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Abstract
We study infinite groups interpretable in power bounded T-convex, V-minimal or p-adically closed fields. We show
that if G is an interpretable definably semisimple group (i.e., has no definable infinite normal abelian subgroups)
then, up to a finite index subgroup, it is definably isogenous to a group 𝐺1 ×𝐺2, where 𝐺1 is a K-linear group and
𝐺2 is a k-linear group. The analysis is carried out by studying the interaction of G with four distinguished sorts:
the valued field K, the residue field k, the value group Γ, and the closed 0-balls 𝐾/O.
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1. Introduction

We continue the study of groups interpretable in three classes of tame valued fields: p-adically closed
fields (and their analytic expansions), power bounded T-convex expansions of o-minimal real closed
fields, and V-minimal expansions of algebraically closed valued fields of equi-characteristic 0.

The tameness conditions in each of these classes have significant geometric implications on definable
sets. For example, they imply a well behaved notion of dimension, generic differentiability of definable
functions 𝑓 : 𝐾𝑛 → 𝐾 with corresponding versions of Taylor’s approximation theorem, and more (see,
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for example, [6]). For definable groups, expanding on Pillay’s work in the o-minimal context [25] (and
see also [26]), this gives rise to a rudimentary Lie theory ([1]).

A group G is interpretable in a structureK if its universe is the quotient of a definable set by a definable
equivalence relation and multiplication is part of the induced structure. The powerful geometric tools
described above are not directly available for the study of interpretable groups. Our general program
aims, therefore, to exploit those tools (as well as tameness of the value group Γ, and the residue field k)
to give structure theorems for interpretable groups using groups that are better understood by virtue of
being definable in a small collection of well studied sorts.

In our previous works, [13] and [12], we showed that any group G interpretable inK has ‘infinitesimal’
type-definable subgroups definably isomorphic to groups that are (type)-definable in one of the four
distinguished sorts: the valued field sort K, the value group, the residue field (when infinite) and the sort
of closed 0-balls𝐾/O. Our strategy here is to understand interpretable groups using these type-definable
groups and their construction.

In [12], we used this analysis to describe all interpretable fields in those families of structures. Here,
we use it to study definably semisimple groups – namely, groups which contain no infinite definable
normal abelian subgroups. Our main theorem (Theorem 10.3 below) is:

Theorem 1. Let K be either a power bounded T-convex field, a V-minimal field or a p-adically closed
field. Let G be an interpretable definably semisimple group in K. Then there exists a finite normal
subgroup 𝑁 � 𝐺 and two normal subgroups 𝐻1, 𝐻2 � 𝐺/𝑁 , such that

(1) 𝐻1 ∩ 𝐻2 = {𝑒}, 𝐻1 and 𝐻2 centralize each other and 𝐻1 · 𝐻2 has finite index in 𝐺/𝑁 .
(2) 𝐻1 is definably isomorphic to a subgroup of GL𝑛 (k).
(3) 𝐻2 is definably semisimple and definably isomorphic to a subgroup of GL𝑛 (𝐾).

It may be worth pointing out, with regard to the formulation of the above theorem, that in our setting,
definable semisimplicity is preserved under finite quotients (Corollary 2.22). We make use of this several
times in the proof of the theorem.

We have been informed by J. Gismatullin, I. Halupczok and D. Macpherson that in a recent un-
published work [10], they characterize simple groups definable in certain Henselian valued fields of
characteristic 0 (covering the classes of fields discussed in the present paper). Their work seems to
combine with the present one to characterize definably simple groups interpretable in our settings.

Our proof goes through a case-by-case reduction to one of the four distinguished sorts. This is based
on [13], where we showed that after modding out by a finite subgroup, G is locally strongly internal to
one of the distinguished sorts D; namely, there exists an infinite definable set 𝑋 ⊆ 𝐺 and a definable
injection 𝑓 : 𝑋 → 𝐷𝑘 , for some k.

The main obstacle is to eliminate the cases when 𝐷 = Γ, 𝐾/O. In Proposition 6.1, we show that if G
is locally strongly internal to Γ, then it contains a definable normal finite index subgroup whose center
is infinite, which prohibits G from being definably semisimple. A more intricate result, Proposition 7.1,
allows us to conclude that a definably semisimple group G cannot be locally strongly internal to 𝐾/O.

When G is locally strongly internal to K, we use local differentiability of definable functions with
respect to K, and basic Lie theory over K, to associate to G an adjoint representation over K. When
𝐷 = k, we either use similar methods, in the T-convex case, or use the theory of groups of finite Morley
rank, in the V-minimal case, to complete the proof.

Though the statement of Theorem 1 and some of the auxiliary results often hold in all settings
regardless of whether K is p-adically closed, power bounded T-convex or V-minimal, some of the
proofs depend on the specific context. For example, o-minimality of the value group plays a crucial in
our analysis of Γ-groups in the V-minimal and power bounded T-convex setting, and a rather different
analysis – albeit with a similar conclusion – is needed for the p-adic case.

Remark 1.1. We note that a priori the notion of definable semisimplicity (more precisely, the existence
of an infinite definable normal abelian subgroup) need not be elementary. Indeed, while the valued
field sort in our settings is a geometric structure, so in particular has uniform finiteness (sometimes
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called ‘elimination of ∃∞’) for definable families of subsets of 𝐾𝑛, the same might not be true
in K𝑒𝑞 .

Johnson, [17], shows, in the V-minimal case, that K𝑒𝑞 does eliminate ∃∞, and using his methods,
we show the same for power bounded T-convex structures (see Section A.5). However, in the p-adically
closed case, this fails in K𝑒𝑞 , as neither Γ nor 𝐾/O have uniform finiteness. Nevertheless, one of the
consequences of the present work is that definable semisimplicity is indeed an elementary property in
all cases.

Remark 1.2. In the power bounded T-convex case, our work makes use of results from James Tyne’s
PhD thesis, [32], which as far as we know, have not been published elsewhere. These results, together
with the work of van den Dries, [33], imply that every definable subset of K is a boolean combination
of balls and intervals (first proven by Holly, [15], for real closed valued fields). In order to make the
results available in print, we include in the appendix direct proofs.

Previous work We note recent work on interpretable groups in p-adically closed fields, by Johnson,
[18], also together with Yao, [19], [20], and with Guerrero, [2]. Further work is needed in order to
understand the relation between our methods and the model theoretic tools studied there, such as
definable compactness, finitely satisfiable generics (fsg), definable f -generics (dfg), etc.

2. Preliminaries and notation

We set up some notation and terminology and review some of the basic facts concerning the main
objects of interest in the present paper. Throughout, structures are denoted by calligraphic capital letters,
M, N , K etc., and their respective universes by the corresponding Latin letters, 𝑀, 𝑁 and K.

Tuples from a structure M are always assumed to be finite and are denoted by small Roman
characters 𝑎, 𝑏, 𝑐, . . . . We apply the standard model theoretic abuse of notation writing 𝑎 ∈ 𝑀 for
𝑎 ∈ 𝑀 |𝑎 | . Variables will be denoted 𝑥, 𝑦, 𝑧, . . . with the same conventions as above. We do not
distinguish notationally between tuples and variables belonging to different sort, unless some ambiguity
can arise. Capital Roman letters 𝐴, 𝐵, 𝐶, . . . usually denote small subsets of parameters from M. As is
standard in model theory, we write 𝐴𝑏 as a shorthand for 𝐴 ∪ {𝑏}. In the context of definable groups,
we will, whenever confusion can arise, distinguish between – for example, 𝐴𝑔ℎ := 𝐴 ∪ {𝑔, ℎ} and
𝐴 𝑔 ·ℎ := 𝐴 ∪ {𝑔 ·ℎ}.

By a partial type we mean a consistent collection of formulas. Two partial types 𝜌1, 𝜌2 are equal,
denoted 𝜌1 = 𝜌2, if they are logically equivalent (i.e., if they have the same realizations in some
sufficiently saturated elementary extension).

All the definable sets we shall consider here have finite dp-rank, whose properties (such as sub-
additivity, invariance under finite-to-finite correspondences, invariance under automorphisms etc.) we
use freely. See the preliminaries sections of [12],[13] for a more detailed discussion.

2.1. Valued fields

Throughout, K denotes an expansion of a valued field of characteristic 0 in a language L expanding the
language of valued rings. We assume K to be (|L| + 2ℵ0 )+-saturated.

Unless specifically written otherwise, we will always work in Keq. Henceforth, by ‘definable’ we
mean ‘definable in Keq using parameters’, unless specifically mentioned otherwise. In particular,
we shall not use ‘interpretable’ anymore. A more detailed review of standard definitions and notation
can be found in [13, §2].

For any valued field (𝐾, 𝑣), we let O denote its valuation ring, m its maximal ideal and k := O/m
the residue field. The value group is denoted Γ. In case of possible ambiguity, we may, for the sake of
clarity, add a subscript (e.g., O𝐾 ) to the above notation.

A closed ball in K is a set of the form 𝐵≥𝛾 (𝑎) := {𝑥 ∈ 𝐾 : 𝑣(𝑥 − 𝑎) ≥ 𝛾}, and similarly, 𝐵>𝛾 (𝑎)
denotes the open ball of (valuative) radius 𝛾 around a. We will use the fact that v descends naturally
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to 𝐾/O \ {0} (by 𝑣(𝑎 + O) := 𝑣(𝑎) for any 𝑎 ∉ O), and use the same notation 𝐵>𝛾 (𝑥) and 𝐵≥𝛾 (𝑥)
for 𝑥 ∈ 𝐾/O in the obvious way. We will, however, reserve the term ‘ball’ in 𝐾/O, when K is p-
adically closed, only to such sets where 𝛾 < Z. For 𝑎 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐾 (or in (𝐾/O)𝑛), we set
𝑣(𝑎) = min𝑖{𝑣(𝑎𝑖)}. A ball in 𝐾𝑛 (or in (𝐾/O)𝑛) is an n-fold product of K-balls (or (𝐾/O)-balls) of
equal radii.

When K is p-adically closed, it is elementarily equivalent to some finite extension F of Q𝑝 . By
saturation, we may assume that (𝐾, 𝑣) is an elementary extension of (F, 𝑣). Since its value group ΓF is
isomorphic to Z, as ordered abelian groups, we identify ΓF with Z and view it as a prime (and minimal)
model for Γ. We denote Z𝑃𝑟𝑒𝑠 the structure (Z, +, <).

2.2. The setting

Unless otherwise stated, K is a saturated expansion of a valued field of one of three types (see [13] for
definitions and more details):

◦ A V-minimal expansion of an algebraically closed valued field of residue characteristic 0.
◦ A T-convex expansion of a real closed valued field, for an o-minimal power bounded theory T.
◦ A p-adically closed field.

Remark 2.1. Our proof for the p-adically closed case works, as written, in the context of P-minimal
1-h-minimal fields with definable Skolem functions in the valued field sort. These include models of
the theory of Q𝑎𝑛𝑝 , the expansion of Q𝑝 (or a finite extension thereof) by all convergent power series
𝑓 : O𝑛 → Q𝑝 (any n). For the sake of clarity of exposition, we stick to the p-adically closed case.

There are important similarities between the three settings. For example, in all cases, the structure K
is dp-minimal – namely, dp-rk(K) = 1 – so definable sets in K𝑒𝑞 have finite dp-rank. Also, in all cases,
the valued field sort is a geometric structure, carrying, moreover, the structure of an SW-uniformity.
The latter introduced (without the name) by Simon and Walsberg, [31]:

Definition 2.2. A dp-minimal expansion of a topological group G is an SW-uniformity if it supports
a definable group topology, with no isolated points and such that every infinite definable subset has
nonempty interior.

In [31], the underlying setting is that of a definable uniformity inducing the topology. The existence
of such a uniformity is automatic in the context of topological groups with a definable basis for the
topology.

There are, however, also obvious differences between the three settings. For example, the residue
field is stable in the V-minimal case, o-minimal in the T-convex case and finite in the p-adic case. Thus,
while the main theorems can be stated uniformly in all settings, some of the proofs will require us to
specialize to the particular cases.

2.3. The distinguished sorts

As in our previous work, the analysis of definable quotients is carried out via a reduction to four
distinguished sorts, 𝐾, Γ, k and 𝐾/O. They are all dp-minimal, except the finite k in the p-adic case.
Note that in all cases, the sorts 𝐾, Γ and 𝐾/O are partially ordered and therefore unstable. However, the
residue field sort is unstable only in the T-convex case (in the V-minimal case it is a pure algebraically
closed field, and in the p-adic case it is finite). Thus, when proofs mention the ‘unstable sorts’, they refer
to the distinguished sorts in all three cases except for k in the V-minimal and p-adically closed settings.

As noted above, in all settings, the sort K is an SW-uniformity, as is Γ in the V-minimal and T-
convex cases (it is, in fact, an ordered vector spaces so o-minimal) and 𝐾/O in the T-convex setting (it
is weakly o-minimal). However, in all cases, 𝐾/O is neither a geometric structure (acl(·) in 𝐾/O does
not satisfy the Steinitz Exchange Principle) nor is it stably embedded, leading to certain complications
in some proofs.
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Remark 2.3. In [13, §3], we study the structure of 𝐾/O in p-adically closed fields. In this context, it
was helpful to work in a saturated model, expanding the language by constants for all elements of (a
copy of) F.

Although the saturation assumption on K plays an important role in many of our proofs here, the
main theorems of the present paper do not assume saturation. Thus, a copy of F cannot be expected to
exist in all our models (let alone be named). Whenever needed, as part of the proof, we bridge this gap
in the assumptions.

2.4. Some specialized terminology

We remind some terminology from [13] that is used throughout the paper:
Assume that S is definable in K and D is one of the distinguished sorts. We say that S is locally

almost strongly internal to D if in a sufficiently saturated elementary extension there is a definable
infinite set 𝑋 ⊆ 𝑆 and a definable m-to-one map 𝑓 : 𝑋 → 𝐷𝑛, for some 𝑚, 𝑛 ∈ N. The set X is then
called almost strongly internal to D. If we can find a definable injection 𝑓 : 𝑋 → 𝐷𝑛, then S is locally
strongly internal to D and X is strongly internal to D. We add ‘over A’ to all the notions above if 𝑆, 𝑋
and the map f are defined over a parameter set A.

The starting point of our analysis is the following ([13, Lemma 7.3, Lemma 7.6, Lemma 7.10]):
Fact 2.4. Every definable infinite set S in K is locally almost strongly internal to 𝐾, k, Γ or 𝐾/O.

A D-critical subset of S is a definable 𝑋 ⊆ 𝑆 of maximal dp-rank that is strongly internal to D. The
D-rank1 of S is the dp-rank of any D-critical 𝑋 ⊆ 𝑆. The almost D-rank of S is the maximal dp-rank of
a definable set 𝑋 ⊆ 𝑆 almost strongly internal to D. A set 𝑋 ⊆ 𝑆 is almost D-critical if dp-rk(𝑋) is the
almost D-rank of S, and the size of the fibers of some function witnessing almost strong internality of
X is minimal possible, among all sets of the same dp-rank.

The set S is D-pure if it is locally almost strongly internal to D but not to any other distinguished sort.
Definition 2.5. Let X be an A-definable set in K, 𝑎 ∈ 𝑋 and 𝐵 ⊇ 𝐴 a set of parameters.
(1) The point a is B-generic in X (or, generic in X over B) if dp-rk(𝑎/𝐵) = dp-rk(𝑋).
(2) For an A-generic 𝑎 ∈ 𝑋 , a set 𝑈 ⊆ 𝑋 is a B-generic vicinity of a in X if 𝑎 ∈ 𝑈, 𝑈 is B-definable,

and dp-rk(𝑎/𝐵) = dp-rk(𝑋) (in particular, dp-rk(𝑈) = dp-rk(𝑋)).
In order to overcome the failure of additivity of dp-rank, we introduced in [13] the notion of a D-

group. In the present paper, this notion can be used as a black box allowing us to seamlessly refer
to results from [13]. However, for the sake of completeness, we give the definition: For D one of the
unstable distinguished sorts, an A-definable group G is a D-group if it is locally strongly internal to D
and for every 𝑋1, 𝑋2 ⊆ 𝐺 strongly internal to D, with 𝑋2𝐷-critical in G, both defined over some 𝐵 ⊇ 𝐴,
and for every (𝑔, ℎ)𝐵-generic in 𝑋1 × 𝑋2, we have

dp-rk(𝑔/𝐵, 𝑔 · ℎ) = dp-rk(𝑔/𝐵).

We stress that, by definition, the notion of a D-group refers only to unstable D – namely, all infinite
sorts in our setting except k in the V-minimal case. The following fact shows that a group G almost
strongly internal to an unstable sort D is close to being a D-group.
Fact 2.6 [13, Fact 4.25, Proposition 4.35]. Let G be an infinite A-definable group in K locally almost
strongly internal to an unstable distinguished sort D. Then there is an A-definable finite normal abelian
subgroup 𝐻 � 𝐺 such that 𝐺/𝐻 is a D-group. Moreover,
(1) The almost D-rank and the D-rank of 𝐺/𝐻 are equal (and equal to the almost D-rank of G).
(2) H is invariant under any definable automorphism of G and is contained in any definable finite index

subgroup of G.

1In [13] this was called the D-critical rank of S.
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Recall that every definable group in K is almost locally strongly internal to one of the distinguished
sorts; hence, the above fact applies whenever that sort is unstable.

2.5. Vicinities and infinitesimal subgroups

In this section, we recall the notion of a vicinic set and that of an infinitesimal group from [13]. Before
proceeding, we clarify the relation between several acl-related notions of dimension.

Definition 2.7. For D a definable set, a parameter set A, and 𝑎 ∈ 𝐷𝑛, denote:

(1) dimacl(𝑎/𝐴) the minimal length of a sub-tuple 𝑎′ ⊆ 𝑎 such that acl(𝑎′𝐴) = acl(𝑎𝐴) and
(2) dimind(𝑎/𝐴) the maximal size of a sub-tuple 𝑎′ ⊆ 𝑎 which is acl-independent over A (namely, no

𝑎𝑖 ∈ 𝑎′ is in acl(𝐴 ∪ 𝑎′ \ {𝑎𝑖})).

If acl satisfies Exchange on D, it is well known and easy to see that dimacl = dimind. In general, we
only have dimind(𝑎/𝐴) ≥ dimacl(𝑎/𝐴). In our setting, however, more is true:

Lemma 2.8. For D a dp-minimal definable set, the following are equivalent:

(1) For every tuple 𝑎 ∈ 𝐷𝑛 and set 𝐴, dimacl(𝑎/𝐴) = dp-rk(𝑎/𝐴).
(2) For every tuple 𝑎 ∈ 𝐷𝑛 and set 𝐴, dimind(𝑎/𝐴) = dp-rk(𝑎/𝐴).

Proof. By dp-minimality and sub-additivity of dp-rank dp-rk(𝑎/𝐴) ≤ dimacl(𝑎/𝐴), proving (2) ⇒ (1).
For the other direction, assume (1).

Let 𝑎′ ⊆ 𝑎 be acl-independent over A of maximal length d – namely, 𝑑 = dimind(𝑎/𝐴). Since
𝑎′ is acl-independent over 𝐴, dimacl(𝑎

′/𝐴) = 𝑑, which by assumption equals dp-rk(𝑎′/𝐴). Thus,
dp-rk(𝑎/𝐴) ≥ dp-rk(𝑎′/𝐴) = 𝑑 = dimind(𝑎/𝐴), and equality of dp-rk and dimind follows. �

Remark 2.9. In [13], we used a slightly different definition of dimacl, that we assumed throughout, to
be equal to dp-rk. It follows immediately from the lemma that under this assumption, this notion of
dimension is also equal to dimacl as defined here (and thus also to dimind).

We recall the following from [13]:

Definition 2.10. A dp-minimal set D is vicinic if it satisfies the following axioms:

(A1) dimacl = dp-rk; that is, for any tuple 𝑎 ∈ 𝐷𝑛 and set 𝐴, dimacl(𝑎/𝐴) = dp-rk(𝑎/𝐴).
(A2) For any sets of parameters A and B, for every A-generic elements 𝑏 ∈ 𝐷𝑛, 𝑐 ∈ 𝐷𝑚 and any

B-generic vicinity X of b in 𝐷𝑛, there exists 𝐶 ⊇ 𝐴 and a C-generic vicinity of b in X such that
dp-rk(𝑏, 𝑐/𝐴) = dp-rk(𝑏, 𝑐/𝐶).

By [13, Fact 4.7], all the unstable distinguished sorts in our settings are vicinic. Throughout this
subsection, unless specifically stated otherwise, we let D be one of them. Given a definable D-group G in
K, the main technical result of [13] is the construction of the infinitesimal type-definable subgroup 𝜈𝐷 .
To achieve this, we introduce the notion of D-sets (in G). For completeness, we remind the somewhat
technical definition. Note, however, that we do not give the original definition; we switch the original
formulation of ‘minimal fibers’ with an equivalent one (see [13, Remark 4.12]). The fine details of the
definition are unimportant for us here:

Definition 2.11 [13, Definition 4.16]. A definable set 𝑋 ⊆ 𝐺 is a D-set over A in G if it is D-critical
in G, witnessed by some A-definable function 𝑓 : 𝑋 → 𝐷𝑚 and there exists a coordinate projection
𝜋 : 𝑓 (𝑋) → 𝐷𝑛, with 𝑛 = dp-rk(𝑋), such that for every 𝐵 ⊇ 𝐴 and B-generic 𝑎 ∈ 𝑓 (𝑋), all elements
of 𝜋−1 (𝜋( 𝑓 (𝑎))) have the same type over 𝐵𝜋( 𝑓 (𝑎)).

Remark 2.12.

(1) If G is a definable group locally strongly internal to D, then it always contains a D-set. See
[13, Remark 4.18].
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(2) Note the following special case: if X is D-critical, 𝑓 : 𝑋 → 𝐷𝑛 a definable injection witnessing
it, and 𝑛 = dp-rk(𝑋), then X is a D-set. As we shall see, such an X can always be found when
G is locally strongly internal to D. If D is an SW-uniformity, this follows from [31, Proposition
4.6], and in the p-adically closed case, this follows from Proposition 3.10 when 𝐷 = 𝐾/O and cell
decomposition when 𝐷 = Γ. See Lemma 4.3 for more information.

Definition 2.13. Let G be a D-group, 𝑍 ⊆ 𝐺 a D-set over A and 𝑑 ∈ 𝑍 an A-generic point. The
infinitesimal vicinity of d in Z, denoted 𝜈𝑍 (𝑑), is the partial type consisting of all B-generic vicinities of
d in Z, as B varies over all small parameter subsets of K.

By [13, Lemma 4.20], the type 𝜈𝑍 (𝑑) is a filter-base – namely, the intersection of any two generic
vicinities of d contains another. It follows that dp-rk(𝜈𝑍 (𝑑)) equals the D-rank of G.

We think of 𝜈𝑍 (𝑑) (and the type definable group 𝜈𝐷 defined below) both as a collection of formulas
over K and a set of realization of the partial type in some monster model extending K. We say that two
such types are equal if they are logically equivalent. For a definable set X, we denote 𝜈𝑍 (𝑑) � 𝑋 if there
is 𝑌 ∈ 𝜈𝑍 (𝑑) such that 𝑌 ⊆ 𝑋 . By writing 𝜈𝑍 (𝑑) � 𝜈𝑊 (𝑑 ′), we mean that for all 𝑋 ∈ 𝜈𝑊 (𝑑 ′), we have
𝜈𝑍 (𝑑) � 𝑋 .

Fact 2.14 [13, Proposition 5.8]. Let D be an unstable distinguished sort and let G be a D-group.

(1) Assume that 𝑋 ⊆ 𝐺 is a D-set over A. Then for every A-generic 𝑎, 𝑏 ∈ 𝑋 , the set 𝜈𝑋 (𝑎)𝑎−1 is a
(type-definable) subgroup of G and 𝜈𝑋 (𝑎)𝑎

−1 = 𝜈𝑋 (𝑏)𝑏
−1 = 𝑎−1𝜈𝑋 (𝑎). We denote this group 𝜈𝑋 .

(2) If 𝑋,𝑌 ⊆ 𝐺 are D-sets over A, then 𝜈𝑋 = 𝜈𝑌 , and we can call it 𝜈𝐷 (𝐺), the infinitesimal type-
definable subgroup of G with respect to D.

(3) For every 𝑔 ∈ 𝐺 (K), we have 𝑔𝜈𝐷 (𝐺)𝑔−1 = 𝜈𝐷 (𝐺). In fact, 𝜈𝐷 is invariant under any M-definable
automorphism of G.

Whenever the group G is understood from the context and there is no ambiguity, we denote 𝜈𝐷 (𝐺)

by 𝜈𝐷 .

Remark 2.15. Note that if 𝑋 ⊆ 𝐺 is a D-set which happens to be a subgroup, then 𝜈𝐷 � 𝑋 .

Lemma 2.16. Let 𝐻 ≤ 𝐺 be two definable D-groups, locally strongly internal to an unstable distin-
guished sort D. Then

(1) 𝜈𝐷 (𝐻) � 𝜈𝐷 (𝐺).
(2) If H and G have the same D-rank, then 𝜈𝐷 (𝐻) = 𝜈𝐷 (𝐺). In particular, this holds if H has finite

index in G.

Proof. Let 𝐻 ≤ 𝐺 be any subgroup, as in the statement.
(1) Let 𝑋𝐺 ⊆ 𝐺 be a D-set in G and 𝑋𝐻 ⊆ 𝐻 a D-set in H, all definable over a parameter set A. Let

(𝑔, ℎ) ∈ 𝑋𝐺 × 𝑋𝐻 be generic over A, so 𝜈𝐷 (𝐺) = 𝑔−1𝜈𝑋𝐺 (𝑔) and 𝜈𝐷 (𝐻) = ℎ−1𝜈𝑋𝐻 (ℎ).
Let V be a generic vicinity of g and U a generic vicinity of h. By [13, Lemma 4.26], 𝑈 ∩ ℎ𝑔−1𝑉 is a

generic vicinity of h, and hence,

𝜈𝐷 (𝐻) � ℎ−1(𝑈 ∩ ℎ𝑔−1𝑉) = ℎ−1𝑈 ∩ 𝑔−1𝑉 ⊆ 𝑔−1𝑉.

(2) Assume that H and G have the same D-rank; hence, any D-set in H is automatically a D-set in G.
It now follows by definition that 𝜈𝐷 (𝐻) = 𝜈𝐷 (𝐺).

If H has finite index in G then it is easy to see that they have the same D-rank. �

The next lemma supports the intuition that the type-definable coset 𝑔 · 𝜈𝐷 (𝐺) is an infinitesimal
neighborhood of g, for g generic in a set locally strongly internal to D:

Lemma 2.17. Let G be a D-group, 𝑋 ⊆ 𝐺 an A-definable set strongly internal to D over A, and 𝑔 ∈ 𝑋
generic over A. Then dp-rk(𝑋 ∩ 𝑔 · 𝜈𝐷) = dp-rk(𝑋).
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Proof. Let 𝑍 ′ be any D-set, definable over some parameter set 𝐵′. Find an element 𝑔′ ≡𝐴 𝑔 such that
dp-rk(𝑔′/𝐴𝐵′) = dp-rk(𝑔/𝐴). Applying an automorphism over A, we can move 𝑔′ to g and 𝐵′ to some
B. The image, Z, of 𝑍 ′ under this automorphism, is definable over B and dp-rk(𝑔/𝐴𝐵) = dp-rk(𝑔/𝐴).
Renaming, we assume from now on, that 𝐴 = 𝐴𝐵.

Fix an A-generic ℎ ∈ 𝑍 with dp-rk(𝑔, ℎ/𝐴) = dp-rk(𝑋) + dp-rk(𝑍). Thus, as 𝜈𝐷 = ℎ−1𝜈𝑍 (ℎ), we
have to show that dp-rk(𝑋 ∩ 𝑔ℎ−1𝜈𝑍 (ℎ)) = dp-rk(𝑋).

