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EMBEDDINGS OF INFINITE PERMUTATION GROUPS IN
SHARP, HIGHLY TRANSITIVE, AND HOMOGENEOUS

GROUPS
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1. Introduction

This paper answers two questions posed by P. M. Neumann and K. Hickin on
embeddings of infinite permutation groups. We first give some definitions that would
make their questions understood.

Definitions. Let ft be an infinite set and let G be a group such that GsSym(ft), the
set of all permutations of ft.

(i) (G,£l) is said to be sharp if for every g in G\{1}, the set fix(g) of all elements fixed
by g is empty or finite.

(ii) (G,Q) is said to be highly transitive if for every natural number m and every pair
of finite sequences of m distinct points in ft:(a1,...,aj and (f}u...,Pm), there exists g in
G such that a.ig = pi for all natural numbers i less than or equal to m.

(iii) (G,Q) is relatively homogeneous if for every finitely generated subgroup BsG, and
every B-isomorphism / among finitely many orbits of B, there exists x in the centralizer
CG(B) which extends /

Other terms not defined here can be checked in one of the many books on Infinite
Groups.

The questions and answers are:

Question 1 (P. M. Neumann). Is every countable sharp group acting on a countably
infinite set a subgroup of a sharp highly transitive group acting on the same set?

Answer 1. Yes. See Theorem 2 below.

Question 2 (K. Hickin [1]). Does there exist a faithful sharp relatively-homogeneous
group that is not locally finite?

Answer 2. Yes. See Theorem 4 below.

Other connected results are also stated below. Question 1 arose while seeking possible
generalizations of some theorems of Mekler and Truss on embeddings of infinite groups
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170 S. A. ADELEKE

(cf. [2]). Actually, Answer 1 was given independently by Truss and the present author.
Theorem 1 was conjectured by P. M. Neumann as a possible generalization of a more
restricted theorem proved by the author. Question 2 was posed in Hickin's study [1] on
infinite homogeneous permutation groups. One notes that Theorem 3 is an immediate
consequence of Theorem 2 since the embedding in Theorem 2 is proper. Theorem 3
is also a partial answer to P. M. Neumann's question on maximal sharp groups which
always exist by the Maximal Principle of Set Theory.

The main results proved below are the following:

Theorem 1. Let G, H be countable sharp groups acting on a countably infinite set Q.
Then there exists a permutation yofil such that

(i) (G,yHy~ly is a sharp group, and "1

(ii) (G,yHy~ly is the free product G*yHy~l of G and yHy'1 [

Theorem 2. Given a countable sharp permutation group (G,Q) with il countably
infinite, G can be properly embedded in a countable sharp, highly transitive permutation
group (G*, Q) acting on the same set il.

Theorem 3. Every maximal sharp group on a countably infinite set is uncountable.

Theorem 4. There exists a faithful countably infinite permutation group (G, £1) of
countably infinite degree such that

(i) (G,Q) is not locally finite,

(ii) (G, Q) is sharp and relatively homogeneous, and (1.2)

(iii) the orbits of every finitely generated subgroup of G are finite.

The proof of Theorem 4 is in Section 4, while the others are proved in Section 3.
Section 2 contains some preliminaries. Where the proof of a theorem is long, the central
idea in the proof is given immediately before the proof. Outlines are also given in some
proofs to indicate their directions.

2. Preliminaries

Definitions. Let A u A2,..., An be infinite sets.

1. The projections pup2 of Al x A2 are defined by

pl:A1xA2^*Al p2:AlxA2-*A2

for every (aua2)eA1 xA2.
2. A curve in Al x A2 is a non-empty subset S of At x A2 such that for j= 1 or 2, the

restriction of the projection p, to S is injective.
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Note 2.1. This means that for points on a curve, the values of the first components
determine the values of the second or vice-versa.

Note 2.2. Observe that the subset of AxxA2 consisting of elements with equal
components is a curve in Ay x A2.

