
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to a symmetrically cooled channel flow, even for a different working fluid than seen during training. To
provide a more quantitative assessment of the accuracy of the wall models, Table 4 reports the mean wall
shear stress and conductive heat flux of each wall-modeled LES. The Full graph neural network wall
model is slightly more accurate than the coupled algebraic model for the prediction of the mean wall shear
stress in the SC2 and SC3 simulations, but slightly less accurate for the prediction of the wall conductive
heat flux in the SC3 simulation.

Overall, these results demonstrate that the Full model is able to reproduce a level of accuracy that is
similar to that of the coupled algebraicmodel for the simulation of a cooled channel with large temperature
variations. This confirms the ability of the graph neural network wall modeling approach to generalize
from a priori training to an a posteriori testing configuration for this particular flow. In the next section, we
will assess towhich extent the graph neural networkwall modeling approach can provide an improvement
for a more complex simulation that is known to be difficult to simulate using an algebraic model devised
for anisothermal fully developed turbulent boundary layers.

6.3. High-pressure turbine blade

This section addresses the wall-modeled LES of the high-pressure turbine blade L89, not included in the
training dataset. The L89 blade configuration is an experimental configuration instrumented for
boundary-layer measurements with realistic operating conditions in terms of Reynolds and Mach
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Figure 9. Mean streamwise velocity, standard deviation of streamwise velocity, mean temperature, and
standard deviation of temperature in large-eddy simulations of the symmetrically cooled channel flow
SC2with algebraic wall models and graph neural networkwall models, using the Smagorinsky and Sigma
subgrid-scale models. The wall-resolved simulation presented in Appendix A is given for comparison.
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Figure 10.Mean streamwise velocity, standard deviation of streamwise velocity, mean temperature, and
standard deviation of temperature in large-eddy simulations of the symmetrically cooled channel flow
SC3 with algebraic wall models and graph neural network wall models. The wall-resolved simulation

presented in Appendix A is given for comparison.

Table 4. Mean nondimensionalized wall shear stress τ= ρu2c
� �

= uτ=ucð Þ2, where ucis the centerline
velocity, in large-eddy simulations of a channel flow at the friction Reynolds numbers Re τ = 395,
Re τ = 950, and Re τ = 2000 with an algebraic wall stress model and a machine-learning wall model

Wall shear stress Wall conductive heat flux

SC2 SC3 SC2 SC3

Reference 3:3379 × 103 1:6435 × 103 6:234 × 107 2.416 + 07
Uncoupled 3:6467 × 103 (+09%) 2:0068 × 103 (+22%) 6:7584 × 107 (+08%) 2:9810 × 107 (+23%)
Coupled 3:0186 × 103 (�10%) 1:6147 × 103 (�02%) 5:7133 × 107 (�08%) 2:4638 × 107 (+02%)
ACSC

model
2:9903 × 103 (�10%) 16420 × 103 (�00%) 5:7797 × 107 (�07%) 2:3528 × 107 (�03%)

Full model 3:1605 × 103 (�05%) 1:6827 × 103 (+02%) 6:0268 × 107 (�03%) 2:5424 × 107 (+05%)
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numbers. It is thus in many ways representative of real turbomachinery flow, for which similar
measurements are typically not available. The simulation reproduces the test case MUR235 of Arts
et al. (1990). This test case features a complex physics compared to the symmetrically cooled channel
flow, that involves transitional and fully turbulent boundary layers with large temperature variations. In
the literature, the LES of the test case MUR235, characterized by a large inlet turbulence intensity of 6%,
has been found to be particularly challenging compared to other test cases of theVKI LS1989-MUR series
(Arts et al., 1990). For instance, an accurate prediction is the wall heat flux on the suction side of the blade
is more easily obtained for the MUR129 than the MUR235 test case (Collado Morata et al., 2012;
Gourdain et al., 2012; Segui et al., 2017; Dupuy et al., 2020. Accurate predictions have not been obtained
with the resolution of a wall-modeled LES in the literature. This suggests the present MUR235 test case is
relevant to assess the performance of wall models in a flow with complex boundary layer dynamics, and
can be used as a benchmark for the development of wall models.

