
JFP 24 (2-3): 133–165, 2014. c© Cambridge University Press 2014

doi:10.1017/S0956796813000270 First published online 20 January 2014
133

Elaborating intersection and union types

J A N A D U N F I E L D
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrücken, Germany

(e-mail:))

Abstract

Designing and implementing typed programming languages is hard. Every new type system feature
requires extending the metatheory and implementation, which are often complicated and fragile. To
ease this process, we would like to provide general mechanisms that subsume many different features.
In modern type systems, parametric polymorphism is fundamental, but intersection polymorphism
has gained little traction in programming languages. Most practical intersection type systems have
supported only refinement intersections, which increase the expressiveness of types (more precise
properties can be checked) without altering the expressiveness of terms; refinement intersections
can simply be erased during compilation. In contrast, unrestricted intersections increase the expres-
siveness of terms, and can be used to encode diverse language features, promising an economy of
both theory and implementation. We describe a foundation for compiling unrestricted intersection
and union types: an elaboration type system that generates ordinary λ-calculus terms. The key
feature is a Forsythe-like merge construct. With this construct, not all reductions of the source
program preserve types; however, we prove that ordinary call-by-value evaluation of the elaborated
program corresponds to a type-preserving evaluation of the source program. We also describe a
prototype implementation and applications of unrestricted intersections and unions: records, operator
overloading, and simulating dynamic typing.

1 Introduction

In type systems, parametric polymorphism is fundamental. It enables generic program-
ming; it supports parametric reasoning about programs. Logically, it corresponds to uni-
versal quantification.

Intersection polymorphism (the intersection type A ∧ B) is less well appreciated. It
enables ad hoc polymorphism; it supports irregular generic programming, including op-
erator overloading. Logically, it roughly corresponds to conjunction. (In our setting, this
correspondence is strong, as we will see in Section 2.) Not surprisingly, then, intersection
is remarkably versatile.

For both legitimate and historical reasons, intersection types have not been used as
widely as parametric polymorphism. One of the legitimate reasons for the slow adoption
of intersection types is that no major language has them. A restricted form of intersection,
refinement intersection, was realized in two extensions of SML, SML-CIDRE (Davies,
2005) and Stardust (Dunfield, 2007). These type systems can express properties such as
bitwise parity: after refining a type bits of bitstrings with subtypes even (an even number of

jana.dunfield gmail.com@

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

134 J. Dunfield

ones) and odd (an odd number of ones), a bitstring concatenation function can be checked
against the type

(even∗ even → even) ∧ (odd∗odd → even)

∧ (even∗odd → odd) ∧ (odd∗ even → odd)

which satisfies the refinement restriction: all the intersected types refine a single simple
type, bits∗bits → bits.

But these systems were only typecheckers. To compile a program required an ordinary
Standard ML compiler. SML-CIDRE was explicitly limited to checking refinements of
SML types, without affecting the expressiveness of terms. In contrast, Stardust could
typecheck some kinds of programs that used general intersection and union types, but
ineffectively: since ordinary SML compilers don’t know about intersection types, such
programs could never be run.

Refinement intersections and unions increase the expressiveness of otherwise more-or-
less-conventional type systems, allowing more precise properties of programs to be verified
through typechecking. The point is to make fewer programs pass the typechecker; for
example, a concatenation function that didn’t have the parity property expressed by its
type would be rejected. In contrast, unrestricted intersections and unions, in cooperation
with a term-level “merge” construct, increase the expressiveness of the term language. For
example, given primitive operations Int.+ : int∗ int → int and Real.+ : real∗ real → real,
we can easily define an overloaded addition operation by writing a merge:

val + = Int.+ ,, Real.+

In our type system, this function + can be checked against the type (int ∗ int → int) ∧

(real∗ real → real).
In this paper, we consider unrestricted intersection and union types. Central to the ap-

proach is a method for elaborating programs with intersection and union types: elaborate
intersections into products, and unions into sums. The resulting programs have no intersec-
tions and no unions, and can be compiled using conventional means—any SML compiler
will do. The above definition of + is elaborated to a pair (Int.+, Real.+); uses of + on
ints become first projections of +, while uses on reals become second projections of +.

We present a three-phase design, based on this method, that supports one of our ulti-
mate goals: to develop simpler compilers for full-featured type systems by encoding many
features using intersections and unions.

1. An encoding phase that straightforwardly rewrites the program, for example, turning
a multifield record type into an intersection of single-field record types, and multi-
field records into a “merge” of single-field records.

2. An elaboration phase that transforms intersections and unions into products and (dis-
joint) sums, and intersection and union introductions and eliminations (implicit in the
source program) into their appropriate operations: tupling, projection, injection, and
case analysis.

3. A compilation phase: a conventional compiler with no support for intersections,
unions, or the features encoded by phase 1.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 135

Fig. 1. Elaboration and computation.

Contributions: Phase 2 is the main contribution of this paper. Specifically, we will:

• develop elaboration typing rules which, given a source expression e with unrestricted
intersections and unions, and a “merging” construct e1,, e2, typecheck and transform
the program into an ordinary λ-calculus term M (with sums and products);

• give a nondeterministic operational semantics (�∗) for source programs containing
merges, in which not all reductions preserve types;

• prove a consistency (simulation) result: ordinary call-by-value evaluation (�→∗) of
the elaborated program produces a value corresponding to a value resulting from
(type-preserving) reductions of the source program—that is, the diagram in Figure 1
commutes;

• describe an elaborating typechecker that, by implementing the elaboration typing
rules, takes programs written in an ML-like language, with unrestricted intersection
and union types, and generates Standard ML programs that can be compiled with
any SML compiler.

