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Abstract We consider a nonlinear periodic problem driven by the scalar p-Laplacian and with a reac-
tion term which exhibits a (p − 1)-superlinear growth near ±∞ but need not satisfy the Ambrosetti–
Rabinowitz condition. Combining critical point theory with Morse theory we prove an existence theorem.
Then, using variational methods together with truncation techniques, we prove a multiplicity theorem
establishing the existence of at least five non-trivial solutions, with precise sign information for all of
them (two positive solutions, two negative solutions and a nodal (sign changing) solution).
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1. Introduction

In this paper, we study the following nonlinear periodic problem driven by the scalar
p-Laplacian:

−(|u′(t)|p−2u′(t))′ = f(t, u(t)) almost everywhere (a.e.) on T = [0, b],

u(0) = u(b), u′(0) = u′(b), 1 < p < ∞.

}
(1.1)

Here, f : T × R → R is a Carathéodory reaction, i.e. for all x ∈ R, t → f(t, x) is
measurable and, for almost all (a.a.) t ∈ T , x → f(t, x) is continuous.

The aim of this work is to prove existence and multiplicity results for (1.1) when
the reaction f(t, ·) exhibits (p − 1)-superlinear growth but does not necessarily satisfy
the well-known Ambrosetti–Rabinowitz (AR) condition, which is very common when
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studying ‘superlinear’ problems. We recall that the AR condition requires that there
exist µ > p and M > 0 such that

0 < µF (t, x) � f(t, x)x for a.a. t ∈ T, all |x| � M, (1.2)

where
F (t, x) =

∫ x

0
f(t, s) ds

(see [5]). Integrating (1.2), we obtain the weaker condition

ĉ0|x|µ � F (t, x) for a.a. t ∈ T, all |x| � M and some ĉ0 > 0. (1.3)

This implies the much weaker condition

lim
x→±∞

F (t, x)
|x|p = +∞ uniformly for a.a. t ∈ T. (1.4)

Evidently, (1.4) is implied by the condition

lim
x→±∞

f(t, x)
|x|p−2x

= +∞ uniformly for a.a. t ∈ T. (1.5)

Condition (1.5) implies that for a.a. t ∈ T , f(t, ·) is (p − 1)-superlinear near ±∞.
The AR condition ensures that the Palais–Smale sequences of the energy functional

of (1.1) are bounded. Therefore, the energy functional satisfies the Palais–Smale condition
and we can apply the minimax methods of critical point theory. However, the AR condi-
tion is rather restrictive and excludes many functions which exhibit slower growth near
±∞, as is evident from (1.3). For this reason, there have been efforts to replace (1.2) by
a weaker condition. We refer the reader to the recent works of Miyagaki and Souto [19]
and Li and Yang [18] for a discussion of the literature in this direction. In this paper,
motivated by the aforementioned works, we employ a condition involving the quantity
ϑ(t, x) = f(t, x)x−pF (t, x) (see Hypotheses (H) in § 3), which is more general than (1.2)
and incorporates more reaction terms f(t, x) in our framework.

Existence and multiplicity results for the periodic p-Laplacian can be found in the
works of Aizicovici et al . [1, 2], del Pino et al . [11], Gasiński and Papageorgiou [15],
Jiang and Wang [17], Motreanu et al . [20], Papageorgiou and Papageorgiou [22] and
Rynne [24]. Of these works, only [15] treats problems with a (p−1)-superlinear reaction.
They prove the existence of three non-trivial solutions using a stronger ‘superlinearity’
condition near ±∞.

In this paper, combining variational methods based on the critical point theory with
Morse theory, we prove an existence theorem and a multiplicity theorem. In the multi-
plicity theorem, we produce five non-trivial solutions and, in addition, we provide precise
sign information for all of them. For both theorems, we assume a similar behaviour of
f(t, ·) near zero, namely we require that it grows (p − 1)-linearity near zero.

In the next section, for the convenience of the reader, we recall some of the main
mathematical tools which we use in this paper.
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2. Mathematical background

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗, X). Let ϕ ∈ C1(X). We say that x ∈ X is a critical
point of ϕ if ϕ′(x) = 0. If x ∈ X is a critical point of ϕ, then c = ϕ(x) is a critical value
of ϕ. We say that ϕ satisfies the C condition if the following is true.

Every sequence {xn}n�1 ⊆ X such that {ϕ(xn)}n�1 ⊆ R is bounded and (1 +
‖xn‖)ϕ′(xn) → 0 in X∗ as n → ∞ admits a strongly convergent subsequence.

Evidently, the C condition is more general than the well-known Palais–Smale condition.
However, as was shown by Bartolo et al . [6] (see also [21]), it suffices to have the minimax
theorems of critical point theory. In particular, we have the following slightly more general
version of the mountain pass theorem (see [5]).

Theorem 2.1. If ϕ ∈ C1(X) satisfies the C condition, x0, x1 ∈ X, ‖x1 −x0‖ > � > 0,

max{ϕ(x0), ϕ(x1)} < inf[ϕ(x) : ‖x − x0‖ = �] = η�,

c = inf
γ∈Γ

max
0�t�1

ϕ(γ(t)), where Γ = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1},

then c � η� and c is a critical value of ϕ.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the following notation:

ϕc = {x ∈ X : ϕ(x) � c},

Kϕ = {x ∈ X : ϕ′(x) = 0},

Kc
ϕ = {x ∈ Kϕ : ϕ(x) = c}.

If Y2 ⊆ Y1 ⊆ X, then, for every integer k � 0, by Hk(Y1, Y2) we denote the kth relative
singular homology group for the pair (Y1, Y2), with integer coefficients. The critical groups
of ϕ at an isolated critical point x0 ∈ X, with c = ϕ(x0), are defined by

Ck(ϕ, x0) = Hk(ϕc ∩ U, ϕc ∩ U \ {x0}) for all k � 0.

Here, U is a neighbourhood of x0 such that Kϕ ∩ ϕc ∩ U = {x0}. The excision prop-
erty of singular homology theory implies that the above definition of critical groups is
independent of the particular choice of the neighbourhood U of x0.

Suppose that ϕ ∈ C1(X) satisfies the C condition and −∞ < inf ϕ(Kϕ). Let c <

inf ϕ(Kϕ). The critical groups of ϕ at infinity are defined by

Ck(ϕ, ∞) = Hk(X, ϕc) for all k � 0.

The second deformation theorem (see, for example, [21, 23]) implies that the above
definition of critical groups at infinity is independent of the choice of the level c <

inf ϕ(Kϕ). If ϕ satisfies the C condition, has a finite critical set Kϕ and, for some k � 0,
we have Ck(ϕ, 0) 	= 0 and Ck(ϕ, ∞) = 0, then ϕ has a non-trivial critical point (see [23]).
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In the study of (1.1), we use the following two spaces:

W 1,p
per(0, b) = {u ∈ W 1,p(0, b) : u(0) = u(b)}

and

Ĉ1(T ) = C1(T ) ∩ W 1,p
per(0, b).