Let 𝑌 ⊆ 𝑍 be some B-generic vicinity of h (i.e., 𝑌 ∈ 𝜈𝑍 (ℎ)), for some B; so it will suffice to prove
that dp-rk(𝑋 ∩ 𝑔ℎ−1𝑌 ) = dp-rk(𝑋).

By [13, Lemma 4.13], there exists 𝐶 ⊇ 𝐴 and a C-generic vicinity 𝑌 ′ ⊆ 𝑌 of h such that
dp-rk(𝑔, ℎ/𝐴) = dp-rk(𝑔, ℎ/𝐶). So (𝑔, ℎ) is C-generic in 𝑋 × 𝑌 ′. It will be sufficient to prove that
dp-rk(𝑋 ∩ 𝑔ℎ−1𝑌 ′) = dp-rk(𝑋); this is exactly [13, Lemma 4.26]. �

Lemma 2.18. Let G be a definable group in K, 𝐻 a finite normal subgroup and 𝑓 : 𝐺 → 𝐺/𝐻 the
quotient map. Let D be any of the distinguished sorts.
(1) The almost D-ranks of G and 𝐺/𝐻 are equal.

For the following, assume that D is not 𝐾/O in the p-adically closed case.
(2) The D-rank of G is at most the D-rank of 𝐺/𝐻.
(3) If, furthermore, G is D-group (so D is unstable), then so is 𝐺/𝐻, and then 𝑓 (𝜈𝐷 (𝐺)) = 𝜈𝐷 (𝐺/𝐻).
(4) If the D-critical rank and the almost D-critical ranks of G coincide, then the same is true for 𝐺/𝐻.
Proof. For (1) and (2), we first note that for any (almost) D-critical set 𝑋 ⊆ 𝐺, there exists an (almost) D-
critical 𝑌 ⊆ 𝑓 (𝑋) (with respect to 𝐺/𝐻), with dp-rk(𝑌 ) = dp-rk(𝑋). Indeed, if D is an SW-uniformity,
then this is [13, Lemma 2.9], and if 𝐷 = k in the V-minimal case, then it is [13, Lemma 4.3]. This
implies (1) and (2) for D other than 𝐾/O in the p-adically closed case. For (1) in that latter case, use
[13, Lemma 3.9].

We now assume that D is not 𝐾/O in the p-adically closed case.
(3) If G is a D-group, then 𝐺/𝐻 is also locally strongly internal to D by (2). Combined with (the

proof of) [13, Fact 4.25], it follows that 𝐺/𝐻 is also a D-group.
To show that 𝑓 (𝜈𝐷 (𝐺)) = 𝜈𝐷 (𝐺/𝐻), let 𝑋0 ⊆ 𝐺 be a D-set. By the above, we may find a D-critical

subset𝑌0 ⊆ 𝑓 (𝑋0). By [13, Remark 4.18], there exists a D-set𝑌 ⊆ 𝑌0 ⊆ 𝐺/𝐻. Setting 𝑋 = 𝑓 −1(𝑌 ) ⊆ 𝑋0,
and since 𝑋0 is a D-set, so is 𝑋0. We are now in the situation where X and 𝑌 = 𝑓 (𝑋) are both D-sets,
with respect to G and 𝐺/𝐻, respectively. Assume everything is defined over some parameters set A.

Let 𝑎 ∈ 𝑋 be an A-generic in X, so 𝑓 (𝑎) is an A-generic in Y. It suffices to prove that 𝑓 (𝜈𝑋 (𝑎)) =
𝜈𝑋 ( 𝑓 (𝑎)).

For this, first note that if𝑈 ⊆ 𝑋 is a B-generic vicinity of a, for some 𝐵 ⊇ 𝐴, then 𝑓 (𝑈) is a B-generic
vicinity of 𝑓 (𝑎) since 𝑓 (𝑎) ∈ dcl(𝐴𝑎) and dp-rk(𝑈) = dp-rk( 𝑓 (𝑈)) as f is finite-to-one.

To show the other direction, let V be a B-generic vicinity of 𝑓 (𝑎) for some 𝐵 ⊇ 𝐴. Then 𝑓 −1(𝑉) is a
B-generic vicinity of a since 𝑎 ∈ acl(𝐴 𝑓 (𝑎)) and 𝑓 ( 𝑓 −1(𝑉)) = 𝑉 because f is surjective.

(4) Follows directly from (1) and (2), �

2.6. Some basic group theoretic facts in our setting

Before the next corollary, we note the following application of Baldwin-Saxl ([28, Lemma 1.3]).
Fact 2.19. Let G be a group definable in a sufficiently saturated NIP structure and {𝐻𝑖 : 𝑖 ∈ 𝑇} a
definable family of finite index subgroups of G. Then

⋂
𝑖∈𝑇 𝐻𝑖 is a definable subgroup of finite index.

Proof. By Baldwin-Saxl, there is a finite bound on the index of finite intersections of the 𝐻𝑖 . �

Corollary 2.20. Let G be a definable group in a sufficiently saturated NIP structure, {𝜆𝑡 : 𝑡 ∈ 𝑇}
a definable family of group automorphisms of G, and 𝑋 ⊆ 𝐺, all definable over a parameter set A.
Assume that for every 𝑎 ∈ 𝑋, 𝐶𝐺 (𝑎) has finite index in G. Then there exists an A-definable subgroup
𝐺1 ⊆ 𝐶𝐺 (𝑋) of finite index in G that is invariant under 𝜆𝑡 , for all 𝑡 ∈ 𝑇 .
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Proof. By Fact 2.19, 𝐶𝐺 (𝑋) has finite index in G. Applying this fact again to the intersection of the
family {𝜆𝑡 (𝐶𝐺 (𝑋)) : 𝑡 ∈ 𝑇} gives the desired conclusion. �

We need a couple of group theoretic observations on definable groups in our setting. We note for
future reference that Lemma 2.21 and Corollary 2.22 below do not require saturation of K.

Lemma 2.21. Let N be a definable group in K and 𝐻 � 𝑁 a definable normal subgroup, such that 𝑁/𝐻
is abelian. For 𝑘 ∈ N, let 𝑁 𝑘 = {𝑔𝑘 : 𝑔 ∈ 𝑁}. Then

(1) For every 𝑘 ∈ N, 𝑁 𝑘𝐻 is a normal subgroup of N and 𝑁/𝑁 𝑘𝐻 is finite.
(2) If H is finite and central in N, and 𝑘 = |𝐻 |, then the set 𝑁 𝑘 is contained in 𝑍 (𝑁) and 𝑍 (𝑁) has

finite index in N.

Proof. (1) Since 𝑁/𝐻 is abelian, for every 𝑎, 𝑏 ∈ 𝑁, 𝑎𝑏 = 𝑏𝑎ℎ for some ℎ ∈ 𝐻. Because H is normal,
for all 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻, there is ℎ′ ∈ 𝐻 such that ℎ𝑔 = 𝑔ℎ′. It follows that 𝑎2𝑏2 = (𝑎𝑏)2ℎ1, for ℎ1 ∈ 𝐻,
and by induction, 𝑎𝑘𝑏𝑘 = (𝑎𝑏)𝑘ℎ0, for some ℎ0 ∈ 𝐻. Thus, 𝑁 𝑘𝐻 is a subgroup, clearly normal in N.

The order of every 𝑔 ∈ 𝑁/𝑁 𝑘𝐻 is at most k; thus, 𝑁/𝑁 𝑘𝐻 has bounded exponent. The group 𝑁/𝑁 𝑘𝐻
is clearly also definable in K, and by [13, Theorem 7.4, Theorem 7.7 and Theorem 7.11], a definable
group of bounded exponent must be finite. Thus, 𝑁/𝑁 𝑘𝐻 must be finite.

(2) Assume now that 𝑘 = |𝐻 | and H is central. Since 𝐺/𝐻 is abelian, for every 𝑔, 𝑥 ∈ 𝑁 , we have
𝑔−1𝑥𝑔 = 𝑥ℎ for some ℎ ∈ 𝐻, and hence, since H is central, 𝑔−1𝑥𝑘𝑔 = (𝑥ℎ)𝑘 = 𝑥𝑘ℎ𝑘 = 𝑥𝑘 . Thus,
𝑁 𝑘 ⊆ 𝑍 (𝑁). It follows that 𝑁 𝑘𝐻 ⊆ 𝑍 (𝑁), so by (1), 𝑍 (𝑁) has finite index in N. �

The proof of the next corollary is simpler when H is central, but we need the more general statement:

Corollary 2.22. Let G be a definable group in K and H a finite normal subgroup of G, both defined over
a parameter set A. Let {𝜆𝑡 : 𝑡 ∈ 𝑇} be a definable family of group automorphisms of G fixing H setwise.

If for some 𝐵 ⊇ 𝐴 the group 𝐺/𝐻 contains a B-definable normal abelian subgroup of dp-rank k
invariant under all the 𝜆𝑡 , then so does G. In particular, if G is definably semisimple, then so is 𝐺/𝐻.

Proof. For simplicity, let us call a set invariant under all the 𝜆𝑡Λ-invariant. By Lemma 2.20, there exists
a definable Λ-invariant 𝐺1 � 𝐺 of finite index such that 𝐺1 ⊆ 𝐶𝐺 (𝐻). In particular, 𝐺1 ∩ 𝐻 is central
in 𝐺1. We fix such 𝐺1.

Assume that 𝐺/𝐻 has an infinite Λ-invariant definable abelian normal subgroup of the form 𝑁/𝐻
for 𝑁 � 𝐺. It follows that N is Λ-invariant. Let 𝑁1 := 𝑁 ∩ 𝐺1, an infinite normal subgroup of G of
finite index in N and 𝐻1 := 𝐻 ∩ 𝑁1, a central subgroup of 𝑁1. The quotient 𝑁1/𝐻1 is isomorphic to
𝑁1𝐻/𝐻 ⊆ 𝑁/𝐻 and so is abelian. Note that 𝑁1 is also Λ-invariant.

By Lemma 2.21 (2), 𝑍 (𝑁1) has finite index in 𝑁1, and therefore, dp-rk(𝑍 (𝑁1)) = dp-rk(𝑁1) =
dp-rk(𝑁) = dp-rk(𝑁/𝐻). Because 𝑁1 is Λ-invariant and normal in G, so is 𝑍 (𝑁1). Hence, 𝑍 (𝑁1) is
a Λ-invariant definable normal abelian subgroup of G of the same rank as 𝑁1/𝐻. Clearly, if 𝑁/𝐻 is
B-definable for some 𝐵 ⊇ 𝐴, then so are 𝑁1 and 𝑍 (𝑁1). �

3. Definable subgroups of ((𝐾/O)𝑛, +)

Let K be one of our valued fields. The purpose of this section is to describe the definable subgroups of
(𝐾/O)𝑛. WhenK is either power bounded T-convex or V-minimal, those turn out to be definably isomor-
phic to a product of balls in 𝐾/O. In this case, we can also describe all their definable endomorphisms.
When K is p-adically closed, the existence of finite subgroups creates obstructions (see Example 3.2);
nonetheless, we will show that definable subgroups project injectively onto subgroups of full dp-rank.

3.1. K power-bounded T-convex or V-minimal

We assume that K is either power bounded T-convex or V-minimal. Recall that for 𝑎 ∈ 𝐾 \O, 𝑣(𝑎 +O)

is well-defined, allowing us to refer to definable balls in 𝐾/O. Below, we use the term trivial ball to
refer to either K (or 𝐾/O) or {0}.
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We start with the following basic observation.

Lemma 3.1. Every definable subgroup G of (𝐾, +) is a ball, possibly trivial. As a result, every definable
subgroup of 𝐾/O is a (possibly trivial) ball.

Proof. Since 𝜋 : 𝐾 → 𝐾/O is a group homomorphism, and the image of a ball (centered at 0) under
𝜋 is again a ball, it suffices to show that the claim is true for definable subgroups of (𝐾, +). So let G
be a subgroup of (𝐾, +). Since (𝐾, +) is torsion-free, if G is finite, it is trivial. So we may assume G is
infinite. Let B be the union of all sub-balls of G containing 0. If 𝐵 = 𝐾 , then 𝐺 = 𝐾 , and we are done,
so assume 𝐵 ≠ 𝐾 . Because Γ is definably complete, B is a ball itself, possibly {0}. Since every infinite
definable subset of K has an interior, and G is a group 𝐵 ≠ {0}. We will show that 𝐺 = 𝐵.

Assume for contradiction that𝐺 ≠ 𝐵. In our settings, B is a divisible group (indeed, the maps 𝑥 ↦→ 𝑛𝑥
send B onto itself for all nonzero 𝑛 ∈ N), and since (𝐾, +) is torsion-free, it must be that [𝐺 : 𝐵] = ∞.
This means that G contains infinitely many disjoint maximal balls, cosets of B.

Assume that B is a closed ball. By the so-called (Cballs) property introduced in [12], which holds
in our settings [12, Proposition 5.6, Lemma 5.10], only finitely many translates of B intersect G, so G
contains only finitely many cosets of B, contradiction.

Assume then that B is open. After re-scaling G, we may assume that 𝐵 = m. Again, by (Cballs), G
intersects only finitely many closed 0-balls. Consequently, O∩𝐺 is an additive subgroup of K containing
infinitely many cosets of m. The image of O ∩ 𝐺 is, therefore, an infinite definable subgroup of (k, +).
However, under our assumptions, k has no infinite definable proper subgroups, and thus, 𝐺 ∩ O = O
contradicting the maximality of the ball 𝐵 = m. Thus, 𝐺 = 𝐵, with the desired conclusion. �

Example 3.2. The lemma above does not hold in the p-adically closed case. For example, consider
a finite residual extension K of Q𝑝 . Let H be a nontrivial finite proper subgroup of (k𝐾 , +). Then
𝐺 = {𝑔 ∈ 𝐾 : res(𝑔) ∈ 𝐻} is a subgroup of K that is not a ball.

The following computation should be well known.

Fact 3.3. Let 𝐵1, 𝐵2 ⊆ 𝐾 be balls (possibly the whole of K).

(1) Every ball containing 1 but not 0 is a multiplicative subgroup of 𝐾×.
(2) The point-set product 𝐵1 · 𝐵2 is also a ball.
(3) If 0 ∉ 𝐵2, then their point-set quotient 𝐵1 · (𝐵2)

−1 is also a ball.

Proof. We assume both 𝐵1 and 𝐵2 are not equal to K. The proof can be easily adapted to include this
case as well.

(1) Well known.
(2) Let 𝐵1 and 𝐵2 be balls. It will suffice to show that 𝑐𝐵1𝐵2 is a ball for some 𝑐 ≠ 0. So, as we

proceed, we may freely replace 𝐵𝑖 with 𝑐𝐵𝑖 for any such constant c.
Assume, first, that 0 ∈ 𝐵1 but 0 ∉ 𝐵2; thus, 𝐵1𝐵2 =

⋃
{𝐵1𝑏 : 𝑏 ∈ 𝐵2} is a chain of balls centered at

0. After multiplying by a suitable element, we may assume that 𝑣(𝑏) = 0 for all 𝑏 ∈ 𝐵2 and so 𝐵1𝑏 = 𝐵1
for all 𝑏 ∈ 𝐵2, which gives 𝐵1𝐵2 = 𝐵1. If 0 ∈ 𝐵1 ∩ 𝐵2, then after multiplying by suitable elements, we
may assume that 𝐵1, 𝐵2 ∈ {O,m}; in any of these cases, 𝐵1𝐵2 is obviously a ball.

Assume, now, that 0 ≠ 𝐵1 ∪ 𝐵2. By multiplying by appropriate elements, we may assume that
1 ∈ 𝐵1 ∩ 𝐵2, so both are multiplicative subgroups of 𝐾×. Without loss of generality, 𝐵1 ⊆ 𝐵2. Then
𝐵2 ⊆ 𝐵1𝐵2 ⊆ 𝐵2𝐵2 = 𝐵2.

(3) If 0 ∉ 𝐵2, then after possibly multiplying by an appropriate element, we get that 𝐵2 is a
multiplicative subgroup of 𝐾×. Thus, 𝐵−1

2 = 𝐵2 and (2) applies. �

Lemma 3.4. Let 𝐼, 𝐽, 𝐻 ⊆ 𝐾 be definable subgroups, 𝐼 ⊆ 𝐻 ∩ 𝐽, and let 𝑇 : 𝐻/𝐼 → 𝐾/𝐽 be a definable
homomorphism. Then there is 𝑑 ∈ 𝐾 such that, 𝑑 · 𝐼 ⊆ 𝐽, and for every 𝑥 ∈ 𝐻, 𝑇 (𝑥 + 𝐼) = 𝑑 · (𝑥 + 𝐼) + 𝐽.

Proof. Since 𝐼, 𝐽, 𝐻 are definable subgroups of K, they are balls and so are their cosets, and because T
is a group homomorphism, the image under T of a coset of I is also a coset of a subgroup, so viewed as
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a subset of K, it is a ball. Given 𝑥 ∈ 𝐻 \ 𝐼, let

𝑆𝑥 = {𝑤/𝑧 ∈ 𝐾 : 𝑧 ∈ 𝑥 + 𝐼 ∧ 𝑤 ∈ 𝑇 (𝑥 + 𝐼)}.

As a quotient of two balls, 𝑆𝑥 is a ball, too (note that 0 ∉ 𝑥 + 𝐼 so Fact 3.3 applies). For 𝑑 ∈ 𝐾 , let

𝐻𝑑 = 𝐼 ∪ {𝑥 ∈ 𝐻 \ 𝐼 : 𝑑 ∈ 𝑆𝑥}.

We claim that each 𝐻𝑑 is a subgroup of K (and when 𝐼 = 0, possibly a singleton). To see this, let
𝐻 ′
𝑑 = {𝑥 ∈ 𝐻 \ 𝐼 : 𝑑 ∈ 𝑆𝑥}; by definition, 𝐻 ′

𝑑 ∩ 𝐼 = ∅. It follows directly from the definition of 𝐻 ′
𝑑 that

if 𝑥1 ∈ 𝐼 and 𝑥2 ∈ 𝐻 ′
𝑑 , then 𝑥1 ± 𝑥2 ∈ 𝐻 ′

𝑑 . So it remains to show that if 𝑥1, 𝑥2 ∈ 𝐻 ′
𝑑 , then 𝑥1 − 𝑥2 ∈ 𝐻𝑑 .

By assumption, 𝑑 ∈ 𝑆𝑥1 ∩ 𝑆𝑥2 , so we can write, 𝑑 = 𝑤1/𝑧1 = 𝑤2/𝑧2 with 𝑤𝑖 ∈ 𝑇 (𝑥𝑖 + 𝐼) and 𝑧𝑖 ∈ 𝑥𝑖 + 𝐼.
So 𝑑 (𝑧1 − 𝑧2) = 𝑤1 − 𝑤2. If 𝑧1 − 𝑧2 ∈ 𝐼, then 𝑥1 + 𝐼 = 𝑥2 + 𝐼, so obviously, 𝑥1 − 𝑥2 ∈ 𝐻𝑑 . Otherwise,
𝑑 = (𝑤1 − 𝑤2)/(𝑧1 − 𝑧2), 𝑧1 − 𝑧2 ∈ 𝑥1 − 𝑥2 + 𝐼 and 𝑤1 − 𝑤2 ∈ 𝑇 (𝑥1 + 𝐼) − 𝑇 (𝑥2 + 𝐼) = 𝑇 (𝑥1 − 𝑥2 + 𝐼).

Hence, by Lemma 3.1,𝐻𝑑 is a ball around 0. We use this fact now to show that the family {𝑆𝑥 : 𝑥 ∈ 𝐾}

forms a chain of balls with respect to inclusion. Namely, we show that for 𝑥1, 𝑥2 ∈ 𝐻\ 𝐼, if 𝑣(𝑥1) ≤ 𝑣(𝑥2),
then 𝑆𝑥1 ⊆ 𝑆𝑥2 . Let 𝑑 ∈ 𝑆𝑥1 . Since 𝐻𝑑 is a ball and 𝑣(𝑥1) ≤ 𝑣(𝑥2), then 𝑥1 ∈ 𝐻𝑑 implies that 𝑥2 ∈ 𝐻𝑑
(i.e., 𝑑 ∈ 𝑆𝑥2 ).

Since V-minimal and power bounded T-convex valued fields are 1-h-minimal (see [6, Section 6]),
they are definably spherically complete ([6, Lemma 2.7.1] – namely, the intersection of a definable chain
of nonempty balls is nonempty. Thus,

⋂
𝑥∈𝐻\𝐼

𝑆𝑥 ≠ ∅, and we let d be an element in the intersection.

Let 𝐻̂𝑑 = {𝑧 ∈ 𝐻 : 𝑑 · 𝑧 ∈ 𝑇 (𝑧 + 𝐼)}. Since 𝑇 : 𝐻/𝐼 → 𝐾/𝐽 is a homomorphism, 𝐻̂𝑑 is a subgroup of
(𝐾, +). By definition,𝐻 ′

𝑑 ⊆ 𝐻̂𝑑 and as both 𝐻̂𝑑 and I are balls, either 𝐼 ⊆ 𝐻̂𝑑 or 𝐻̂𝑑 ⊆ 𝐼. Since𝐻 ′
𝑑∩𝐼 = ∅

necessarily, 𝐼 ⊆ 𝐻̂𝑑 , and thus, 𝐻𝑑 ⊆ 𝐻̂𝑑 . However, by the choice of d, for all 𝑥 ∈ 𝐻 \ 𝐼, 𝑑 ∈ 𝑆𝑥 , so
𝐻 = 𝐻𝑑 = 𝐻̂𝑑 .

Finally, as 𝐼 ⊆ 𝐻̂𝑑 , 𝑑 · 𝐼 ⊆ 𝑇 (𝐼) = 𝐽. Thus, 𝑇 (𝑥 + 𝐼) = 𝑑 · (𝑥 + 𝐼) + 𝐽 for any 𝑥 ∈ 𝐻. �

We are now ready to describe all definable subgroups of 𝐾𝑛 and the associated homomorphisms.

Lemma 3.5. The following holds for all n:
(1)𝑛 If 𝐻 ⊆ 𝐾𝑛 is a definable subgroup of 𝐾𝑛, then there is 𝑔 ∈ GL𝑛 (O) such that 𝑔(𝐻) is a cartesian

product of balls, possibly trivial.
(2)𝑛 If 𝐻 ⊆ 𝐾𝑛 and 𝐽 ⊆ 𝐾 are definable subgroups and 𝑇 : 𝐻 → 𝐾/𝐽 is a definable homomorphism,

then there are elements 𝛼1, . . . , 𝛼𝑛 ∈ 𝐾 such that for all 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐻,

𝑇 (𝑥1, . . . , 𝑥𝑛) = 𝛼1𝑥1 + · · · + 𝛼𝑛𝑥𝑛 + 𝐽.

Proof. (1)1 By Lemma 3.1, every definable subgroup of K is a ball, possibly trivial.
(2)1 This is Lemma 3.4 for 𝐼 = {0}.
We now proceed with the induction step, assuming (1)𝑛−1, (2)𝑛−1 and prove (1)𝑛:
Let 𝜋 : 𝐾𝑛 → 𝐾𝑛−1 be the projection onto the first 𝑛 − 1 coordinates. By (1)𝑛−1, we may assume

that 𝜋(𝐻) = 𝐻1 × · · · × 𝐻𝑛−1, for balls 𝐻𝑖 ⊆ 𝐾 . Also, write ker(𝜋) = 𝐻 ∩ ({0}𝑛−1 × 𝐾) as {0}𝑛−1 × 𝐽,
for a definable subgroup 𝐽 ⊆ 𝐾 .

Notice that for every (𝑎, 𝑏), (𝑎, 𝑐) ∈ 𝐻 ⊆ 𝐾𝑛−1 × 𝐾 , we have 𝑏 − 𝑐 ∈ 𝐽, and hence, H can be viewed
as the graph of a function 𝑇 : 𝜋(𝐻) → 𝐾/𝐽, mapping a to 𝑏 + 𝐽; that is,

𝐻 = {(𝑎, 𝑏) ∈ 𝐾𝑛 : 𝑎 ∈ 𝜋(𝐻) ∧ 𝑏 ∈ 𝑇 (𝑎)}.

By (2)𝑛−1, there are 𝛼1, . . . , 𝛼𝑛−1 ∈ 𝐾 , such that 𝑇 (𝑥) =
∑𝑛−1
𝑖=1 𝛼𝑖𝑥𝑖 + 𝐽.
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Hence,

𝐻 =

{
(𝑥1, . . . , 𝑥𝑛) ∈ 𝐾𝑛 : (𝑥1, . . . , 𝑥𝑛−1) ∈ 𝜋(𝐻) ∧ 𝑥𝑛 −

𝑛−1∑
𝑖=1

𝛼𝑖𝑥𝑖 ∈ 𝐽

}
.

The groups J and 𝛼𝑖𝐻𝑖 , for 𝑖 = 1, . . . , 𝑛 − 1, are subgroups of (𝐾, +), and hence, they are balls.
Thus, for every 𝑖 = 1, . . . , 𝑛 − 1, either 𝐽 ⊆ 𝛼𝑖𝐻𝑖 or 𝛼𝑖𝐻𝑖 ⊆ 𝐽. Note that if 𝛼𝑖0𝐻𝑖0 ⊆ 𝐽 for some 𝑖0 and
(𝑥1, . . . , 𝑥𝑛−1) ∈ 𝜋(𝐻), then 𝑥𝑛 −

∑
𝑖≠𝑖0

𝛼𝑖𝑥𝑖 ∈ 𝐽 iff 𝑥𝑛 −
∑
𝑖
𝛼𝑖𝑥𝑖 ∈ 𝐽. So there is no harm assuming that

𝛼𝑖 = 0 whenever 𝐽 ⊇ 𝛼𝑖𝐻𝑖 and that 𝐽 ⊆ 𝛼𝑖𝐻𝑖 whenever 𝛼𝑖 ≠ 0. Also, we may assume that for some
𝑖, 𝛼𝑖 ≠ 0, for otherwise, 𝐻 = 𝜋(𝐻) × 𝐽, and we are done.

Fix 𝛼1, . . . , 𝛼𝑛−1 as above. Permuting the coordinates, if needed, we may assume that 𝑣(𝛼1) ≤ 𝑣(𝛼 𝑗 ),
for all 𝑗 = 2, . . . , 𝑛 − 1. Thus, we can write

𝐻 =

{
(𝑥1, . . . , 𝑥𝑛) : (𝑥1, . . . , 𝑥𝑛−1) ∈ 𝜋(𝐻) ∧

1
𝛼1

𝑥𝑛 − (𝑥1 +

𝑛−1∑
𝑖=2

𝛼𝑖
𝛼1

𝑥𝑖) ∈
1
𝛼1

𝐽

}
.

Let 𝑆(𝑥2, . . . , , 𝑥𝑛) = 1
𝛼1
𝑥𝑛 −

∑𝑛−1
𝑖=2

𝛼𝑖
𝛼1
𝑥𝑖 . Then 𝑆 : 𝐾𝑛−1 → 𝐾 is a linear map defined over O, and we

have

𝐻 =

{
(𝑥1, . . . , 𝑥𝑛) : (𝑥1, . . . , 𝑥𝑛−1) ∈ 𝜋(𝐻) ∧ 𝑥1 − 𝑆(𝑥2, . . . , 𝑥𝑛) ∈

1
𝛼1

𝐽

}
. (1)

Let 𝜋̂(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥2, . . . , 𝑥𝑛) be the projection onto the last 𝑛 − 1 coordinates.

Claim 3.5.1. For every 𝑥 = (𝑥2, . . . , 𝑥𝑛) ∈ 𝜋̂(𝐻), we have (𝑆(𝑥), 𝑥) ∈ 𝐻.