Lemma 5. Let Q be an infinite set and x a permutation of Cl with cofinite support; i.e.
the set {aeft|ax = a} is finite or empty. Let £x,...,£p be fixed elements of il and AitA2

fixed infinite subsets of Q. / /

then S is a finite union of curves in Ax x A2.

Proof of Lemma 5. If the hypotheses of the lemma hold, then we have the following
possibilities: either

(i) yi = £,-x for some i = l , . . . ,p ;

or (ii) yx = y2x

or(iii) fix = •)>!.

It is clear that cases (i) and (ii) lead to a finite union of curves in Ax x A2. Case (iii) also
does because the support of x is cofinite by hypothesis. •

L e m m a 6. Let N be a positive integer. If A U A 2 are infinite sets and SX,...,SN are
curves in A x x A 2 , then

N

{A^x A2)\ I I Sj is infinite.
i = l

Proof of Lemma 6. Let SU...,SN be as in the hypotheses of lemma. Suppose the
restriction of p2 to Sx is injective. Define

D): = {yeA2\(ldeD)((d,y)eSl)}

for every subset D of Av It follows from the definition of a curve that if Dlr\D1 — <j>,
then C(Si,D1)nC(S1,D2) = </). If C(Su(t>) is infinite, then put AX^. = AX, /421: = C(S1(0).
Then we have (AlY X/42 1)nS1 = >̂ with AluA2l being infinite sets and
S2rt(An x.A2l),...,SNr\{All x A21) being curves in Alx *A21.

Suppose C(Su<t>) is not infinite. Then CiS^Ay) is infinite since A2 is. Choose a subset
E of Ax such that both E and At\E are infinite. Then it follows that one of C(SUE),
C(Si,i4j\£) is infinite. Let Axl be E or AX\E such that C{SuAi\Au) is infinite; and put
A21: = C(SuA1\Alx). It then follows that (An xA2l)nS1 = (j)—the same result as in the
last paragraph. Clearly a similar result will hold if the restriction of px to Sx is injective.
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The procedure above involves AtxA2 and St. We can now apply a similar procedure
to AtlxA21 and S2 to obtain that (A12 X/42 2)n(S1uS2) = ^ for some infinite sets
A12^Au, A22^A21. After N such steps, we then have the assertion of the lemma. •

3. Embeddings in highly transitive groups

Proof of Theorem 1. The theorem is trivial if either G or H equals {1}. So we
assume this is not so.

For now, let y be a symbol. Let

be an (countable) enumeration of all the words of the form:

o>i(y): = (yhny~ x)gn{yhi2y ~ l)gi2... {yhinmy~ l)gm) (3.1)

where

*U6G\{1}, *y6ff\{l}

for all i and l^jS«(')• To prove the theorem, it suffices to construct a map y satisfying
(l.l)(i) and such that a>,{y) has cofinite support for every i. This is because every element
of <fi,yHy~1') is a conjugate of some cot or some element in Gu.yfJ.y~1.

Outline. The procedure we follow is to construct approximations yuy2,... to y such
that yi+l is an extension of yt and such that ficoj^/j. for all \i outside the finite domain
of y,- i- The latter property makes strong use of sharpness of G through Lemma 5. The
construction also ensures that the unions of the domains and ranges of the partial maps
y( do not miss out any element of fi.

Let fl: = {a0,a1)a2,•••} be an enumeration of Q as a sequence. More precisely, we
want to construct yu y2,... such that for each i:

(i) ^ ( ^ c Q ^ ^ c Q where @(yt), ^(yt) denote the domain and range of yt and are
finite sets.

(ii) ao,a1,...,ai.1

<x0, <*!

(iii) y,_1 =yi\@(y,_1)l that is yt is an extension o[yi_l.
(iv) ncojiyi)^n^fie®(j',-)\(®(>'y-1)) and 1 ^ y ^ i . The inequality includes the possibility

that the LHS may not be well-defined. For uniformity, we define @(y0): = (j>.
= cj>.