All proofs were checked using the Twelf proof assistant (Pfenning and Schürmann,
1999; Twelf, 2012) (with the termination checker silenced for a few inductive cases, where
the induction measure was nontrivial but clearly satisfied) and are available on the web
(Dunfield, 2013). For convenience, the names of Twelf source files (.elf) are hyperlinks.

While the idea of compiling intersections to products is not new, this paper is its first
full development and practical expression. An essential twist is the source-level merging
construct e1,, e2, which embodies several computationally distinct terms, which can be
checked against various parts of an intersection type, reminiscent of Forsythe (Reynolds,
1996) and (more distantly) the λ&-calculus (Castagna et al., 1995). Intersections can still
be introduced without this construct; it is required only when no single term can describe
the multiple behaviors expressed by the intersection. Remarkably, this merging construct
also supports union eliminations with two computationally distinct branches (unlike mark-
ers for union elimination in work such as Pierce 1991). As usual, we have no source-
level intersection eliminations and no source-level union introductions; elaboration puts
all needed projections and injections into the target program.

Contents: In Section 2, we give some brief background on intersection types, discuss their
introduction and elimination rules, introduce and discuss the merge construct, and compare
intersection types to product types. Section 3 gives background on union types, discusses

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

136 J. Dunfield

their introduction and elimination rules, and shows how the merge construct is also useful
for them.

Section 4 has the details of the source language and its (unusual) operational semantics,
and describes a nonelaborating type system including subsumption. Section 5 presents
the target language and its (entirely standard) typing and operational semantics. Section
6 gives the elaboration typing rules, and proves several key results relating source typing,
elaboration typing, the source operational semantics, and the target operational semantics.

Section 7 discusses a major caveat: the approach, at least in its present form, lacks the
theoretically and practically important property of coherence, because the meaning of a
target program depends on the choice of elaboration typing derivation.

Section 8 shows encodings of type system features into intersections and unions, with
examples that are successfully elaborated by our prototype implementation (Section 9).
Related work is discussed in Section 10, and Section 11 concludes.

Previous version: An earlier version of this work (Dunfield, 2012) appeared at the Inter-
national Conference on Functional Programming (ICFP). The technical details are essen-
tially unchanged, except for a simpler Lemma 9 (the old lemma is an immediate corollary
of the new one), but several sections have been expanded and clarified, particularly the
discussion of bidirectional typechecking; also, this version includes a link to the imple-
mentation.

2 Intersection types

What is an intersection type? The simplistic answer is that, supposing that types describe
sets of values, A ∧ B describes the intersection of the sets of values of A and B. That is,
v : A ∧ B if v : A and v : B.

Less simplistically, the name has been used for substantially different type constructors,
though all have a conjunctive flavor. The intersection type in this paper is commutative
(A ∧ B = B ∧ A) and idempotent (A ∧ A = A), following several of the seminal pa-
pers on intersection types (Pottinger, 1980; Coppo et al., 1981), and more recent work
with refinement intersections (Freeman and Pfenning, 1991; Davies and Pfenning, 2000;
Dunfield and Pfenning, 2003). Other lines of research have worked with nonlinear and/or
ordered intersections, e.g., Kfoury and Wells (2004), which seem less directly applicable
to practical type systems (Møller Neergaard and Mairson, 2004).

For this paper, then: What is a commutative and idempotent intersection type?
One approach to this question is through the Curry–Howard correspondence. Naively,

intersection should correspond to logical conjunction—but products correspond to logical
conjunction, and intersections are not products, as is evident from comparing the stan-
dard1 introduction and elimination rules for intersection to the (utterly standard) rules for

1 For impure call-by-value languages like ML, ∧I ordinarily needs to be restricted to type a value v, for reasons
analogous to the value restriction on parametric polymorphism (Davies and Pfenning, 2000). Our setting,
however, is not ordinary: the technique of elaboration makes the more permissive rule safe, though user-
unfriendly. See Section 6.5.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 137

product. (Throughout this paper, k is existentially quantified over {1,2}; technically, and in
the Twelf formulation, we have two rules ∧E1 and ∧E2, etc.)

e : A1 e : A2

e : A1 ∧ A2

∧I
e : A1 ∧ A2

e : Ak

∧E
k

e1 : A1 e2 : A2

(e1, e2) : A1 ∗A2

∗I
e : A1 ∗A2

projk e : Ak

∗E
k

Here, ∧I types a single term e which inhabits type A1 and type A2: via Curry–Howard,
this means that a single proof term serves as witness to two propositions (the interpretations
of A1 and A2). On the other hand, in ∗I two separate terms e1 and e2 witness the propo-
sitions corresponding to A1 and A2. This difference was suggested by Pottinger (1980),
and made concrete when Hindley (1984) showed that intersection (of the form described
by Coppo et al. 1981 and Pottinger 1980) cannot correspond to conjunction because the
following type, the intersection of the types of the I and S combinators, is uninhabited:

(A → A) ∧
(
(A→B→C) → (A→B) → A → C

)
︸ ︷︷ ︸

“D”

yet the prospectively corresponding proposition is provable in intuitionistic logic:

(A⊃A) and
(
(A⊃B⊃C)⊃ (A⊃B)⊃A⊃C

)
(∗)

Hindley notes that every term of type A → A is β-equivalent to e1 = λx.x, the I combina-
tor, and every term of type D is β-equivalent to e2 = λx.λy.λz.xz(yz), the S combinator.
Any term e of type (A→A) ∧ D must therefore have two normal forms, e1 and e2, which
is impossible.