Proof. Let 𝑥 = (𝑥2, . . . , 𝑥𝑛) ∈ 𝜋̂(𝐻) and let 𝑥1 = 𝑆(𝑥). Then clearly, 𝑥1 − 𝑆(𝑥) = 0 ∈ 1
𝛼 𝐽, so by

(1), it is sufficient to see that (𝑥1, 𝑥2, . . . , 𝑥𝑛−1) ∈ 𝜋(𝐻). Since 𝑥 ∈ 𝜋̂(𝐻), there exists 𝑥 ′1 such that
(𝑥 ′1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐻. In particular, 𝑥2 ∈ 𝐻2, . . . , 𝑥𝑛−1 ∈ 𝐻𝑛−1, so for (𝑥1, . . . , 𝑥𝑛−1) to be in 𝜋(𝐻), we
only need to verify that 𝑥1 = 𝑆(𝑥) ∈ 𝐻1. By assumption, (𝑥 ′1, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛) ∈ 𝐻, so by (1), 𝑥 ′1 ∈ 𝐻1
and 𝑥 ′1 − 𝑆(𝑥) ∈ 1

𝛼1
𝐽, so 𝑆(𝑥) ∈ 1

𝛼1
𝐽 + 𝑥 ′1. However, we assumed that 𝐽 ⊆ 𝛼1𝐻1 so 1

𝛼1
𝐽 ⊆ 𝐻1, and

therefore 𝑆(𝑥) ∈ 𝐻1; hence, (𝑆(𝑥), 𝑥) ∈ 𝐻. �

We get that

𝐻 =

{
(𝑥1, 𝑥2, . . . , 𝑥𝑛) : (𝑥2, . . . , 𝑥𝑛) ∈ 𝜋̂(𝐻) ∧ 𝑥1 − 𝑆(𝑥2, . . . , 𝑥𝑛) ∈

1
𝛼1

𝐽

}
.

So 𝐻 ∩ (𝐾 × {0}𝑛−1) = 1
𝛼1
𝐽 × {0}𝑛−1 and, in particular, the map (𝑥1, . . . , 𝑥𝑛) ↦→ 𝑥1 − 𝑆(𝑥2, . . . , 𝑥𝑛)

from H to 1
𝛼1
𝐽 is surjective. We now define 𝐹 : 𝐾𝑛 → 𝐾𝑛 by

𝐹 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥1 − 𝑆(𝑥2, . . . , 𝑥𝑛), 𝑥2, . . . 𝑥𝑛).

Then F is overO, and by a direct computation, one sees that it has determinant 1; hence, 𝐹 ∈ GL𝑛 (O).
It follows from the definition of F and the observation above that the restriction 𝐹 � 𝐻 is definable,
injective and onto 1

𝛼1
𝐽 × 𝜋̂(𝐻).

By induction, there is ℎ ∈ GL𝑛−1 (O) such that ℎ(𝜋̂(𝐻)) is a product of balls. Hence, there is
𝑔 ∈ GL𝑛 (O) sending H to a product of balls. This ends the proof of (1)𝑛.
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For (2)𝑛, we start with 𝑇 : 𝐻 → 𝐾/𝐽. with 𝐻 ⊆ 𝐾𝑛, By (1)𝑛, we may assume that 𝐻 = 𝑉1 × · · · ×𝑉𝑛,
for definable subgroups 𝑉𝑖 ⊆ 𝐾 . Thus,

𝑇 (𝑥1, . . . , 𝑥𝑛) = 𝑇 (𝑥1, 0, . . . , 0) + · · · + 𝑇 (0, . . . , 0, 𝑥𝑛),

with all elements still in H. The result follows from the case 𝑛 = 1. �

Remark 3.6. Lemma 3.5(1) is inspired by the work of Hrushovski-Haskell-Macpherson on definable
O-submodules of 𝐾𝑛 in algebraically closed valued fields, [14, Lemma 2.2.4]. In that work, the authors
prove that up to an automorphism in GL𝑛 (𝐾) every definable O-submodule is a finite cartesian product
of 𝐾, O, 𝔪 and {0}.

In our setting, if 𝐺 ⊆ 𝐾𝑛 is a definable subgroup, then it is an O-submodule (the converse is clearly
true), since {𝑑 ∈ O : 𝑑𝐺 ⊆ 𝐺} is a definable subgroup of (𝐾, +) containing 1, so by Lemma 3.1, it
must be the whole of O.

Thus, Lemma 3.5 (1) can be seen as a strengthening of [14, Lemma 2.2.4] even in the ACVF0,0
setting.

We may now conclude:

Lemma 3.7. Let 𝐻 ⊆ (𝐾/O)𝑛 be a definable subgroup.
(1) There is a definable automorphism T of (𝐾/O)𝑛 such that 𝑇 (𝐻) = 𝐻1 × · · · × 𝐻𝑛, where each

𝐻𝑖 is a, possibly trivial, ball.
(2) If 𝑇 : 𝐻 → 𝐾/O is a definable homomorphism, then there are scalars 𝑑1, . . . , 𝑑𝑛 ∈ O such that

for all 𝑥 = (𝑥1 +O, . . . , 𝑥𝑛 +O) ∈ 𝐻,

𝑇 (𝑥1 +O, . . . , 𝑥𝑛 +O) = 𝑑1𝑥1 + · · · + 𝑑𝑛𝑥𝑛 +O.

Proof. (1) Consider 𝐻̂ ⊆ 𝐾𝑛 the preimage of H in 𝐾𝑛. By Lemma 3.5, there is 𝑔 ∈ GL𝑛 (O) such that
𝑔(𝐻̂) is a product of (possibly trivial) balls in K. Since 𝑔 ∈ GL𝑛 (O), it descends to an automorphism
of (𝐾/O)𝑛 sending H to a product of balls in (𝐾/O) (possibly trivial ones).

For (2), we may assume that 𝐻 = 𝑉1 × · · · ×𝑉𝑛 for 𝑉𝑖 ⊆ 𝐾/O and then

𝑇 (𝑥1 +O, . . . , 𝑥𝑛 +O) = 𝑇 (𝑥1 +O, 0, . . . , 0) + · · · + 𝑇 (0, . . . , 0, 𝑥𝑛 +O),

with each element on the right inside H. We apply Lemma 3.4 with 𝐼 = 𝐽 = O, so there are 𝑑1, . . . , 𝑑𝑛 ∈

O (because 𝑑𝑖O ⊆ O), such that 𝑇 (𝑥1 +O, . . . , 𝑥𝑛 +O) = 𝑑 · 𝑥1 + · · · + 𝑑𝑛 · 𝑥𝑛 +O. �

Finally, we want the following:

Lemma 3.8. Let 𝐻 ⊆ (𝐾/O)𝑛 be a definable group and 𝑇 : 𝐻 → (𝐾/O)𝑛 a definable homomorphism.
Then T can be extended definably to an endomorphism of (𝐾/O)𝑛.

In addition, if T is injective, then we can choose the extension to be an automorphism of (𝐾/O)𝑛.

Proof. For the first part, we may think of T in coordinates and apply Lemma 3.5(2)𝑛 to each coordinate
map, obtaining 𝐿 ∈ End((𝐾/O)𝑛) extending T.

Assume now that T is injective, and we shall see that so is L. By Lemma 3.7(1)𝑛, after composing with
a definable automorphism of (𝐾/O)𝑛, we may assume that 𝐻 = 𝐵1 × · · · × 𝐵𝑛, where each 𝐵𝑖 ⊆ 𝐾/O
is a ball around 0 (possibly trivial).

Assume first that, for all 𝑖, 𝐵𝑖 is not the zero ball. If L, the extension of T provided above, were not
injective, then, after permutation of the coordinates, we may assume the projection of ker(𝐿) into 𝐵1 is
infinite. But then, ker(𝐿) ∩ 𝐵1 × {0𝑛−1} is nontrivial, contradicting the injectivity of T.

So without loss of generality, we assume that 𝐻 = 𝐵1×· · ·×𝐵𝑚×{0}𝑛−𝑚 and that 𝐵𝑖 is nontrivial for
𝑖 ≤ 𝑚. Since T is injective, dp-rk(𝑇 (𝐻)) = 𝑚 = dp-rk(𝐻), and hence, after a definable automorphism
of (𝐾/O)𝑛 (the range), we may assume that 𝑇 (𝐻) = 𝐶1 × · · · ×𝐶𝑚 × {0}𝑛−𝑚, where the 𝐶𝑖 ⊆ 𝐾/O are
balls with 𝑟 (𝐶𝑖) < 0 (possibly 𝐶𝑖 = 𝐾/O). Setting 𝐻1 = 𝐵1 × · · · × 𝐵𝑚 and 𝐻2 = 𝐶1 × · · · × 𝐶𝑚, the
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map T thus induces an injective isomorphism of 𝐻1 and 𝐻2 that, by what we have already noted, can be
extended to a definable automorphism 𝐿1 of (𝐾/O)𝑚.

Now, for (𝑥, 𝑦) ∈ (𝐾/O)𝑚 × (𝐾/O)𝑛−𝑚, let 𝑆(𝑥, 𝑦) = (𝐿1 (𝑥), 𝑦). This is an extension of T to an
automorphism of (𝐾/O)𝑛. �

As a corollary, we obtain the following:

Corollary 3.9. Assume that 𝑓 : (𝐾/O)𝑛 → (𝐾/O)𝑛 is a definable group automorphism. Then there is
𝑔 ∈ GL𝑛 (O) such that for all 𝑥 ∈ 𝐾𝑛, 𝑓 (𝑥 +O𝑛) = 𝑔𝑥 +O𝑛. In particular, T preserves the valuation.

Proof. By Lemma 3.7(2), there exist 𝐿1, 𝐿2 ∈ 𝑀𝑛 (O) such that for every 𝑥 ∈ 𝐾𝑛,

𝑓 (𝑥 +O𝑛) = 𝐿1 (𝑥) +O𝑛, 𝑓 −1(𝑥 +O𝑛) = 𝐿2 (𝑥) +O𝑛.

It follows that for all 𝑥 ∈ 𝐾𝑛, we have 𝐿1 ◦ 𝐿2 (𝑥) − 𝑥 ∈ O𝑛. It is easy to see that this forces the
K-linear map 𝐿1 ◦ 𝐿2(𝑥) − 𝑥 to be 0. Thus, 𝐿2 = 𝐿−1

1 and both belong to GL𝑛 (O). �

3.2. K𝑝-adically closed

In the present subsection, we assume that K is p-adically closed. As we have already seen, definable
subgroups of 𝐾/O need not be balls, so the analysis of definable subgroups of (𝐾/O)𝑛 is more subtle
than in the V-minimal and the power-bounded T-convex settings. Our aim in this section is to prove the
result below, a weak version of Lemma 3.7(1) that will suffice for our needs. Recall that balls in K/O
are by definition infinite, and we call K a trivial ball.

Proposition 3.10. For any infinite definable subgroup 𝐻 ≤ (𝐾/O)𝑛, there exist 𝑘 ∈ N and a coordinate
projection 𝜋0 : (𝐾/O)𝑛 → (𝐾/O)𝑚, with 𝑚 = dp-rk(𝐻), such that 𝜋0 � 𝑝𝑘𝐻 is injective.

Remark 3.11. For any natural number k, since 𝐻/𝑝𝑘𝐻 is an interpretable group in K with bounded
exponent, it must be finite, [13, Theorem 7.12(4b)].

Let us fix some notation for the rest of Section 3.2. Let 𝐽 ⊇ O be a subgroup of (𝐾/O, +) with 𝐽/O
finite and 𝜌 : 𝐾 → 𝐾/O the quotient map. Let 𝐵𝐽 be the smallest closed ball around 0 containing J.

Recall that sinceK has definable Skolem functions, each (partial) definable function 𝑓 : 𝐾/O → 𝐾/𝐽
lifts to a (partial) definable function 𝑓̂ : 𝐾 → 𝐾 . Namely, dom( 𝑓̂ ) + O = dom( 𝑓̂ ), and for every
𝑎 ∈ dom( 𝑓̂ ), 𝑓̂ (𝑎) + 𝐽 = 𝑓 (𝜌(𝑎)). In particular, for 𝑎, 𝑏 ∈ dom( 𝑓̂ ), if 𝑎− 𝑏 ∈ O, then 𝑓̂ (𝑎) − 𝑓̂ (𝑏) ∈ 𝐽.

We break the proof into several lemmas. The first is an adaptation of [13, Proposition 3.21], so we
may be terse at times.

Lemma 3.12. Let 𝐻, 𝐽 ≤ 𝐾 be definable subgroups containing O with 𝐽/O finite and 𝐻/O a ball in
𝐾/O. Let 𝑇 : 𝐻 → 𝐾 be a definable function lifting a definable homomorphism 𝑇 : 𝐻/O → 𝐾/𝐽. Then
there exists a nontrivial ball U in 𝐾, 0 ∈ 𝑈 ≤ 𝐻, and 𝑐 ∈ 𝐵𝐽 such that 𝑇 (𝑥) − 𝑐𝑥 ∈ 𝐽 for all 𝑥 ∈ 𝑈.

Proof. Assume everything is defined over some parameter set A and let p be a complete type over A
which is concentrated on 𝐻/O with dp-rk(𝑝) = 1. As in [13, Section 3.2], there exists a unique complete
type 𝑝 over A concentrated on H such that 𝜌∗𝑝 = 𝑝. In particular, for any 𝑎 |= 𝑝, also 𝑎 +O |= 𝑝 .

By generic differentiability, 𝑇 and 𝑇 ′ are both differentiable on 𝑝 (see [13, Lemma 3.17(1)]). A
similar proof to that of [13, Lemma 3.17(2)] gives, for any 𝑏 |= 𝑝, that 𝑇 ′(𝑏) ∈ 𝐵𝐽 .

Claim 3.12.1. For every 𝑎 |= 𝑝, there exists a K̂-definable ball 𝐵 � 𝑎 contained in 𝑝(K̂) of valuative
radius 𝑟 (𝐵) < Z such that for all 𝑏 ∈ 𝐵, 𝑣(𝑇 ′′(𝑏)) + 2𝑟 (𝐵) > 0.

Proof. The proof mimics [13, Lemma 3.17(3)]. Since there is one delicate adjustment toward the end,
we give the whole argument. The reader may refer to [13, Section 3.2] for the relevant definitions and
notions.

By saturation of K and the definition of 𝑝, there exists a ball 𝐵0 ⊆ 𝑝(K) around a with 𝑟 (𝐵0) < Z
(see [13, Section 3.2]) and let 𝑟0 := 𝑟 (𝐵0). Note that 𝐵>𝑟0+𝑚(𝑎) ⊆ 𝑝(K) for any natural number m.
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By [13, Fact 3.13] applied to the function 𝑇 ′, there are an A-definable finite set C and 𝑚 ∈ N such
that ??†

𝑣(𝑇 ′(𝑎) − 𝑇 ′(𝑥)) = 𝑣((𝑇 ′′(𝑎)) + 𝑣(𝑎 − 𝑥)

for all x in any ball m-next to C around a, and 𝑣(𝑇 ′′(𝑥)) is constant on that ball. By definition, the
ball 𝐵>𝑟0+𝑚(𝑎) is contained in a ball m-next to C, so after possibly shrinking 𝐵0, we may assume that
𝑣(𝑇 ′′(𝑥)) is constant on 𝐵0 and that (†) holds on 𝐵0 (see also [13, Lemma 3.14]).

If 𝑇 ′′(𝑡) ≡ 0, the claim holds trivially. Otherwise, by [13, Fact 3.13], 𝑇 ′(𝐵>𝑟 ′ (𝑎)) is an open ball of
radius 𝑣(𝑇 ′′(𝑎)) + 𝑟 ′ for any 𝑟 ′ ≥ 𝑟0.

As 𝐵>𝑟0 (𝑎) ⊆ 𝑝(K̂), we have 𝑇 ′(𝐵>𝑟0 (𝑎)) ⊆ 𝐵𝐽 . Since 𝐽/O is finite, we deduce that 𝑣(𝑇 ′′(𝑎)) + 𝑟0
is either positive or a finite negative integer. Either way, for any 𝑟 ′ > Z satisfying that for any 𝑛 ∈

Z, 𝑟 ′ − 𝑛 > 𝑟0, we get that 𝑇 ′(𝐵>𝑟 ′ (𝑎)) is an open ball of radius 𝑣(𝑇 ′′(𝑎)) + 𝑟 ′ > 0.
So let r be such an element. Since 𝑟/2 also satisfies the same requirements, we deduce that

𝑇 ′(𝐵>𝑟/2(𝑎)) is an open ball of radius 𝑣(𝑇 ′′(𝑎)) + 𝑟/2 > 𝑣(𝑇 ′′(𝑎)) + 𝑟 > 0.
We conclude that for any 𝑏 ∈ 𝐵 := 𝐵>𝑟/2(𝑎), 𝑣(𝑇

′′(𝑏)) + 𝑟 > 0. �

Now, the proof of [13, Lemma 3.18] is applicable word-for-word, and we get that for every 𝑎 |= 𝑝,
there is a ball 𝐵, 𝑎 ∈ 𝐵 ⊆ 𝑝(K), such that for all 𝑦 ∈ 𝐵,

𝑣(𝑇 (𝑦) − 𝑇 (𝑎) − 𝑇 ′(𝑎) (𝑦 − 𝑎)) > 0.

Setting 𝑐 := 𝑇 ′(𝑎) ∈ 𝐵𝐽 , we get that for all 𝑦 ∈ 𝐵, 𝑇 (𝑦) − 𝑇 (𝑎) − 𝑐(𝑦 − 𝑎) ∈ m ⊆ 𝐽.
Let 𝑈 = 𝐵 − 𝑎; it is a subgroup of H. Let 𝑥 = 𝑦 − 𝑎 be an element of U (so 𝑦 ∈ 𝐵). Since 𝑇 is a lift

of a homomorphism, 𝑇 (𝑥) + 𝐽 = 𝑇 (𝑦) − 𝑇 (𝑎) + 𝐽 = 𝑐(𝑦 − 𝑎) + 𝐽 = 𝑐𝑥 + 𝐽. �

We note that for groups definable in 𝐾/O, injectivity of definable homomorphisms can be detected
locally:

Lemma 3.13.

(1) Let 𝑁 ≤ (𝐾/O)𝑛 be a nontrivial definable subgroup and 𝐵 � 0 a ball in (𝐾/O)𝑛. Then 𝑁 ∩ 𝐵 is
nontrivial.

(2) Let 𝐻 ⊆ (𝐾/O)𝑛 be a definable group, 𝑓 : 𝐻 → (𝐾/O)𝑚 a definable homomorphism and 𝐵 � 0
ball in (𝐾/O)𝑛. Then f is injective if and only if 𝑓 � (𝐵 ∩ 𝐻) is injective.

Proof. (1) By [13, Lemmas 3.1(3), 3.10 (1)], the ball B contains all torsions points in (𝐾/O)𝑛. By [13,
Lemma 3.10 (2)], N has nontrivial torsion. Thus, 𝑁 ∩ 𝐵 contains a nontrivial torsion point.

(2) Apply (1) to 𝑁 = ker( 𝑓 ). �

The following is the technical core of the proof:

Lemma 3.14. Let 𝐽 ⊇ O be a group with 𝐽/O finite, 𝑇 : 𝐵 → (𝐾/O)/𝐽 be a group homomorphism
and let 𝐻 ⊆ (𝐾/O)𝑛 be a definable subgroup of the form

{(ℎ1, . . . , ℎ𝑛) ∈ (𝐾/O)𝑛 : (ℎ1, . . . , ℎ𝑛−1) ∈ 𝑁 ∧ ℎ𝑛 + 𝐽 = 𝑇 (ℎ1, . . . , ℎ𝑛−1)},

where 𝑁 ≤ (𝐾/O)𝑛−1 is some subgroup of dp-rank 𝑛 − 1.
Then there exists a natural number k such that the projection of 𝑝𝑘𝐻 on some 𝑛 − 1 coordinates is

injective.

Proof. Since dp-rk(𝑁) = 𝑛−1, there exists a ball 𝐵 ⊆ 𝑁 around 0. If there exists a coordinate projection
𝜋 and a natural number k for which 𝜋 � 𝑝𝑘 (𝐻 ∩ (𝐵×𝐾/O)) is injective, then as 𝑝𝑘 (𝐻 ∩ (𝐵×𝐾/O)) =
𝑝𝑘𝐻 ∩ (𝑝𝑘𝐵 × 𝐾/O), we may apply Lemma 3.13 (2) and deduce that it is injective on 𝑝𝑘𝐻 as well.
Consequently, we may assume that 𝑁 = 𝐵 = 𝐻1 × · · · × 𝐻𝑛−1 is a product of balls.
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Recall that 𝜌 : 𝐾 → 𝐾/O is the quotient map. Since

𝑇 (𝑥1, . . . , 𝑥𝑛−1) = 𝑇 (𝑥1, 0, . . . , 0) + · · · + 𝑇 (0, . . . , 0, 𝑥𝑛−1),

and denoting 𝑇𝑖 for a lift of 𝑇 (0, . . . , 𝑥𝑖 , . . . 0) to a partial map from K to K, we obtain

𝜌−1(𝐻) =

{
(𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛) ∈ 𝐾𝑛 : (𝑎1, . . . , 𝑎𝑛−1) ∈ 𝜌−1(𝐵) ∧ 𝑎𝑛 + 𝐽 =

𝑛−1∑
𝑖=1

𝑇𝑖 (𝑎𝑖) + 𝐽

}
.

Applying Lemma 3.12 to the 𝑇𝑖 , for each i, we find 𝑐𝑖 ∈ 𝐾 and sub-balls 𝐻 ′
𝑖 ≤ 𝐻𝑖 such that

𝑇𝑖 (𝑥) − 𝑐𝑖𝑥 ∈ 𝐽 for elements of 𝐻 ′
𝑖 . Letting 𝐵′ = 𝐻 ′

1 × · · · × 𝐻 ′
𝑛−1, we may, as above, replace B by 𝐵′

and H by 𝐻 ∩ (𝐵′ × 𝐾/O). So we may assume that

𝜌−1(𝐻) =

{
(𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛) ∈ 𝐾𝑛 : (𝑎1, . . . , 𝑎𝑛−1) ∈ 𝜌−1(𝐵) ∧ 𝑎𝑛 + 𝐽 =

𝑛−1∑
𝑖=1

𝑐𝑖 · 𝑎𝑖 + 𝐽

}
.

If 𝑐𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑛−1, then H is equal to a product of 𝑛−1 balls together with 𝐽/O. If we choose
𝑝𝑘 large enough so that 𝑝𝑘𝐽 ⊆ O, then 𝑝𝑘𝐻 ⊆ (𝐾/O)𝑛−1 × {0}, and so projects injectively into the
first 𝑛 − 1 coordinates.

We thus assume that 𝑐𝑖 ≠ 0 for some i. Setting 𝑐𝑛 = 1, assume, without loss of generality, that
𝑣(𝑐1) = min1≤𝑖≤𝑛{𝑣(𝑐𝑖)}.

Claim 3.14.1. 𝜌−1(𝐻) is equal to

𝑋 :=

{
(𝑎1, . . . , 𝑎𝑛) ∈ 𝐾𝑛 : (𝑎2, . . . , 𝑎𝑛) ∈ 𝑃 ∧ 𝑎𝑛 + 𝐽 =

𝑛−1∑
𝑖=1

𝑐𝑖 · 𝑎𝑖 + 𝐽

}
,

where P is the projection of 𝐸 on the last 𝑛 − 1 coordinates.

Proof. Obviously, 𝐸 is contained in X, so we show the reverse inclusion. Let (𝑎1, . . . , 𝑎𝑛) ∈ 𝑋 . As
(𝑎2, . . . , 𝑎𝑛) ∈ 𝑃, there exists t such that (𝑡, 𝑎2, . . . , 𝑎𝑛) ∈ 𝐸 so 𝑎𝑛 − 𝑐1𝑡 −

∑𝑛−1
𝑖=2 𝑐𝑖𝑎𝑖 ∈ 𝐽. However,

(𝑎1, . . . , 𝑎𝑛) ∈ 𝑋 , so 𝑎𝑛 −
∑𝑛
𝑖=1 𝑐𝑖𝑎𝑖 ∈ 𝐽 implying that 𝑐1𝑡 − 𝑐1𝑎1 ∈ 𝐽. So in order to show that

(𝑎1, . . . , 𝑎𝑛) ∈ 𝜌−1(𝐻), we only have to verify that if 𝑡 ∈ 𝜌−1(𝐻1), then also 𝑎1 ∈ 𝜌−1(𝐻1). But
𝑎1 − 𝑡 ∈ 𝑐−1

1 𝐽, which is a finite subgroup of 𝐾/O. As 𝜌−1(𝐻1) is a ball, it contains all torsion elements
([13, Fact 3.1, Lemma 3.10]), so it contains 𝑎1 − 𝑡 as well, and the conclusion follows. �

We get

𝜌−1(𝐻) =

{
(𝑎1, . . . , 𝑎𝑛) ∈ 𝐾𝑛 : (𝑎2, . . . , 𝑎𝑛) ∈ 𝑃 ∧ 𝑎1 −

𝑛∑
𝑖=2

𝑒𝑖𝑎𝑖 ∈ 𝑐−1
1 𝐽

}
,

for some 𝑒𝑖 ∈ O.
As 𝑐−1

1 𝐽/O is finite as well, we can find some 𝑘 ∈ N large enough so that 𝑝𝑘 (𝑐−1
1 𝐽) ⊆ O. We claim

that for any (ℎ1, . . . , ℎ𝑛) ∈ 𝑝𝑘𝐻, ℎ1 is uniquely determined by (ℎ2, . . . , ℎ𝑛). We will show that for a
tuple in 𝜌−1(𝑝𝑘𝐻), the first coordinate is determined, up to O-equivalence, by the last 𝑛−1 coordinates.

To simplify the notation, we give the argument for 𝑛 = 2, the general case is similar. Let (𝑎, 𝑏), (𝑐, 𝑑) ∈
𝜌−1 (𝑝𝑘𝐻), with 𝑏 − 𝑑 ∈ O. We want to prove that 𝑎 − 𝑐 ∈ O. As 𝜌−1(𝑝𝑘𝐻) = 𝑝𝑘𝐻 +O, we can write
(𝑎, 𝑏) = (𝑝𝑘𝑎′ + 𝑜1, 𝑝

𝑘𝑏′ + 𝑜2) and (𝑐, 𝑑) = (𝑝𝑘𝑐′ + 𝑜3, 𝑝
𝑘𝑑 ′ + 𝑜4), with (𝑎′, 𝑏′), (𝑐′, 𝑑 ′) ∈ 𝜌−1(𝐻).

We thus have 𝑎′ − 𝑒2(𝑏
′ + 𝑜2), 𝑐

′ − 𝑒2(𝑑
′ + 𝑜4) ∈ 𝑐−1

1 𝐽. Since 𝑝𝑘 (𝑐−1
1 𝐽) ⊆ O, we get that

𝑝𝑘 (𝑎′ − 𝑐′) − 𝑝𝑘 (𝑒2(𝑏
′ − 𝑑 ′)) = 𝑝𝑘 (𝑎′ − 𝑐′) − 𝑒2𝑝

𝑘 (𝑏′ − 𝑑 ′) ∈ O.
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By our assumption that 𝑏 − 𝑑 ∈ O (and since 𝑝𝑘 (𝑏′ − 𝑑 ′) + O = (𝑏 − 𝑑) + O), it follows that
𝑝𝑘 (𝑏′ − 𝑑 ′) ∈ O, and since 𝑒2 is assumed to be in O, it follows from the above that 𝑝𝑘 (𝑎′ − 𝑐′) ∈ O.
By our assumptions, 𝑝𝑘 (𝑎′ − 𝑐′) +O = (𝑎 − 𝑐) +O, and therefore, 𝑎 − 𝑐 ∈ O, as claimed. �

We can finally prove Proposition 3.10.

Proof of Proposition 3.10. We proceed by induction. The case 𝑛 = 1 is trivially true (take 𝑘 = 0 and
𝜋0 = Id).

Let 𝜋 : (𝐾/O)𝑛 → (𝐾/O)𝑛−1 be the projection onto the first 𝑛 − 1 coordinates. We may assume
that the kernel of this projection is finite: Indeed, let 𝐻𝑖 := ker(𝜋𝑖 � 𝐻) for 𝜋𝑖 the projection dropping
the i-the coordinate. If all 𝐻𝑖 were infinite, then since 𝐻 ⊇ 𝐻1 × · · · × 𝐻𝑛, we would conclude that
dp-rk(𝐻) = 𝑛, and there is nothing to prove. Thus, we may assume that one of the 𝐻𝑖 is finite, and after
permuting coordinates, assume that 𝑖 = 𝑛.