Recall that W 1,p(0, b) is embedded continuously (in fact compactly) in C(T ), and so the
evaluations at t = 0 and t = b in the definition of W 1,p

per(0, b) make sense. The space
Ĉ1(T ) is an ordered Banach space with positive cone

Ĉ+ = {u ∈ Ĉ1(T ) : u(t) � 0 for all t ∈ T}.

This cone has a non-empty interior given by

int Ĉ+ = {u ∈ Ĉ+ : u(t) > 0 for all t ∈ T}.

Next, we recall some facts about the spectrum of the negative periodic scalar p-Laplacian.
So, we consider the nonlinear eigenvalue problem

−(|u′(t)|p−2u′(t))′ = λ̂|u(t)|p−2u(t) on T = [0, b], u(0) = u(b), u′(0) = u′(b). (2.1)

A number λ̂ ∈ R is an eigenvalue of the negative periodic scalar p-Laplacian if (2.1) has
a non-trivial solution, which is an eigenfunction corresponding to λ̂. It is easy to see that
a necessary condition for λ̂ ∈ R to be an eigenvalue is that λ̂ � 0. In fact, λ̂0 = 0 is an
eigenvalue with corresponding eigenspace R (i.e. the space of constant functions). Note
that λ̂0 = 0 is the only eigenvalue with eigenfunctions of constant sign. All eigenvalues
λ̂ > 0 have nodal (i.e. sign changing) eigenfunctions.

Let πp = 2π(p − 1)1/p/p sin(π/p). Then, the sequence

{
λ̂n =

(
2nπp

b

)p}
n�0

is the set of all eigenvalues for (2.1). If p = 2 (linear eigenvalue problem), then π2 = π

and we have the well-known spectrum of the negative periodic scalar Laplacian, which is

{
λ̂n =

(
2nπ

b

)2}
n�0

.

If u ∈ C1(T ) is an eigenfunction of (2.1), then u(t) 	= 0 a.e. on T and, in fact, the
zero set of u(·) is finite. The Lp-normalized principal eigenfunction is denoted by û0

and û0(t) = 1/b1/p for all t ∈ T . The sequence of eigenvalues {λ̂n}n�0 can be obtained
using the Ljusternik–Schnirelmann theory (see, for example, [12]). In this way, we have
minimax characterizations of the eigenvalues. An alternative minimax expression for
λ̂1 > 0 (the first non-trivial eigenvalue) is the following (see [20]).
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Proposition 2.2. If ∂BLp

1 = {u ∈ Lp(T ) : ‖u‖p = 1}, M = W 1,p
per(0, b) ∩ ∂BLp

1 and

Γ̂ = {γ̂ ∈ C([−1, 1], M) : γ̂(−1) = −û0, γ̂(1) = û0},

then

λ̂1 = inf
γ̂∈Γ

max
−1�s�1

∥∥∥∥ d
dt

γ̂(s)
∥∥∥∥

p

p

.

A detailed study of the spectrum of the negative periodic scalar p-Laplacian can be
found in [7].

Let A : W 1,p
per(0, b) → W 1,p

per(0, b)∗ be the nonlinear map defined by

〈A(u), y〉 =
∫ b

0
|u′(t)|p−2u′(t)y′(t) dt for all u, y ∈ W 1,p

per(0, b). (2.2)

The next proposition summarizes the properties of A (see, for example, [2]).

Proposition 2.3. The nonlinear map A : W 1,p
per(0, b) → W 1,p

per(0, b)∗ defined by (2.2)
is continuous, bounded (i.e. maps bounded sets to bounded ones), strictly monotone
(hence maximal monotone too) and of type (S)+ (i.e. if un

w→ u in W 1,p
per(0, b) and

lim sup
n→∞

〈A(un), un − u〉 � 0, then un → u in W 1,p
per(0, b)).

In what follows, by ‖ · ‖ we denote the standard norm of W 1,p
per(0, b). Moreover, for

u ∈ W 1,p
per(0, b), we set u± = max{±u, 0}. Recall that u = u+ − u− and |u| = u+ + u−.

Finally, by | · |1 we denote the Lebesgue measure on R.

3. The existence theorem

For the existence theorem, the hypotheses on the reaction term f(t, x) are the following.

(H) f : T × R → R is a Carathéodory function such that, for a.a. t ∈ T , f(t, 0) = 0 and
the following hold.

(i) |f(t, x)| � α(t)(1 + |x|r−1) for a.a t ∈ T , all x ∈ R, with α ∈ L1(T )+,
p < r < ∞.

(ii) If

F (t, x) =
∫ x

0
f(t, s) ds,

then

lim
x→±∞

F (t, x)
|x|p = +∞ uniformly for a.a. t ∈ T,

and if ϑ(t, x) = f(t, x)x − pF (t, x), then there exists β∗ > 0 such that

ϑ(t, x) � ϑ(t, y) + β∗ for a.a. t ∈ T, all 0 � x � y or y � x � 0. (3.1)
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(iii) One of the following alternatives holds:

(a) there exist m � 0 and η, η̂ ∈ L∞(T ) such that

λ̂m � η(t) � η̂(t) � λ̂m+1 a.e. on T, λ̂m 	= η, η̂ 	= λ̂m+1

and

η(t) � lim inf
x→0

f(t, x)
|x|p−2x

� lim sup
x→0

f(t, x)
|x|p−2x

� η̂(t)

uniformly for a.a. t ∈ T ;
(b) there exists η0 ∈ L∞(T ) such that η0(t) � 0 a.e. on T , η0 	= 0 and

lim sup
x→0

pF (t, x)
|x|p � η0(t) uniformly for a.a. t ∈ T.

Remark 3.1. Hypothesis (H) (ii) classifies the problem as p-superlinear (the super-
linearity condition is imposed on the potential function F (t, x)). However, we do not
employ the AR condition. Instead we use (3.1), which allows us to consider functions
with slower growth near ±∞, as the following example illustrates. Hypothesis (H) (iii)
(both options) implies that asymptotically at zero we have non-uniform non-resonance
with respect to any eigenvalue.

Example 3.2. The function

f(x) = |x|p−2x(ln(1 + |x|) + η), with η ∈ (λ̂m, λ̂m+1),

satisfies Hypotheses (H) (for the sake of simplicity we drop the t-dependence) for some
m � 0 or η < 0.

Note that this f(·) does not satisfy the AR condition.