But that impossibility holds for the usual λ-terms. Suppose we add a merge construct
e1,, e2 that, quite brazenly, can step to two different things: e1,, e2 �→ e1 and e1,, e2 �→ e2.
Its typing rule chooses one subterm and ignores the other:

ek : A

e1,, e2 : A
mergek

In combination with ∧I, the mergek rule allows two distinct implementations e1 and e2,
one for each of the components A1 and A2 of the intersection:

e1 : A1

e1,, e2 : A1

merge
1

e2 : A2

e1,, e2 : A2

merge
2

e1,, e2 : A1 ∧ A2

∧I

Now (A → A) ∧ D is inhabited:

e1,, e2 : (A → A) ∧ D

With this construct, the “naive” hope that intersection corresponds to conjunction is re-
alized through elaboration: we can elaborate e1,, e2 to (e1, e2), a term of type (A →

A) ∗D, which does correspond to the proposition (*). Inhabitation and provability again

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

138 J. Dunfield

correspond—because we have replaced the seemingly mysterious intersections with simple
products.

For source expressions, intersection still has several properties that set it apart from
product. Unlike product, it has no elimination form. It also lacks an explicit introduction
form; ∧I is the only intro rule for ∧. While the primary purpose of mergek is to derive
the premises of ∧I, the mergek rule makes no mention of intersection (or any other type
constructor).

Pottinger (1980) presents intersection A &̂ B as a proposition with some evidence of A

that is also evidence of B—unlike A & B, corresponding to A∗B, which has two separate
pieces of evidence for A and for B. In our system, though, e1,, e2 is a single term that
provides evidence for A and B, so it is technically consistent with this view of intersection,
but not necessarily consistent in spirit (since e1 and e2 can be very different from each
other).

3 Union types

Having discussed intersection types, we can describe union types as intersections’ dual: if
v : A1 ∨ A2 then either v : A1 or v : A2 (perhaps both). This duality shows itself in several
ways.

For union ∨, introduction is straightforward, as elimination was straightforward for ∧

(again, k is either 1 or 2):
Γ � e : Ak

Γ � e : A1 ∨ A2

∨Ik

Here, the term e inhabits both Ak and A1 ∨ A2. Thus, we have one proof term that
witnesses two propositions, in contrast to the usual introduction rule for sums where e

is evidence of Ak only, and injk e is evidence of A1 +A2:

Γ � e : Ak

Γ � injk e : A1 +A2

+I
k

This corresponds to logical disjunction, with an explicit or-introduction in the proof term.
For the elimination rule, first consider the usual elimination rule for sums:

Γ � e0 : A1 +A2

Γ,x : A1 � e1 : C

Γ,x : A2 � e2 : C

Γ � (case e0 of inj1 x ⇒ e1 || inj2 x ⇒ e2) : C
+E

By analogy with the rules for intersection and union given above, a single term e should
serve as evidence in both branches, instead of two pieces of evidence e1 and e2. Moreover,
since we introduce (and eliminate) intersection without an explicit syntactic form, we
expect to eliminate union without an explicit syntactic form. So, the rule should look
something like

Γ � e0 : A1 ∨ A2

Γ,x : A1 � e : C

Γ,x : A2 � e : C

Γ � [e0/x]e : C

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 139

The subject of the conclusion is some term with (zero or more) occurrences of e0; the
term e in the premises is the same, but with x in place of e0. (We write [e0/x]e for the
substitution of e0 for x in e.) We can view e as taking x as a parameter, where x is evidence
of either A1 or of A2; in either case, e is evidence of C.

However, the rule above is unsound in many settings (see the discussion of call-by-value,
below); we use a rule that is sound for call-by-value, and acceptably strong:

Γ � e0 : A1 ∨ A2

Γ,x1 : A1 � E [x1] : C

Γ,x2 : A2 � E [x2] : C

Γ � E [e0] : C
∨E

This rule types an expression E [e0]—an evaluation context E where e0 occurs in an
evaluation position—where e0 has the union type A1 ∨ A2. During evaluation, e0 will
be some value v0 such that either v0 : A1 or v0 : A2. In the former case, the premise
x1 : A1 � E [x1] : C tells us that substituting v0 for x1 gives a well-typed expression E [v0].
Similarly, the premise x2 : A2 � E [x2] : C tells us we can safely substitute v0 for x2.

The restriction to a single occurrence of e0 in an evaluation position is needed for
soundness in many settings—generally, in any operational semantics in which e0 might
step to different expressions. One simple example is a function f : (A1 → A1 → C) ∧

(A2 → A2 → C) and expression e0 : A1 ∨ A2, where e0 mutates a reference cell that has
type ref (A1 ∨ A2), then returns the new stored value. The application f e0 e0 would be
well-typed by a rule allowing multiple occurrences of e0, but unsound: the first e0 could
evaluate to some value v1 : A1 and the second e0 to some v2 : A2, yielding the ill-typed
application f v1 v2.

In this paper, we are interested only in call-by-value languages. The choice of evaluation
strategy does affect the type system, but some variants of the union elimination rule are
unsound under both call-by-value and call-by-name. Barbanera et al. (1995) discuss such
a rule—and define an unusual “parallel reduction” semantics for which it is sound. For
further discussion of this rule, see Dunfield and Pfenning (2003). Finally, note that the
evaluation context E need not be unique, which creates some difficulties for practical
typechecking (Dunfield, 2011).