The operating conditions of the simulation are reported in Table 5. The flow is representative of a
typical high-pressure turbine in terms of Mach and Reynolds numbers. Although the inlet temperature is
low compared to the typical temperature downstream of a combustion chamber, the temperature ratio
between the inlet flow and the blade is realistic. The blade profile is given by the reinterpolated
manufacturing coordinates of Wheeler et al. (2016) to ensure a smooth surface curvature. The chord c
is 67:647mm. The computational domain is periodic in the spanwise and pitchwise directions tomodel an
infinite linear cascade of two-dimensional linearly extruded blade profiles. The origin of the Cartesian
coordinate system (x,y,z) is placed at the leading edge of the blade, where x is the axial coordinate, y the
pitchwise coordinate, and z the spanwise coordinate. The curvilinear coordinate s1 follows the blade
profile and is zero at the leading edge, positive on the suction side of the blade, and negative on the
pressure side of the blade (Figure 12). The inlet is located at xinlet = �0:81c and the outlet at xoutlet = 1:48c.
The spanwise length of the domain is set 0:148c as this value is consistent with the literature (Bhaskaran
and Lele, 2010; Fransen et al., 2011; Pichler et al., 2016) and the sensitivity analysis of Collado Morata
et al. (2012). Awall-resolved simulation of the case on a mesh containing 587 million cells, performed by
Dupuy et al. (2020), is used as a reference. In addition, the experimental data of Arts et al. (1990) is used
when available. TheWMLESmesh contains 47million tetrahedral cells in total. Themesh ismore refined
close to the blade surface and near the trailing edge on the suction side (Figure 11, left). The distribution of
the height of the first cell off the wall along the blade surface is given in Figure 11 (right). Convective and
diffusion are both discretized using second-order accurate schemes (Lax and Wendroff, 1960).

Wall-modeled LESs using the baseline uncoupled and coupled algebraic models, the ACSC and Full
graph neural network wall models are performed using the Sigma (Nicoud et al., 2011) subgrid-scale
viscosity model. The intensity of the incident turbulence in the wall-modeled LES is comparable to that
of the reference high-fidelity simulation. Indeed, the turbulence intensity of the resolved scales, Tu,
defined as

Table 5. Operating point conditions of the MUR235 test cases (Arts et al., 1990)

Inlet stagnation pressure Ps,inlet, Pa 1:828 × 105

Inlet stagnation temperature Ts,inlet, K 413.3
Inlet Reynolds number Re inlet 2:647 × 105

Inlet Mach number Mainlet 0.150
Inlet turbulence intensity Tuinlet 6%
Outlet pressure Poutlet, Pa 1:049 × 105

Outlet Reynolds number Reoutlet 1:152 × 106

Outlet Mach number Maoutlet 0.927
Wall temperature Tw, K 301.2
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Tu=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3 〈u02x〉+ 〈u0

2
y〉+ 〈u

02
z 〉

� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈ux〉

2 + 〈uy〉
2 + 〈uz〉

2
q , (39)