Write ker(𝜋 � 𝐻) as {0}𝑛−1 × 𝐽, for a finite subgroup 𝐽 ⊆ 𝐾/O. Since 𝜋 � 𝐻 is finite-to-one,
dp-rk(𝐻) = dp-rk(𝜋(𝐻)). Notice that for every (𝑎, 𝑏), (𝑎, 𝑐) ∈ 𝐻 ⊆ (𝐾/O)𝑛−1 × 𝐾/O, we have
𝑏 − 𝑐 ∈ 𝐽, and hence, H can be viewed as the graph of a function 𝑇 : 𝜋(𝐻) → (𝐾/O)/𝐽, mapping a to
𝑏 + 𝐽; that is,

𝐻 = {(𝑎, 𝑏) ∈ (𝐾/O)𝑛 : 𝑎 ∈ 𝜋(𝐻) ∧ 𝑏 + 𝐽 = 𝑇 (𝑎)}.

By the induction hypothesis applied to 𝜋(𝐻) ⊆ (𝐾/O)𝑛−1, there exists ℓ ∈ N, and a coordinate
projection 𝜋1 : (𝐾/O)𝑛−1 → (𝐾/O)𝑚 such that 𝜋1 � 𝑝ℓ𝜋(𝐻) is injective and 𝑚 = dp-rk(𝜋(𝐻)).
Without loss of generality, assume that 𝜋1 is the projection onto the last m-coordinates 𝑛−𝑚, . . . , 𝑛− 1.
Let

𝐻2 = {(𝑎1, . . . , 𝑎𝑛−1, 𝑎𝑛) ∈ (𝐾/O)𝑛 : (𝑎1, . . . , 𝑎𝑛−1) ∈ 𝑝ℓ𝜋(𝐻) ∧ 𝑎𝑛 + 𝐽 = 𝑇 (𝑎1, . . . , 𝑎𝑛−1)},

and note that 𝑝ℓ𝐻 ⊆ 𝐻2.
By assumption, 𝐻2 is definably isomorphic via (𝜋1, id) to

𝐻3 = {(𝑎𝑛−𝑚, . . . , 𝑎𝑛−1, 𝑎𝑛) ∈ (𝐾/O)𝑚+1 : (𝑎𝑛−𝑚, . . . , 𝑎𝑛−1) ∈ 𝜋1 (𝑝
ℓ𝜋(𝐻))

∧𝑎𝑛 + 𝐽 = 𝑆(𝑎𝑛−𝑚, . . . , 𝑎𝑛−1)},

for 𝑆 = 𝑇 ◦ (𝜋1 � 𝑝ℓ𝜋(𝐻))−1.
Since dp-rk(𝜋1 (𝑝

ℓ𝜋(𝐻))) = 𝑚, we may apply Lemma 3.14 to 𝐻3 and find 𝑟 ∈ N and a coordinate
projection 𝜋2 : (𝐾/O)𝑚+1 → (𝐾/O)𝑚 (on some m coordinates) such that 𝜋2 � 𝑝𝑟𝐻3 is injective. As 𝐻2
is isomorphic to 𝐻3 via (𝜋1, id), by composing the coordinate projections, we get that 𝜋0 = 𝜋2 ◦ (𝜋1, 𝑖𝑑)
is injective on 𝑝𝑟𝐻2. Hence, it is also injective on 𝑝𝑟ℓ𝐻 ⊆ 𝑝𝑟𝐻2. �

4. Topology and dimension

If D is a distinguished sort which is an SW-uniformity, it follows from [13] (see below for details) that
definable D-groups inherit a group topology, 𝜏𝐷 , from 𝜈𝐷 . However, since K is geometric, K𝑒𝑞 inherits
a notion of dimension (that turns out to be nontrivial for K-groups). In the present section, we first
recall the basic properties of the dimension induced from K to K𝑒𝑞 , and then study its relation with the
topology 𝜏𝐺 in K-groups.

4.1. Geometric dimension and equivalence relations

A sufficiently saturated (one sorted) structure is geometric if acl(·) satisfies Steinitz Exchange and the
quantifier ∃∞ can be eliminated. Elimination of ∃∞, sometimes referred to as uniform finiteness, means
that in definable families, there is a uniform bound on the size of finite sets.

In [9], Gagelman shows that for geometric structures, the dimension associated with the acl(·)-pre-
geometry can be extended naturally to imaginary sorts. In the present section, we review this extension
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of dimension and exploit it to show that in K, the K-rank and the almost K-rank of definable sets
coincide (compare with [18, Corollary 4.37]).

Given a geometric structureM, we remind Gagelman’s extension of dimacl toM𝑒𝑞: Given a definable
equivalence relation E on 𝑀𝑛 set, and 𝐴 ⊆ M𝑒𝑞 ,

dim𝑒𝑞 (𝑎𝐸/𝐴) = max{dim(𝑏/𝐴) − dim[𝑎] : 𝑏 ∈ [𝑎]},

where dim := dimacl, the E-equivalence class of a is [𝑎] ⊆ 𝐾𝑛, 𝑎𝐸 := 𝑎/𝐸 ∈ 𝑀𝑛/𝐸 . For 𝑌 ⊆ 𝑋/𝐸
defined over A, we define

dim𝑒𝑞 (𝑌 ) = max{dim𝑒𝑞 (𝑎𝐸/𝐴) : 𝑎𝐸 ∈ 𝑌 }.

For a concise summary of the properties of dim𝑒𝑞 , we refer to [18, §2]. In the present text, we will
mostly use additivity of dim𝑒𝑞: For 𝑎, 𝑏 ∈ M𝑒𝑞 ,

dim𝑒𝑞 (𝑎, 𝑏/𝐴) = dim𝑒𝑞 (𝑎/𝐴𝑏) + dim𝑒𝑞 (𝑏/𝐴).

Note that dim𝑒𝑞 coincides with dimacl on definable subsets of 𝑀𝑛, and on tuples in M, over parameters
from M. There is, therefore, no ambiguity in extending the notation dim (instead of dim𝑒𝑞) to imaginary
elements and definable sets. Note, however, that in this notation for a definable set 𝑌, dim(𝑌 ) = 0 does
not imply that Y is finite, unless 𝑌 ⊆ 𝑀𝑛. For example, dim(𝐾/O) = dim(Γ) = 0.

Whenever M is in addition dp-minimal, dp-rank coincides with dimension on definable subsets of
𝑀𝑛 ([30, Theorem 0.3]), a fact that we use without further mention. In our setting, as K is a geometric
structure, this implies directly from the definitions that dim(𝑋) ≤ dp-rk(𝑋) for any definable set X in
K𝑒𝑞 .

Since dimension is preserved under definable finite-to-one functions, and infinite definable subsets of
𝐾𝑛 have positive dimension, it follows that if X is locally almost strongly internal to K, then dim(𝑋) > 0.

The above observation allows us to show that, in our setting, the K-critical and the almost K-critical
ranks coincide. We start with the following result [24, Lemma 3.8].

Fact 4.1. Let M be a geometric structure and let E be a definable equivalence relation on 𝑀𝑛. Then
there exists a definable 𝑆 ⊆ 𝑀𝑛 such that for every 𝑥 ∈ 𝑆, [𝑥] ∩ 𝑆 is finite and dim(𝑆) = 𝑑𝑖𝑚(𝑆/𝐸) =
dim(𝑀𝑛/𝐸).

In the setting where M = K, we can conclude the following:

Corollary 4.2. Let Y be a definable set in K (so possibly in K𝑒𝑞). If 𝑌0 ⊆ 𝑌 is almost strongly internal
to K, then there exists a definable subset 𝑌 ′ ⊆ 𝑌0 with dp-rk(𝑌 ′) = dp-rk(𝑌0) that is strongly internal to
K. Moreover, the following are equal:

(1) dim(𝑌 )
(2) The K-rank of Y
(3) The almost K-rank of Y.

Proof. We use the fact that, in our setting, the sort K is a geometric SW-uniformity. The proof relies on
the following claim.

Claim 4.2.1. For any 𝑍 ⊆ 𝑌 , there exists 𝑍0 ⊆ 𝑍 strongly internal to K with dp-rk(𝑍0) = dim(𝑍).

Proof. Assume that 𝑍 = 𝑋 ′/𝐸 for some 𝑋 ′. Let 𝑆 ⊆ 𝑋 ′ be a definable set, as provided by Fact
4.1. That is, dim(𝑆) = dim(𝑍), and S intersects every E-class in a finite (possibly empty) set. Let
𝜋 : 𝑆 → 𝑆/𝐸 be the finite-to-one projection map; note that 𝑆/𝐸 ⊆ 𝑍 and by [30, Theorem 0.3(1)],
dp-rk(𝑆/𝐸) = dp-rk(𝑆) = dim(𝑆) = dim(𝑋 ′/𝐸).

By [13, Lemma 2.6(1)], as K is an SW-uniformity, there exists a definable subset 𝑍0 ⊆ 𝑆/𝐸 ⊆ 𝑍
strongly internal to M and satisfying dp-rk(𝑍0) = dp-rk(𝑆/𝐸) = dim(𝑍). �
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We now apply this claim to prove the statements of the corollary. First, let 𝑌0 be as in the statement;
applying the claim for 𝑍 = 𝑌0, we get 𝑌 ′ ⊆ 𝑌0 strongly internal to K with dp-rk(𝑌 ′) = dim(𝑌0). But
since 𝑌0 is almost strongly internal to 𝐾, dp-rk and dim also coincide on 𝑌0 so dp-rk(𝑌 ′) = dim(𝑌0) =
dp-rk(𝑌0).

This result assures that the K-rank and the almost K-rank of Y are equal. To conclude, note that, since
dim(𝑌 ) is obviously bounded below by the K-rank of Y, we only need to verify the other inequality. This
is immediate by applying the claim to 𝑍 = 𝑌 . �

4.2. Topology

Let G be a definable group in K, locally strongly internal to a fixed definable SW-uniformity D (for
example, 𝐷 = 𝐾). In particular, D admits a definable basis for a topology. In this section, we review
results from [13] on how to topologize G using the D-topology. For p-adically closed fields, this was
done using different techniques in [18] for the case 𝐷 = 𝐾 .

The group G is automatically a D-group by [13, Fact 4.25(1)]. By [13, Proposition 5.8], there is
a type-definable subgroup 𝜈𝐷 := 𝜈𝐷 (𝐺) of G definably isomorphic to an infinitesimal type-definable
group in D. Specifically, given any D-critical set 𝑋 ⊆ 𝐺, any definable injection 𝑓 : 𝑋 → 𝐷𝑛 (for
𝑛 = dp-rk(𝑋)) and any 𝑐 ∈ 𝑋 generic over all the data, we have (recalling that we identify partial types
with collections of definable sets):

𝜈𝐷 = { 𝑓 −1(𝑈)𝑐−1 : 𝑈 ⊆ 𝐷𝑛 definable open containing 𝑓 (𝑐)}. (2)

Before proceeding with the description of 𝜈𝐷 , we give the proof of the statement in Remark 2.12(2),
assuring that such an X can always be found.

Lemma 4.3. Let D be an unstable distinguished sort in K and G a K-definable D-group. Then there
exists a D-critical subset 𝑋 ⊆ 𝐺 and a definable injection 𝑓 : 𝑋 → 𝐷𝑚 for𝑚 = dp-rk(𝑋). In particular,
X is a D-set.

Proof. If D is an SW-uniformity, this follows from [31, Proposition 4.6], so we may assume that K is p-
adically closed and D is either Γ or 𝐾/O. If 𝐷 = Γ, this follows from cell-decomposition in Presburger
arithmetic (as referred to in the proof of Fact 5.4). If 𝐷 = 𝐾/O then by [13, Theorem 7.11(3)], there
exists a definable subgroup 𝐻 ⊆ 𝐺 with dp-rk(𝐻) = 𝑛, the 𝐾/O-rank of G, definably isomorphic to
a subgroup of ((𝐾/O)𝑟 , +) for some 𝑟 > 0. By Proposition 3.10, we may assume, replacing H with a
subgroup of the same dp-rank, that 𝑟 = 𝑛. �

We now return to the assumption that D is an SW uniformity. Note that 𝜈𝐷 is given as a definable
collection of sets {𝑈𝑡 : 𝑡 ∈ 𝑇} which forms a filter-base: for every 𝑡1, 𝑡2 ∈ 𝑇 , there is 𝑡3 ∈ 𝑇 such that
𝑈𝑡3 ⊆ 𝑈𝑡1 ∩𝑈𝑡2 . By [13, Corollary 5.14], G has a definable basis for a topology 𝜏𝐷 = 𝜏𝐷 (𝐺), making
G a non-discrete Hausdorff topological group. For the rest of this section, all topological notions in
G refer to 𝜏𝐷 .

A definable subset 𝑋 ⊆ 𝐺 is open in this topology if and only if for all 𝑎 ∈ 𝑋𝑎 ·𝜈𝐷 ⊆ 𝑋 . In particular,
dp-rk(𝑋) ≥ dp-rk(𝜈𝐷) (i.e., the dp-rank of any open definable subset of G is at least the D-rank of G).
Of course, it could be, for example, that dp-rk(𝐺) > dp-rk(𝜈𝐷), so that definable open subsets need not
all have the same dp-rank (but they all have the same D-rank).

The next lemma shows that the topology G inherits from D shares some of its good properties.
Toward that end, recall that the D-rank of a set Z is the maximal dp-rank of a definable subset strongly
internal to D. We let Fr(𝑋), the frontier of X, denote cl(𝑋) \ 𝑋 .

Lemma 4.4. If 𝑋 ⊆ 𝐺 is definable, then the D-rank of Fr(𝑋) is strictly smaller than the D-rank of X.

Proof. Let d denote the D-rank of Fr(𝑋) and let 𝑋1 ⊆ Fr(𝑋) be D-critical over A. Fix an A-generic
𝑔 ∈ 𝑋1 and 𝑌 � 𝑔 a definable basic open set. In particular, we can choose Y to be strongly internal to D.
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By definition of Fr(𝑋), it follows that Fr(𝑋) ∩ 𝑌 = Fr(𝑋 ∩ 𝑌 ). By Lemma 2.17, dp-rk(𝑋1 ∩ 𝑌 ) =
dp-rk(𝑋1). By the properties of SW-uniformities, ([31, Proposition 4.3, Lemma 2.3]), and since 𝑋∩𝑌 can
be identified with a subset of some 𝐷𝑛, dp-rk(Fr(𝑋∩𝑌 )) < dp-rk(𝑋∩𝑌 ). Thus, as 𝑋1∩𝑌 ⊆ Fr(𝑋∩𝑌 ),

𝑑 = dp-rk(𝑋1) ≤ dp-rk(Fr(𝑋 ∩ 𝑌 )) < dp-rk(𝑋 ∩ 𝑌 ).

Since 𝑋 ∩𝑌 is strongly internal to D (as Y was), its dp-rank is at most the D-rank of X, as needed. �

Lemma 4.5. If H is a definable subgroup of G, then H is closed in G and the following are equivalent:
(1) H is open,
(2) the D-ranks of H and G are equal,
(3) 𝜈𝐷 � 𝐻.
Proof. Because G is a topological group, and a basis for the topology is definable, the closure of H, call
it 𝐻1, is also a definable subgroup. Therefore, if 𝐻1 \ 𝐻 ≠ ∅, then 𝐻1 must contain a coset of H; thus,
the D-rank of 𝐻1 \ 𝐻 is at least that of H contradicting Lemma 4.4. So H is closed in G.

Now, assume that the D-ranks of H and G are equal. This implies (by definition of 𝜈𝐷) that 𝜈𝐷 � 𝐻.
Since 𝜈𝐷 is open, and H is a group, this implies that H is open. Finally, as we have seen, if H is open,
then it contains 𝜈𝐷 as a subgroup, and therefore, they have the same D-rank (since the D-rank of 𝜈𝐷 is
maximal in G). �

Definition 4.6. For G locally strongly internal to D, we let the centralizer of the type 𝜈𝐷 , denoted by
𝐶𝐺 (𝜈𝐷), be the set of all 𝑔 ∈ 𝐺 such that for some definable Y with 𝜈𝐷 � 𝑌, 𝑔 commutes with all
elements of Y.

Since, as we noted, 𝜈𝐷 is given as a definable collection of sets {𝑈𝑡 : 𝑡 ∈ 𝑇}, it follows that 𝐶𝐺 (𝜈𝐷)
is definable: 𝑔 ∈ 𝐶 (𝜈𝐷) if there exists 𝑡 ∈ 𝑇 such that 𝑔 ∈ 𝐶𝐺 (𝑈𝑡 ). Moreover, by the filter-base property
of the family, it is a subgroup of G.
Remark 4.7. Let us note that, despite its name, if K ≺ K̂, and 𝑔 ∈ 𝐶𝐺 (𝜈𝐷) (K̂), then g does not
necessarily centralize the set 𝜈𝐷 (K̂). What we know is that there exists 𝑡 ∈ 𝑇 (K̂) such that g centralizes
𝑈𝑡 (K̂) with possibly 𝑈𝑡 � 𝜈𝐷 (K).

Recall that definable sets in o-minimal structures can be decomposed into finitely many definably
connected sets (i.e., sets containing no non-trivial definable clopen sets). Thus, the same is true if 𝑋 ⊆ 𝐺
is strongly internal to an o-minimal sort D. The result below will be useful in the sequel.
Lemma 4.8. Assume that D is one of the o-minimal distinguished sorts. Assume that 𝑋 ⊆ 𝐺 is definable,
strongly internal to D and 𝑒 ∈ 𝑋 . If X is definably connected, then every 𝑔 ∈ 𝐶𝐺 (𝜈𝐷) centralizes X.
Proof. Let 𝑔 ∈ 𝐶𝐺 (𝜈𝐷). By definition, 𝜈𝐷 � 𝐶𝐺 (𝑔), so by Lemma 4.5, 𝐶𝐺 (𝑔) is a clopen subgroup
of G. Now, 𝐶𝐺 (𝑔) ∩ 𝑋 ≠ ∅ (as e is in the intersection), so definable connectedness of X implies
𝑋 ⊆ 𝐶𝐺 (𝑔). �

For the rest of this section, we focus our attention on the case 𝐷 = 𝐾 (so, in particular, it is an
SW-uniformity), and the topology we discuss below is the one coming from K.

We start with an immediate corollary of Lemma 4.5 and Corollary 4.2.
Corollary 4.9. Let G be a definable group and H a definable subgroup. Then H is open in G if and only
if dim(𝐺) = dim(𝐻).

As the distinguished sorts, Γ, k and 𝐾/O, are 0-dimensional, we get the following:
Lemma 4.10. A definable set S is K-pure if and only if every definable 0-dimensional 𝑋 ⊆ 𝑆 is finite.
Proof. Assume that 𝑋 ⊆ 𝑆 is infinite and 0-dimensional. By Fact 2.4, X (and hence also S) is locally
almost strongly internal to some distinguished sort D. Namely, there is a definable infinite 𝑋1 ⊆ 𝑋 and
a definable finite to one function 𝑓 : 𝑋1 → 𝑓 (𝑋1) ⊆ 𝐷𝑛. Since dim(𝑋1) ≥ dim( 𝑓 (𝑋1)), necessarily
dim( 𝑓 (𝑋1)) = 0 with 𝑓 (𝑋1) infinite. Hence, 𝐷 ≠ 𝐾 , so S is not K-pure.
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For the converse, assume that S is not K-pure, witnessed by a definable infinite 𝑋 ⊆ 𝑆 and a definable
finite to one function 𝑓 : 𝑋 → 𝐷𝑛 for some 𝐷 ≠ 𝐾 . Since dim(𝐷) = 0 for 𝐷 ≠ 𝐾 , it follows that
dim( 𝑓 (𝑋)) = 0, and hence, dim(𝑋) = 0. So, X is infinite and 0-dimensional. �

For the sake of completeness, we note that the 𝜏𝐾 -topology on G is locally Euclidean, in the following
sense: for every 𝑔 ∈ 𝐺, there exists a definable open 𝑈 � 𝑔, which is definably homeomorphic to an
open subset of 𝐾dim(𝐺) . Moreover, it is the unique such group topology on G.

We prove:
Lemma 4.11. The 𝜏𝐾 -topology on G (taken to be discrete if dim𝐺 = 0) is locally Euclidean, and if 𝜏
is any other locally Euclidean group topology on G, then 𝜏 = 𝜏𝐾 .

In particular, if K is a p-adically closed field, 𝜏𝐾 equals Johnson’s admissible topology from [18].

Proof. A non-discrete locally Euclidean topological group is, by definition, a K-group, so (by Corollary
4.2) dim(𝐺) > 0, and since discrete groups are trivially locally Euclidean, we assume dim(𝐺) > 0.
Since the topology is invariant under translations, it is sufficient to find a single 𝑔 ∈ 𝐺 at which
the topology is locally Euclidean. If 𝑛 = dim(𝐺) > 0, then, by Lemma 4.2, there exists a definable
𝑋 ⊆ 𝐺, dim(𝑋) = dim(𝐺), such that X is strongly internal to K, over some A, and dim(𝐺) is the K-rank
of G. Given 𝑔1 generic in X over A, it follows from Equation (2) at the beginning of Section 4.2 that there
exists a definable 𝜏𝐾 -open set 𝑈, 𝑔1 ∈ 𝑈 ⊆ 𝑋 , which is definably homeomorphic to an open set in 𝐾𝑛.

Now, assume that 𝜏1, 𝜏2 are two locally Euclidean group topologies on G. Then for 𝑔 ∈ 𝐺, there
are definable 𝑈1,𝑈2 � 𝑔, 𝑈𝑖 a 𝜏𝑖-open set, and definable 𝑓𝑖 : 𝑈𝑖 → 𝑉𝑖 ⊆ 𝐾𝑛, such that each 𝑓𝑖 is a
homeomorphism between 𝑈𝑖 with the 𝜏𝑖-topology and open 𝑉𝑖 with the 𝐾𝑛-topology.

The map 𝑓2 𝑓
−1
1 : 𝑓1(𝑈1 ∩𝑈2) → 𝑉2, is a definable injection. However, in SW-uniformities, definable

bijections are homeomorphisms at generic points, [31, Corollary 3.8]. Thus, there is some 𝑔1 ∈ 𝑈1 ∩𝑈2
such that on 𝜏1, 𝜏2 open neighborhood of 𝑔1, the two topologies agree. Thus, 𝜏1 = 𝜏2.

Since Johnson’s admissible topology is locally Euclidean, the two topologies are the same. �

Using the exact same proof as above, one can show that for any distinguished sort D which is an
SW-uniformity, if G is locally strongly internal to D, then every 𝑔 ∈ 𝐺 has a 𝜏𝐷-open neighborhood
which is definably homeomorphic to an open set in 𝐷𝑚, where m is the D-rank of G.

5. The infinitesimal group 𝜈𝐷 and local (differentiable) groups

In Section 2.5, we gave an abstract description of 𝜈𝐷 (𝐺) for an infinite definable D-group G and an
unstable distinguished sort D. In the present section, we collect – for later use – more specific information
on the construction of 𝜈𝐷 (𝐺), as D ranges over the various distinguished sorts in the different settings
we are interested in. Throughout, we fix an infinite group G definable in K.

5.1. The sort of closed 0-balls 𝐾/O
Let G be an infinite definable 𝐾/O-group. In each of our three settings, there exists a definable subgroup
𝐻 ⊆ 𝐺 definably isomorphic to a subgroup of ((𝐾/O)𝑚, +) for some 𝑚 > 0, such that dp-rk(𝐻) is the
𝐾/O-rank of G [13, Theorems 7.4(4), 7.7(4), 7.11(3)]. By Lemma 3.5 (if K is V-minimal or power-
bounded T-convex), or by Proposition 3.10 (if K is p-adically closed), we can, after possibly shrinking
H but not its dp-rank, choose 𝑚 = dp-rk(𝐻).

Recall that the valuation descends to 𝐾/O and (𝐾/O)𝑛, and hence, so does the notion of a ball.
However, we reserve the term ‘ball’ for an infinite set; thus, in the p-adically closed case, we require the
valuative radius to be infinitely negative (i.e., smaller than n for all 𝑛 ∈ Z).

We may now further assume that H is definably isomorphic to a definable ball (of the same rank)
centered at 0:
Fact 5.1. For any A-definable set 𝑋 ⊆ (𝐾/O)𝑛 with dp-rk(𝑋) = 𝑛 and any A-generic 𝑎 ∈ 𝑋 , there exists
a ball 𝐵 ⊆ 𝑋 with 𝑎 ∈ 𝐵.
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Proof. If K is power-bounded T-convex or V-minimal, then this is [31, Corollary 2.7], and if K is
p-adically closed, this is [13, Lemma 3.6]. �

We can now give, keeping the above notation and assumptions, a more specific description of the
construction of 𝜈𝐾/O:

Lemma 5.2. Let 𝑓 : 𝐻 → (𝐾/O)𝑛 be an A-definable injective homomorphism, dp-rk(𝐻) = 𝑛 the
𝐾/O-rank of G. Then

𝜈𝐾/O = { 𝑓 −1(𝑈) : 𝑈 ⊆ (𝐾/O)𝑛 is an open ball in(𝐾/O)𝑛centered at 0}.

Proof. Let 𝜈1 := { 𝑓 −1(𝑈) : 𝑈 ⊆ (𝐾/O)𝑛 is an open ball in(𝐾/O)𝑛centered at 0}.
By definition, 𝜈𝐾/O = 𝜈𝐻 (𝑐)𝑐−1 for any A-generic 𝑐 ∈ 𝐻. Let 𝐻1 := 𝑓 (𝐻) ≤ (𝐾/O)𝑛. Since

dp-rk(𝐻1) = 𝑛, by Fact 5.1, we may assume, shrinking H (but not its rank) if needed, that 𝐻1 is a ball
in (𝐾/O)𝑛.

We first show that 𝜈𝐾/O � 𝜈1. Let 𝑈 ⊆ 𝐻1 be an open ball, 0 ∈ 𝑈. By [12, Proposition 3.12] (if K is
power-bounded T-convex or V-minimal) or [13, Proposition 3.8] (if K is p-adically closed), there exists
a ball 𝑌 ⊆ 𝑈 + 𝑓 (𝑐), 𝑓 (𝑐) ∈ 𝑌 , definable over some 𝐵 ⊇ 𝐴 such that dp-rk( 𝑓 (𝑐)/𝐵) = 𝑛. Since 𝐻1
is a subgroup, we have 𝑌 ⊆ 𝐻1. Now, as f is a group homomorphism, 𝑓 −1(𝑌 − 𝑓 (𝑐)) = 𝑓 −1(𝑌 )𝑐−1 ⊆

𝑓 −1(𝑈), 𝑐 ∈ 𝑓 −1(𝑌 ), and dp-rk(𝑐/𝐵) = 𝑛. Thus, by the definition of 𝜈𝐾/O, we have 𝜈𝐾/O � 𝑓 −1(𝑈),
so 𝜈𝐾/O � 𝜈1.

Similarly, 𝑓 (𝜈1)𝑐 � 𝜈𝐻1 (𝑐), so we conclude that 𝜈1 � 𝜈𝐾/O. �

5.2. The valuation group Γ.

When K is either power bounded T-convex or V-minimal, the valuation group Γ is o-minimal; when
it is p-adically closed, it is a model of Presburger arithmetic. In order to get a uniform treatment (and
formulation of results), we make the following definition:

Definition 5.3. A subset 𝐵 ⊆ Γ𝑛 is called a Γ-box (around 𝑎 = (𝑎1, . . . , 𝑎𝑛)) if it is of the following
form:

(1) (In the non p-adic case)
∏𝑛
𝑖=1(𝑏𝑖 , 𝑐𝑖) for some 𝑏𝑖 < 𝑎𝑖 < 𝑐𝑖 in Γ.