Let ϕ : W 1,p
per(0, b) → R be the energy functional for (1.1) defined by

ϕ(u) =
1
p
‖u′‖p

p −
∫ b

0
F (t, u(t)) dt for all u ∈ W 1,p

per(0, b).

We know that ϕ ∈ C1(W 1,p
per(0, b)).

Proposition 3.3. If Hypotheses (H) hold, then ϕ satisfies the C condition.

Proof. Let {un}n�1 ⊆ W 1,p
per(0, b) be a sequence such that

|ϕ(un)| � M1 for some M1 > 0, all n � 1, (3.2)

and
(1 + ‖un‖)ϕ′(un) → 0 in W 1,p

per(0, b)∗ as n → ∞. (3.3)

From (3.3) we have that∣∣∣∣〈A(un), h〉 −
∫ b

0
f(t, un)h dt

∣∣∣∣ � εn‖h‖
1 + ‖un‖ for all h ∈ W 1,p

per(0, b), (3.4)

with εn → 0+.
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In (3.4), we choose h = un ∈ W 1,p
per(0, b) and we have that

−‖u′
n‖p

p +
∫ b

0
f(t, un)un dt � εn for all n � 1. (3.5)

On the other hand, from (3.2) we have that

‖u′
n‖p

p −
∫ b

0
pF (t, un) dt � pM1 for all n � 1. (3.6)

Adding (3.5) and (3.6), we obtain that∫ b

0
ϑ(t, un) dt =

∫ b

0
[f(t, un)un − pF (t, un)] dt � M2 for some M2 > 0, all n � 1.

(3.7)

Claim 3.4. {un}n�1 ⊆ W 1,p
per(0, b) is bounded.

We argue indirectly. So, suppose that the sequence {un}n�1 ⊆ W 1,p
per(0, b) is unbounded.

By passing to a subsequence if necessary, we may assume that ‖un‖ → ∞ as n → ∞.
We set yn = un/‖un‖, n � 1. Then, ‖yn‖ = 1 for all n � 1, and so we may assume that

yn
w→ y in W 1,p

per(0, b) and yn → y in C(T ). (3.8)

First suppose that y 	= 0. We set Z(y) = {t ∈ T : y(t) = 0}. Then, |T \ Z(y)|1 > 0 and
|un(t)| → +∞ for a.a. t ∈ T \ Z(y). Hypothesis (H) (ii) implies that

F (t, un(t))
‖un‖p

=
F (t, un(t))

|un(t)|p |yn(t)|p → +∞ for a.a. t ∈ T \ Z(y). (3.9)

From (3.9) and Fatou’s lemma we have that∫ b

0

F (t, un(t))
‖un‖p

dt → +∞ as n → ∞. (3.10)

But, from (3.2) we know that

−1
p
‖y′

n‖p
p +

∫ b

0

F (t, un(t))
‖un‖p

dt � M1

‖un‖p
for all n � 1. (3.11)

Passing to the limit as n → ∞ in (3.11), and using (3.8) and (3.10), we reach a contra-
diction.

Therefore, we may assume that y = 0. To treat this case, first note that by passing to
a suitable subsequence if necessary, we may assume that

‖y′
n‖p � β > 0 for some β > 0, all n � 1. (3.12)

Indeed, otherwise we have ‖y′
n‖p → 0, which, in conjunction with (3.8), implies that

yn → 0 in W 1,p
per(0, b) (recall that y = 0), which contradicts the fact that ‖yn‖ = 1 for all

n � 1.
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For every n � 1, we consider the continuous function σn : [0, 1] → R defined by

σn(τ) = ϕ(τun) for all τ ∈ [0, 1].

Let τn ∈ [0, 1] such that

σn(τn) = max[σn(τ) : τ ∈ [0, 1]], n � 1. (3.13)

For λ > 0, let vn = (2λp/β)1/pyn ∈ W 1,p
per(0, b), n � 1. Then, vn → 0 in C(T ) (see (3.8)

and recall that y = 0). From the dominated convergence theorem (see Hypothesis (H) (i)),
we have that ∫ b

0
F (t, vn(t)) dt → 0 as n → ∞. (3.14)

Since ‖un‖ → ∞, we can find an integer n0 � 1 such that (2λp/β)1/p1/‖un‖ ∈ (0, 1) for
all n � n0. Then, from (3.13) we have that

σn(τn) � σ

((
2λp

β

)1/p 1
‖un‖

)
for all n � n0

=⇒ ϕ(τnun) � ϕ(vn)

=
1
p
‖v′

n‖p
p −

∫ b

0
F (t, vn) dt

� 2λ −
∫ b

0
F (t, vn) dt (see (3.12))

� λ > 0 for all n � n1 � n0 (see (3.14)).
(3.15)

Since λ > 0 is arbitrary, from (3.15) we infer that

ϕ(τnun) → +∞ as n → ∞. (3.16)

Note that 0 � τnu+
n � u+

n and −u−
n � −τnu−

n � 0 for all n � 1. So, from (3.1) we have
that ∫ b

0
ϑ(t, τnu+

n ) dt �
∫ b

0
ϑ(t, u+

n ) dt + β∗b, (3.17)

∫ b

0
ϑ(t, −τnu−

n ) dt �
∫ b

0
ϑ(t, −u−

n ) dt + β∗b. (3.18)

Since ϑ(t, 0) = 0 for a.a. t ∈ T , adding (3.17) and (3.18), we obtain that

∫ b

0
ϑ(t, τnun) dt �

∫ b

0
ϑ(t, un) dt + 2β∗b for all n � 1. (3.19)

Note that ϕ(0) = 0 and |ϕ(un)| � M1 for all n � 1 (see (3.2)). These facts together
with (3.16) imply that τn ∈ (0, 1) for all n � 1 large, say n � n2. From (3.13) we have
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that

0 = τn
d
dτ

ϕ(τun)
∣∣∣∣
τ=τn

= 〈ϕ′(τnun), τnun〉 = ‖τnu′
n‖p

p −
∫ b

0
f(t, τnun)(τnun) dt

=⇒ ‖τnu′
n‖p

p =
∫ b

0
f(t, τnun)(τnun) dt for all n � n2. (3.20)

From (3.19) we have that

∫ b

0
[f(t, τnun)(τnun) − pF (t, τnun)] dt �

∫ b

0
ϑ(t, un) dt + 2β∗b for all n � 1

=⇒ ‖τnu′
n‖p

p −
∫ b

0
pF (t, τnun) dt �

∫ b

0
ϑ(t, un) dt + 2β∗b for all n � n2

(see (3.20))

=⇒ pϕ(τnun) �
∫ b

0
ϑ(t, un) dt + 2β∗b for all n � n2

=⇒
∫ b

0
ϑ(t, un) dt → +∞ as n → ∞ (see (3.16)).