is 5% near the leading edge in the wall-modeled simulations, compared to 5.6% in the reference high-
fidelity simulation. The instantaneous visualizations given in Figure 12 (center) show that the wall-
modeled LES reproduces the main flow phenomena associated with the case. The trailing-edge flow is
associated with both vortex shedding and the generation of a series of acoustic waves impinging on the
suction side of the blade. Furthermore, there is a series of shocks quasi-normal to the blade on the suction
side. The shocks induce a rapid transition of the suction-side boundary layer from a transitional state to a
fully turbulent state (Dupuy et al., 2020. This rapid turbulence transition is associated with a large increase
of the wall shear stress in the region downstream of the shocks (s1=c> 0:96). Figure 13a compares the
distribution of the wall shear stress along the blade surface in the different simulations. The baseline
uncoupled algebraic model, coupled algebraic model, and the ACSC graph neural network wall model
lead to very similar wall shear stress profiles. In the three simulations, the wall shear stress is overesti-
mated on the pressure side near the trailing edge and on the suction side until the shocks. In addition, the
increase in wall shear stress associated with the shocks occurs further downstream in all wall-modeled
LESs than in the reference high-fidelity simulation, even though the shocks location is accurately
predicted. The simulation with the Full graph neural network wall model leads to a more accurate wall
shear stress distribution. In particular, the wall shear stress is accurate throughout the pressure side of the
blade and the peakwall shear stress after the strongly accelerating region near the leading edge of the blade
(s1=c= 0:3) is not overestimated. These findings are affected by the selection of the subgrid-scale model.
Indeed, the quasi-normal shocks on suction side of the blade do not provoke the expected turbulent
transition of the boundary layer using the Smagorinskymodel. This halts the generation of acoustic waves
at the trailing edge of the blade (Figure 12, bottom). Accordingly, the rapid increase in wall shear stress
near the trailing edge of the blade (s1=c> 0:96) is not reproduced with either the baseline algebraic model
or the graph neural networkwall modelwith the Smagorinskymodel (Figure 14a). On the rest of the blade,
the predictions are relatively similar to those obtained using the Sigma model. Namely, the Full graph
neural network wall model predicts more accurately the wall shear stress on the pressure side compared to
the coupled algebraic model, and the peak wall shear stress after the strongly accelerating region near
s1=c= 0:3 on the suction side. Thus, the Full model is able to leverage the non-equilibrium configurations
of the training database to improve the wall shear stress prediction in these regions, which are not fully
turbulent.

With regard to the wall heat flux prediction, Figures 13b and 14b, the Full model also improves the
prediction compared to the baseline uncoupled algebraic model, coupled algebraic model, and the ACSC
graph neural network wall model. With both the Sigma and Smagorinsky models, the peak wall heat flux
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location correctly occurs at the leading edge with the Full model, whereas it occurs further downstream,
below s1=c= 0:2, in the other wall-modeled LESs. In addition, the wall heat flux is significantly less
overestimated on the suction side of the blade, in the transitional region before the shocks s1=c< 0:9. The
wall heat flux prediction is also improved on the pressure side of the blade, below s1=c< �0:5, especially
using the Sigma subgrid-scale model. However, the simulation with the Full model leads to a large
underestimation of the wall heat flux downstream of the shocks on the suction side, using the Sigma
model, whereas the other wall-modeled LESs provide a more accurate prediction in that region. The
deficiency is related to the incompressible isothermal simulation included in the training dataset for the
Full model, since the ACSCmodel lead to a more accurate prediction in that region (Figure 13b). Overall,
the results are nevertheless promising for the prospect of graph neural network wall modeling, since
outside of this region the wall heat flux distribution on the blade surface is fairly well predicted compared
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Figure 12. Instantaneous field of axial velocity in the reference high-fidelity simulation of Dupuy et al.
(2020) (top), the wall-modeled large-eddy simulation using the Sigma model (center), and the wall-
modeled large-eddy simulation using the Smagorinsky model (bottom) on the plane z=c= 0:037. The
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to the reference simulation, providing a level of accuracy that is not trivial to reproduce even in a wall-
resolved simulation (Collado Morata et al., 2012; Gourdain et al., 2012; Segui et al., 2017; Dupuy et al.,
2020). Machine-learning wall modeling provides a framework that has the potential to take into account
both non-equilibrium effects and variable-density effects in complex geometries, and this ability could be
progessively refined and improved over time following the developments of larger numerical training
databases.

For completeness, it is useful to discuss the computational cost associated with such machine-learning
wall models. The presentmodel has not been developedwith computational cost as a primary concern. For
instance, the wall shear stress and the wall conductive heat flux are presently predicted by sequentially
applying two independent neural networks, although they certainly share common features or represen-
tations in the hidden layers. Moreover, the hyperparameters of each network have been selected without
considering computational cost and, as a result, we did not attempt to prune the networks to reduce
computational overhead. The present graph neural network wall model has been benchmarked, for the
wall-modeled simulation of the LS89 blade. The tests are performed on the Jean–Zay super-computing
cluster, which as many other recent super-computing clusters has a hybrid architecture. The hybrid nodes
contain 40 CPU cores (Intel Cascade Lake 6248 2.5GHz) and 4GPUs (Nvidia Tesla V100 SXM2 32GB).
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Figure 13. Wall shear stress and conductive heat flux along the blade surface using the Sigma model.
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Figure 14.Wall shear stress and conductive heat flux along the blade surface, using the Smagorinsky and
Sigma subgrid-scale models.
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The wall-modeled simulations exploit these hybrid resources by executing the graph neural network
prediction exclusively on the GPUS, concurrently to parts of the LES schemes, as discussed in Serhani
et al. (2022). In that context, wemay defined the deep-learning overhead as the additional cost induced by
the use of the graph neural network wall model on a given hybrid node, which may be calculated by
considering the cost of the graph neural network prediction and related to communications, fromwhich is
subtracted the cost of overlapped LES computations. Figure 15 gives the overhead of the model for 2–16
hybrid nodes. The deep learning overhead ranges from 25 to 30% of the total iteration cost. Moving
forward, further developments should consider computational cost in the model development.