We saw in Section 2 that, in the usual λ-calculus, ∧ does not correspond to conjunction;
in particular, no λ-term behaves like both the I and S combinators, so the intersection
(A→A) ∧ D (where D is the type of S) is uninhabited. In our setting, though, (A→A) ∧ D

is inhabited, by the merge of I and S.
Something similar comes up when eliminating unions. Without the merge construct, cer-

tain instances of union types can’t be usefully eliminated. Consider a list whose elements
have type int ∨ string. Introducing those unions to create the list is easy enough: use ∨I1
for the ints and ∨I2 for the strings. Now suppose we want to print a list element x : int ∨

string, converting the ints to their string representation and leaving the strings alone. To do
this, we need a merge; for example, given a function g : (int → string) ∧ (string → string)

whose body contains a merge, use rule ∨E on g x with E = g [] and e0 = x:

Γ � x : int ∨ string

Γ,x1 : int � g x1 : string

Γ,x2 : string � g x2 : string

Γ � g x : string
∨E

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

140 J. Dunfield

Fig. 2. Syntax of source types, contexts, and expressions.

Because of ∨E, typing is not always preserved by η-reduction. Thus, we must sometimes
η-expand, as in the coercion for the subtyping rule ∨L� (see Section 4.4 and the proof of
Theorem 1) and in one of our examples (see the discussion in Section 8.3).

Like intersections, unions can be tamed by elaboration. Instead of products, we elaborate
unions to products’ dual, sums (tagged unions). Uses of ∨I1 and ∨I2 become left and right
injections into a sum type; uses of ∨E become ordinary case expressions.

4 Source language

4.1 Source syntax

The source language expressions e are standard, except for the feature central to our
approach, the merge e1,, e2. The types A,B,C are: a “top” type �, whose values carry
no information, and which we will elaborate to unit; the usual function space A → B;
intersection A ∧ B; and union A ∨ B. Note that � can be viewed as a 0-ary intersection.
Values v are standard, except that a merge of values v1,, v2 is considered a value even
though it can step! But the step it takes is pure, in the sense that even if we incorporated
effects such as mutable references, it would not interact with them.

As usual, we follow Barendregt’s convention of automatically renaming bound variables,
and use a standard capture-avoiding substitution [e ′/x]e (e ′ substituted for x in e). In
typing contexts Γ , we assume that variables are not declared more than once. Finally, we
treat contexts as ordered lists, though this is not required in the setting of this paper.

4.2 Source operational semantics

The source language operational semantics (Figure 3) is standard, with (left-to-right) call-
by-value function application and a fixed-point expression, except for the merge con-
struct. This peculiar animal is a descendant of “demonic choice” (often written ⊕): by
the ‘step/unmerge left’ and ‘step/unmerge right’ rules, e1,, e2 can step to either e1 or
e2. Adding to its misbehaviours, it permits stepping within itself, via ‘step/merge1’ and
‘step/merge2’—note that in ‘step/merge2’, we don’t require e1 to be a value. Worst of all,
it can appear by spontaneous fission: ‘step/split’ turns any expression e into a merge of two
copies of e.

The merge construct makes our source language operational semantics interesting. It
also makes it unrealistic: �-reduction does not preserve types. For type preservation to
hold, the operational semantics would need access to the typing derivation. Even worse,
since the typing rule for merges ignores the unused part of the merge, �-reduction can

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 141

Fig. 3. Source language operational semantics: call-by-value + merge construct.

produce expressions that have no type at all—or, if the unused part of the merge is ill-
formed, are not even closed!

The point of the source operational semantics is not to directly model computation;
rather, it is a basis for checking that the elaborated program (whose operational semantics
is perfectly standard) makes sense. We will show in Section 6 that, if the result M of
elaborating e can step to some M ′, then we can step e �∗ e ′ where e ′ elaborates to
M ′. The peculiar rule ‘step/split’ is used in the proof of Lemma 11, in the case for ∧I;
introducing a merge allows us to compose the result of applying the induction hypothesis
to each subderivation.

4.3 (Source) subtyping

Suppose we want to pass a function f : A → C to a function g : ((A ∧ B) → C) → D. This
should be possible, since f requires only that its argument have type A; in all calls from g

the argument to f will also have type B, but f won’t mind. With only the rules discussed
so far, however, the application g f is not well typed: we can’t eliminate the intersection
A ∧ B under the arrow in (A ∧ B) → C. For flexibility, we’ll incorporate a subtyping
system that can conclude, for example, A → C� (A ∧ B) → C.

The logic of the subtyping rules (Figure 4, top) is taken straight from Dunfield and
Pfenning (2003). Roughly, A � B is sound if every value of type A can be treated as
having type B. Under a subset interpretation, this would mean that A� B is justified if the
set of A-values is a subset of the set of B-values. For example, the rule ∧R�, interpreted
set-theoretically, says that if A⊆B1 and A⊆B2 then A⊆ (B1∩B2). We can also take the
perspective of the sequent calculus (Gentzen, 1969), and read A�B as A � B: The left and
right subtyping rules for intersection correspond to the left and right rules for conjunction
in the sequent calculus, but with a single antecedent and succedent. Likewise, the subtyping
rules for union correspond to the rules for disjunction in the sequent calculus.

Our rules are simple and orthogonal: the subtyping behavior of each type constructor
can be understood independently, because no rule mentions two different constructors.
Hence, we have no distributivity properties, such as that of ∧ over →, or of ∧ and ∨ over

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

142 J. Dunfield

Fig. 4. Source type system, with subsumption, nonelaborating.

each other. Including distributivity of ∧ over → is problematic, for similar reasons as the
value restriction on ∧-introduction; see Davies and Pfenning (2000) and Section 6.5 below.
Distributivity of ∧ and ∨ over each other appears safe, but would defeat orthogonality.
Since our rules do not capture all sound subtyping relationships, they are incomplete. (This
very syntactic approach stands in marked contrast to the semantic subtyping approach of
Frisch et al. (2008), which aims to capture all sound subtypings.)