However, this contradicts (3.7). This proves the claim.
By virtue of the claim, we may assume that

un
w→ u in W 1,p

per(0, b) and un → u in C(T ). (3.21)

In (3.4), we choose h = un − u, pass to the limit as n → ∞ and use (3.21). Then,

lim
n→∞

〈A(un), un − u〉 = 0 =⇒ un → u in W 1,p
per(0, b)

=⇒ ϕ satisfies the C condition.

�

Proposition 3.5. If Hypotheses (H) hold, then Ck(ϕ, ∞) = 0 for all k � 0.

Proof. Let ∂B1 = {u ∈ W 1,p
per(0, b) : ‖u‖ = 1} and u ∈ ∂B1. Hypothesis (H) (ii) implies

that
ϕ(τu) → −∞ as τ → +∞. (3.22)

By virtue of (3.1), for every u ∈ W 1,p
per(0, b), we have that

0 = ϑ(t, 0) � ϑ(t, u+(t)) + β∗

and

0 = ϑ(t, 0) � ϑ(t, −u−(t)) + β∗ for a.a. t ∈ T

=⇒ 0 � ϑ(t, u(t)) + 2β∗ for a.a. t ∈ T

=⇒ −ϑ(t, u(t)) = pF (t, u(t)) − f(t, u(t))u(t) � 2β∗ for a.a. t ∈ T. (3.23)
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Then, for u ∈ W 1,p
per(0, b) and τ > 0, we have that

d
dt

ϕ(τu) = 〈ϕ′(τu), u〉

=
1
τ

〈ϕ′(τu), τu〉

=
1
τ

[
‖τu′‖p

p −
∫ b

0
f(t, τu)(τu) dt

]

� 1
τ

[
‖τu′‖p

p −
∫ b

0
pF (t, τu) dt + 2β∗b

]
(see (3.23))

=
1
τ

[pϕ(τu) + 2β∗b]. (3.24)

By virtue of (3.22), we see that, for τ > 0 large, we have ϕ(τu) � µ < −2β∗b/p, and
so from (3.24) it follows that

d
dt

ϕ(τu) < 0. (3.25)

Then, for u ∈ ∂B1, we can find a unique γ(u) > 0 such that ϕ(γ(u)u) = µ. Moreover,
invoking the implicit function theorem (see (3.25)), we have γ ∈ C(∂B1). We extend γ

to W 1,p
per(0, b) \ {0} by setting

γ̂(u) =
1

‖u‖γ

(
1

‖u‖

)
for all u ∈ W 1,p

per(0, b) \ {0}.

Clearly, γ̂ ∈ C(W 1,p
per(0, b) \ {0}) and ϕ(γ̂(u)u) = µ. Moreover, ϕ(u) = µ implies that

γ̂(u) = 1. So, if we set

γ̂0(u) =

{
1 if ϕ(u) < µ,

γ̂(u) if ϕ(u) � µ,
(3.26)

then γ̂0 ∈ C(W 1,p
per(0, b) \ {0}).

We consider the homotopy h : [0, 1] × (W 1,p
per(0, b) \ {0}) → W 1,p

per(0, b) \ {0} defined by

h(s, u) = (1 − s)u + sγ̂0(u)u.

Note that

h(0, u) = u, h(1, u) ∈ ϕµ for all u ∈ W 1,p
per(0, b) \ {0} (see (3.26))

and

h(s, ·)|ϕµ = id |ϕµ , s ∈ [0, 1]. (3.27)

From (3.27) it follows that ϕµ is a strong deformation retract of W 1,p
per(0, b) \ {0}. Using

the radial retraction we see that ∂B1 is a deformation retract of W 1,p
per(0, b)\{0} (see [13,

Theorem 6.5, p. 325]). Therefore, we infer that

ϕµ and ∂B1 are homotopy equivalent

=⇒ Hk(W 1,p
per(0, b), ϕµ) = Hk(W 1,p

per(0, b), ∂B1) for all k � 0. (3.28)
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Since W 1,p
per(0, b) is infinite dimensional, ∂B1 is contractible in itself. Hence,

Hk(W 1,p
per(0, b), ∂B1) = 0 for all k � 0 (see [16, p. 389])

=⇒ Hk(W 1,p
per(0, b), ϕµ) = 0 for all k � 0 (see (3.28))

=⇒ Ck(ϕ, ∞) = 0 for all k � 0 (choose µ < 0 with |µ| big).

�

Proposition 3.6. If Hypotheses (H) hold, then Cm+1(ϕ, 0) 	= 0 or Ck(ϕ, 0) = δk,0Z

for all k � 0.

Proof. First assume that (H) (iii) (a) is in effect. Let β ∈ (λ̂m, λ̂m+1) and consider
the C1-functional ψ : W 1,p

per(0, b) → R defined by

ψ(u) =
1
p
‖u′‖p

p − β

p
‖u‖p

p for all u ∈ W 1,p
per(0, b).

Since β /∈ σ(p) (the spectrum of the negative periodic scalar p-Laplacian), it follows that
ψ satisfies the C condition.

We consider the homotopy h : [0, 1] × W 1,p
per(0, b) → W 1,p

per(0, b) defined by

h(s, u) = (1 − s)ϕ(u) + sψ(u) for all (s, u) ∈ [0, 1] × W 1,p
per(0, b).

Note that h(0, ·) = ϕ and h(1, ·) = ψ and that both functionals satisfy the C condition
(see Proposition 3.3).

Suppose that we can find {sn}n�1 ⊆ [0, 1] and {un}n�1 ⊆ W 1,p
per(0, b) \ {0} such that

sn → s ∈ [0, 1], un → 0 in W 1,p
per(0, b) and h′

u(sn, un) = 0 for all n � 1. (3.29)

From (3.29), we have that

A(un) = (1 − sn)Nf (un) + snβ|un|p−2un for all n � 1, (3.30)

with Nf (u)(·) = f(·, u(·)) for all u ∈ W 1,p
per(0, b).