(v) yt is a m a p of form: 0n i-» 0i2 (-• pi31-» • • • t-* p[mi0. (3.2)

Construction of j ,

Let yi,y~i be variables which take distinct values in At: = { a 2 , a 3 , . . . } . Then y: =
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(y^1,yi)es/l:=Aj. Let y^y) be the function:

Consider the system of equations:

Hvl(yi(y))=n, lieiy.u^y^ (3.3)

Outline

We show next that the set of all y in $4V for which any one of (3.3) holds is contained
in the union of a finite number of curves of $4V.

Suppose aoco1(>'1(y)) = ao. Then,

This implies that y^^e^y,) which is {ao.y^a,}. Using Lemma 5, we deduce that the
collection of y satisfying (3.3) for n = a0 is at most a union of a finite number of curves
in jj/p

For / i=y_! and n = yu equation (3.3) becomes respectively

«o'«liyr1^ll---3'l''ln(l)J'r1fln(l) = y-l,

(3.4)
ai '»i i ) ' i 1 Si i - - - .y i '» i i i ( i )J ' i 1^in(i) = ?i-

In each of the two cases,

for some yi7 i= 1, — 1. This is so because the element that comes before giaW on the LHS
of (3.4) is in the domain of yv We conclude as in the last paragraph that only points on
a finite number of curves of s/t satisfy (3.3) for any of the two cases.

Hence the collection of y satisfying any equation in (3.3) (which is a finite system of
equations) is contained in a finite union of curves. With the use of Note 2.2 and Lemma
6, we then choose some y (with distinct components) in the complement of this union;
and for simplicity, we put yi'. = yi(y). Thus, yt violates every equation in (3.3).

Construction of ys+l, assuming y, is known

Assume ys satisfies 3.2(i)—(v) for i=s. Let {<50,Sl,d2,--} be a subsequence of
{ao,a1,a2,...} such that {(50,Sl,...}=Q\d2(y,). Suppose Sj=OLmU). By definition of subse-
quence and since {a,} has distinct terms, we have that k<j if and only if m(k)<m(j).
This with 3.2(ii) for i=s implies aJ + 1 e@{yj or aJ + 1 =<50. Put

) and j / I + 1 : = Xf
2

+1.
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174 S. A. ADELEKE

As done for ylt let y :=(y- i ,y i ) be a variable which can take values in As+l and with
distinct components. With the notations in 3.2(v), let

It should be clear from (3.2)(v), (ii) for i = s, that <xae@>(ys+^y)). Consider the system of
equations:

1), and l g / g s + 1 . . . (3.5)

Let Wj be any word within the given range in (3.5), and let /i = J?sm(5). The arguments
similar to those used for (3.3) when /i = a0 show that the solution set for (3.5) when
/i = /?sm(s) is at most a finite union of curves in s/s+1. We also arrive at the same result
if /ie{y-1,y1} and if we use arguments like those used for (3.3) where fi = y1.

For a fixed coj, l ^ j g s , let / ie^(ys) —^(y,-!). By inductive hypothesis (3.2)(iv) for
i = s, either na>j(ys) is undefined or it is defined and unequal to (i. If the latter occurs,
then no)j(ys+i(y)) = fi(Oj{ys)^fi for any y. If on the other hand, na>j(ys) is undefined, then
in order for

i(v))=H (3-6)

to hold for the stipulated range of fi in this paragraph, an element

has been used in the computation of the LHS of (3.6). This means that some yt occurs
before or after some gJk or hJk. Using Lemma 5, we then conclude that the solution set
of (3.6) is at most a finite union of curves in stfs+1. This result and the result in the last
paragraph, together with Note 2.2 and Lemma 6, show that we can pick yes/s+1 with
distinct components such that (3.2)(iv) holds for i = s + l. The method of construction
shows clearly that (3.2)(i), (ii), (iii), (v) all hold for i = s+l. This ends the inductive step
from i = s to i = s+1. We then conclude that (3.2)(i)-(v) holds for all i.