7. Conclusion

Using a graph neural network to model the wall behavior of fluids requires an effort to encode some of the
flow dependencies in the model architecture or the training process as it would require a considerable
effort to build a dataset sufficiently diverse to comprehensively specify the wall behavior of fluids. The
present graph neural network architecture implicitly makes an assumption of spatial locality and encodes
the invariance of the model under a translation of the mesh. Furthermore, the selection, scaling, and
augmentation of the input features forces the model to be equivariant under Galilean transformations,
orthogonal transformations, and Mach number transformations. While a large amount of training data is
still required, these assumptions allow themodel to operate for a large range of scales of density, viscosity,
length, velocity, temperature, or pressure. The procedure has been assessed by training the model on both
incompressible isothermal and compressible anisothermal flows, for the modeling of the wall shear stress
and the wall conductive heat flux. The a priori results demonstrated the capability of the model to
generalize to both incompressible isothermal and compressible anisothermal simulations not seen during
training. The a posteriori results confirmed the ability of the graph neural network wall model to
generalize from a priori training to an a posteriori test for a fully developed channel flow with large
temperature variations, as the model was able to reach a level of accuracy comparable to a state-of-the-art
algebraic model. Finally, The wall-modeled LES of the high-pressure turbine blade VKI LS1989, for the
test case MUR235 of the VKI LS1989-MUR series, showed that the model could leverage the non-
equilibrium configurations of the training database to provide amore accurate prediction than the baseline
algebraic wall models devised for equilibrium turbulent flow configurations in a complex flow with large
temperature variations and compressibility effects. In particular, themodel is able to predict fairly well the
wall heat flux distribution on the surface of the blade, which is a challenging quantity to predict even in a
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Figure 15. Overhead of the graph neural network wall model per iteration for 2, 4, 6, and 16 hybrid
nodes.
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wall-resolved simulation. The further development of graph neural networks for wall modeling is thus
promising for the LES, and has the potential to improve the accuracy and efficiency of simulations of
complex industrial flows.
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A. Wall-resolved simulation of the SC1, SC2, and SC3 cases
This section presents the wall-resolved simulations of the symmetrically cooled channel flows (SC1, SC2, SC3). These simulations
are used to train the graph neural network wall model (Section 4.2) and for a priori and a posteriori tests (Sections 5 and 6). In the
three simulations, the fluid is amixture, hereafter referred to asH2-O2-12S, composed of 8 species (H2, H,O2, OH,O,H2O,HO2, and
H2O2) which are products of H2/O2 combustion. Since no chemical reactions are taken into account, themixture behaves as a single-
component fluid. The ideal gas-specific constant of the mixture is r = 480:949 J kg�1 K�1. The dynamic viscosity of the mixture
follows a power law μ Tð Þ = 1:82 × 10�5 T=300ð Þ0:715 Pas. Heat conductivity is computed as λ = μCp=Pr, with Pr = 0:706 the Prandtl
number of the mixture, assumed constant, and where the isobaric heat capacity Cp is computed from tabulated data (Stull and
Prophet, 1971). The cases SC2 and SC3 both involve a large temperature ratio of 3 between the bulk flow and the channel walls.
Since the thermophysical properties of the fluid are thermo-dependent, the temperature variations generate a strong coupling
between the fields of temperature and velocity. To validate the numerical method, a channel with less temperature variations (SC1) is
simulated. Indeed, given the low-temperature ratio of 1.1 between the bulk flow and the channel walls in the SC1 simulation, the
mean profiles of velocity and temperature are close to those of an incompressible channel with a passive scalar.