We set yn = un/‖un‖, n � 1. Then, ‖yn‖ = 1 for all n � 1, and so we may assume
that

yn
w→ y in W 1,p

per(0, b) and yn → y in C(T ). (3.31)

From (3.30), we have that

A(yn) = (1 − sn)
Nf (un)
‖un‖p−1 + snβ|yn|p−2yn for all n � 1. (3.32)

By virtue of Hypotheses (H) (i), (ii), we can find α̂ ∈ L1(T )+ such that

|f(t, x)| � α̂(t)(|x|p−1 + |x|r−1) for a.a. t ∈ T, all x ∈ R

=⇒
{

Nf (un)
‖un‖p−1

}
⊆ L1(T ) is uniformly integrable (recall that p < r).
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Thus, by virtue of the Dunford–Pettis theorem, we may assume that

Nf (un)
‖un‖p−1

w→ g in L1(T ). (3.33)

Using Hypothesis (H) (iii) and reasoning as in [3, Proof of Proposition 31], we have that

g(t) = ξ(t)|y|p−2y for a.a. t ∈ T, with η � ξ � η̂. (3.34)

On (3.32) we act with yn − y ∈ W 1,p
per(0, b), pass to the limit as n → ∞ and use (3.31)

and (3.33). We obtain that

lim
n→∞

〈A(yn), yn − y〉 = 0

=⇒ yn → y in W 1,p
per(0, b) and so ‖y‖ = 1 (see Proposition 2.3). (3.35)

So, if in (3.32) we pass to the limit as n → ∞ and use (3.33)–(3.35), we obtain that

A(y) = ((1 − s)ξ + sβ)|y|p−2y

=⇒ −(y′(t)p−2y′(t))′ = ξs|y(t)|p−2y(t) a.e. on T, y(0) = y(b), y′(0) = y′(b),
(3.36)

where ξs = (1 − s)ξ + sβ (see [2]).
Note that

λ̂m � ξs(t) � λ̂m+1 a.e. on T, λ̂m 	= ξs, λ̂m+1 	= ξs.

Invoking [1, Proposition 2], we infer that y = 0 (see (3.36)), which contradicts (3.35).
This argument shows that we can find � ∈ (0, 1) small such that u = 0 is the only

critical point of the family {h(s, ·)}s∈[0,1] in B̄� = {u ∈ W 1,p
per(0, b) : ‖u‖ � �}. Invoking

the homotopy invariance property of critical groups (see [9, p. 334]), we have that

Ck(h(0, ·), 0) = Ck(h(1, ·), 0) for all k � 0 =⇒ Ck(ϕ, 0) = Ck(ψ, 0) for all k � 0.

(3.37)
Let �′ > 0 and introduce the two sets

C0 = {u ∈ W 1,p
per(0, b) : ‖u′‖p

p < β‖u‖p
p, ‖u‖ = �′}

and

D = {u ∈ W 1,p
per(0, b) : ‖u′‖p

p � β‖u‖p
p}.

Evidently, both are symmetric sets and C0 ∩ D 	= ∅, 0 ∈ D. The set ∂B� = {u ∈
W 1,p

per(0, b) : ‖u‖ = �′} is a Banach C1-manifold of codimension 1, and, hence, it is locally
contractible. The set C0 is an open subset of ∂B�. So, it follows that C0 is locally
contractible too. Also, it is clear that the open set W 1,p

per(0, b) \ D is locally contractible.
If by ‘ind’ we denote the Fadell–Rabinowitz cohomological index [14], we have indC0 =
m+1 and indC = m+1 (see [23, p. 68]). Then, invoking [10, Theorem 3.6], we can find
K ⊆ W 1,p

per(0, b) such that the pair (C ∪ K, C0) and D homologically link in dimension
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m + 1. So, from [8, p. 89], we have that Cm+1(ψ, 0) 	= 0 and by virtue of (3.37) we
conclude that Cm+1(ϕ, 0) 	= 0.

Now, suppose that Hypothesis (H) (iii) (b) is in effect. Then, by virtue of Hypotheses
(H) (i) and (iii) (b), given ε > 0, we can find αε ∈ L1(T )+ such that

F (t, x) � 1
p
(η0(t) + ε)|x|p + αε(t)|x|r for a.a. t ∈ T, all x ∈ R.

Then, for all u ∈ W 1,p
per(0, b), we have that

ϕ(u) =
1
p
‖u′‖p

p −
∫ b

0
F (t, u(t)) dt

� 1
p
‖u′‖p

p −
∫ b

0
η0(t)|u|p dt − ε

p
‖u‖p − c̃‖u‖r for some c̃ > 0

� ξ̃0 − ε

p
‖u‖p − c̃‖u‖r for some ξ̃0 > 0 (see [2, Proposition 7])

=⇒ u = 0 is a local minimizer of ϕ (recall that p < r)

=⇒ Ck(ϕ, 0) = δk,0Z for all k � 0 (see [8]).

�

Propositions 3.3, 3.5 and 3.6 lead to the following existence theorem (see § 2).

Theorem 3.7. If Hypotheses (H) hold, then (1.1) has a non-trivial solution u0 ∈
C1(T ).

4. The multiplicity theorem

For the multiplicity theorem, the hypotheses on the reaction f(t, x) are the following.

(H′) f : T × R → R is a Carathéodory function such that for a.a. t ∈ T , f(t, 0) = 0 and
the following hold.

(i) |f(t, x)| � α(t)(1 + |x|r−1) for a.a t ∈ T , all x ∈ R, with α ∈ L1(T )+,
p < r < ∞.

(ii) limx→±∞ F (t, x)/|x|p = +∞ uniformly for a.a. t ∈ T and there exists β∗ > 0
such that

ϑ(t, x) � ϑ(t, y) + β∗ for a.a. t ∈ T, all 0 � x � y or y � x � 0.

(iii) There exist λ∗ > λ̂1 and η̂ ∈ L1(T )+ such that

λ∗ � lim inf
x→0

f(t, x)
|x|p−2x

� lim sup
x→0

f(t, x)
|x|p−2x

� η̂(t)

uniformly for a.a. t ∈ T .
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(iv) There exist real numbers c− < 0 < c+ such that

f(t, c−) � β− < 0 < β+ � f(t, c+) for a.a. t ∈ T.

(v) For every � > 0, there exists ξ∗
� > 0 such that, for a.a. t ∈ T , x → f(t, x) +

ξ∗
� |x|p−2x is non-decreasing on [−�, �].

Remark 4.1. The asymptotic condition at ±∞ (see (H′) (ii)) remains the same. The
asymptotic condition at 0 (see (H′) (iii)) is somewhat weaker than (H) (iii), since we
do not require that the quotient f(t, x)/|x|p−2x asymptotically stays in the spectral
interval [λ̂k, λ̂k+1]. We only require that, for a.a. t ∈ T , f(t, ·) is (p − 1)-linear near
0 and the quotient f(t, x)/|x|p−2x near zero stays above λ̂1 > 0. Of course, we also
added Hypotheses (H′) (iv) and (H′) (v). Hypothesis (H′) (iv) states that the reaction
has non-trivial zeros.

Example 4.2. The following function satisfies Hypotheses (H′) (as before, for the
sake of simplicity, we drop the t-dependence):

f(x) =

{
η(|x|p−2x − 2|x|q−2x) if |x| � 1,

|x|p−2x ln |x| − η|x|τ−2x if |x| > 1,

with η > λ̂1, 1 < τ < p < q < ∞.