Now, using definition of a function on fi as a special subset of Q x Q, we let

QO

y-=[)yt-
i = l

From (3.2)(i)-(iii), we then have that y:£l-*Q. From (3.2)(iv), (v), we have that, for every j ,

y) (3.7)

and that y is a single infinite cycle on £1 As stated at the beginning of the proof of this
theorem, (3.7) implies the assertion of the theorem, since every element of G*yHy~l is
a conjugate of some GJ, or some element of G\jyHy~l. Q
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Proof of Theorem 2. Let Q: = {^1,)32,...} be an enumeration of £2. For every i,
i=0,1,2,... let ht be a permutation that permutes {j5i+1,/SI+2,...} in one infinite cycle
and fixes the rest. Note that </i,> is sharp for every i. By Theorem 1, there exists y^ such
that </io>>'i'Iiyr1> is sharp and free. When the theorem is applied to the groups
{h^y^yi1} and </i2> we see that there exists y2 such that (ho,y1h1yi1,y2h2y2 '> is
sharp and free. In general we shall have that </io>>;i''i>'r1.3'2'l23;^1.>'3'l3>'r1>-) is sharp
and free for some yi,y2,y3,--- • Put xo: = ho, xi:=yihiyi'1, i= 1,2,... . Note that for each
i, <xf> is transitive on {/?i+i,/Ji+2>---}>'i"'• Hence //: = <xo,x1,x2,...> is sharp and
highly transitive. By Theorem 1 again, there exists a permutation y on Cl such that
G*yHy~l is sharp and highly transitive. Since yHy'1^! and since G*yHy~1 is a free
product of G and yHy'1, then G*yHy~1 contains G properly. •

As stated in the introduction, Theorem 3 is an immediate consequence of Theorem 2.

4. Idea of proof of Theorem 4

Both the domain and the group are extended inductively so that we have a sequence
(G^EJ, ( G ^ u l ^ ) , (G 3 ,E 1 ur 2 n r 3 ) , . . . where G1,G2,.. . ,E1,r2,r3, . . . are all finite.
An appropriate limit (G, Q) is taken as the desired permutation group.

The extensions have the property that the extension of every nonidentity group
element is non-identity. This, with another property that the action of the extensions is
always defined as a right-translation in a regular representation, makes (G,Q) sharp.
Moreover, the orders of the extensions of the group elements are made to increase at
each step. This makes the order of some elements infinite and thus makes (G,il) non-
locally finite. To ensure relative homogeneity, we also arrange that the extensions of
commutative group elements are commutative.

Proof of Theorem 4.

Construction of (G, SI)

For now, let £ be any non-empty finite set and let S be Sym(Z), the set of all
permutations of S. Also, let A(S) be the group generated by new symbols a(s) for seS
subject to the relations [a(s), a(t)] = 1, a(s)|s| = l. Let

Here, [x,y] denotes the commutator x~ly~lxy, and \S\ denotes the number of elements
in S. For each seS, define r(s), to be right multiplication by (s,a(s)) acting faithfully on
S x A(S), and put

s*: = (s,r(s))eSym(Z*).
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To construct (G,Q), let Lj be any non-empty finite set. Using the notations above we
define

Gn: = Sym(Zn).

The group G is a subgroup of Sym (Q) defined by

G: = <s: = (s(0),s(1),5(2),...)|s(o)GGn for some

Here,

s ( l ) : = r ( 5 (0))

•S(2): = /t('S(0). S(i)))

5 (3) : = Ks(0)>s(l)> s(2))

Some properties of (G, Q)

Let aj,aj,,oj2 denote arbitrary words. We wish to note some properties of (G,Q)
constructed above. For every natural number p, the following are true:

(a) |2p|<|2:p+1|<oo; I,<=Z,+1. (4.1)

These are obvious from the construction above.

(b) The permutation group (G,Q) is faithful. This is because each s(0 is
defined as a permutation. (4.2)

(c) For every s „ . . . , sk e Sym (Zp),

o>(s1,...,s4)^l^.supprF+lffl(r(si),...,Ks»)) = r p + 1 . (4.3)

To see this, suppose cois^...,sk)=fcl. A typical element of F p + 1 is
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where u is a word and m is a natural number. Then for every such element, we have
that the group action

((s,u(a(sn),a(si2),...,a(s,JMKsJ r[h))=(«u(si,...,sk),a) for some aeA(GP)

since co(sl,...,sj±l.