It is easy to show that subtyping is reflexive and transitive:

Lemma.
Given a type A, there exists e such that A�A ::: e.

Proof

By structural induction on A; see sub-refl.elf. �

Lemma.
If A� B ::: eAB and B� C ::: eBC then there exists eAC such that A� C ::: eAC.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 143

Proof
By simultaneous induction on the given derivations; see sub-trans.elf. �

Note that building transitivity into the structure of the rules makes it easy to derive
an algorithm; an explicit transitivity rule would have premises A � B and B � C, which
involve an intermediate type B that does not appear in the conclusion A� C.

Having said all that, the subsequent theoretical development is easier without subtyping.
So we will show (Theorem 1) that, given a typing derivation that uses subtyping (through
the usual subsumption rule), we can always construct a source expression of the same
type that never applies the subsumption rule. This new expression will be the same as the
original one, with a few additional coercions. For the example above, we essentially η-
expand g f to g (λx.f x), which lets us apply ∧E1 to x : A ∧ B. More generally, adding
coercions βη-expands the expression, “articulating” the type structure and making the
subsumption rule unnecessary. All the coercions are identities except for rule �R�, which
can replace any value used at type unit with the “canonical” unit value ().

This is a long-standing technique for systems with subtyping over intersection types;
Barendregt et al. (1983) used it in a completeness argument, showing that no typings are
lost when the subsumption rule is replaced by a βη-expansion rule (their Lemma 4.2).

Note that the coercion in rule ∨L� is itself η-expanded to allow ∨E to eliminate the
union in the type of x, since the subexpression of union type must be in evaluation position.

4.4 Source typing

The source typing rules (Figure 4) are either standard or have already been discussed in
Sections 2 and 3, except for �I and direct.

The �I rule says that any value can be given type �. It types any value, not just the unit
expression ()—even though, given rule sub, we could get the same effect with a version
of �I that typed only () (and prove exactly the same results). However, the more general
�I more closely resembles ∧I, emphasizing that � is essentially a 0-ary version of ∧.2

The direct rule was introduced and justified in Dunfield and Pfenning (2003, 2004). It
is a 1-ary version of ∨E, a sort of cut: it allows us to replace a derivation of E [e0] : C

that contains a subderivation of e0 : A by a derivation of e0 : A, along with a derivation
of E [x] : C that assumes x : A. Curiously, in this system of rules, direct is admissible:
given e0 : A, use ∨I1 or ∨I2 to conclude e0 : A ∨ A, then use two copies of the derivation
x : A � E [x] : C in the premises of ∨E (α-converting x as needed). So why include it?
Typing using these rules is undecidable; our implementation uses a bidirectional version
of these rules in which typechecking is decidable given a few annotations (Dunfield and
Pfenning, 2004). That bidirectional system (Section 9.1) has two judgment forms, checking
and synthesis, and in that system direct is not admissible.

Remark. Theorem 1, and all subsequent theorems, are proved only for expressions that
are closed under the appropriate context Γ . While rule mergek does not explicitly check

2 In ∧I, a value restriction is mandatory in only some settings (Section 6.5). But we cannot let �I give type
� to expressions that are not values: we will elaborate such values to the target term (), but some source
expressions never step to values, which would break the correspondence between the source and target
semantics. Specifically, Lemma 11 would fail.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

144 J. Dunfield

Fig. 5. Target types and terms.

that the unexamined subexpression be closed, our implementation does perform this check
(when it parses the program). Since Twelf does not support proofs about objects with
unknown variables, the implementation and the proof are in harmony.

Theorem 1 (Coercion)

If D derives Γ � e : B then there exists an e ′ such that D ′ derives Γ � e ′ : B, where D ′

never uses rule sub.

Proof

By induction on D . The interesting cases are for sub and ∨E. In the case for sub with
A � B, we show that when the coercion ecoerce—which always has the form λx.e0—is
applied to an expression of type A, we get an expression of type B. For example, for
∧L1� we use ∧E1. This shows that e ′ = (λx.e0) e has type B.

For ∨E, the premises typing E [xk] might “separate,” say if the first includes subsump-
tion (yielding the same E [x1]) and the second doesn’t. Furthermore, inserting coercions
could break evaluation positions: given E = f [], replacing f with an application (ecoerce f)

means that [] is no longer in evaluation position. The solution is to let e ′ = (λy.e ′
1,, e ′

2) e ′
0

where e ′
0 comes from applying the induction hypothesis to the derivation of Γ � e0 : A1 ∨

A2, and e ′
1 and e ′

2 come from applying the induction hypothesis to the other two premises.
Now e ′

0 is in evaluation position, because it follows a value (λy.e ′
1,, e ′

2); the mergek typing
rule will choose the correct branch.

For details, see coerce.elf. We actually encode the typings for ecoerce as hypothetical
derivations in the subtyping judgment itself (typeof+sub.elf), making the sub case here
trivial. �

5 Target language

Our target language is just the simply-typed call-by-value λ-calculus extended with fixed-
point expressions, products, and sums.

5.1 Target syntax

The target types and terms (Figure 5) are completely standard.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 145

Fig. 6. Target type system with functions, products, and sums.

5.2 Target typing

The typing rules for the target language (Figure 6) lack any form of subtyping, and are
completely standard.