We start by producing two constant sign solutions. To this end, we introduce the
following truncations–perturbations of the reaction f(t, x):

f̂+(t, x) =

⎧⎪⎨
⎪⎩

0 if x < 0,

f(t, x) + xp−1 if 0 � x � c+,

f(t, c+) + cp−1
+ if c+ < x

and

f̂−(t, x) =

⎧⎪⎨
⎪⎩

f(t, c−) + |c−|p−2c− if x < c−,

f(t, x) + |x|p−2x if c− � x � 0,

0 if 0 < x.

(4.1)

Both are Carathéodory functions. We set

F̂±(t, x) =
∫ b

0
f̂±(t, s) ds

and consider the C1-functionals ϕ̂± : W 1,p
per(0, b) → R defined by

ϕ̂±(u) =
1
p
[‖u′‖p

p + ‖u‖p
p] −

∫ b

0
F̂±(t, u(t)) dt for all u ∈ W 1,p

per(0, b).

Proposition 4.3. If Hypotheses (H′) hold, then (1.1) has at least two non-trivial
constant sign solutions u0 ∈ int Ĉ+, v0 ∈ − int Ĉ+ and c− < v0(t) < 0 < u0(t) < c+ for
all t ∈ T .
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Proof. We show the proof for the positive solution u0, the proof for the negative
solution v0 being similar.

Evidently, ϕ̂+ is coercive (see (4.1)) and it is sequentially weakly lower semi-continuous.
So, by the Weierstrass Theorem, we can find u0 ∈ W 1,p

per(0, b) such that

ϕ̂+(u0) = inf[ϕ̂+(u) : u ∈ W 1,p
per(0, b)] = m̂+. (4.2)

By virtue of Hypothesis (H′) (iii), we have that

m̂+ = ϕ̂+(u0) < 0 = ϕ̂+(0) and so u0 	= 0.

Also, from (4.2) we have that

A(u0) + |u0|p−2u0 = Nf̂+
(u0), with Nf̂+

(u)(·) = f̂+(·, u(·)), (4.3)

for all u ∈ W 1,p
per(0, b).

Acting on (4.3) with −u−
0 ∈ W 1,p

per(0, b), we obtain u0 � 0. Next, we act on (4.3) with
(u0 − c+)+ ∈ W 1,p

per(0, b) and obtain that

〈A(u0), (u0 − c+)+〉 +
∫ b

0
up−1

0 (u0 − c+)+ dt

=
∫ b

0
f(t, c+)(u0 − c+)+ dt +

∫ b

0
cp−1
+ (t, c+)(u0 − c+)+ dt (see (4.1))

=⇒ 〈A(u0) − A(c+), (u0 − c+)+〉 +
∫ b

0
(up−1

0 − cp−1
+ )(u0 − c+)+ dt � 0

(see (H′) (iv))

=⇒ |{u0 > c+}|1 = 0, i.e. u0 � c+.

Hence, 0 � u0 � c+ and so (4.3) becomes

A(u0) = Nf (u0) (see (4.1)) =⇒ u0 ∈ Ĉ+ \ {0} solves (1.1).

Let � = c+ and let ξ∗
� > 0 be as postulated by Hypothesis (H′) (v). Then,

−(|u′
0(t)|p−2u′

0(t))
′ + ξ∗

�u0(t)p−1 � 0 a.e. on T =⇒ u0 ∈ int Ĉ+ (see [25]).

For τ > 0, set uτ = u0 + τ ∈ int Ĉ+. We have that

− (|u′
τ (t)|p−2u′

τ (t))′ + ξ∗
�uτ (t)p−1

� −(|u′
0(t)|p−2u′

0(t))
′ + ξ∗

�u0(t)p−1 + λ(τ) with λ(τ) → 0+ as τ → 0+

= f(t, u0(t)) + ξ∗
�u0(t)p−1 + λ(τ)

� f(t, c+) + ξ∗
�cp−1

+ + λ(τ) (see (H′) (v))

� β+ + ξ∗
�cp−1

+ + λ(τ) (see (H′) (iv)).
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Since β+ < 0 and λ(τ) → 0+ as τ → 0+, for τ > 0 small we have that

A(uτ ) + ξ∗
�uτ (t)p−1 � A(c+) + ξ∗

�cp−1
+ in W 1,p

per(0, b)

=⇒ uτ � c+ for all τ > 0 small

=⇒ u0(t) < c+ for all t ∈ T.

Similarly, working with ϕ̂− we produce a negative solution v0 ∈ − int Ĉ+ such that
c− < v0(t) < 0 for all t ∈ T . �

Remark 4.4. Let

[0, c+] = {u ∈ W 1,p
per(0, b) : 0 � u(t) � c+ for all t ∈ T},

[c−, 0] = {u ∈ W 1,p
per(0, b) : c− � u(t) � 0 a.e. on T}.

From the proof of Proposition 4.3, we have that

u0 ∈ intĈ1(T )[0, u0] and v0 ∈ intĈ1(T )[v0, 0].

Invoking [2, Proposition 9], we infer that u0 and v0 are both local minimizers of ϕ

(see (4.1)).
Reasoning as in [4, Proposition 8], we can have extremal solutions of (1.1) in the order

intervals [0, c+] and [c−, 0].

Proposition 4.5. If Hypotheses (H′) hold, then (1.1) has a smallest non-trivial solu-
tion ũ0 ∈ int Ĉ+ and a biggest solution u0 ∈ int Ĉ+, with u0(t) < c+ for all t ∈ T in the
order interval [0, c+]; similarly in the order interval [c−, 0].

By virtue of this proposition, we may assume that the two solutions u0 and v0 obtained
in Proposition 4.3 are extremal, namely that u0 ∈ int Ĉ+ is the biggest solution of (1.1)
in the order interval [0, c+] and v0 ∈ − int Ĉ+ is the smallest solution of (1.1) in the
order interval [c−, 0]. Using these two solutions together with variational methods and
truncation techniques, we produce two more non-trivial solutions of constant sign.

Proposition 4.6. If Hypotheses (H′) hold, then (1.1) has two more non-trivial solu-
tions of constant sign, û ∈ int Ĉ+ and v̂ ∈ − int Ĉ+, such that u0 � û, u0 	= û and v̂ � v0,
v̂ 	= v0.

Proof. As already mentioned, we assume that the solutions u0 and v0 from Proposi-
tion 4.3 are extremal in the order intervals [0, c+] and [c−, 0], respectively.