The geometry of the SC1 and SC2 simulations is a rectangular parallelepiped of size 3:5h× 2h× 1:3h, where h= 2× 10�4 m is the
half-height of the channel (Figure A1). The bottom (y= �h) and top (y= h) boundaries are walls with a constant and uniform
imposed temperature of T1 = 2863K in the case SC1 and T2 = 1050K in the case SC2. The flow between the two walls is periodic in
the streamwise (x) and spanwise (z) directions. The small dimensions of the computational domain were selected in order to reduce
the computational cost of the wall-resolved simulations and are probably sufficient to obtain accurate first- and second-order
turbulence statistics (Lozano-Durán and Jiménez, 2014. Source terms are added in themomentum conservation equation and energy
conservation equation in order to counteract thewall friction/conduction and prevent the flow from vanishing. The source term in the
momentum conservation equation, constant and uniform, leads to a friction Reynolds number Re τ,1 = 320 in the case SC1 and
Re τ,2 = 1150 in the case SC2. In the energy conservation equation, the source term targets a bulk temperature Tb = 3150 K in both
cases, where Tb is defined as Tb =

R h
�h〈ρuxT〉dy=

R h
�h〈ρux〉dy. TheMach number of the simulations is low (below 0.3). The Cartesian

orthogonal mesh is uniform in the streamwise and spanwise direction and follows a hyperbolic tangent law in the wall-normal
direction. The same mesh resolution is used in the simulations SC1 and SC2. Namely, the cell size in wall units is Δx + = 8 in the
streamwise direction,Δz + = 4 in the spanwise direction and ranges fromΔy+ = 0:9 at the wall toΔy+ = 11 at the center of the domain
in the wall-normal direction. This results in a total number of cells of 150× 119 × 100 in the case SC1 and 500× 389× 400 in the case
SC2. The simulations are performed using a two-step Taylor–Galerkin convective scheme with third-order spatiotemporal accuracy
and centered second-order diffusive scheme. The subgrid-scale viscosity is computed using theWALEmodel (Nicoud and Ducros,
1999), with a model constant Cw = 0:57. The subgrid-scale thermal conductivity is computed assuming a constant subgrid-scale
Prandtl numberPrsgs = 0:6, that is λsgs =Cpμsgs=Prsgs. The subgrid-scale viscosity is 40 times smaller than themolecular viscosity on
average and at least five times smaller than the molecular viscosity at each grid point.

In addition to the channels SC1 and SC2, we performed a wall-resolved LES that is similar to the SC2 simulation in terms of
friction Reynolds number and temperature ratio but with a different working fluid. This simulation is used in Section 6.2 to validate
the graph neural network wall model and is hereafter referred to as the simulation SC3. In that simulation, the fluid (air) is
characterized by an ideal gas-specific constant r = 288:184 Jkg�1 K�1, a constant Prandtl number Pr = 0:71, and a Sutherland
dynamic-viscosity law μ Tð Þ= 1:716× 10�5 T=273:15ð Þ3=2 273:15+ 110:6ð Þ= T + 110:6ð Þ Pas (Sutherland, 1893). Source terms are
added in the momentum conservation equation and energy conservation equation to target a friction Reynolds number Re τ,2 = 1150
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and a bulk temperature Tb = 3150K. The temperature of the channel walls is constant and equal to 1100K. The computation domain,
mesh, and numerical method are identical to those of the simulation SC2.