(2) (In the p-adic case) A cartesian product of n-many sets of the form (𝑏𝑖 , 𝑐𝑖) ∩ {𝑥𝑖 : 𝑥𝑖 − 𝑎𝑖 ∈ 𝑃𝑚𝑖 }
where both intervals (𝑏𝑖 , 𝑎𝑖) and (𝑎𝑖 , 𝑐𝑖) are infinite and 𝑃𝑚𝑖 is the predicate for 𝑚𝑖-divisibility.

Fact 5.4. Let 𝑌 ⊆ Γ𝑚 be a definable set with dp-rk(𝑌 ) = 𝑛 ≤ 𝑚. Then there exists a definable 𝑍 ⊆ 𝑌
with dp-rk(𝑍) = 𝑛 projecting injectively onto a Γ-box in Γ𝑛.

Proof. If K is power-bounded T-convex or V-minimal, Γ is o-minimal and the result follows by cell-
decomposition.

If K is p-adically closed, then Γ is a model of Presburger arithmetic. It also admits a cell-
decomposition [5] (see also [21, Fact 2.4] for a more explicit formulation), and thus, the result follows
from the fact that dimension coincides with dp-rank ([30, Theorem 0.3]). �

Using Fact 5.4 and [13, Lemma 4.2] repeatedly (as in the proof of Lemma 5.2 above), we get the
following.

Lemma 5.5. Let G be a definable Γ-group and 𝑔 : 𝑌 → Γ𝑛 be a definable injection with dp-rk(𝑌 ) = 𝑛
the Γ-rank of G. Assume everything is defined over some parameter set A, and 𝑐 ∈ 𝑌 is A-generic. Then

𝜈𝑌 (𝑐) = {𝑔−1(𝑈) : 𝑈 ⊆ Γ𝑛 aΓ-box around𝑔(𝑐)}.

We can now conclude:

Lemma 5.6. Let G be a definable Γ-group. There exists 𝑋 ⊆ 𝐺, a Γ-critical set with 𝜈Γ � 𝑋 , and
𝑓 : 𝑋 → Γ𝑛 a definable injection satisfying:
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(1) 𝑓 (𝑋) is a Γ-box around 0,
(2) 𝑓 (𝑥𝑦±1) = 𝑓 (𝑥) ± 𝑓 (𝑦) for any 𝑥, 𝑦 ∈ 𝑋 with 𝑥𝑦±1 ∈ 𝑋 and
(3) 𝜈Γ = { 𝑓 −1(𝑈) : 𝑈 ⊆ Γ𝑛 aΓ-box around 0}.

Proof. By [13, Theorems 7.4(3), 7.7(3), 7.11(2)], 𝜈Γ is definably isomorphic (as groups) to a type-
definable subgroup of (Γ𝑟 , +) for some 𝑟 > 0, and using Fact 5.4, we may further assume that 𝑟 = 𝑛.
As this isomorphism is witnessed by an isomorphism of groups, the result follows by compactness and
Lemma 5.5. �

5.3. The valued field and the residue field

For this section, D is either the valued field K or the residue field k when K is power bounded T-convex.
We first describe the infinitesimal group 𝜈𝐷 and then show how in these situations, the type-definable
group 𝜈𝐷 gives rise to a definable, differentiable local group with respect to either K or k.

5.3.1. Local differential groups
Let ℱ be an expansion of either a real closed field or a valued field with valuation v. Let us recall some
standard definitions. We later apply them for when ℱ = 𝐷.

Definition 5.7. Given 𝑈 ⊆ ℱ𝑛 open, a map 𝑓 : 𝑈 → ℱ𝑚 is differentiable at 𝑥0 ∈ 𝑈 if there exists a
linear map 𝐷𝑥0 𝑓 : ℱ𝑛 → ℱ𝑚 such that

In the ordered case,

lim
𝑥→𝑥0

| 𝑓 (𝑥) − 𝑓 (𝑥0) − (𝐷𝑥0 𝑓 ) · (𝑥 − 𝑥0) |

|𝑥 − 𝑥0 |
= 0,

and in the valued case,

lim
𝑥→𝑥0

[
𝑣( 𝑓 (𝑥) − 𝑓 (𝑥0) − (𝐷𝑥0 𝑓 ) · (𝑥 − 𝑥0)) − 𝑣(𝑥 − 𝑥0)

]
= ∞.

Also, in the valued setting, f is called strictly differentiable at 𝑥0 if there exists a linear map 𝐷𝑥0 𝑓
which satisfies: for all 𝜖 ∈ Γ, there exists 𝛿 ∈ Γ, such that for all 𝑥1, 𝑥2 ∈ 𝐵>𝛿 (𝑥0),

𝑣( 𝑓 (𝑥1) − 𝑓 (𝑥2) − (𝐷𝑥0 𝑓 ) · (𝑥1 − 𝑥2)) − 𝑣(𝑥1 − 𝑥2) > 𝜖.

We are going to work extensively with the notion of a local group, so we first recall some additional
definitions:

Definition 5.8. A local group with respect to ℱ is a tuple G = (𝑋, 𝑚, 𝜄, 𝑒) such that

◦ X is a topological space, and there exists a homeomorphism 𝜑 : 𝑈 → 𝑉 between an open neighborhood
of e in X and an open 𝑉 ⊆ ℱ𝑛, for some n.

◦ the maps 𝑚 : 𝑋 × 𝑋 � 𝑋 and 𝜄 : 𝑋 � 𝑋 are continuous partial functions, with open domains
containing (𝑒, 𝑒) and e, respectively.

such that the following equalities hold whenever both sides of the equations are defined:

(1) For any 𝑥 ∈ 𝑋, 𝑥 = 𝑚(𝑥, 𝑒) = 𝑚(𝑒, 𝑥)
(2) For any 𝑥 ∈ 𝑋, 𝑒 = 𝑚(𝑥, 𝜄(𝑥)) = 𝑚(𝜄(𝑥), 𝑥).
(3) For all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑚(𝑥, 𝑚(𝑦, 𝑧)) = 𝑚(𝑚(𝑥, 𝑦), 𝑧).

The local groupG is differentiable if 𝜑(𝑚(𝜑−1 (𝑥), 𝜑−1(𝑦)) and 𝜑(𝜄(𝜑−1 (𝑥)) are differentiable. Strictly
differentiable local groups are defined analogously.

The local group G is definable in ℱ, if 𝑋, 𝑚, 𝜄 and 𝜑 are definable.
For G a definable group, a definable local subgroup with respect to ℱ is a local subgroup with respect

to ℱ whose universe is a definable subset of G and whose multiplication agrees with G-multiplication.
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Definition 5.9. Let G = (𝑋, 𝑚, 𝑒, 𝜄) and G ′ = (𝑋 ′, 𝑚′, 𝑒′, 𝜄′) be local groups. A homomorphism of local
groups 𝑓 : G → G ′ is a continuous function 𝑓 : 𝑈 → 𝑋 ′, where 𝑈 ⊆ 𝑋 is an open neighborhood of
e, such that 𝑓 (𝑒) = 𝑒′ and 𝑓 (𝑚(𝑥, 𝑦)) = 𝑚( 𝑓 (𝑥), 𝑓 (𝑦)) in a neighborhood of e. Such an f is a local
isomorphism if, in addition, it is a homeomorphism onto its image. If G,G ′ are (strictly) differentiable
local groups, then such an f is (strictly) differentiable if 𝜑′ ◦ 𝑓 ◦ 𝜑−1 is (strictly) differentiable.

For G a definable group, a local subgroup G is called normal in G if for every 𝑔 ∈ 𝐺, the map
𝑥 ↦→ 𝑥𝑔 restricts to a local automorphism of G. In particular – in the notation of local subgroups – for
any definable open neighborhood 𝑈 ⊆ 𝑋 of e, there exists an open neighborhood 𝑉 ⊆ 𝑋 of e such that
𝑥 ↦→ 𝑥𝑔 maps V into U.

Assume further that every definable function in ℱ is (strictly) generically differentiable (i.e., for
every definable open 𝑈 ⊆ ℱ𝑛, and definable 𝑓 : 𝑈 → ℱ, the set of points 𝑥 ∈ 𝑈 such that f is not
(strictly) differentiable at x has empty interior). See [12, Section 4.3] for more information.

Now, if G,G ′ as above are (strictly) differentiable local groups and 𝑓 : G → G ′ is a definable
homomorphism of local groups, then f is also (strictly) differentiable. Indeed, since definable functions
are generically (strictly) differentiable with respect toℱ, the corresponding map 𝜑′◦ 𝑓 ◦𝜑 isℱ-(strictly)
differentiable at a generic point, and then, using the local group structure, it is (strictly) differentiable
on an open neighborhood of e.

Definition 5.10. Let G be a definable group in M and let G = (𝑋, ·,−1 ) be a differentiable normal local
subgroup of G with respect to ℱ, witnessed by a map 𝜑 : 𝑋 → ℱ𝑛. The Adjoint map with respect to
ℱ is the map AdG

ℱ
: 𝐺 → GL𝑛 (ℱ), which assigns to every 𝑔 ∈ 𝐺 the Jacobian matrix of the map

𝐷𝑒 (𝜑 ◦ 𝜏𝑔 ◦ 𝜑
−1).

By the chain rule in ℱ, AdG
ℱ

is a group homomorphism.
Note that while the matrix 𝐷𝑒 (𝜏𝑔) may depend on the choice of 𝜑 (up to conjugation), the definable

group ker(AdG
ℱ
) does not.

5.3.2. The infinitesimal group
Under the assumptions of this section, the sort D is an SW-uniformity expanding a field. Therefore, if
𝑋 ⊆ 𝐷𝑘 is definable, 𝑓 : 𝑋 → 𝐷𝑚 is a definable injection, then by possibly shrinking X, but not its
rank, we may compose f with a projection 𝜋 : 𝑋 → 𝐷dp-rk(𝑋 ) such that 𝜋 ◦ 𝑓 (𝑋) is a basic open set.

Furthermore, every definable function in D is generically differentiable with respect to D in the o-
minimal case and generically strictly differentiable in the valued case. Indeed, if 𝐷 = k in the power
bounded T-convex case, then k is a o-minimal, so every definable function is generically differentiable.
In the other cases, it follows from 1-h-minimality ([1, Proposition 3.12]).

Fact 5.11. Let G be a definable D-group, locally strongly internal to D over A, witnessed by the definable
injection 𝑓 : 𝑋 → 𝐷𝑛, with dp-rk(𝑋) = 𝑛, the D-rank of G. Given 𝑐 ∈ 𝑋 , generic over A,

𝜈𝐷 (𝐺) = { 𝑓 −1(𝑈)𝑐−1 : 𝑈 ⊆ 𝐷𝑛 open containing 𝑓 (𝑐)}.

Proof. By [13, Proposition 5.6], for 𝑐 ∈ 𝑋, 𝐴-generic 𝜈𝑋 (𝑐) = 𝑓 −1(𝜇( 𝑓 (𝑐)), where 𝜇( 𝑓 (𝑐)) is the
infinitesimal neighborhood of 𝑓 (𝑐) in the topology on D. The result now follows. �

Lemma 5.12. Let G be a definable D-group locally strongly internal to D.
Then there exists a definable differentiable local normal subgroup G = (𝑋, ·,−1 , 𝑒) with respect to

the field D, with 𝜈𝐷 (𝐺) � 𝑋 . When 𝐷 = 𝐾 the local group is strictly differentiable.
If G is definable over some K0 ≺ K, then the local group and the map 𝜑 : 𝑋 → 𝐷𝑛 witnessing it can

be found definable over K0.

Proof. Let 𝜈𝐷 = 𝜈𝐷 (𝐺). By Fact 5.11, 𝜈𝐷 � 𝑋 , for some definable 𝜈𝐷-open set 𝑋 ⊆ 𝐺, and there exists
a definable injection 𝜑 : 𝑋 → 𝐷𝑛, with 𝜑(𝑋) a definable open subset of 𝐷𝑛 and n the D-rank of G
(indeed, in the notation of the above Fact, replace 𝑋𝑐−1 by X).
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Let K̂ � K be a |K|+ saturated elementary extension. By [13, Theorem 7.4(1,2), Theorem 7.7(1),
Theorem 7.11(1)], 𝜈𝐷 (K̂) is a (differentiable) Lie group with respect to the structure induced by 𝜑.
Furthermore, since every definable function in the valued field case is generically strictly differentiable,
a similar proof shows in this case that 𝜈𝐷 (K̂) is a strictly differentiable Lie group. Furthermore,
𝑔𝜈𝐷𝑔

−1 = 𝜈𝐷 for any 𝑔 ∈ 𝐺 (K) (Fact 2.14).
Using compactness, we can endow X with the structure of a (strictly) differentiable local normal

subgroup of G with respect to the field D.
Lastly, if G is definable over K0, then since the existence of X and 𝜑 with the desired properties is

first order, such can be found over K0 as well. �

Combining the last lemma with Definition 5.10, we can find a definable group representation AdG𝐷 :
𝐺 → GL𝑛 (𝐷), for n the D-rank of G. As noted after Definition 5.10, the map AdG𝐷 depends on G (i.e.,
on X and 𝜑), only up to a change of coordinates. In particular, the group ker(AdG𝐷) does not depend on
the choice of G, and the image AdG𝐷 (𝐺) is independent of G, up to conjugation. As for the latter, since
we do not care about the particular embedding in GL𝑛 (𝐷), the choice of G is unimportant, and we will
write, from now on, Ad𝐷 (𝐺) without specifying any choice of local subgroup G.

For future reference, we single out the following corollary of Lemma 5.12 and the above discussion:

Remark 5.13. Given a D-group G defined over a model K0, the subgroup ker(Ad𝐷 (𝐺)) is definable
over K0.

6. Groups locally strongly internal to Γ

As above, K denotes a saturated model of one of our valued fields, Γ its valued group. Since Γ𝑛 and
(𝐾/O)𝑛 are commutative, so are their (local) subgroups. In the present and the next section, we show
that this is reflected in a strong sense in definable Γ-groups or 𝐾/O-groups. For Γ-groups, we get a clean
result: definable Γ-groups contain infinite definable normal abelian subgroups. We prove (keeping the
notation and conventions of the previous sections):

Proposition 6.1. Assume that G is a definable group locally strongly internal to Γ. Then G contains
a definable normal subgroup 𝐺1 of finite index, defined over the same parameters as G, such that
𝜈Γ � 𝑍 (𝐺1). In particular, G contains a definable (over the same parameter set) infinite normal abelian
subgroup.

The proof splits between the p-adic case (where Γ is discrete) and the remaining cases (where Γ is
dense and o-minimal).

6.1. K𝑝-adically closed

We assume that K is p-adically closed, and thus, Γ is a model of Presburger arithmetic. Let Z be a prime
(and minimal) model for Γ. We denote by Z𝑃𝑟𝑒𝑠 the structure (Z, +, <).

Before proceeding to the proof of Proposition 6.1 in this setting, we need some preparatory results:

Lemma 6.2. For any definable family, {𝑋𝑡 }𝑡 ∈𝑇 , of subsets of Γ𝑛 the family {𝑋𝑡 ∩ Z
𝑛}𝑡 ∈𝑇 is definable

in Z𝑃𝑟𝑒𝑠.

Proof. Because K is p-adically closed, Γ is stably embedded, so we may assume that 𝑇 ⊆ Γ𝑘 for some
k. Since in Presburger arithmetic types over Z are (uniformly) definable, the family {𝑋𝑡 ∩ Z

𝑛 : 𝑡 ∈ 𝑇} is
definable in Z𝑃𝑟𝑒𝑠. See [7, Theorem 0.7] (and also [8]). �

Lemma 6.3. Let {𝑋𝑡 : 𝑡 ∈ 𝑇} be a definable family of subsets of Γ𝑛 and assume that for all 𝑡 ∈ 𝑇, 𝑋𝑡∩Z𝑛
contains a subgroup of Z𝑛 of finite index. Then there is a uniform upper bound on 𝑙 (𝑡), the minimal
𝑙 ∈ N such that 𝑋𝑡 ∩ Z𝑛 contains a subgroup Z𝑛 of index l.
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Proof. Assume toward a contradiction that there is no bound on 𝑙 (𝑡) for 𝑡 ∈ 𝑇 . So the following type is
consistent:

𝜌(𝑡) := {𝐷 � 𝑋𝑡 : 𝐷 ⊆ Z𝑛 finite, generating a definable subgroup of finite index},

contradicting the assumption. �

Lemma 6.4.

(1) Let𝑌 ⊆ Γ𝑛 be a definable set. If𝑌 ∩Z𝑛 contains a subgroup of Z𝑛 of finite index, then dp-rk(𝑌 ) = 𝑛.
(2) Every finite index subgroup 𝐻 ≤ Γ𝑛 is definable.

Proof. By Fact 6.2, 𝑌 ∩ Z𝑛 is definable in Z𝑃𝑟𝑒𝑠, as a subset of Z𝑛. Since it contains a finite index
subgroup, it has dp-rank n. Thus, we have Z𝑝𝑟𝑒𝑠 ≺ Γ and dp-rk(𝑌 ∩ Z𝑛) = 𝑛. It follows by [12, Lemma
3.10] that dp-rk(𝑌 ) = 𝑛. For Clause (2), let 𝐻 ≤ 𝐺 be a definable subgroup of finite index, and note
that since H has finite index, there is 𝑘 ∈ N such that the map 𝑥 ↦→ 𝑘𝑥 sends Γ𝑛 into H. Because 𝑘Γ𝑛

has finite index in Γ𝑛, it follows that H is a union of finitely many cosets of 𝑘Γ𝑛, 𝐻 is definable. �

Recall Definition 5.3 of a Γ-box.

Lemma 6.5. Let 𝑌 ⊆ Γ𝑛 be a definable set such that 𝑌 ∩Z𝑛 contains a subgroup H of Z𝑛 of finite index.
Assume that { 𝑓𝑡 }𝑡 ∈𝑇 is a definable family of definable functions 𝑓𝑡 : 𝑌 → 𝑌 such that for all 𝑎, 𝑏 ∈ 𝑌
with 𝑎 + 𝑏 ∈ 𝑌 , we have 𝑓𝑡 (𝑎 + 𝑏) = 𝑓𝑡 (𝑎) + 𝑓𝑡 (𝑏). Then

(1) For every 𝑡 ∈ 𝑇, 𝑓𝑡 (𝐻) ⊆ Z𝑛.
(2) The family { 𝑓𝑡 � 𝐻 : 𝑡 ∈ 𝑇} is uniformly definable in Z𝑃𝑟𝑒𝑠 and therefore finite.

Proof. Assume everything is definable over some parameter set A. By stable embeddedness of Γ, the
family { 𝑓𝑡 : 𝑡 ∈ 𝑇} is uniformly definable in Γ, so we may assume that 𝑇 ⊆ Γ𝑘 . Since H is a subgroup
of finite index of Z𝑛, it is generated by some finite set {𝑚1, . . . , 𝑚𝑠} ⊆ Z

𝑛.
(1) Fix some 𝑡 ∈ 𝑇 . It suffices to prove that each coordinate function of 𝑓𝑡 sends H into Z. So we may

assume 𝑓𝑡 : 𝑌 → Γ. Let 𝑐 ∈ 𝑌 be A-generic in Y.
Since dp-rk(𝑌 ) = 𝑛, it follows from cell decomposition, [5, Theorem 1] and [21, Lemma 3.4] that

there is an A-definable n-dimensional Γ-box, 𝐵 =
∏
𝑖 𝐽𝑖 ⊆ 𝑌 , centered at 𝑐 = (𝑐1, . . . , 𝑐𝑛) ∈ 𝐵, such that

( 𝑓𝑡 � 𝐵) (𝑥) =
∑
𝑖

𝑠𝑖

(
𝑥 − 𝑡𝑖
𝑘𝑖

)
+ 𝛾,

with 𝛾 ∈ Γ𝑛, 𝑠𝑖 , 𝑡𝑖 , 𝑘𝑖 ∈ N and 𝐽𝑖 = 𝐼𝑖 ∩ {𝑥 − 𝑡𝑖 ∈ 𝑃𝑘𝑖 }, for some infinite interval 𝐼𝑖 .
By shrinking B, if needed (over the same parameters), we may assume that B is a product of boxes

of the form 𝐼𝑖 ∩ 𝑃𝑘 (𝑥𝑖 − 𝑡𝑖) (i.e., that 𝑘𝑖 = 𝑘 for all i).
Note that for every 𝑟 ∈ Z𝑛, we have by the above description of 𝑓𝑡 that 𝑓𝑡 (𝑐 + 𝑘𝑟) − 𝑓𝑡 (𝑐) ∈ Z. In

particular, if 𝑚𝑖 , 1 ≤ 𝑖 ≤ 𝑠, is any of the generators of H we fixed earlier, then we have 𝑐, 𝑐 + 𝑘𝑚𝑖 and
𝑘𝑚𝑖 all in Y, so by the additivity assumptions,

𝑓𝑡 (𝑘𝑚𝑖) = 𝑓𝑡 (𝑐 + 𝑘𝑟) − 𝑓𝑡 (𝑐) ∈ Z.

However, since 𝑓𝑡 (𝑘𝑚𝑖) = 𝑘 𝑓𝑡 (𝑚𝑖), this implies that 𝑓𝑡 (𝑚𝑖) ∈ Z and, as this is true of a set of
generators of H, we see that 𝑓𝑡 (𝐻) ⊆ Z, as claimed.

(2) The first part of the claim is a consequence of Fact 6.2 using Lemma 6.4. The second part
follows from quantifier elimination in Presburger arithmetic, by noting that any definable family of
group homomorphisms is finite (see also [21, Fact 2.10]). �

We can now give the proof of Proposition 6.1 in p-adic case.
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Proof of Proposition 6.1 in the p-adic case. We assume that G is locally strongly internal to Γ. By
Lemma 5.6, there are a definable 𝑋 ⊆ 𝐺, with 𝜈Γ � 𝑋 , and a definable function, 𝑓 : 𝑋 → Γ𝑛, with
dp-rk(𝑋) = 𝑛 for n the Γ-rank of G. For simplicity of notation, identify X with its image in Γ𝑛 and 𝑒𝐺
with 0Γ𝑛 . We may further assume that, restricted to 𝑋, 𝐺-multiplication coincides with addition and
the same for the inverse. By Lemma 5.6, we may further assume that 𝜈Γ is the intersection of Γ-boxes
around 0. We fix one such Γ-box 𝐵 ⊆ 𝑋 ⊆ Γ𝑛, 𝜈Γ � 𝐵.

By [13, Proposition 5.8], 𝑔𝜈Γ𝑔−1 = 𝜈Γ for every 𝑔 ∈ 𝐺, and thus, 𝜈Γ � 𝐵𝑔 ∩ 𝐵. By compactness, for
every 𝑔 ∈ 𝐺, there exists a Γ-box 𝐵0 ⊆ 𝐵 ∩ 𝐵𝑔 around 0. By Lemma 6.5(1), 𝐵 ∩ Z𝑛 is a subgroup of
Z𝑛 of finite index (though 𝐵𝑔 need not be contained in Γ𝑛).

By Lemma 6.3, there is some natural number k such that for any 𝑔 ∈ 𝐺, 𝐵𝑔 ∩ 𝐵 contains a box 𝐵𝑔
with 𝐵𝑔 ∩ Z

𝑛 a subgroup of index at most k in Z𝑛. Consequently, there exists some subgroup 𝐻 ⊆ Z𝑛

of finite index such that 𝐻 ⊆ 𝐵 ∩ 𝐵𝑔 ∩ Z𝑛 for all g.
Let𝑌 =

⋂
𝑔∈𝐺

𝐵𝑔. It is a definable set, contained in 𝐵 ⊆ Γ𝑛, invariant under conjugation by all elements

of G and containing H. Let 𝑌0 := 𝑌 ∩Z𝑛 (note that 𝐻 ⊆ 𝑌0), and for every 𝑔 ∈ 𝐺 let 𝜏𝑔 : 𝑌 → 𝑌 , denote
the restriction of conjugation by g to Y. By Lemma 6.5(1), 𝜏𝑔 (𝐻) ⊆ Z𝑛. By Lemma 6.5(2), {𝜏𝑔 � 𝐻}𝑔∈𝐺
is a family of group homomorphisms uniformly definable in Z, so it is finite. We may now replace H by
the (finite) intersection of all 𝜏𝑔 (𝐻), and obtain another subgroup of Z𝑛 of finite index. Thus, we may
assume that H is invariant under all 𝜏𝑔.

Let R be a finite set of generators for H and let 𝐸 (𝑔, ℎ) be the definable equivalence relation on
G given by 𝑑𝑔 = 𝑑ℎ for all 𝑑 ∈ 𝑅. Since addition on H coincides with Γ-multiplication, and for all
𝑔, ℎ ∈ 𝐺, both 𝜏𝑔 � 𝐻 and 𝜏ℎ � 𝐻 are homomorphisms preserving H, it follows that 𝐸 (𝑔, ℎ) holds
if and only if 𝜏𝑔 � 𝐻 = 𝜏ℎ � 𝐻. The definable quotient 𝐺/𝐸 can be identified with a finite subgroup
of Aut(𝐻), and the map 𝜎 : 𝐺 → 𝐺/𝐸 is a definable group homomorphism. Its kernel, call it 𝐺1,
is a definable normal subgroup of G of finite index, that – by definition – centralizes H, and hence,
𝐻 ⊆ 𝑍 (𝐺1). We claim that 𝜈Γ � 𝑍 (𝐺1).

By Lemma 6.4(2), H is definable inZ𝑃𝑟𝑒𝑠 and 𝑍 (𝐺1) contains all finite boxes of the form [−𝑎, 𝑎]𝑛∩𝐻,
for 𝑎 ∈ N. Since H is definable, 𝑍 (𝐺1) must contain a set of the form 𝐼𝑛 ∩𝐻 (K), for an infinite interval
𝐼 ⊆ Γ, so in particular, it contains a Γ-box. It follows that 𝜈Γ � 𝑍 (𝐺1), and therefore, 𝑍 (𝐺1) is a
definable infinite normal subgroup of G. �

We postpone the proof that 𝐺1 can be taken to be definable over the same parameters as G to the
next section (since the proof is similar).

6.2. K is power bounded T-convex or V-minimal

We now assume that K is either power bounded T-convex or V-minimal, so that Γ is an (o-minimal)
ordered vector space. Recall Definition 5.3 of a Γ-box.

Proof of Proposition 6.1 for o-minimal Γ. By the description of 𝜈Γ (Lemma 5.6), there exists a definable
subset 𝑋 ⊆ 𝐺, with 𝜈 � 𝑋 , definably isomorphic to a Γ-box (around 0) in Γ𝑛. Identifying X with its
image, we assume (by compactness) that for every 𝑥, 𝑦 ∈ 𝑋 with 𝑥𝑦±1 ∈ 𝑋 , we have 𝑥𝑦±1 = 𝑥 ± 𝑦. �

Because Γ is o-minimal, and X is identified with a Γ-box in Γ𝑛, there is a definable neighborhood
base, {𝑊𝑡 : 𝑡 ∈ 𝑇}, of 0 in X.

For every 𝑔 ∈ 𝐺, let 𝜏𝑔 denote the map 𝑥 ↦→ 𝑥𝑔, and for 𝑔, ℎ ∈ 𝐺, write 𝑔 ∼ ℎ if 𝜏𝑔 and 𝜏ℎ have the
same germ at 0; namely, there exists an open neighborhood𝑈 ⊆ Γ𝑛 of 0, such that 𝜏𝑔 |𝑈 = 𝜏ℎ |𝑈. By the
above, this is a definable equivalence relation. Let 𝜎 be the definable function mapping 𝑔 ∈ 𝐺 to [𝑔]∼.
It is a homomorphism of groups, with the group operation on the set of equivalence classes given by
composition of germs.

We know that for every 𝑔 ∈ 𝐺, 𝜈𝑔 = 𝜈 (as types), and thus, there is some 𝑊𝑡 ⊆ 𝑋 such that 𝑊𝑔
𝑡 ⊆ 𝑋

is also a neighborhood of 0. So 𝜎(𝐺) can be viewed as a definable family of definable germs on X. Since
Γ is a pure ordered vector space over a field F (the field of exponents in the o-minimal T), it follows that
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𝜎(𝐺) is finite. Indeed, by [34, §1.7 Corollary 7.6], each germ is the restriction of some 𝑇 ∈ GL𝑛 (𝐹) to
an open neighborhood of 0. Since each such T is ∅-definable, a definable family of such germs must be
finite.