We show the proof for the positive solution û, the proof for the negative solution v̂

being similar.
We consider the following truncation–perturbation of f(t, x):

ĝ+(t, x) =

{
f(t, u0(t)) + u0(t)p−1 if x � u0(t),

f(t, x) + xp−1 if u0(t) < x.
(4.4)
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This is a Carathéodory function. We set

Ĝ+(t, x) =
∫ x

0
ĝ+(t, s) ds

and introduce the C1-functional ψ̂+ : W 1,p
per(0, b) → R defined by

ψ̂+(u) =
1
p
[‖u′‖p

p + ‖u‖p
p] −

∫ b

0
Ĝ+(t, u(t)) dt for all u ∈ W 1,p

per(0, b).

Reasoning as in the proof of Proposition 3.3 and using Hypothesis (H′) (ii), we show that

ψ̂+ satisfies the C condition. (4.5)

Moreover, Hypothesis (H′) (ii) implies that

ψ̂+(ξ) → −∞ as ξ → +∞, ξ ∈ R. (4.6)

We consider the following truncation of ĝ+(t, x):

g+(t, x) =

{
ĝ+(t, x) if x < c+,

ĝ+(t, c+) if c+ � x.
(4.7)

We set
G+(t, x) =

∫ x

0
g+(t, s) ds

and consider the C1-functional ψ+ : W 1,p
per(0, b) → R defined by

ψ+(u) =
1
p
[‖u′‖p

p + ‖u‖p
p] −

∫ b

0
G+(t, u) dt for all u ∈ W 1,p

per(0, b).

It is clear from (4.7) that ψ+ is coercive. Also, it is sequentially weakly lower semi-
continuous. So, we can find û0 ∈ W 1,p

per(0, b) such that

ψ+(û0) = inf[ψ+(û) : u ∈ W 1,p
per(0, b)]

=⇒ ψ′
+(û0) = 0

=⇒ A(û0) = Ng+(û0) with Ng+(u)(·) = g+(·, u(·)) for all u ∈ W 1,p
per(0, b).

(4.8)

From (4.8), as before (see the proof of Proposition 4.3), we show that

û0 ∈ [u0, c+] = {u ∈ W 1,p
per(0, b) : u0(t) � u(t) � c+ for all t ∈ T}.

The maximality of u0 implies that û0 = u0. From Proposition 4.3 we know that u0(t) < c+

for all t ∈ T . Since ψ+|[0,c+] = ψ̂+|[0,c+] (see (4.7)), it follows that u0 is a local Ĉ1(T )-
minimizer of ψ̂+. Hence, by virtue of [2, Proposition 9], we have that u0 is a local
W 1,p

per(0, b)-minimizer of ψ̂+. We may assume that u0 is an isolated critical point of ψ̂+
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(otherwise we have a whole sequence of distinct critical points of ψ̂+ converging to u0

and since
Kψ̂+

⊆ [u0) = {u ∈ W 1,p
per(0, b) : u0(t) � u(t) for all t ∈ T}

we are done; see (4.4)). Then, reasoning as in [3, Proof of Proposition 29], we can find
� ∈ (0, 1) small such that

ψ̂+(u0) < inf[ψ̂+(u) : ‖u − u0‖ = �] = η̂+
� . (4.9)

Then, (4.5), (4.6) and (4.9) allow us to use Theorem 2.1 (the mountain pass theorem).
So, we obtain û ∈ W 1,p

per(0, b) such that

ψ̂+(u0) < η̂+
� � ψ̂+(û) (4.10)

and

ψ̂′
+(û) = 0. (4.11)

From (4.10) we have that û 	= u0, while from (4.11) we have that

A(û) + |û|p−2û = Nĝ+(û), with Nĝ+(u)(·) = ĝ+(·, u(·)), for all u ∈ W 1,p
per(0, b). (4.12)

Acting on (4.12) with (u0 − û)+ ∈ W 1,p
per(0, b) and using (4.4), we show that u0 � û.

So, (4.12) becomes

A(û) = Nf (û) (see (4.4)) =⇒ û ∈ int Ĉ+, u0 � û, u0 	= û is a solution of (1.1).

Similarly, using v0 ∈ − int Ĉ+ as the smallest solution of (1.1) in the order interval [c−, 0],
we produce a second negative solution v̂ ∈ − int Ĉ+, v̂ � v0, v̂ 	= v0. �

Next, we produce a nodal (sign changing) solution for (1.1).

Proposition 4.7. If Hypotheses (H′) hold, then (1.1) admits a nodal solution y0 ∈
Ĉ1(T ).

Proof. Let ũ0 ∈ int Ĉ+ be the smallest positive solution of (1.1) and let ṽ0 ∈ − int Ĉ+

be the biggest negative solution of (1.1). Also, let � = max(‖u0‖∞, ‖v0‖∞) (with u0,
v0 the extremal solutions from Proposition 4.5) and let ξ∗

� > 0 be as postulated by
Hypothesis (H′) (v). We introduce the following truncation–perturbation of f(t, x):

h(t, x) =

⎧⎪⎨
⎪⎩

f(t, ṽ0(t)) + ξ∗
� |ṽ0(t)|p−2ṽ0(t) if x < ṽ0(t),

f(t, x) + ξ∗
� |x|p−2x if ṽ0(t) � x � ũ0(t),

f(t, ũ0(t)) + ξ∗
� ũ0(t)p−1 if ũ0(t) < x.

(4.13)

This is a Carathéodory function. We set

H(t, x) =
∫ x

0
h(t, s) ds
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and introduce the C1-functional σ : W 1,p
per(0, b) → R defined by

σ(u) =
1
p
[‖u′‖p

p + ξ∗
�‖u‖p

p] −
∫ b

0
H(t, u(t)) dt for all u ∈ W 1,p

per(0, b).

Also, let h±(t, x) = h(t, ±x±),

H±(t, x) =
∫ x

0
h±(t, s) ds

and

σ±(u) =
1
p
[‖u′‖p

p + ξ∗
�‖u‖p

p] −
∫ b

0
H±(t, u(t)) dt

for all u ∈ W 1,p
per(0, b). Both are C1-functionals.