5.3 Target operational semantics

The operational semantics M �→ M ′, read M steps to M ′, is also standard; functions are
call-by-value and products are strict. As usual, we write M �→∗ M ′ for a sequence of zero
or more �→-steps. Naturally, a type safety result and a determinism result hold. Note that
the main results of the paper don’t depend on these theorems: their purpose is to reassure
us that we have defined the target semantics correctly.

Theorem 2 (Target Type Safety)
If · � M : T then either M is a value, or M �→ M ′ and · � M ′ : T .

Proof
By induction on the given derivation, using a few standard lemmas; see tm-safety.elf.
(The necessary substitution lemma comes for free in Twelf.) �

Theorem 3 (Determinism of �→)
If M �→ N1 and M �→ N2 then N1 = N2 (up to α-conversion).

Proof
By simultaneous induction. See tm-deterministic in tm-safety.elf. �

6 Elaboration typing

We elaborate well-typed source expressions e into target terms M. The source expressions,
which include a “merge” construct e1,, e2, are typed with intersections and unions, but the
result of elaboration is completely standard and can be typed with just unit, →, ∗ and +.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

146 J. Dunfield

Fig. 7. Target language operational semantics: call-by-value + products + sums.

The elaboration judgment Γ � e : A ↪→ M is read “under assumptions Γ , source ex-
pression e has type A and elaborates to target term M.” While not written explicitly in
the judgment, the elaboration rules ensure that M has type |A|, the type translation of A

(Figure 9). For example, |� ∧ (�→�)| = unit∗ (unit→unit).
To simplify the technical development, the elaboration rules work only for source ex-

pressions that can be typed without using the subsumption rule sub (Figure 4). Such source
expressions can always be produced (Theorem 1, above).

In the rest of this section, we discuss the elaboration rules and prove related properties:

6.1 connects elaboration, source typing, and target typing;
6.2 gives lemmas useful for showing that target computations correspond to source com-

putations;
6.3 states and proves that correspondence (consistency, Thm. 13);
6.4 summarizes the metatheory through two important corollaries of our theorems.
6.5 discusses whether we need a value restriction on ∧I.

6.1 Connecting elaboration and typing

Equivalence of elaboration and source typing: The nonelaborating type assignment sys-
tem of Figure 4, minus sub, can be read off from the elaboration rules in Figure 8: simply
drop the ↪→ . . . part of the judgment. Consequently, given e : A ↪→ M we can always
derive e : A:

Theorem 4
If Γ � e : A ↪→ M then Γ � e : A (without using rule sub).

Proof
By induction on the given derivation; see typeof-erase in typeof-elab.elf. �

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 147

Fig. 8. Elaboration typing rules.

Fig. 9. Type translation.

More interestingly, given Γ � e : A we can always elaborate e, so elaboration is just as
expressive as typing:

Theorem 5 (Completeness of Elaboration)
If Γ � e : A (without using rule sub) then there exists M such that Γ � e : A ↪→ M.

Proof
By induction on the given derivation; see elab-complete in typeof-elab.elf. �

Elaboration produces well-typed terms: Any target term M produced by the elaboration
rules has the corresponding target type. In the theorem statement, we assume the obvious
translation of contexts |Γ |; for example:

|x :�, y :� ∨ �| = x : |�|, y : |� ∨ �|

= x :unit, y : |�|+ |�|

= x :unit, y :unit+unit

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

148 J. Dunfield

Theorem 6 (Elaboration Type Soundness)
If Γ � e : A ↪→ M then |Γ | � M : |A|.

Proof

By induction on the given derivation. For example, the case for direct, which elaborates
to an application, applies typeoftm/arrintro and typeoftm/arrelim. Exploiting a bijection
between source types and target types, we actually prove Γ � M : A, interpreting A and
types in Γ as target types: ∧ as ∗, etc. See elab-type-soundness.elf. �

6.2 Relating source expressions to target terms

Elaboration produces a term that corresponds closely to the source expression: a target term
is the same as a source expression, except that the intersection- and union-related aspects
of the computation become explicit in the target. For instance, intersection elimination via
∧E2, implicit in the source program, becomes the explicit projection proj2. The target term
has nearly the same structure as the source; the elaboration rules only insert operations such
as proj2, duplicate subterms such as the e in ∧I, and omit unused parts of merges.

This gives rise to a relatively simple connection between source expressions and target
terms—much simpler than a logical relation, which relates all appropriately-typed terms
that have the same extensional behavior. In fact, stepping in the target preserves elaboration
typing, provided we are allowed to step the source expression zero or more times. This
consistency result, Theorem 13, needs several lemmas.

Lemma 7

If e�∗ e ′ then E [e]�∗ E [e ′].

Proof

By induction on the number of steps, using a lemma (step-eval-context) that e� e ′

implies E [e]� E [e ′]. See step*eval-context in step-eval-context.elf. �

Next, we prove inversion properties of unions, intersections, and arrows. Roughly, we
want to say that if an expression of union type elaborates to an injection injk M0, it also
elaborates to M0. Dually, if an expression of intersection type elaborates to (M1,M2), it
also elaborates to M1 and M2. Similarly, given an expression of arrow type that elaborates
to a λ-abstraction, we can step the expression to a λ-abstraction.

Lemma 8 (Unions/Injections)
If Γ � e : A1 ∨ A2 ↪→ injk M0 then Γ � e : Ak ↪→ M0.