Hence, the definable group 𝐺1 := ker(𝜎) has finite index in G.
By definition, for every 𝑔 ∈ 𝐺1, there exists a 𝜏Γ-open neighborhood of 0, on which 𝑥𝑔 = 𝑥. Thus,

𝐺1 ⊆ 𝐶𝐺 (𝜈Γ) (recall Definition 4.6). Since 𝑋 ⊆ Γ𝑛 is a Γ-box, it is definably connected, so we may
apply Lemma 4.8 and conclude that 𝑋 ⊆ 𝐶𝐺 (𝜈Γ)

By Lemma 2.16, 𝜈Γ � 𝐺1. Thus, 𝜈Γ � 𝑋 ∩ 𝐺1 ⊆ 𝑍 (𝐺1), as claimed. Since 𝐺1 is normal in G, it
follows that 𝑍 (𝐺1) is a definable infinite abelian normal subgroup of G.

Finally, let us verify that in both the current case, and in the p-adically closed case, we can replace
𝐺1 with a subgroup defined over the same parameters as G. Without loss of generality, assume that G
is ∅-definable and let {𝐺𝑠 : 𝑠 ∈ 𝑆} be a ∅-definable family of normal subgroups of G whose index in G
is [𝐺 : 𝐺1], and such that 𝐺1 = 𝐺𝑠 for some 𝑠 ∈ 𝑆. We may further assume that for each 𝑠 ∈ 𝑆, 𝑍 (𝐺𝑠)

has a definable subset which is in definable bijection with a Γ-box (in Γ𝑛) around 0. By Lemma 5.5,
𝜈Γ � 𝑍 (𝐺𝑠). By Fact 2.19,

⋂
𝑠 𝐺𝑠 has finite index in G. It is ∅-definable, and its center contains 𝜈Γ.

We have thus finished the proof of Proposition 6.1 in all cases.

7. Groups locally strongly internal to 𝐾/O.

We still assume K is a saturated model in one of our cases. In the present section, we extend the results
of the previous section from Γ-groups to 𝐾/O-groups. The result we get is somewhat weaker. Explicitly,
we prove the following:

Proposition 7.1. Let K0 ≺ K be an elementary substructure, G a K0-definable 𝐾/O-group not locally
strongly internal to k. Let A = {𝜆𝑠 : 𝑠 ∈ 𝑆} be a K0-definable family of automorphisms of G, fixing the
partial type 𝜈𝐾/O. Then there is a 𝐾0-definable normal abelian subgroup 𝑁 ≤ 𝐺 which is stabilized
under all of the 𝜆𝑔 such that 𝜈𝐾/O � 𝑁 . In particular, dp-rk(𝑁) is at least the 𝐾/O-rank of G.

Remark 7.2. For convenience of presentation, we chose in Proposition 7.1 a uniform statement for all
cases. However, in fact, the results are slightly stronger in each case. For p-adically closed fields, the
assumption that G is not locally strongly internal to k is vacuous, while in the remaining cases, we obtain
a group invariant under all definable automorphisms of G (without the need to fix a family in advance).

We say that a subgroup 𝐻 ≤ 𝐺 is A-invariant if for every 𝑠 ∈ 𝑆, 𝜆𝑠 (𝐻) = 𝐻. Since the proposition
does not make any assumptions on A, we may assume that A contains the family of all conjugations by
elements of G, and thus, an A-invariant subgroup will be in particular normal in G.

As in Section 6.2, the proof splits between the p-adically closed case and the remaining cases.

7.1. K is p-adically closed

Since K is P-minimal and saturated, there is a finite extension, F of Q𝑝 embedding elementarily (as a
valued field) into K. We identify the image of some fixed such embedding with a valued subfield of K.

Since the value group ΓF is isomorphic to Z, as ordered abelian groups, we identify ΓF with Z and
view it as a prime (and minimal) model for Γ. We denote Z𝑃𝑟𝑒𝑠 the structure (Z, +, <).

The following fact is an easy consequence of the results of [13]:

Fact 7.3. Let K0 ≡ K, K0 not necessarily saturated, with O0 its valuation ring. Let Tor(𝐾0/O0) denote
the torsion subgroup. Then

(1) Tor(𝐾0/O0) = {𝑎 ∈ 𝐾0/O0 : 𝑣(𝑎) ∈ Z}.
(2) Tor(𝐾0/O0) is a finite direct sum of Prüfer p-groups and is isomorphic to F/OF. In particular,

Tor(𝐾0/O0) is a p-group.
(3) Every ball in (𝐾0/O0)

𝑛 centered at 0 contains Tor(𝐾0/O0)
𝑛 and the 𝑝𝑘 -torsion points are exactly

the points 𝑏 ∈ (𝐾/O)𝑛 with 𝑣(𝑏) ≥ −𝑘 .
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Proof. Since, by the basic properties of Prüfer groups the 𝑝𝑛-torsion is finite for all n, it will suffice to
prove the claim in K:

(1): If 𝑣(𝑎) = 𝑛 ∈ Z<0, then 𝑝𝑛𝑎 ∈ O, so 𝑎 + O ∈ Tor(K/O). The reverse inclusion follows from
[13, Lemma 3.1](3).

(2): By [13, Lemma 3.1](3), every torsion element of (𝐾/O)𝑛 is in (F/OF)𝑛, and with the previous
clause (2) follows for K since F/OF is isomorphic to a of Prüfer p-groups.

(3) follows from the structure of the Prüfer group. �

Lemma 7.4. Let G be a definable 𝐾/O-group. Let 𝐻1, 𝐻2 ≤ 𝐺 be definable subgroups, and 𝑓𝑖 : 𝐻𝑖 →
(𝐾/O)𝑛 (𝑖 = 1, 2) definable group embeddings whose respective images are open balls in (𝐾/O)𝑛,
where n is the 𝐾/O-rank of G. Then dp-rk(𝐻1 ∩ 𝐻2) = 𝑛 and

Tor(𝐻1) = 𝑓 −1
1 (F/OF) = Tor(𝐻2) = 𝑓 −1

2 (F/OF).

In particular, all definable subgroups of G of dp-rank n that can be definably embedded into (𝐾/O)𝑛

share the same torsion subgroup.

Proof. The assumptions and the conclusions are invariant under naming new constants, so we may
assume that F is named in K, and so we may apply the results from [13].

By the construction of 𝜈𝐾/O (see Lemma 5.2 and Remark 2.15), we have 𝜈𝐾/O � 𝐻𝑖 , 𝑖 = 1, 2, and
hence, 𝜈𝐾/O � 𝐻1 ∩ 𝐻2. By Lemma 5.2, this implies that dp-rk(𝐻1 ∩ 𝐻2) = 𝑛.

Since 𝑓𝑖 (𝐻𝑖) is an open ball, for 𝑖 = 1, 2, it follows from Fact 7.3 that Tor(𝐻𝑖) = 𝑓 −1
𝑖 ((F/OF)𝑛). As

dp-rk(𝐻1 ∩ 𝐻2) = 𝑛, also dp-rk( 𝑓𝑖 (𝐻1 ∩ 𝐻2)) = 𝑛 for 𝑖 = 1, 2, so by [13, Lemma 3.6] 𝑓𝑖 (𝐻1 ∩ 𝐻2)
has nonempty interior, and thus contains a sub-ball of (𝐾/O)𝑛. Therefore, (since it is a group) it also
contains a ball centered at 0. Thus, (F/OF)𝑛 ⊆ 𝑓𝑖 (𝐻1 ∩𝐻2), and hence, 𝑓 −1

𝑖 ((F/OF)𝑛) ⊆ 𝐻1 ∩𝐻2. We
conclude

Tor(𝐻1) = 𝑓 −1
1 ((F/OF)𝑛) = 𝑓 −1

2 ((F/OF)𝑛) = Tor(𝐻2),

as needed. �

We can now prove Proposition 7.1 in the p-adic case.

Proof of proposition 7.1 in the p-adic case. Recall that A = {𝜆𝑠 : 𝑠 ∈ 𝑆} is a definable family of
automorphisms of G. First, we show that some infinite A-invariant abelian subgroup of G is definable
in K, and then we construct one that is definable over 𝐾0 as needed.

By Section 5.1, we can find a definable subgroup 𝐻0, 𝜈𝐾/O � 𝐻0 ≤ 𝐺, that is definably isomorphic
to an open ball in (𝐾/O)𝑛 centered at 0, where n is the 𝐾/O-rank of G. Let 𝑓 : 𝐻0 → (𝐾/O)𝑛 be a
group embedding witnessing this (note that 𝐻0 and f are not claimed to be K0-definable).

Let 𝐻 =
⋂
𝑠∈𝑆

𝐻𝜆𝑠
0 , where 𝐻𝜆𝑠

0 = 𝜆𝑠 (𝐻0). It is a definable A-invariant abelian subgroup, and by the

previous lemma, it is infinite, as claimed. We shall now replace H by a group defined over 𝐾0.
By Lemma 7.4, Tor(𝐻𝜆𝑠0 ) = 𝑓 −1((F/OF)𝑛), for every 𝑠 ∈ 𝑆. It follows, using compactness and

saturation, that there is 𝑟 < Z such that 𝐵>𝑟 (0) ⊆ 𝑓 (𝐻). Let 𝑟0 be the minimal such r.
Assume that H and f are definable over some 𝑡0 ∈ K and let {(𝐻𝑡 , 𝑓𝑡 ) : 𝑡 ∈ 𝑇} be the corresponding

𝐾0-definable family of subgroups of G and definable group embeddings 𝑓𝑡 : 𝐻𝑡 → (𝐾/O)𝑛, such that
(𝐻, 𝑓 ) = (𝐻𝑡0 , 𝑓𝑡0). Note that the statement that 𝐻𝑡0 is A-invariant is a first-order property of 𝑡0, defined
over 𝐾0.

Thus, we may assume that each 𝐻𝑡 is A-invariant.
Define 𝜂 : 𝑇 → Γ by

𝜂(𝑡) = min{𝑟 ∈ Γ : 𝐵>𝑟 (0) ⊆ 𝑓𝑡 (𝐻𝑡 )}.

In particular, 𝜂(𝑡0) ≤ 𝑟0, and by Lemma 7.4, if 𝜂(𝑡), < Z, then 𝐻̂ := 𝑓 −1
𝑡0

((F/OF)𝑛) ⊆ 𝐻𝑡 .
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Given 𝑟 ∈ Γ<0, let

𝐺 (𝑟) :=
⋂

{𝐻𝑡 : 𝜂(𝑡) ≤ 𝑟}.

Because each 𝐻𝑡 is A-invariant, so is 𝐺 (𝑟), and as noted above, 𝐻̂ ⊆ 𝐺 (𝑟) for every 𝑟 ∈ Γ<0.
The map 𝑓𝑡0 restricts to an injective homomorphism from 𝐺 (𝑟0) into (𝐾/O)𝑛, and since 𝐻̂ ⊆ 𝐺 (𝑟0),

the set {𝑟 ∈ Γ : 𝑓 −1
𝑡0

(𝐵>𝑟 (0)) ⊆ 𝐺 (𝑟0)} contains Z. It follows that there exists 𝑟 < Z such that
𝑓 −1
𝑡0

(𝐵>𝑟 (0)) ⊆ 𝐺 (𝑟0), and therefore, 𝜈𝐾/O � 𝐺 (𝑟0) (by Lemma 5.2).
The family {𝐺 (𝑟) : 𝑟 ∈ Γ} is definable over 𝐾0 and, by its definition, it is increasing as r tends to

−∞. Hence, the directed union

𝑁 :=
⋃
𝑟 ∈Γ<0

𝐺 (𝑟)

is an abelian subgroup defined over 𝐾0, A-invariant and 𝜈𝐾/O � 𝑁 . It follows that dp-rk(𝑁) is at least
the 𝐾/O-rank of G (note, however, that we do not claim that N is strongly internal to 𝐾/O).

This concludes the proof of Proposition 7.1 in the p-adic case. �

We now proceed to the remaining cases.

7.2. K is power bounded T-convex or V-minimal

We assume that K is either power bounded T-convex or V-minimal. In both cases, 𝐾/O is an SW-
uniformity and K has residue characteristic 0.

Since (𝐾/O)𝑛 is torsion-free, we cannot use torsion elements as in the p-adic case, so we adopt a
different approach. The key to our argument is the characterization of definable groups and endomor-
phisms of (𝐾/O)𝑛 from Section 3.1.

The conclusion of Proposition 7.1, in our case, will follow from the next proposition (recall that a
ball containing 0 in 𝐾/O)𝑛 is of the form 𝐵𝑛 for B a ball in 𝐾/O):

Proposition 7.5. Let G be a definable group in K and let 𝐻 ⊆ 𝐺 be an infinite definable subgroup,
definably isomorphic to a ball in (𝐾/O)𝑛. Let 𝜎 be a definable automorphism of G and let 𝐻𝜎 := 𝜎(𝐻).
Then 𝐻𝜎 · 𝐻 ⊆ 𝐺 is in definable bijection with a set of the form

𝐻 ×
∏

𝐵𝑖 ×
∏

𝐶𝑖 ,

where each 𝐵𝑖 is a ball in 𝐾/O and each 𝐶𝑖 is a ball in 𝐾/m.
Furthermore,

(1) If the k-rank of G is 0, then there are no 𝐶𝑖 in the above description, so 𝐻𝜎 · 𝐻 is strongly internal
to 𝐾/O.

(2) If 𝐻𝜎 ≠ 𝐻, then dp-rk(𝐻𝜎 · 𝐻) > dp-rk(𝐻).

Proof. We identify H with its image in (𝐾/O)𝑛 (but still write the group operations multiplicatively)
and let 𝐻3 = {(𝑎, 𝑏) ∈ 𝐻 × 𝐻 : 𝑎𝜎𝑏 = 𝑒}.

Claim 7.5.1. 𝐻3 is a subgroup of 𝐻 × 𝐻 and (𝐻 × 𝐻)/𝐻3 is in definable bijection with 𝐻𝜎 · 𝐻.

Proof. Note that if 𝑎𝜎𝑏 = 𝑒, then 𝑎𝜎 and b are in 𝐻0 := 𝐻 ∩ 𝐻𝜎 , so they commute. To see that 𝐻3
is a subgroup, assume that 𝑎𝜎1 𝑏1 = 𝑎𝜎2 𝑏2 = 𝑒. Then (𝑎−1

2 )𝜎𝑎𝜎1 𝑏1𝑏
−1
2 = (𝑎1𝑎

−1
2 )𝜎 (𝑏1𝑏

−1
2 ) = 𝑒, so

(𝑎1𝑎
−1
2 , 𝑏1𝑏

−1
2 ) ∈ 𝐻3.
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We claim that for 𝑎, 𝑏 ∈ 𝐻, 𝑎𝜎1 𝑏1 = 𝑎𝜎2 𝑏2 if and only if (𝑎1, 𝑏1)𝐻3 = (𝑎2, 𝑏2)𝐻3, and therefore, the
map (𝑎, 𝑏) ↦→ 𝑎𝜎𝑏 induces a well-defined bijection between (𝐻 × 𝐻)/𝐻3 and 𝐻𝜎 · 𝐻. Indeed, using
the commutativity of 𝐻𝜎 ,

𝑎𝜎1 𝑏1 = 𝑎𝜎2 𝑏2 ⇔ (𝑎𝜎2 )−1𝑎𝜎1 𝑏1𝑏
−1
2 = 𝑒 ⇔ 𝑎𝜎1 (𝑎𝜎2 )−1𝑏1𝑏

−1
2 = 𝑒 ⇔ (𝑎1, 𝑏1)𝐻3 = (𝑎2, 𝑏2)𝐻3. �

The claim implies, in particular, that in order to compute dp-rk((𝐻𝜎 · 𝐻), it will suffice to compute
dp-rk((𝐻 × 𝐻)/𝐻3), to which we now turn our attention.

By definition, 𝐻3 is the graph of a definable injective partial function 𝑇 : 𝐻𝜎 ∩𝐻 � 𝐻𝜎 ∩𝐻, 𝑥 ↦→

(𝑥𝜎)−1; in particular, dom(𝑇) is a definable group. We want to study the map T. To do that, we may
work solely inside (𝐾/O)𝑛 × (𝐾/O)𝑛 ⊇ 𝐻 × 𝐻, so we switch to additive notation.

By Lemma 3.8, there is a definable automorphism 𝑓 : (𝐾/O)𝑛 → (𝐾/O)𝑛 extending T. By Corollary
3.9, f preserves the valuation, and as H is a ball, we get that 𝑓 (𝐻) = 𝐻. Let us replace f by 𝑓 � 𝐻. As
H is abelian, 𝑥 ↦→ − 𝑓 (𝑥) is again an automorphism.

Consider the definable map 𝐹 : 𝐻 × 𝐻 → 𝐻 × 𝐻: 𝐹 (𝑥, 𝑦) = (𝑥, 𝑦 − 𝑓 (𝑥)). Because f is an
endomorphism of 𝐻, 𝐹 is an automorphism of 𝐻 × 𝐻. It maps 𝐻3 onto a group of the form 𝐻1 × {𝑒},
where 𝐻1 = dom(𝑇). Hence,

(𝐻 × 𝐻)/𝐻3 � (𝐻 × 𝐻)/(𝐻1 × {𝑒𝐻 }) � (𝐻/𝐻1) × 𝐻.

By Lemma 3.7, there is a definable automorphism of (𝐾/O)𝑛 mapping 𝐻1 to a direct product of
closed and open balls in𝐾/O (or𝐾/O or {0}). Since H of the form 𝐵𝑛, for 𝐵 ⊆ 𝐾/O, this automorphism
preserves H (Corollary 3.9). Consequently, we may assume that

𝐻1 =
∏

𝐵𝑖 ×
∏

𝐶𝑖 ×
∏

{0},

where 𝐵𝑖 are closed balls and 𝐶𝑖 are open balls. Therefore, 𝐻/𝐻1 is definably isomorphic to∏
𝐵/𝐵𝑖 ×

∏
𝐵/𝐶𝑖 ×

∏
𝐵.

Each 𝐵/𝐵𝑖 is definably isomorphic to a ball in 𝐾/O (so strongly internal in 𝐾/O), and each 𝐵/𝐶𝑖 is
definably isomorphic to ball in 𝐾/𝔪 (so strongly internal to 𝐾/𝔪. This gives the desired form.

For (1), if The k-rank of G is 0, then there are no open 𝐶𝑖 in the above description; so 𝐻𝜎 · 𝐻 is
strongly internal to 𝐾/O.

For (2), if 𝐻𝜎 ≠ 𝐻, then 𝐻𝜎 ∩ 𝐻 � 𝐻, and in particular, 𝐻1 � 𝐻. Since Γ is dense, [𝐻 : 𝐻1] = ∞

so dp-rk(𝐻/𝐻1) > 0, and thus, dp-rk(𝐻𝜎 · 𝐻) > dp-rk(𝐻). �

We can now complete the proof of Proposition 7.1 when K is either power bounded or V-minimal.
Let G be an infinite K0-definable group whose k-rank is 0. By Section 5.1 we can find a definable
subgroup 𝐻 ⊆ 𝐺 definably isomorphic to an open ball in (𝐾/O)𝑛 centered at 0, where n is the 𝐾/O-
rank of G. It follows from Proposition 7.5 and the choice of H that H is invariant under every definable
automorphism of G. Indeed, assume toward contradiction that 𝐻𝜎 ≠ 𝐻. Then by (1) of the proposition,
𝐻𝜎 · 𝐻 is strongly internal to 𝐾/O and by (2) dp-rk(𝐻𝜎 · 𝐻) > dp-rk(𝐻), contradicting the fact that
dp-rk(𝐻) is the 𝐾/O-rank of G.

Thus, H is infinite, normal and abelian. Since any nonzero subgroup of (𝐾/O)𝑛 is infinite, the
existence of such a subgroup H is an elementary property, which implies that such a group exists
already in K0, as claimed.

We end this section with an example illustrating that in Proposition 7.1, the assumption that the
k-rank of G is 0 is essential.

Example 7.6. We produce an example of a group G of dp-rank 2 that is locally strongly internal to both
𝐾/O and k but has no infinite definable normal abelian subgroup which is locally strongly internal to
𝐾/O.
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Let K be either a V-minimal valued field or a power-bounded T-convex valued field, and let 𝛾 > 0
be some element of Γ. Let 𝐵≥𝛾 and be 𝐵≥−𝛾 the closed balls of respective radii 𝛾 and −𝛾 around 0.

Pick any 𝛿 ∈ Γ with 2𝛿 > 𝛾 > 𝛿 > 0. Then 𝐻 = (1 + 𝐵>𝛿)/(1 + 𝐵≥𝛾) is a definable multiplicative
group definably isomorphic (because of our choice of 𝛿) to the additive group 𝐵>𝛿/𝐵≥𝛾 (via the map
𝑎 + 𝐵≥𝛾 ↦→ (1 + 𝑎) (1 + 𝐵≥𝛾)). This latter group is obviously definably isomorphic to a subgroup of
𝐾/O. Let 𝑁 = 𝐵>−𝛾/m (which is strongly internal to k).

Set 𝐺 = 𝑁 � 𝐻, where H acts on N by multiplication (it is well-defined) and the latter is a normal
subgroup of G. We identify both of these groups with their obvious images in G; namely, we identify
𝑔 = 𝑔̄ +𝔪 ∈ 𝑁 with (𝑔̄ +𝔪, 1 + 𝐵≥𝛾), and 𝑎 = 𝑎̄(1 + 𝐵≥𝛾) ∈ 𝐻 with (𝔪, 𝑎̄(1 + 𝐵≥𝛾)).

A direct computation gives that if 𝑎 ∈ 𝐻 and 𝑔 ∈ 𝑁 as above,

𝑎𝑔 = 𝑔−1𝑎𝑔 = (𝑔̄(𝑎̄ − 1) + m, 𝑎̄(1 + 𝐵≥𝛾)).

Assume now that L is a definable, normal subgroup of G which is locally strongly internal to 𝐾/O.
We will show that L is not abelian. By assumption, 𝜈K/O � 𝐿, so 𝐿 ∩ 𝐻 is infinite and in particular
contains a non-identity element of the form 𝑎 = 𝑎̄(1+ 𝐵≥𝛾), with 𝛾 > 𝑣(𝑎̄ − 1) = 𝛿1 > 𝛿. We claim that
for a suitable choice of 𝑔 ∈ 𝐺, 𝑎𝑔𝑎 ≠ 𝑎𝑎𝑔, implying that L is not abelian.

Indeed, choose 𝑔 = 𝑔̄ +𝔪 ∈ 𝑁 , so that 𝑣(𝑔̄) + 𝛿1 < 0 (we can do that since −𝛾 + 𝛿1 < 0), and then,
by the above computation,

𝑎𝑔𝑎 = (𝑔̄(𝑎 − 1) + 𝑎̄𝑔̄ +𝔪, 𝑎̄(1 + 𝐵≥𝛾)), 𝑎𝑎𝑔 = (𝑔̄ + 𝑔̄(𝑎 − 1) +𝔪, 𝑎̄(1 + 𝐵≥𝛾)).

In order to see that 𝑎𝑔𝑎 ≠ 𝑎𝑎𝑔, it is enough to see that 𝑔̄(𝑎 − 1) + 𝑎̄𝑔̄ − (𝑔̄ + 𝑔̄(𝑎 − 1)) +𝔪 ≠ 𝔪 –
namely, that 𝑔̄(𝑎̄ − 1) ∉ 𝔪. This follows directly from our choice of g, since 𝑣(𝑔̄) + 𝑣(𝑎̄ − 1) < 0.

We end with noting that similar computations give

𝐻𝑔 · 𝐻 = {(𝑎̄(1 − 𝑔̄) + m, 𝑏̄(1 + 𝐵≥𝛾)) : 𝑎̄, 𝑏̄ ∈ 1 + 𝐵>𝛿},

and thus, it is not hard to see that 𝐻𝑔 · 𝐻 = 𝐵>𝛿+𝑣 (𝑔) /m × 𝐻 which is line with the Proposition 7.5(1).

8. Groups locally strongly internal to the residue field

The results of the previous sections imply, in particular, that there are no definably semisimple groups
locally strongly internal to Γ (and in the p-adic case, nor to 𝐾/O). This is clearly not the situation for
groups locally strongly internal to the valued field or to the residue field. So our aim in the present and
in the next section is to study such groups. We begin with the study of groups locally strongly internal
to k, where K is either power-bounded T-convex or V-minimal.

For the statement of the main result of this section, we need a weakening of definable semisimplicity:

Definition 8.1. Let G be a definable group. A definable normal subgroup 𝐻 � 𝐺 is G-semisimple if H
has no infinite abelian definable subgroups normal in G.

Note that, in the above notation, if either G or H are definably semisimple, then H is G-semisimple.
We prove the following:

Proposition 8.2. Let G be a definably semisimple group locally almost strongly internal to k. Then there
exists a finite normal subgroup 𝑁 � 𝐺 and two normal subgroups 𝐺1, 𝐺2 � 𝐺/𝑁 , all defined over any
model over which G is defined, such that

(1) 𝐺1 ∩ 𝐺2 = {𝑒}, 𝐺1, 𝐺2 centralize each other, and 𝐺1 · 𝐺2 has finite index in 𝐺/𝑁 .
(2) The almost k-rank of 𝐺1 is 0, and it is 𝐺/𝑁-semisimple,
(3) 𝐺2 is definably semisimple, and it is definably isomorphic to a subgroup of GL𝑛 (k).

Recall that a group G is a definably connected if it has no definable subgroups of finite index. Note
that for G an arbitrary definable group, if there exists a definably connected subgroup of finite index,
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then it is necessarily unique and denoted by 𝐺0. Clearly, if 𝐺0 exists, then it is definably characteristic
in G – namely, invariant under all definable automorphisms of G.
Fact 8.3 [24, Fact 2.11]. Let G be a definably connected group definable in some structure M.
(1) If N is a finite normal subgroup, then 𝑁 ⊆ 𝑍 (𝐺).
(2) If 𝑍 (𝐺) is finite, then 𝐺/𝑍 (𝐺) is centerless.

The proof of Proposition 8.2 splits into two cases.

8.1. k is o-minimal

In this subsection, we assume that K is power bounded T-convex, and thus, k is an o-minimal expansion
of a real closed field [33, Theorem A]. We first need a lemma allowing us, under suitable assumptions,
to transfer definable semisimplicity under definable group homomorphisms:
Lemma 8.4. Assume that G is a definable group in K, 𝐵 ⊆ k𝑛 is a definable group, and 𝑓 : 𝐺 → 𝐵 a
definable surjective homomorphism. Let 𝐻 � 𝐺 be a normal definable subgroup with ker( 𝑓 � 𝐻) finite.
Then
(1) 𝐻0 exists.
(2) If H is G-definably semisimple, then 𝐻0 and 𝑓 (𝐻0) are definably semisimple.
Proof. (1) 𝑓 (𝐻) is a definable group in the o-minimal structure k, so 𝑓 (𝐻)0 exists. Since ker( 𝑓 � 𝐻)

is finite, 𝐻0 exists as well. Indeed, if not, then there exists an infinite descending chain of finite index
subgroups in H, which would give rise to a proper finite index subgroup of 𝑓 (𝐻)0, contradiction.

(2) Assume that H is G-definably semisimple. Let 𝑁 = 𝑓 (𝐻0); it is a definably connected component.
If N is definably semisimple, then so is 𝐻0, so it suffices to show that N is definably semisimple. Assume
toward a contradiction that N contains an infinite definable abelian normal subgroup A.

Recall that the definable solvable radical of N is the subgroup of N generated by all definably
connected solvable normal subgroups of G. It is itself definable because of dimension considerations,
and clearly definably characteristic in N. Let R be the definable solvable radical of N. The group 𝐴0 is
contained in R, so R is infinite. By [3, Corollary 5.6], R contains an infinite abelian definable definably
connected subgroup 𝑅0 that is definably characteristic in N.