As before, we easily check that

Kσ ⊆ [ṽ0, ũ0]. (4.14)

Moreover, the extremality of the solutions ũ0, ṽ0 implies that

Kσ+ = {0, ũ0} and Kσ− = {ṽ0, 0}. (4.15)

Clearly, σ+ is coercive (see (4.13) and recall that h+(t, x) = h(t, x+)). Also, σ+ is sequen-
tially weakly semi-continuous. So, σ+ admits a minimizer that, by virtue of Hypothesis
(H′) (iii), is non-trivial. Hence, (4.15) implies that this minimizer equals ũ0 ∈ int Ĉ+. If

W+ = {u ∈ W 1,p
per(0, b) : u(t) � 0 for all t ∈ T},

then σ|W+ = σ+|W+ . Since ũ0 ∈ int Ĉ+, it follows that ũ0 is a local Ĉ1(T )-minimizer
of σ; hence, it is also a local W 1,p

per(0, b)-minimizer of ϕ (see [2]). Similarly, using σ−, we
show that ṽ0 ∈ − int Ĉ+ is a local minimizer of σ. We may assume that σ(ṽ0) � σ(ũ0)
and, as before, we can find � ∈ (0, 1) small such that

σ(ṽ0) � σ(ũ0) < inf[σ(u) : ‖u − ũ0‖ = �] = η̃�. (4.16)

Since σ is coercive (see (4.13)), it satisfies the C condition. This fact together with (4.16)
allows us to use Theorem 2.1 (the mountain pass theorem). So, we can find y0 ∈ W 1,p

per(0, b)
such that

σ(ṽ0) � σ(ũ0) < η̃� � σ(y0) = inf
γ∈Γ

max
−1�t�1

σ(γ(t)) (see (4.16)), (4.17)

where Γ = {γ ∈ C([−1, 1], W 1,p
per(0, b)) : γ(−1) = ṽ0, γ(1) = ũ0} and

σ′(y0) = 0. (4.18)

From (4.17) we have y0 /∈ {ṽ0, ũ0}, while from (4.18) and (4.14) we have y0 ∈ [ṽ0, ũ0]. So,
if we show that y0 	= 0, then the extremality of ũ0, ṽ0 implies that y0 is nodal. According
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to (4.17), in order to establish the non-triviality of y0 it suffices to produce a path γ∗ ∈ Γ

such that σ|γ∗ < 0 = σ(0).
To this end, let M = W 1,p

per(0, b)∩∂BLp

1 furnished with the W 1,p
per(0, b)-topology and let

Mc = M ∩ Ĉ1(T ) furnished with the Ĉ1(T )-topology. Then, Mc is dense in M for the
W 1,p

per(0, b)-topology. We consider the two sets of paths

Γ̂ = {γ̂ ∈ C([−1, 1], M) : γ̂(−1) = −û0, γ̂(1) = û0},

Γ̂c = {γ̂ ∈ C([−1, 1], Mc) : γ̂(−1) = −û0, γ̂(1) = û0}.

Evidently, Γ̂c is dense in Γ̂ for the C([−1, 1], M)-topology. Hypothesis (H′) (iii) implies
that we can find µ∗ ∈ (λ̂1, λ

∗) and δ0 ∈ (0, min{minT |ṽ0|, minT ũ0}) such that

µ∗

p
|x|p � F (t, x) for a.a. t ∈ T, all |x| � δ0. (4.19)

The density of Γ̂c in Γ̂ for the C([−1, 1], M)-topology and Proposition 2.2 imply that we
can find γ̂ ∈ Γ̂c such that∥∥∥∥ d

dt
γ̂(s)

∥∥∥∥
p

p

� λ̂1 + ε for all s ∈ [−1, 1], with ε ∈ (0, µ∗ − λ̂1). (4.20)

Note that γ̂([−1, 1]) ⊆ Ĉ1(T ) is compact and recall that ũ0 ∈ int Ĉ+, ṽ0 ∈ − int Ĉ+. So,
we can find ϑ0 ∈ (0, 1) small such that

|ϑ0u(t)| � δ0 for all t ∈ T and ϑ0u ∈ [ṽ0, ũ0] for all u ∈ γ̂([−1, 1]). (4.21)

For any u ∈ γ̂([−1, 1]), we have that

σ(ϑ0u) =
ϑp

0

p
‖u′‖p

p −
∫ b

0
F (t, ϑ0u(t)) dt

(see (4.13), (4.21) and recall the choice of δ0 > 0)

� ϑp
0

p
[λ̂1 + ε − µ∗] (see (4.20), (4.19) and recall that ‖u‖p = 1)

< 0 (see (4.20)).

Let γ̂0 = ϑ0γ̂. Then,
σ|γ̂0 < 0 (4.22)

and the continuous path γ̂0 connects −ϑ0û0 and ϑ0û0.
Let α = σ+(u0) = inf σ+ < 0 = σ+(0). Note that Kα

σ+
= {u ∈ Kσ+ : ϕ(u) = α} =

{ũ0} (see (4.15)). Apply the second deformation theorem (see, for example, [21, p. 349]
and [23, p. 3]) to produce a deformation h : [0, 1]× (σ0

+ \{0}) → σ0
+ such that h(0, ·) = id

and

h(1, σ0
+ \ {0}) = {ũ0}, (4.23)

σ+(h(s, u)) � σ+(h(τ, u)) for all s, τ ∈ [0, 1], τ � s, u ∈ σ0
+ \ {0}. (4.24)
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We set γ̂+(s) = h(s, ϑû0), s ∈ [0, 1]. Then,

γ̂+(0) = h(0, ϑû0) = ϑû0 and γ̂+(1) = h(1, ϑû0) = ũ0 (see (4.23))

=⇒ γ̂+ is a continuous path connecting ϑû0 and ũ0.

From (4.22) and (4.24), it follows that

σ+|γ̂+ < 0. (4.25)

For u ∈ γ̂+([0, 1]), we have that

σ(u) =
1
p
[‖u′‖p

p + ξ∗
�‖u‖p

p] −
∫ b

0
(H(t, u+) + H(t, −u−)) dt

= σ+(u+) −
∫ b

0
H(t, −u−) dt. (4.26)

From (4.13) and Hypothesis (H′) (v), x = 0 is a global minimizer of x → f(t, x) +
(ξ∗

�/p)|x|p on [−�, �] for a.a. t ∈ T . So,∫ b

0
H(t, −u−) dt � 0.

Hence,

σ(u) � σ+(u+) (see (4.26))

=⇒ σ|γ̂+ < 0 (see (4.25) and recall that σ+(u) = σ+(u+)). (4.27)

Similarly, we produce a continuous path γ̂− that connects −ϑû0 and ṽ0 such that

σ|γ̂− < 0. (4.28)

We concatenate γ̂−, γ̂0, γ̂+ and produce γ∗ ∈ Γ such that

σ|γ̂∗ < 0 (see (4.22), (4.27), (4.28))

=⇒ y0 	= 0 and so y0 ∈ C1(T ) is a nodal solution of (1.1).

�

So, summarizing, we have the following multiplicity theorem for (1.1).

Theorem 4.8. If Hypotheses (H′) hold, then (1.1) has a smallest non-trivial solution
u0 ∈ int Ĉ+, a biggest non-trivial solution v0 ∈ − int Ĉ+ such that

c− < v0(t) < 0 < u0(t) < c+ for all t ∈ T,

at least two more solutions of constant sign û ∈ int Ĉ+, v̂ ∈ − int Ĉ+ such that

u0 � û, u0 	= û and v̂ � v0, v̂ 	= v0,

and at least one nodal solution y0 ∈ C1(T ).
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