(d) For every su...,s, eSym(E p ) , a>l(sl,...,sl) commutes with a)2(
si>->si)

if and only if (o^risj),...,r[s,)) commutes with co2{r(sl),...,r[s,)) where
colt a>2 are any words. (4.4)

We show this briefly. Now, by definition, the permutation cO;(Ksi)>-.-,Ksi)) of r p + 1 is
a right multiplication by ((o,{sl,...,sl),(o,{a(sl),...,a(sl))) for i = l,2. The second com-
ponents in the last expression for i = l , 2 commute in their action on A(GP) since by
definition they are elements of an abelian group acting regularly on the same abelian
group. The first components commute in their regular action on Gp since they commute
as elements of Gp.

(e) For any seG p \{ l} , the element (s,r(s)) has order |Gp| as an element of
Gp+1. (4.5)

To show this, let M = |GP|. If s ^ l , then a(s) has order M by definition of A(GP).
Moreover, s M = l since seGp. Therefore, the order of r(s) is M and so the order of
(s,r{s)) is M.

Conclusion

We verify now that the properties listed in the theorem are satisfied by (G, fi).

Non-local finiteness. By (4.1) and (4.5) for every p, we observe that every s in G\{1}
has infinite order. Hence (G,Q) is not locally finite.

Sharpness. Suppose to: = ca(s1,S2,...,sm)^l where sI=(sj(0),si(1 >,...), i= l , . . . ,m .
Suppose also smeGPl. Then, from (4.1) and definition of £2, there exists k such that
fe>max{plJ...,pm} and the restriction o)\Zk of to to £* is not the identity. By (4.3) for all
p, we observe that <«|r\+l has support equal to F t + 1 . Repeated application of (4.1) shows
that the fixed points of co are all contained in Y.k. Hence support of to is cofinite.

Relative Homogeneity. Suppose a subgroup B of G is generated by words

ajJ(s1, . . . ,sJ, j=\,...,k;

where k, m are natural numbers. In this notation, we allow the possibility that a word <o{

may not depend on all the arguments listed. Using the notations in the last paragraph,
suppose sI(0)eGPi. Let M: = max{pj,. . . ,pm}. Then Z M , r M + 1 , r M + 2 , . . . are all unions of
orbits of B. Let / be a B-isomorphism connecting orbits Al 5. . . ,A, of B with t finite.
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Since each orbit of B is finite, we therefore have that At,...,A, are subsets of 2 , for
some fixed q>M. It is a well-known fact that every such isomorphism acting on the
finite set X, can be extended to a permutation / in Sym(S,) which is a B-isomorphism.
By the construction of (G,Q) above, there exists some s in G such that s\Hq = J. Property
(4.4) ensures that s commutes with every element of B. Thus, (G,Q) is relatively
homogeneous.

Finitely generated subgroups. The arguments in the last paragraph show that if a
subgroup B of G is generated by a finite number of words coi, then there exists a natural
number M such that E M ,r M + 1 , r M + 2 , . . . are all unions of orbits of B. Since
Zm,rm + 1 , rm + 2 , . . . are all finite then (1.2)(iii) holds. •

Acknowledgements. This research was undertaken while the author was under the
Royal Society Fellowship for Developing Countries. The author is grateful to them for
the opportunity they provided, and is highly indebted to Peter M. Neumann who
supervised and prompted the work.

REFERENCES

1. K. HICKIN, Some results on homogeneous permutation groups, preprint (April, 1985).

2. J. K. TRUSS, Embeddings of Infinite Permutation Groups, Proceedings of Groups—St Andrews
1985 (London Math. Soc. Lecture Notes 121, Cambridge University Press 1986), 335-351.

DEPARTMENT OF MATHEMATICS
BOWLING GREEN STATE UNIVERSITY
BOWLING GREEN
OHIO 43403
U.S.A.

https://doi.org/10.1017/S001309150000328X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150000328X