Let 𝐴1 be the connected component of 𝑓 −1(𝑅0) ∩ 𝐻0. Since 𝑅0 is a definably connected group,
𝑓 (𝐴1) = 𝑅0. We claim that 𝑍 (𝐴1) is infinite. Indeed, if it were finite then, by Fact 8.3, the group
𝐴1/𝑍 (𝐴1) is centerless. However, because ker( 𝑓 � 𝐴1) is finite, it follows from the same fact that
ker( 𝑓 � 𝐴1) ⊆ 𝑍 (𝐴1). Thus, 𝐴1/𝑍 (𝐴1) can also be written as a quotient of 𝑓 (𝐴1) = 𝑅0, and so must
be abelian, a contradiction.

Since 𝑅0 is a characteristic subgroup of 𝑁 = 𝑓 (𝐻0) and 𝐻0 is normal in G, the group 𝑓 −1(𝑅0) ∩𝐻0

is invariant under conjugation by elements of G; thus, so are 𝐴1 and 𝑍 (𝐴1). Thus, 𝑍 (𝐴1) is an infinite
abelian definable subgroup of H and normal in G, contradicting the definable G-semisimplicity of H. �

Assume that G is locally strongly internal to k. Let Adk : 𝐺 → GL𝑛 (k) be the adjoint map, as
discussed at the end of Section 5.
Lemma 8.5. Let G be locally strongly internal to k. Then,
(1) ker(Adk) = 𝐶𝐺 (𝜈k)
(2) 𝜈k � 𝐶𝐺 (ker(Adk))

Proof. Let 𝜈 = 𝜈k.
(1) Let 𝑔 ∈ ker(Adk). By [22, Lemma 3.2(ii)], for any group H definable in k, two definable

automorphisms H with the same differential at 𝑒𝐻 coincide on an open neighborhood of 𝑒𝐻 in H. While
the proof is stated for groups, the analysis holds for local groups as well. Hence, if 𝑔 ∈ ker(Adk), then
𝜏𝑔 (𝑥) = 𝑥 on some 𝜏k-open neighborhood of e, so by definition, 𝑔 ∈ 𝐶𝐺 (𝜈). The reverse inclusion is
immediate from the definitions.

https://doi.org/10.1017/fms.2025.10084 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10084


34 Y. Halevi, A. Hasson and Y. Peterzil

(2) Since 𝜈 is the intersection of definable sets strongly internal to k, we may choose 𝜈 � 𝑋 ⊆ 𝐺 that
we can identify with a definable subset of k𝑛. By cell decomposition in o-minimal structures, we may
further assume that X is definably connected. By Lemma 4.8, 𝑋 ⊆ 𝐶𝐺 (𝐶𝐺 (𝜈)) = 𝐶𝐺 (ker(Adk)), and
thus, 𝜈 � 𝐶𝐺 (ker(Adk)). �

Proposition 8.6. Let G be a definably semisimple group in K, locally strongly internal to k. Let
𝐻1 = ker(Adk) and 𝐻2 = 𝐶𝐺 (𝐻1). Then

(1) 𝐻1 and 𝐻2 are normal subgroups, 𝐻0
2 is definably semisimple, 𝐻1 ∩ 𝐻2 is finite and 𝐻1 and 𝐻2

centralize each other.
(2) 𝐻1 · 𝐻2 has finite index in G.
(3) If the k-rank of G equals the almost k-rank, then dp-rk(𝐻2) equals the k-rank of G.

Proof. Let 𝜈 = 𝜈k.
By Lemma 8.5, 𝐻1 = 𝐶𝐺 (𝜈) and 𝜈 � 𝐻2. By definition, 𝐻1 is a definable normal subgroup, and

thus, so is 𝐻2. By the semisimplicity of G, the intersection of any definable normal subgroup H with
its centralizer is finite (otherwise, 𝑍 (𝐻) is infinite and normal in G). Thus, 𝐻1 ∩ 𝐻2 is finite, and by
definition, 𝐻1 and 𝐻2 centralize each other. By Lemma 8.4, 𝐻0

2 is definably semisimple, completing the
proof of (1).

(2) Note that

𝐺/(𝐻1 · 𝐻2) �
𝐺/𝐻1

(𝐻1 · 𝐻2)/𝐻1
�

𝐺/𝐻1
𝐻2/(𝐻1 ∩ 𝐻2)

� Adk (𝐺)/Adk(𝐻2),

where Adk (𝐺) is the image of Adk and Adk (𝐻2) is the image of Adk � 𝐻2.
Thus, we need to see that Adk (𝐺)/Adk (𝐻2) is finite. Since both images are subgroups of GL𝑛 (k),

we may freely use properties of groups definable in o-minimal expansions of fields. By o-minimality,
showing that Adk (𝐺)/Adk(𝐻2) is finite amounts to showing that dimk(Adk (𝐺)) = dimk (Adk (𝐻2))
(we use dimk for the o-minimal dimension in k). So, it is sufficient to show that dimk (Adk(𝐺)) ≤

dimk (Adk (𝐻2)).
As G is definably semisimple, 𝐻2 is G-definably semisimple. Since, by (1), ker(Adk � 𝐻2) is finite,

𝐻0
2 and Adk (𝐻

0
2) are definably semisimple by Lemma 8.4. Let 𝔥 be the Lie algebra (in the sense of [23])

of the definably connected group Adk (𝐻
0
2) with its k-differential structure. By [23, Theorem 2.34], 𝔥 is

a semisimple Lie algebra. Thus, by [23, Claim 2.8], dim(𝔥) = dimk(Aut(𝔥)) (we use the k-vector space
dimension on the left and the fact that Aut(𝔥) is definable in k).

The group Adk (𝐺) acts on Adk (𝐻
0
2) by conjugation and thus also on 𝔥. We claim that the kernel of

this action is trivial.
Indeed, assume that for some 𝑔 ∈ 𝐺, the action of Adk (𝑔) on 𝔥 is the identity. By [22, Lemma 3.2(ii)],

it follows that for all 𝑥 ∈ Adk (𝐻
0
2), Adk (𝑔

−1𝑥𝑔) = Adk (𝑥), and hence, for all 𝑥 ∈ 𝐻0
2 , 𝑔

−1𝑥𝑔𝑥−1 ∈

ker(Adk � 𝐻0
2). Since ker(Adk � 𝐻0

2) is finite, and 𝐻0
2 is definably connected, it follows that for all

𝑥 ∈ 𝐻0
2 , 𝑔

−1𝑥𝑔 = 𝑥, and hence, 𝑔 ∈ 𝐶𝐺 (𝐻
0
2). Because 𝜈 � 𝐻2, then 𝑔 ∈ 𝐶𝐺 (𝜈), so by Lemma 8.5,

𝑔 ∈ ker(Adk), and hence, Adk (𝑔) = 𝑒.
We can therefore conclude that Adk (𝐺) can be definably embedded into Aut(𝔥); hence, we get that

dim(Adk(𝐺)) ≤ dim(Aut(𝔥)) = dim(𝔥) = dim(Adk (𝐻
0
2)), so dp-rk(Adk (𝐺)) = dp-rk(Adk (𝐻

0
2)) =

dp-rk(Adk (𝐻2)), as required.
(3) Because ker(Ad𝑘 ) ∩ 𝐻2 is finite, 𝐻2 is almost strongly internal to k. Thus, the almost k-rank of

G is at least that of 𝐻2. However, 𝜈 � 𝐻2, so dp-rk(𝐻2) is at least the k-rank of G. Because of the rank
assumptions, we must have that dp-rk(𝐻2) is the k-rank of G. �

Remark 8.7. As was noted in Remark 5.13, the groups 𝐻1 and 𝐻2 appearing in the statement of
Proposition 8.6 are definable over the same parameters as G.
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We isolate the following direct consequences:

Corollary 8.8. Let G be locally strongly internal to k.

(1) If ker(Adk) = 𝐺 then 𝜈k � 𝑍 (𝐺). In particular, if 𝑍 (𝐺) is finite, then ker(Adk) is a proper subgroup
of G.

(2) If G is definably simple (namely non-abelian and has no nontrivial definable normal subgroup),
then G is definably isomorphic to a definable subgroup of GL𝑛 (k).

Proof. (1) If 𝐺 = ker(Adk), then by Lemma 8.5(2), 𝜈k � 𝐶𝐺 (𝐺) = 𝑍 (𝐺). (2) Since G is definably
simple, either ker(Adk) = 𝐺 or ker(Adk) = {𝑒} Since G is non-abelian, it follows from (1) that ker(Adk)
must be equal to {𝑒}. �

The proof of Proposition 8.2 when k is o-minimal reduces to collecting what we have done so far:

Proof of Proposition 8.2 for o-minimal k. Fix G a definably semisimple group locally almost strongly
internal to k.

To prove (1), we need to find a finite normal 𝑁 � 𝐺 and definable 𝐺1, 𝐺2 � 𝐺/𝑁 centralizing each
other with 𝐺1 ∩𝐺2 = {𝑒}. By Fact 2.6, there exists a finite normal subgroup 𝑁1 � 𝐺 such that 𝐺/𝑁1 is
a k-group and the almost k-rank and the k-rank agree in 𝐺/𝑁1. Furthermore, 𝑁1 is definable over any
model over which G is defined. By Corollary 2.22, 𝐺/𝑁1 is definably semisimple, so – in order to keep
notation simpler – we denote 𝐺/𝑁1 by G. By Lemma 5.12, G contains a definable normal differentiable
local subgroup G with respect to k, with 𝜈k � G.

Then Proposition 8.6 provides us with two definable normal subgroups 𝐻1, 𝐻2 satisfying (1) of the
proposition. By Remark 5.13, 𝐻1 and 𝐻2 are both definable over any model over which G is defined.
The group 𝑁 = 𝐻1 ∩𝐻2 is a finite normal subgroup of G. Replace G by 𝐺/𝑁 and set 𝐺𝑖 := 𝐻𝑖/𝑁 . Then
𝐺1 and 𝐺2 satisfy (1) of the proposition.

For (3), we need to show that 𝐺2 is definably semisimple, and definably isomorphic to a k-linear
group. The latter is clear, since Adk(𝐺) is k-linear. For the first part, note that since 𝐻0

2 is definably
semisimple (by Proposition 8.6), so is 𝐻2, and thus, so is 𝐺2 by Lemma 2.22.

It remains to prove (2) (i.e., that the almost k-rank of 𝐺1 is 0 and that 𝐺1 is 𝐺/𝑁-semisimple).
The latter part follows from the fact that 𝐺1 is normal in the definably semisimple group G. So we

only need to compute its almost k-rank.
Assume toward a contradiction that 𝐺1 is locally almost strongly internal to k. By applying Fact 2.6

to 𝐺1, we get a finite normal subgroup 𝐻 � 𝐺1 such that 𝐺1/𝐻 is locally strongly internal to k. Note
that H is normal in 𝐺1 · 𝐺2 as well.

By Lemma 8.5, 𝜈k (𝐺) � 𝐺2. Since 𝐺1 · 𝐺2 has finite index in G, by Lemma 2.16(2) 𝜈k (𝐺1 · 𝐺2) =
𝜈k (𝐺), so 𝜈k (𝐺1 · 𝐺2) � 𝐺2, and thus, 𝜈k (𝐺1 · 𝐺2)/𝐻 � 𝐺2/𝐻. By Lemma 2.18(3), 𝜈k (𝐺1 · 𝐺2/𝐻) �

𝐺2/𝐻, and by Lemma2.16(1) 𝜈k (𝐺1/𝐻) � 𝜈k (𝐺1 · 𝐺2/𝐻) � 𝐺2/𝐻. However, obviously, 𝜈k(𝐺1/𝐻) �

𝐺1/𝐻; thus, (𝐺1 ∩ 𝐺2)/𝐻 must be infinite, a contradiction. �

8.2. Proof of Proposition 8.2 for k an algebraically closed field.

Throughout this subsection, K is assumed V-minimal, and hence, k is a stably embedded pure alge-
braically closed field. In particular, k is strongly minimal. Fix a K-definable, definably semisimple
group G which is locally almost strongly internal to k. By [13, Proposition 6.2], there exist definable
subgroups 𝐻0 � 𝐻 � 𝐺, with H definably connected and 𝐻0 finite normal in G such that 𝐻/𝐻0 is
strongly internal to k.

Fix 𝐻0 � 𝐺 and H as above and consider 𝐻1 = 𝐻/𝐻0. By [4, Theorem 1], it is a k-connected
algebraic group. By a classical theorem of Rosenlicht [29, Theorem 13], as 𝐻1 is a connected algebraic
group, 𝐻1/𝑍 (𝐻1) is a k-linear group. As 𝐺/𝐻0 is definably semisimple (Corollary 2.22) and 𝐻1 is
normal in 𝐺/𝐻0, 𝑍 (𝐻1) is finite. Since 𝐻1 is connected, 𝐻1/𝑍 (𝐻1) is centerless (Fact 8.3).

We now fix a finite 𝑁 � 𝐺, 𝐻0 ⊆ 𝑁 , such that 𝐻/𝑁 is a connected centerless k-linear group. Note
that 𝐺/𝑁 is still definably semisimple by Corollary 2.22. Below, we work in 𝐺/𝑁 , and to simplify
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notation, we still use H for 𝐻/𝑁 . Note that, since k has definable Morley Rank, the statement ‘H is a
normal subgroup of G strongly internal to k whose Morley Rank equals the k-rank of G’ is definable in
families, and we can choose H to be definable over any model in which G is defined.

Claim 8.8.1. H has no infinite normal abelian subgroups; hence, it is a semisimple algebraic group.

Proof. Assume toward contradiction that such a normal subgroup existed. Then its Zariski closure is
an infinite normal abelian algebraic subgroup. Its (algebraic) connected component is contained in the
solvable radical R of H which is therefore infinite as well. This radical contains an infinite abelian
algebraic subgroup that is definably characteristic in H, and therefore is normal in G, contradicting our
assumption. �

Claim 8.8.2. The group 𝐶𝐺 (𝐻) · 𝐻 has finite index in G.

Proof. The group G acts on H by conjugation, and because k is stably embedded, each action is k-
algebraic, so the map 𝑓 : 𝑔 ↦→ 𝜏𝑔 � 𝐻 sends G into Aut(𝐻) the group of all algebraic automorphisms
of H (recall that 𝜏𝑔 : (𝑥 ↦→ 𝑥𝑔)). The kernel of the map is 𝐶𝐺 (𝐻).

Applying [16, Theorem 27.4], using the fact that k is algebraically closed, we see that Aut(𝐻) is the
semi-direct product of Int(𝐻), the inner automorphisms of H, and a finite group (we use here the fact
that H is assumed centerless). Since 𝑓 (𝐻) = Int(𝐻), it follows that 𝑓 (𝐺) has finite index in Aut(𝐻), so
𝐶𝐺 (𝐻) · 𝐻 must have finite index in G. �

We now let 𝐺1 = 𝐶𝐺 (𝐻) and 𝐺2 = 𝐻. Since 𝐺1 and 𝐺2 centralize each other and 𝐺2 is centerless,
𝐺1 ∩ 𝐺2 = {𝑒}. This ends the proof of (1).

By construction, 𝐺2 is a linear k-group. Assume toward a contradiction that 𝐺1 is locally almost
strongly internal to k as well. By [13, Proposition 6.2], there exists a finite definable normal subgroup
𝑁 ′ � 𝐺1 such that 𝐺1/𝑁

′ has a definable normal subgroup 𝐵1 � 𝐺1/𝑁
′ strongly internal to k. Since

𝐺1 and 𝐺2 intersect trivially, we may identify 𝐺2 with 𝐺2/𝑁
′. Moreover, the k-rank of 𝐺1 ·𝐺2, which

equals that of G (since it has finite index in it), is at most that of (𝐺1 · 𝐺2)/𝑁
′, by Lemma 2.18; so

𝐺2 = 𝐻 is still k-critical in (𝐺1 · 𝐺2)/𝑁
′. But then 𝐵1 · 𝐺2 � 𝐵1 × 𝐺2 is strongly internal to k, with

dp-rk(𝐵1 · 𝐺2) > dp-rk(𝐺2), contradicting the fact that 𝐻 = 𝐺2 was k-critical in (𝐺1 · 𝐺2)/𝑁
′.

Finally, we already saw that 𝐺2 is definably semisimple. The fact that 𝐺1 is 𝐺/𝑁-semisimple is
immediate since 𝐺/𝑁 is definably semisimple.

This finishes the proof of Proposition 8.2 in the V-minimal case, and thus, the proof of the proposition
is now complete.

9. K-groups

In the notation of Section 5.3, for a K-group G, there exists an infinitesimal type-definable subgroup
𝜈𝐾 (𝐺) inducing a definable homomorphism Ad𝐾 : 𝐺 → GL𝑛 (𝐾), for n the K-rank of G.

Recall that a definable group G is K-pure if G is locally strongly internal to K but not locally almost
strongly internal to Γ, to k or to 𝐾/O. In the present section, we collect some basic facts concerning
K-pure groups, as those appear naturally in our later analysis.

For the following result, we observe that all the valued fields we consider are 1-h-minimal. The exact
definition is immaterial here. See [6] and [12, Section 4.5].

Fact 9.1 [1, Theorem 2]. Let K be a 1-h-minimal field, G = (𝑋, ·,−1 ) a definable strictly differentiable
local group with respect to K and 𝑓 : G � G a definable strictly differentiable homomorphism of local
groups. If 𝐷𝑒 ( 𝑓 ) = Id, then {𝑦 ∈ dom( 𝑓 ) : 𝑓 (𝑦) = 𝑦} contains a definable open neighborhood of e.

Proof. This is a theorem of Acosta and the second author, [1, Theorem 2], implying that dp-rk{𝑦 ∈

dom( 𝑓 ) : 𝑓 (𝑦) = 𝑦} = dp-rk dom( 𝑓 ), and so contains a definable open subset; the result follows. �

We still use dim to denote the acl-dimension in K and the induced dimension on 𝐾𝑒𝑞 and 𝜏𝐾 for the
topology on G.
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Proposition 9.2. Let G be a definable group in K, locally strongly internal to K. If 𝑔 ∈ ker(Ad𝐾 ), then
dim𝐶𝐺 (𝑔) = dim𝐺.
Proof. Let G = (𝑋, ·,−1 ) be the definable strictly differentiable local group as provided by Lemma 5.12.
If 𝑔 ∈ ker(Ad𝐾 ), then by Fact 9.1, the set 𝑊 := {𝑥 ∈ 𝑋 : 𝑥𝑔 = 𝑥} ⊆ 𝐶𝐺 (𝑔) is open in X. Since dim(𝑋)
is the K-rank of G (Corollary 4.2), we get that

dim(𝐺) = dim(𝑋) = dim(𝑊) ≤ dim𝐶𝐺 (𝑔) ≤ dim(𝐺). �

The following is based on an analogous result of [10]:
Corollary 9.3. Let G be a definable group, locally strongly internal to K and let 𝑔 ∈ 𝐺. If G is K-
pure and dim(𝐶𝐺 (𝑔)) = dim(𝐺), then [𝐺 : 𝐶𝐺 (𝑔)] < ∞. In particular, [𝐺 : 𝐶𝐺 (𝑔)] < ∞ for every
𝑔 ∈ ker(Ad𝐾 ).
Proof. The conjugacy class 𝑔𝐺 is in definable bijection with the imaginary sort𝐺/𝐶𝐺 (𝑔). By additivity
of dimension, we get that dim(𝑔𝐺) = dim(𝐺)−dim(𝐶𝐺 (𝑔)). If dim(𝐶𝐺 (𝑔)) = dim(𝐺), then dim(𝑔𝐺) =
0. By Lemma 4.10, 𝑔𝐺 is finite, and hence, [𝐺 : 𝐶𝐺 (𝑔)] is finite. �

10. Definably semisimple groups

We can finally prove the main results of the paper. Recall, first, that a definable group is definably simple
if it is non-abelian and has no definable normal subgroups, and it is definably semisimple if it has no
definable infinite normal abelian subgroups.

We point out that definable semisimplicity is not, a priori, an elementary property of groups definable
in K𝑒𝑞 , as K𝑒𝑞 may not eliminate the quantifier ∃∞. As we will see below, one of the corollaries of the
present work is that in our setting, definable semisimplicity, is, in fact, elementary. That is, if K0 ≺ K
and G is a 𝐾0-definable group, such that G is definably semisimple in 𝐾0, then it remains so in K.

As before, K = K𝑒𝑞 is a sufficiently saturated valued field, either power-bounded T-convex, V-
minimal or p-adically closed. Throughout the previous sections, we were working under the assumption
that our definable group G is a D-group (for some distinguished sort D). As shown in [13], this need not
be the case as G might not be locally strongly internal to any distinguished sort. The best we can obtain,
in general, that if G is locally almost strongly internal to D and then there is a finite normal subgroup
H such that 𝐺/𝐻 is a D-group (so in particular, locally strongly internal to D), Fact 2.6. Fortunately, in
our setting, Corollary 2.22 assures that definable semisimplicity is preserved under finite quotients and
under finite extensions.

Before stating the first of the results, recall from [18, §9.3] that a topological group G is locally
abelian if there exists 𝑊 � 𝑒, an open neighborhood of e in G, such that 𝑥𝑦 = 𝑦𝑥 for all 𝑥, 𝑦 ∈ 𝑊 .

The next theorem gives conditions under which a definable, infinite, abelian normal subgroup must
exist in G. Recall that if dim(𝐺) > 0, then by Corollary 4.2, it is locally strongly internal to K.
Theorem 10.1. Let G be an infinite group definable over some K0 ≺ K.
(1) If G is K-pure (so locally strongly internal to K) and locally abelian with respect to 𝜏𝐾 , then there

exists a definable abelian subgroup 𝐺1 � 𝐺 of finite index, defined over K0. In particular, 𝐺1 is
open.

(2) (a) If G is locally almost strongly internal to Γ, then there exists a K0-definable infinite normal
abelian subgroup 𝑁 � 𝐺, whose dp-rank is at least the almost Γ-rank of G.

(b) If G is locally almost strongly internal to 𝐾/O but not to k, then there exists a K0-definable
infinite normal abelian subgroup 𝑁 � 𝐺 whose dp-rank is at least the 𝐾/O-rank of G.

Proof. (1) Since G is locally strongly internal to K, it is a topological group with respect to the 𝜏𝐾 -
topology. All topological notions below refer to 𝜏𝐾 .

Assume that G is locally abelian. By Lemma 5.12, there exists a local differentiable abelian subgroup
G = (𝑈, ·,−1 ) of G. Let 𝜏𝑔 denote conjugation by g. As 𝜏𝑔 � 𝑈 = Id for all 𝑔 ∈ 𝑈, we get that
𝑈 ⊆ ker(Ad𝐾 ). This gives dim(ker(Ad𝐾 )) = dim(𝐺).
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The proof that G is abelian-by-finite is an adaptation of [27, Proposition 2.3]. By Corollary 9.3, since
G is K-pure, [𝐺 : 𝐶𝐺 (𝑎)] < ∞ for all 𝑎 ∈ 𝑈. By Fact 2.20, there is a definable normal subgroup of
finite index 𝐻0 � 𝐺 such that 𝐻0 ≤ 𝐶𝐺 (𝑈).

For every ℎ ∈ 𝐻0, 𝑈 ⊆ 𝐶𝐺 (ℎ); hence, dim𝐶𝐺 (ℎ) = dim𝐺 (e.g, by Corollary 4.9). Therefore, by
Corollary 9.3 and K-purity, we have [𝐺 : 𝐶𝐺 (ℎ)] < ∞ for every ℎ ∈ 𝐻0. Thus, applying Fact 2.20
again, we see that 𝐶𝐺 (𝐻0) has finite index in G, so in particular, 𝐺1 = 𝐶𝐺 (𝐻0) ∩ 𝐻0 has finite index in
G and is commutative. It follows that 𝐺1 is open by Corollary 4.9. The fact that 𝐺1 is a definable, open,
normal abelian, subgroup of index k (some 𝑘 ∈ N), is first order, so we can find such𝐺1 defined over K0.

(2) Assume now that G is locally almost strongly internal to D, where 𝐷 = Γ or 𝐷 = 𝐾/O. By Fact
2.6, there exists 𝐻 � 𝐺 a finite normal subgroup such that 𝐺/𝐻 is locally strongly internal to D and a
D-group. Moreover, the D-rank of 𝐺/𝐻 is the almost D-rank of G, and H is K0-definable. Also, if G
was not almost strongly internal to k, then neither is 𝐺/𝐻.

Assume that 𝐷 = Γ. By Proposition 6.1, we have 𝜈Γ (𝐺/𝐻) � 𝑍 (𝐺/𝐻). In particular, 𝐺/𝐻 contains
a normal abelian subgroup whose dp-rank is at least the Γ-rank of 𝐺/𝐻 (equivalently, the almost Γ-rank
of G). By Corollary 2.22, G contains a definable normal abelian subgroup of the same dp-rank.

Assume that G is locally almost strongly internal to 𝐾/O but not to k, so 𝐺/𝐻 is locally strongly
internal to 𝐾/O (but not to k) and its 𝐾/O-rank equals the almost 𝐾/O-rank of G. By Proposition 7.1,
as G and H are both K0-definable, there exists a K0-definable infinite normal abelian subgroup of 𝐺/𝐻
whose dp-rank is at least the almost Γ-rank of 𝐺/𝐻. By Corollary 2.22, G contains a definable normal
abelian group of the same rank. �

The following example shows that the assumption of K-purity is needed in Theorem 10.1(1), in order
for local commutativity to imply the existence of a definable open normal abelian subgroup:

Example 10.2. Let K be a p-adically closed field. Let O× denote the multiplicative group of O.
Consider the semi-direct product 𝐺 = O×�𝐾/O, where (𝑎, 𝑏+O) · (𝑐, 𝑑 +O) = (𝑎𝑐, 𝑏+𝑎𝑑 +O). Then
dim(𝐺) = 1 and dp-rk(𝐺) = 2. It is locally abelian, as witnessed by O× × {0}. We claim that G has no
definable open normal abelian subgroup. Assume, toward a contradiction, that H is such, in particular by
[18, Theorem 1.4(1)] dim(𝐻) = dim(𝐺) so 𝜋1 (𝐻), the projection on the first coordinate, must be infinite.

Let (𝑡, 0) ∈ 𝐻 for 𝑡 ≠ 1. Since the conjugation of (𝑡, 0) by (1, 𝑏+O) is (𝑡, 𝑏−𝑏𝑡+O), by letting b vary,
we conclude that 𝜋2 (𝐻), the projection on the second coordinate, is equal to 𝐾/O. Thus, 𝐻 = 𝑈 �𝐾/O
for some infinite definable subgroup U of O×. Every element of O× acts nontrivially on 𝐾/O; thus,
𝑈 � 𝐾/O is not abelian unless 𝑈 = {1}, proving that H as required does not exist.

However, note that {1} × 𝐾/O is an infinite definable normal abelian subgroup (that is not open).

Theorem 10.1 together with the above example answers a question of Johnson’s [18, §9.3] on locally
abelian groups in p-adically closed fields.

We can now prove the main result of this paper. Note that below, K0 is not assumed to be saturated.

Theorem 10.3. Let K0 be either a power bounded T-convex field, a V-minimal field or a p-adically
closed field. Let G be an infinite definable, definably semisimple group in K0. Then there exists a finite
normal subgroup 𝑁 � 𝐺 and two normal subgroups 𝐻1, 𝐻2 � 𝐺/𝑁 , such that

(1) 𝐻1 ∩ 𝐻2 = {𝑒}, 𝐻1 and 𝐻2 centralize each other and 𝐻2 is definably semisimple.
(2) 𝐻1 · 𝐻2 has finite index in 𝐺/𝑁 .
(3) 𝐻1 is definably isomorphic to a subgroup of GL𝑛 (𝐾0)
(4) 𝐻2 is definably isomorphic to a subgroup of GL𝑛 (k0).

If the almost k-rank of G is 0 (e.g., in the p-adically closed case), then 𝐻1 = 𝐺/𝑁 .