The profiles of mean streamwise velocity, mean temperature, standard deviation of streamwise velocity, and standard deviation
of temperature in the simulations SC1, SC2, and SC3 are provided in Figure A2. To validate the numerical method, we compare the
results of the simulation SC1, in which the coupling between the velocity and temperature is low, to the uncoupled direct numerical
simulation of Kawamura et al. (1998) at Re τ = 395 and Pr = 0:71. The profiles of the SC1 simulations are close to the reference
profiles of Kawamura et al. (1998), which is expected given the low-temperature ratio of 1.1. The profiles of the simulations SC2 and
SC3, however, deviate strongly from these reference profiles due to the effect of the large variations of temperature in the channel
(temperature ratio of 3). The mean streamwise velocity does not follow Reichardt’s law (31), nor does the mean temperature profile
follows Kader’s law (32), since these analytical profiles do not accurately take into account the effect of the coupling between
velocity and temperature. In addition, the peak standard deviation of streamwise velocity or of temperature has a larger amplitude
and is farther from the wall than in no-coupling case of Kawamura et al. (1998). Part of the effect of the large temperature variations
can be characterized by using the semi-local scaling, based on the wall friction velocity and the mean local fluid properties (Rotta,
1959; Huang et al., 1995; Patel et al., 2017; Dupuy et al., 2018, 2019). The semi-local friction velocity is defined as u∗τ = τ=〈ρ〉ð Þ0:5
and accordingly, the semi-local wall distance is y∗ = yu∗τ =〈ν〉, the semi-local velocity is u∗ =u=u∗τ , and the semi-local temperature
T∗ = 〈ρ〉Cpu∗τ T�Twallð Þ=q.With the semi-local scaling (FigureA3), themean velocity profiles of the simulation SC1, SC2, and SC3
are close to the uncoupled reference profile of Kawamura et al. (1998). The discrepancies in the amplitude and location of the peak
standard deviation of streamwise velocity are also significantly reducedwith the semi-local scaling. However, the semi-local scaling
fails to collapse the profiles of mean tempeature of standard deviation of temperature, as large differences between coupled and
uncoupled simulations remain in these cases. Overall, these results validate the numerical method in the uncoupled limit.

(a) SC1

(b) SC2 (c) SC3

Figure A1. Geometry of the symmetrically cooled channel flows SC1, SC2, and SC3.
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Figure A2. Profiles with classical wall scaling of mean streamwise velocity (a), mean temperature (c),
standard deviation of streamwise velocity (b) and standard deviation of temperature in the simulations
SC1, SC2, and SC3 (d). The direct numerical simulation profiles of Kawamura et al. (1998) at Re τ = 395
and Pr = 0:71, in which temperature is a passive scalar, are given for comparison. The analytical profiles
of Reichardt, given by equation ((31), and Kader, given by equation ((32), are also provided for reference.
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Figure A3. Profiles with semi-local scaling of mean streamwise velocity (a), mean temperature (c),
standard deviation of streamwise velocity (b) and standard deviation of temperature in the simulations
SC1, SC2, and SC3 (d). The direct numerical simulation profiles of Kawamura et al. (1998) at Re τ = 395
and Pr = 0:71, in which temperature is a passive scalar, are given for comparison. The analytical profiles
of Reichardt, given by equation ((31), and Kader, given by equation ((32), are also provided for reference.
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B. Wall-modeled simulation of an incompressible isothermal channel flow
The simulation of an incompressible fully developed turbulent channel flow at friction Reynolds number Re τ = 950 is performed
with the graph neural network wall models. The dimensions of the channel are 12:6h× 2h× 6:3h, with h is the channel half-height.
The mesh contains 12 million tetrahedral cells, and the average height of the first point off the wall, in wall units, is y+ = 37. The
results of wall-modeled LESs using the ACSC and Full graph neural network wall models are compared to the reference profiles of
Hoyas and Jiménez (2008) in Figure B1. In both cases, the profile of mean streamwise velocity exhibits a logarithmic-layer
mismatch. Themismatch is almost identical to the mismatch obtained with an algebraic law-of-the-wall model based on the velocity
within the first cell off the wall. Hence, the graph neural network wall models can operate in an incompressible isothermal channel
flow, and provide a similar level of accuracy as an algebraic law-of-the-wall model.

Cite this article: Dupuy D, Odier N and Lapeyre C (2024). Using graph neural networks for wall modeling in compressible
anisothermal flows. Data-Centric Engineering, 5, e10. doi:10.1017/dce.2024.7
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simulations of a channel flow at friction Reynolds number Reτ=950 with an algebraic wall stress model
and a graph neural network wall model. The unfiltered direct numerical simulation profile of Hoyas and

Jiménez (2008) is given for comparison.
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