Proof

By induction on the given derivation. The only possible cases are mergek and ∨Ik. See
elab-inl and elab-inr in elab-union.elf. �

Lemma 9 (Intersections/Pairs)
If Γ � e : A1 ∧ A2 ↪→ (M1, M2) then Γ � e : A1 ↪→ M1 and Γ � e : A2 ↪→ M2.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 149

Proof
By induction on the given derivation; the only possible cases are ∧I and mergek. See
elab-sect.elf. �

Lemma 10 (Arrows/Lambdas)
If · � e : A → B ↪→ λx.M0 then there exists e0

such that e�∗ λx.e0 and x : A � e0 : B ↪→ M0.

Proof
By induction on the given derivation; the only possible cases are →I and mergek. We show
the merge1 case:

• Case merge1:

D ::

· � e1 : A → B ↪→ λx.M0

· � e1,, e2 : A → B ↪→ λx.M0

By i.h., there exists e0 such that e1�
∗ λx.e0 and x : A � e0 : B ↪→ M0.

By rule ‘step/merge1’, (e1,, e2)� e1.
Therefore (e1,, e2)�∗ λx.e0, which was to be shown.

See elab-arr.elf. �

Our last interesting lemma shows that if an expression e elaborates to a target value W,
we can step e to some value v that also elaborates to W.

Lemma 11 (Value monotonicity)
If Γ � e : A ↪→ W then there exists v such that e�∗ v where Γ � v : A ↪→ W.

Proof
By induction on the given derivation. The most interesting case is for ∧I.

• Case ∧I:

D ::

· � e : A1 ↪→ W1 · � e : A2 ↪→ W2

· � e : A1 ∧ A2 ↪→ (W1, W2)

Applying the induction hypothesis to each premise yields v1 and v2 such that e�∗

v1 and e�∗ v2.
Now we need to find a value v such that · � v : A1 ∧ A2 ↪→ (W1, W2). So far
we only have v1 and v2, which may be distinct; but we need a single value v. But
we can apply rule ‘step/split’: e� (e,, e). Repeatedly applying ‘step/merge1’ gives
(e,, e)�∗ (v1,, e); likewise, ‘step/merge2’ gives (v1,, e)�∗ (v1,, v2):

e� (e,, e)�∗ (v1,, e)�∗ (v1,, v2)

Therefore e�∗ (v1,, v2). Let v = (v1,, v2).
By merge1, · � v1,, v2 : A1 ↪→ W1. By merge2, · � v1,, v2 : A2 ↪→ W2.
Then ∧I gives · � v1,, v2 : A1 ∧ A2 ↪→ (W1, W2).

In the mergek case on a merge e1,, e2, we apply the induction hypothesis to ek, giving
ek�

∗ v. By rule ‘step/unmerge’, e1,, e2� ek, from which e1,, e2�
∗ v.

See value-mono.elf. �

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

150 J. Dunfield

Lemma 12 (Substitution)
If Γ,x : A � e : B ↪→ M and Γ � v : A ↪→ W then Γ � [v/x]e : B ↪→ [W/x]M.

Proof
By induction on the first derivation. Twelf’s higher-order abstract syntax gives us this
substitution lemma for free. �

6.3 Consistency

The consistency theorem below is the linchpin: given e that elaborates to M, we can
preserve the elaboration relationship even after stepping M, though we may have to step e

some number of times as well. The expression e and term M, in general, step at different
speeds:

• M steps while e doesn’t—for example, if M is proj1 (W1, W2) and steps to
W1, there is nothing to do in e because the projection corresponds to the implicit
elimination in rule ∧E1;

• e may step more than M—for example, if e is (v1,, v2)v and M is (λx.x)W, then
M β-reduces to W, but e must first ‘step/unmerge’ to the appropriate vk, yielding
vk v, and then apply ‘step/beta’.

(Note that the converse—if e� e ′ then M �→∗ M ′—does not hold: we could pick the
wrong half of a merge and get a source expression with no particular relation to M.)

Theorem 13 (Consistency)
If · � e : A ↪→ M and M �→ M ′

then there exists e ′ such that e�∗ e ′ and · � e ′ : A ↪→ M ′.

Proof
By induction on the derivation D of · � e : A ↪→ M. We show several cases here; the full
proof is in consistency.elf.

• Case var, �I, →I: Impossible because M cannot step.

• Case ∧I:

D ::

· � e : A1 ↪→ M1 · � e : A2 ↪→ M2

· � e : A1 ∧ A2 ↪→ (M1, M2)

By inversion, either M1 �→ M ′
1 or M2 �→ M ′

2. Suppose the former (the latter is sim-
ilar). By i.h., e�∗ e ′

1 and · � e ′
1 : A1 ↪→ M ′

1. By ‘step/split’, e� e,, e. Repeatedly
applying ‘step/merge1’ gives e,, e�∗ e ′

1,, e.
For typing, apply merge1 with premise · � e ′

1 : A1 ↪→ M ′
1 and merge2 with premise

· � e : A2 ↪→ M2.
Finally, by ∧I, we have · � e ′

1,, e : A1 ∧ A2 ↪→ (M ′
1, M2).

• Case ∧Ek:

D ::

· � e : A1 ∧ A2 ↪→ M0

· � e : Ak ↪→ projk M0

If projk M0 �→ projk M ′
0 with M0 �→ M ′

0, use the i.h. and apply ∧Ek.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 151

If M0 = (W1, W2) and projk M0 �→ Wk, use Lemma 9, yielding Γ � e : Ak

↪→ Wk.

• Case mergek:

D ::

· � ek : A ↪→ M

· � e1,, e2 : A ↪→ M

By i.h., ek �
∗ e ′ and · � e ′ : A ↪→ M ′. By rule ‘step/unmerge’, e1,, e2 � ek.

Therefore e1,, e2�
∗ e ′.