Proof. Let K � K0 be a sufficiently saturated elementary extension. Throughout the proof below, we
use G to denote 𝐺 (K). As a first approximation, we prove the existence of 𝑁, 𝐻1, 𝐻2 ⊆ 𝐺 as above,
all defined over 𝐾0, satisfying (1), (2) and (4), such that 𝐻1 is K-pure. We shall later show that after
modding out by another finite subgroup, 𝐻1 becomes K-linear.
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We divide the proof into two cases:
(a) K0 is 𝑉-minimal or power bounded 𝑇-convex.
In this case, either by [17, §3] in the V-minimal case, or by Proposition A.5 in the T-convex power

bounded case, K𝑒𝑞 eliminates ∃∞, and therefore, G is definably semisimple.
By Fact 2.6, there exists a 𝐾0-definable finite normal subgroup 𝑁 ′ � 𝐺 such that in 𝐺/𝑁 ′, the almost

𝐾/O-rank and the 𝐾/O-rank agree (they may be zero); by Lemma 2.18(4), this still holds if we further
quotient by finite normal subgroups. Replace G by 𝐺/𝑁 ′ (using Corollary 2.22 which says it is still
definably semisimple).

Assume first that G is locally almost strongly internal to k. By Proposition 8.2, there is a finite normal
subgroup 𝑁0 � 𝐺 definable over 𝐾0, and 𝐾0-definable normal subgroups 𝐻1, 𝐻2 � 𝐺/𝑁0 such that
𝐻1 ∩ 𝐻2 = {𝑒}, 𝐻1 · 𝐻2 has finite index in 𝐺/𝑁0 and 𝐻1, 𝐻@ centralize each other. Furthermore, 𝐻2
is 𝐾0-definably isomorphic to a k-linear definably semisimple group and the almost k-rank of 𝐻1 is 0.
Since G is definably semisimple, so is 𝐺/𝑁0 (Corollary 2.22). Replace G by 𝐺/𝑁0.

If the almost k-rank of G is 0, then we just take 𝐻1 = 𝐺 and 𝐻2 = {𝑒}.

Claim 10.3.1. The almost 𝐾/O-rank of 𝐻1 is 0.

Proof. Assume toward contradiction that 𝐻1 is almost locally strongly internal to 𝐾/O. By Fact 2.6,
there exists a finite 𝑁1 � 𝐻1, invariant under conjugation in G (namely, normal in G), such that 𝐻1/𝑁1
is locally strongly internal to 𝐾/O. Notice that G acts on 𝐻1/𝑁1 by 𝜎𝑔 (ℎ𝑁1) := ℎ𝑔𝑁1.

Since the almost k-rank of 𝐻1 is 0, so is the almost k-rank of 𝐻1/𝑁1. We now apply Proposition 7.1
to 𝐻1/𝑁1 and the definable family of automorphisms A = {𝜎𝑔 : 𝑔 ∈ 𝐺}, and obtain a definable infinite
normal abelian subgroup of 𝐻1/𝑁1 which is A-invariant. By Corollary 2.22, 𝐻1 contains a definable
infinite normal abelian subgroup which is invariant under conjugation in G – namely, normal in G. This
contradicts the semisimplicity of G. �

By Theorem 10.1(2a), the almost Γ-rank of G is 0, and therefore, the same is true for 𝐻1. So 𝐻1 is
K-pure, as claimed.

This completes the proof of our approximation to the theorem, when K is either V-minimal or power
bounded T-convex.

(b) Assume now that K is 𝑝-adically closed.
In this case, we just need to show that G is K-pure (and then we take 𝐻1 = 𝐺). However, since K

does not eliminate ∃∞, we cannot assume a priori that it is definably semisimple.
Again, by Theorem 10.1(2a), the almost Γ-rank of G is 0, for otherwise, G would have a 𝐾0-definable

infinite normal abelian subgroup, whose 𝐾0-points would contradict the definable semisimplicity of
𝐺 (K0).

Since the almost k-rank of G is obviously 0, it follows from Theorem 10.1 2(b) that the almost 𝐾/O-
rank of G must be 0. Indeed, if not, then once again, G would contain an infinite 𝐾0-definable normal
abelian subgroup whose 𝐾0-points would contradict the semisimplicity of 𝐺 (K0).

We therefore showed, in the p-adically closed case, that G is K-pure. This ends the proof of the
approximated statement in all cases.

We now proceed with the proof of Theorem 10.3. As we showed above, we have a finite 𝑁 � 𝐺, and
𝐻1, 𝐻2 � 𝐺/𝑁 all defined over 𝐾0, satisfying (1), (2), (4), with 𝐻1 being K-pure (in particular, 𝐻1 is
locally strongly internal to K). In the p-adically closed case, we take 𝐻1 = 𝐺/𝑁 and 𝐻2 = {𝑒}.

By Corollary 2.22, 𝐺/𝑁 is still definably semisimple. For clarity of notation, we replace G by 𝐺/𝑁 .
Note that dim𝐺 = dim𝐻1 + dim𝐻2, and since dim𝐻2 = 0, we have dim𝐺 = dim𝐻1. By Lemma

2.16, 𝜈𝐾 (𝐺) = 𝜈𝐾 (𝐻1). By Lemma 5.12, G contains a definable, differentiable normal local subgroup,
with respect to K, which – as dim(𝐺) = dim(𝐻1) – we may assume to be contained in 𝐻1. Thus, we
have an associated 𝐾0-definable map Ad𝐾 : 𝐺 → GL𝑛 (𝐾), with 𝑛 = dim𝐻1. Let Ad𝐻1

𝐾 = Ad𝐾 � 𝐻1.

Claim 10.3.2. ker(Ad𝐻1
𝐾 ) is a finite normal subgroup of G.
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Proof. Since 𝐻1 is K-pure, by Corollary 9.3, for every ℎ ∈ ker(Ad𝐻1
𝐾 ), 𝐶𝐺 (ℎ) has finite index in 𝐻1. By

Corollary 2.20, there exists a K0-definable subgroup 𝐻1 � 𝐻1 of finite index, that is also normal in G,
such that 𝐻1 ≤ 𝐶𝐻1 (ker Ad𝐻1

𝐾 ), and thus, 𝐻1∩ker(Ad𝐻1
𝐾 ) ⊆ 𝑍 (𝐻1). Since ker(Ad𝐻1

𝐾 ) = ker(Ad𝐾 )∩𝐻1,
it is obviously normal in G.

Thus, 𝐻1 ∩ ker(Ad𝐻1
𝐾 ) is a K0-definable normal abelian subgroup of G, so it must be finite by

semisimplicity of 𝐺 (K0).
Finally, since 𝐻1 has finite index in 𝐻1, it follows that ker(Ad𝐻1

𝐾 ) is finite, as claimed.2 �

Clearly, 𝐻1/ker(Ad𝐻1
𝐾 ) is definably isomorphic, over 𝐾0, to a subgroup of GL𝑛 (𝐾), with 𝑛 = dim𝐻1.

Since ker(Ad𝐻1
𝐾 ) ∩ 𝐻2 = {𝑒}, we can replace G by 𝐺/ker(Ad𝐻1

𝐾 ) and obtain 𝐻1, 𝐻2 as needed.
Since all the groups and maps are defined over 𝐾0, the theorem now descends to 𝐺 (K0) as well. This

ends the proof of Theorem 10.3. �

Remark 10.4. In Theorem 10.3, it is not claimed that 𝐻1 is definably semisimple, though we believe it
is true. We expect a standard proof using the tools developed in the unpublished paper [10] (and [1, §6]).
Note, however, that if G in the theorem is definably connected or has almost k-rank 0, then it follows
easily that 𝐻1 is definably semisimple.

As a special case, we get the following:

Corollary 10.5. LetK0 be as above. If a group G, definable inK0, is definably simple, then it is definably
isomorphic to either a 𝐾0-linear group or a k0-linear H.

We also have the following.

Corollary 10.6. Let K0 ≺ K be as above. Let G be a 𝐾0-definable group. Then 𝐺 (𝐾0) is definably
semisimple if and only if 𝐺 (𝐾) is.

Proof. By Proposition A.5 and [17, §3], we may assume that K0 is p-adically closed.
If𝐺 (𝐾) is definably semisimple, then so is𝐺 (𝐾0). So we assume that𝐺 (𝐾0) is definably semisimple

and show that so is 𝐺 (𝐾).
By Theorem 10.1(2), G is K-pure; so by Theorem 10.3, there exists a finite normal subgroup

𝐻0 � 𝐺 with 𝐺/𝐻0 (K0) definably isomorphic to a 𝐾0-linear group. Note that (𝐺/𝐻0) (K0) is definably
semisimple by Corollary 2.22. As K0 eliminates ∃∞, it follows that (𝐺/𝐻0) (K) is definably semisimple
as well. However, since 𝐻0 is finite, 𝐺 (K) is definably semisimple. �

Appendix A. Auxiliary results on power-bounded T-convex valued fields

In this appendix, we prove two results on power bounded T-convex valued fields. The first, stating that
definable subsets of K are finite boolean combinations of ball cuts, is due to Holly [15, Theorem 4.8]
in the case of RCVF. In full generality, it was proved by Tyne, [32, Page 94], but never published.
Tyne’s proof builds on a deep result, dubbed the valuation property (also not published in the required
generality). As a service to the community, we provide an alternative, more direct proof. The second
result shows, using a theorem of Johnson’s [17], uniform finiteness for all imaginary sorts.

From now on,K denotes a power bounded T-convex valued field. We remind some standard notation.

A.1. Definable subsets of K

If 𝐶 ⊆ 𝐾 is any convex set, by 𝑥 < 𝐶 we mean that 𝑥 < 𝑦 for all 𝑦 ∈ 𝐶 and 𝑥 ≤ 𝐶 is defined similarly.
For convex sets 𝐶1, 𝐶2, we write 𝐶1 < 𝐶2 if 𝑥 < 𝑦 for any 𝑥 ∈ 𝐶1 and 𝑦 ∈ 𝐶2, similarly 𝐶1 ≤ 𝐶2.

2The argument given in the claim shows that for K-pure groups, the kernel of Ad has a (relatively) open normal abelian subgroup
of finite index. This is true in particular for p-adic Lie groups definable in the p-adic field. Recently, [11], Glöckner constructed
an example of a 1-dimensional p-adic Lie group G for which this fails. In fact, in his example, ker(Ad𝐾 ) = 𝐺, but G contains no
open normal abelian subgroup.
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By a definable cut in K we mean a pair of disjoint definable convex sets C = (𝐶1, 𝐶2), such that
𝐶1 < 𝐶2 and 𝐶1 ∪ 𝐶2 = 𝐾 . A cut C is realized if either 𝐶1 has a maximum or 𝐶2 has minimum.

For a definable function f from 𝐶1 (or some open interval containing it) to either K or Γ, we say
that lim𝑥→C− 𝑓 (𝑥) = 𝑡0, if for every 𝑡1 < 𝑡0 < 𝑡2, there exists 𝑥 ∈ 𝐶1 such that for all 𝑥 ′ > 𝑥 in
𝐶1, 𝑡1 < 𝑓 (𝑥 ′) < 𝑡2 (and likewise, lim𝑥→C+ ).

Following [15], we define the following:

Definition A.1. A definable cut C = (𝐶1, 𝐶2) in K is a ball cut if there is a ball B (possibly a point) such
that either 𝐶1 = {𝑥 ∈ 𝐾 : 𝑥 < 𝐵} (and then 𝐶2 = {𝑥 ∈ 𝐾 : 𝐵 ≤ 𝑥}), or 𝐶2 = {𝑥 ∈ 𝐾 : 𝐵 < 𝑥} (and then
𝐶1 = {𝑥 ∈ 𝐾 : 𝑥 ≤ 𝐵}.

By o-minimality of Γ, for every definable set X, bounded above or below, and 𝑥 ∈ 𝑋 , there exists a
maximal ball around x which is contained in X. We leave the following easy observation to the reader.

Lemma A.2. Let 𝐶 ⊆ 𝐾 be a convex definable subset and let 𝑏1, 𝑏2, 𝑏3 be maximal balls in C with
𝑏1 < 𝑏2 < 𝑏3. Then 𝑏2 is necessarily an open ball.

Proposition A.3. If C = (𝐶1, 𝐶2) is definable cut with 𝐶1, 𝐶2 ≠ ∅, then C is a ball cut. As a corollary,
every definable subset of K is a boolean combination of balls and intervals.

Proof. Since every definable subset of K is a finite union of convex sets [35, Corollary 3.14], it will
suffice to prove the first clause of the statement. So assume that C = (𝐶1, 𝐶2) as given is an unrealized
cut (if realized then C is a ball cut with a trivial ball). For every 𝑥 ∈ 𝐶1, let 𝐵𝑥 denote the maximal ball
in 𝐶1 containing x (since 𝐶2 ≠ ∅ such a ball exists) and let 𝑟 (𝑥) ∈ Γ be its radius. Note that 𝑟 (𝑥) is
(weakly) increasing with x. We start with the following.

Claim A.3.1. Keeping the above notation, if 𝑟 (𝑥) stabilizes as 𝑥 → C−, then C is a ball cut.

Proof. Notice that 𝑟 (𝑥) is (possibly weakly) increasing. Assume that 𝑟 (𝑥) = 𝑟0 for sufficiently large x
in 𝐶1. After re-scaling, assume that 𝑟0 = 0.

If 𝐵𝑥 is the same ball for all sufficiently large 𝑥 ∈ 𝐶1, then C is a ball cut, so assume that for every
𝑥 ∈ 𝐶1 there is some 𝑥 ′ > 𝑥 in 𝐶1 such that 𝐵𝑥 ≠ 𝐵𝑥′ . By Lemma A.2, for all sufficiently large x, all the
𝐵𝑥 are open. Thus, for any 𝑥 ∈ 𝐶1, the closed ball 𝐵≥0 (𝑥) intersects𝐶2. As every ball is convex, we have
𝐵≥0 (𝑥1) = 𝐵≥0(𝑥2) for all sufficiently large elements of 𝐶1; let B be this closed ball. After translating,
we may assume that 𝐵 = O.

As a result, the map 𝑥 ↦→ 𝑥 +m maps (𝐵 ∩𝐶1, 𝐵 ∩𝐶2) into a cut in k. By o-minimality of k, this cut
is realized; namely, either the left side has a maximum or the ride side has a minimum. In the first case,
𝐶1 has a right side ball, and in the second case, 𝐶2 has a left side ball. �

By the claim, we may assume that 𝑟 (𝑥) does not stabilize, as x increases in 𝐶1.
Using definable Skolem functions, [33, Remark 2.7], we find a definable ℎ : 𝐶1 → 𝐾 such that

for all 𝑥 ∈ 𝐶1, 𝑟 (𝑥) = 𝑣(ℎ(𝑥)). Let L𝑜𝑚𝑖𝑛 be the language of the underlying o-minimal reduct (i.e.,
L𝑜𝑚𝑖𝑛 = L(𝑇)). By [33, Corollary 2.8], there exists an L𝑜𝑚𝑖𝑛-definable function ℎ̂ : 𝐼 → 𝐾 such that
ℎ = ℎ̂ on an end segment of 𝐶−

1 , which we may assume equals to 𝐼 ∩ 𝐶1. Since C is an unrealized cut
and I is an L𝑜𝑚𝑖𝑛-definable interval containing an end segment of 𝐶1, then necessarily 𝐼 ∩ 𝐶2 ≠ ∅.
Shrinking I (without losing the property that 𝐼 ∩ 𝐶𝑖 ≠ 0 for 𝑖 = 1, 2), we may assume that h is strictly
monotone and continuous.

By replacing, if needed, h by −ℎ (and ℎ̂ by −ℎ̂), we may assume that ℎ̂ is strictly decreasing.
Case 1: lim

𝑥→C−
𝑟 (𝑥) = ∞. In this case, lim

𝑥→C−
ℎ̂(𝑥) = 0. Thus, the function ℎ̂, which is strictly decreasing

and continuous, takes a convex set of the form {𝑥 ∈ 𝐶1 : 𝑥 > 𝑐}, for some 𝑐 ∈ 𝐶1 ∩ 𝐼, onto an open
interval (0, 𝑑), with 𝑑 = ℎ̂(𝑐).

Since ℎ̂ is L𝑜𝑚𝑖𝑛-definable, so is its inverse function ℎ̂−1 � (0, 𝑑). By o-minimality, and since ℎ̂−1 is
strictly decreasing and bounded, it takes the interval (0, 𝑑) to an interval of the form (𝑐, 𝑎), for some
𝑎 ∈ 𝐾 , and therefore, a realizes the cut C, contradicting our assumption.
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Case 2: lim
𝑥→C−

𝑟 (𝑥) = 𝑟0 ∈ Γ. Since 𝑟 (𝑥) does not stabilize, then 𝑟 (𝑥) = 𝑣(ℎ(𝑥)) < 𝑟0 for all 𝑥 ∈ 𝐶1.

After re-scaling, we may assume that 𝑟0 = 0, so 𝑣( ℎ̂(𝑥)) < 0 for all 𝑥 ∈ 𝐶1 ∩ 𝐼 and lim
𝑥∈C−

𝑣( ℎ̂(𝑥)) = 0.
Thus, for all 𝑥 ∈ 𝐶2 ∩ 𝐼, we have 𝑣(ℎ1 (𝑥)) ≥ 0, and by continuity, there must be an element 𝑥 ∈ 𝐶2 ∩ 𝐼
with 𝑣( ℎ̂(𝑥)) = 0. Hence, there is some 𝑥2 ∈ 𝐶2 ∩ 𝐼 such that for all 𝑥 ∈ 𝐶2, if 𝑥 < 𝑥2, then 𝑣( ℎ̂(𝑥)) = 0.

Consequently, 𝑥 ∈ 𝐶2 ∩ 𝐼 ⇐⇒ ℎ̂(𝑥) ∈ O. Let (𝐶 ′
1, 𝐶

′
2) be the ball cut 𝐶 ′

1 = {𝑦 ∈ 𝐾 : 𝑦 ≤ O} and
let 𝐽 = ℎ̂(𝐼). Then 𝐽 ∩ 𝐶 ′

𝑖 ≠ ∅, for 𝑖 = 1, 2, and ℎ̂−1 is strictly decreasing (from J to I). For simplicity,
let 𝑔 = ℎ̂−1.

For any 𝑦 ∈ O ∩ 𝐽, let 𝐵𝑦 ⊆ 𝐶2 be the maximal ball containing 𝑔(𝑦) ∈ 𝐶2, and denote its radius by
𝑟 ′(𝑦). We may assume that 𝑦 ↦→ 𝐵𝑦 does not stabilize as 𝑦 → (𝐽 ∩O)+ (otherwise, C is a ball cut, and
we are done) and thus, by Lemma A.2, the 𝐵𝑦 ⊆ 𝐶2 are open. By [33, Proposition 4.2], 𝑟 ′(𝑦) stabilizes
for sufficiently large 𝑦 ∈ 𝐽. Since g sends O ∩ 𝐽 to 𝐶2 ∩ 𝐼, it follows that for some 𝑐 ∈ 𝐶2, all maximal
balls 𝐵 ⊆ 𝐶2, with 𝐵 < 𝑐, have the same radius. We can now conclude that C is a ball cut, using Claim
A.3.1 (with the roles of 𝐶1 and 𝐶2 interchanged), thus finishing the proof of Proposition A.3. �

The fact thatK is definably spherically complete is a consequence of 0-h-minimality ofK, [6, Lemma
2.7.1]. The proof there is not hard, though it implicitly uses Tyne’s theorem. We give here a different
proof using the previous proposition.

Corollary A.4. K is definably spherically complete.

Proof. Let {𝐵𝑡 : 𝑡 ∈ 𝑇} be a definable chain of balls in K. Assume toward contradiction that
⋂
𝑡 ∈𝑇 𝐵𝑡 =

∅. Let 𝑟 (𝐵𝑡 ) ∈ Γ be the valuative radius of 𝐵𝑡 .
We define two definable convex sets 𝐶1, 𝐶2 by

𝐶1 = {𝑥 ∈ 𝐾 : ∃𝑡 𝑥 < 𝐵𝑡 } ; 𝐶2 = {𝑥 ∈ 𝐾 : ∃𝑡 𝐵𝑡 < 𝑥}.

Since balls are convex, our assumption implies that C = (𝐶1, 𝐶2) is a definable, unrealized, cut.
By Proposition A.3, this is a ball cut. For simplicity (the other cases are similar), we assume that
𝐶1 = {𝑥 ∈ 𝐾 : 𝑥 ≤ 𝐵} for some ball B. Translating and re-scaling, we may assume that B is either
O or 𝔪.

Let 𝐵0 =
⋃
𝑡 ∈𝑇

𝐵𝑡 . We define a function 𝑟 : 𝐵0 → Γ by 𝑟 (𝑥) = sup{𝑟 (𝐵𝑡 ) : 𝑥 ∈ 𝐵𝑡 }. Using definable

Skolem functions, we find a definable function ℎ : 𝐵0 → 𝐾 , such that 𝑣(ℎ(𝑥)) = 𝑟 (𝑥).
Assume that 𝐵 = O. By [33, Proposition 4.2], the function 𝑣(ℎ(𝑥)), restricted to O, eventually

stabilizes as 𝑥 → C−. This implies that the chain of balls 𝐵𝑡 has a minimal element (there is a bijection
between the balls and their radii), contradicting our assumption that the intersection of the chain is empty.

Assume that 𝐵 = 𝔪 and consider ℎ � 𝐶2. Let C ′ = (𝐶 ′
1, 𝐶

′
2), where 𝐶 ′

1 = {𝑥 ∈ 𝐾 : 𝑥 ≤ O}. As
𝑥 → C+, we get that 𝑥−1 → C−, so applying [33, Proposition 4.2] to ℎ(𝑥−1), we conclude that 𝑣(ℎ(𝑥))
must stabilize as 𝑥 → C+, again reaching a contradiction. �

A.2. Elimination of ∃∞ in the T-convex power bounded case

We now show that K𝑒𝑞 eliminates ∃∞; the proof utilizes a criterion used by Johnson to prove a parallel
result for C-minimal valued fields (see [17]).

Proposition A.5. Keq eliminates ∃∞.

Proof. We shall apply Johnson’s criterion for eliminating ∃∞, [17]. By [17, Theorem 2.3], it suffices to
prove that if X is a definable set in K𝑒𝑞 such that there exists a definable set 𝑆 ⊆ 𝑋 ×𝐾 with the function
𝑎 ↦→ 𝑆𝑎 := {𝑏 ∈ 𝐾 : (𝑎, 𝑏) ∈ 𝑆} injective on X, then ∃∞ is eliminated on X. Namely, if {𝑌𝑡 : 𝑡 ∈ 𝑇} is a
definable family of subsets of X, then there is a bound on the size of those 𝑌𝑡 that are finite.

https://doi.org/10.1017/fms.2025.10084 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10084


Forum of Mathematics, Sigma 43

Let X be such a definable set (with 𝑆 ⊆ 𝑋 × 𝐾 as in the assumption). As K is weakly o-minimal
(and saturated), there exists 𝑘 ∈ N such that each 𝑆𝑎 is a finite union of at most k convex sets. By
partitioning X, we may assume that each 𝑆𝑎 consists of exactly k convex sets. Let 𝑋 ′ = 𝑋 × {1, . . . , 𝑘}
and let 𝑆′ ⊆ 𝑋 ′ × 𝐾 the set satisfying that 𝑆′𝑎,𝑖 is the i-th convex component of 𝑆𝑎.

It is sufficient to prove that ∃∞ is eliminated on 𝑋 ′: Indeed, if ∃∞ is not eliminated on X, then there
exists a definable family of subsets {𝑌𝑡 : 𝑡 ∈ 𝑇} of X and a sequence {𝑡𝑛}, such that |𝑌𝑡𝑛 | is finite and
tends to ∞. We then define a family of finite subsets of 𝑋 ′ as follows: For 𝑖 = 1, . . . , 𝑘 , let

𝑌 ′
𝑡 ,𝑖 = { the 𝑖-th convex component of 𝑆𝑎 : 𝑎 ∈ 𝑌𝑡 }.

Since |𝑌𝑡𝑛 | → ∞, one of the |𝑌𝑡𝑛 ,𝑖 | must tend to ∞, thus 𝑋 ′ does not eliminate ∃∞.
We now replace X by 𝑋 ′ and S by 𝑆′, so we may assume that each 𝑆𝑎 is a convex subset of K. By

Proposition A.3, every 𝑆𝑎 is a boolean combination of intervals and balls; so by convexity, it must be
of the form 𝐵1�1𝑥�2𝐵2, where each 𝐵𝑖 is either a point or a ball and �𝑖 ∈ {<,=, ≤}. Thus, every 𝑆𝑎
is coded by a pair of balls (for simplicity, we consider singletons as balls), so it is sufficient to treat the
case where each 𝑆𝑎 is a ball; namely, we may assume that X is a set of balls. Let {𝑌𝑡 : 𝑡 ∈ 𝑇} be a
definable family of subsets of X. We claim that there is a bound on the size of the finite 𝑌𝑡 in the family.
We reduce the problem to the bound, in families, on the number of convex components of subsets of K,
as well as the o-minimality of Γ.

We conclude the proof as in [17, §3]. If a ball b belongs to a finite 𝑌𝑡 , then it contains a ball 𝑏′ ∈ 𝑌𝑡
which is minimal with respect to inclusion. Thus, we may assume that for every 𝑡 ∈ 𝑇 , every ball in 𝑌𝑡
contains a minimal ball in 𝑌𝑡 (the set of all such t is definable).

We first note that whenever 𝑌𝑡 is finite, each convex component of the definable set
⋃
{𝑏 ∈ 𝑌𝑡 :

𝑏 minimal} consists of a single minimal ball in 𝑌𝑡 . Indeed, the union of finitely many (but more than
one), necessarily pairwise disjoint, balls is not a convex set.

Thus, we may assume now that for each 𝑌𝑡 in the family, each convex component of the definable set⋃
{𝑏 ∈ 𝑌𝑡 : 𝑏 minimal} consists of a single minimal ball in 𝑌𝑡 (this is a definable property of t). By the

bound on the number of convex components, it follows that there is a bound on the number of minimal
balls in each 𝑌𝑡 .

Assume toward contradiction that the number of balls in those finite 𝑌𝑡 is not uniformly bounded.
Then, by the bound on the number of minimal balls in 𝑌𝑡 , there are chains of balls in 𝑌𝑡 , as t varies, of
unbounded size. This is impossible, as this would imply that the sets {𝑟 (𝐵) : 𝐵 ∈ 𝑌𝑡 } (where 𝑟 (𝐵) is
the valuative radius of B) are finite of unbounded size (as t ranges over T). Since Γ is o-minimal and
stably embedded, definable families of finite subsets of unbounded size do not exist. �

Let us conclude with an example demonstrating that general weakly o-minimal expansions of groups
do not necessarily eliminate ∃∞ in the imaginary sorts:

Example A.6. Our goal is to construct an ordered Q-vector space with a discretely ordered definable
family of convex subgroups.

Let RZ be a real closed valued field R with value group Q together with a predicate 𝑍 ⊆ Q for the
set of integers. Let 𝑧 : Q → Z be the upper integer value. Let M be the 2-sorted structure reduct of
RZ consisting of the ordered Q-vector space 𝑅Q = (𝑅, <, +, {𝜆𝑞}𝑞∈Q), the sort (Z, <) and the function
𝜁 : 𝑅 → Z given by 𝑧 ◦ 𝑣.

It is not hard to check that, after adding the function symbols for the successor and predecessor on
Z, the structure M has quantifier elimination. It follows that the induced structure on R is weakly o-
minimal. It is also not hard to see that M is inter-definable with the expansion of the 1-sorted structure
𝑅Q by a binary relation B on R, defined by 𝐵(𝑥, 𝑦) ⇔ 𝜁 (𝑥) ≥ 𝜁 (𝑦). Since (Z, <) is interpretable, then
∃∞ cannot be eliminated in the imaginary sorts.

We expect that also weakly o-minimal expansions of fields do not necessarily eliminate ∃∞ in their
imaginary sorts (although T-convex structures, even if not power bounded, do eliminate ∃∞).
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