• Case →E:

D ::

· � e1 : A→B ↪→ M1 · � e2 : A ↪→ M2

· � e1 e2 : B ↪→ M1 M2

We show one of the harder subcases (consistency/app/beta in consistency.

elf). In this subcase, M1 = λx.M0 and M2 is a value, with M1 M2 �→ [M2/x]M0.
We use several easy lemmas about stepping; for example, step*app1 says that if
e1�

∗ e ′
1 then e1 e2�

∗ e ′
1 e2.

Elab1 :: · � e1 : A → B ↪→ λx.M0 Subd.

ElabBody :: x : A � e0 : B ↪→ M0 By Lemma 10

StepsFun :: e1�
∗ λx.e0

′′

StepsApp :: e1 e2�
∗ (λx.e0)e2 By step*app1

Elab2 :: · � e2 : A ↪→ M2 Subd.

M2 value Above

Elab2 ′ :: · � e2�
∗ v2 By Lemma 11

· � v2 : A ↪→ M2
′′

(λx.e0)e2�
∗ (λx.e0)v2 By step*app2

e1 e2�
∗ (λx.e0)v2 By step*append

(λx.e0)v2� [v2/x]e0 By ‘step/beta’

StepsAppBeta :: e1 e2�
∗ [v2/x]e0 By step*snoc

ElabBody :: x : A � e0 : B ↪→ M0 Above

· � [v2/x]e0 : B ↪→ [M2/x]M0 By Lemma 12 (Elab2 ′)

Theorem 14 (Multistep Consistency)

If · � e : A ↪→ M and M �→∗ W then there exists v such that e�∗ v and · � v : A ↪→ W.

Proof

By induction on the derivation of M �→∗ W.
If M is some value W then, by Lemma 11, e is some value v. The source expression e

steps to itself in zero steps, so v �∗ v, and · � v : A ↪→ W is given
(e = v and M = W).

Otherwise, we have M �→ M ′ where M ′ �→∗ W. We want to show · � e ′ : A ↪→ M ′,
where e �∗ e ′. By Theorem 13, either · � e : A ↪→ M ′, or e � e ′ and · � e ′ :

A ↪→ M ′.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

152 J. Dunfield

• If · � e : A ↪→ M ′, let e ′ = e, so · � e ′ : A ↪→ M ′ and e�∗ e ′ in zero steps.
• If e� e ′ and · � e ′ : A ↪→ M ′, we can use the i.h., showing that e ′ �∗ v and

· � v : A ↪→ W.

See consistency* in consistency.elf. �

6.4 Summing up

Theorem 15 (Static Semantics)
If · � e : A (using any of the rules in Figure 4) then there exists e ′ such that · � e ′ : A ↪→ M

and · � M : |A|.

Proof

By Theorems 1 (coercion), 5 (completeness of elaboration), and 6 (elaboration type sound-
ness). �

Theorem 16 (Dynamic Semantics)
If · � e : A ↪→ M and M �→∗ W then there is a source value v such that e�∗ v and
· � v : A.

Proof

By Theorems 14 (multistep consistency) and 4. �

Recalling the diagram in Figure 1, Theorem 16 shows that it commutes.
Both theorems are stated and proved in summary.elf. Combined with a run of the

target program, M �→∗ W, they show that elaborated programs are consistent with source
programs.

6.5 The value restriction

Let’s turn for a moment to parametric polymorphism. The natural rule for introducing a
polymorphic type (sometimes distinguished as a type scheme) would be

Δ,α type � e : A

Δ � e : ∀α.A
∀I

However, in a call-by-value semantics with mutable references, this rule is unsound, as
shown by this example:

let r=(ref Nil) : ∀α. ref (list α) in

r := [3]; —by instantiating α with int

(!r) : list bool —by instantiating α with bool

Here, !r will evaluate to [3], which is a list of integers, not a list of booleans. The
original specification of Standard ML was unsound, since it permitted examples along
these lines. Various solutions were proposed; the revised Definition (Milner et al., 1997,

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 153

p. 86) followed Wright (1995), who proposed restricting ∀-introduction to values v:

Δ,α type � v : A

Δ � v : ∀α.A
∀I (≈Wright)

A few years later, Davies and Pfenning (2000) showed that the then-standard rule for
intersection introduction (that is, our ∧I) was unsound in a call-by-value semantics in the
presence of effects—specifically, mutable references. Here is an example, essentially the
same as theirs. Assume a base type nat with values 0,1,2, . . . and a type pos of strictly
positive naturals with values 1,2, . . . ; assume pos� nat.

let r=(ref 1) : (ref nat) ∧ (ref pos) in

r := 0;

(!r) : pos

Using the unrestricted ∧I rule, r has type (ref nat) ∧ (ref pos); using ∧E1 yields r :

ref nat, so the write r := 0 is well-typed; using ∧E2 yields r : ref pos, so the read !r

produces a pos. In an unelaborated setting, this typing is unsound: (ref 1) creates a single
cell containing 1, which is overwritten with 0; then !r� 0, which does not have type
pos.

Noting the apparent similarity of this problem with ∧-introduction to the earlier problem
with ∀-introduction, Davies and Pfenning proposed an analogous value restriction: an ∧-
introduction rule that only types values v. This rule is sound with mutable
references:

v : A1 v : A2

v : A1 ∧ A2

∧I (Davies and Pfenning)

In our elaboration system, however, the problematic example above is sound, because
our ∧I elaborates ref 1 to two distinct expressions, which create two unaliased cells:

ref 1 : ref nat ↪→ ref 1 ref 1 : ref pos ↪→ ref 1

ref 1 : ref nat ∧ ref pos ↪→ (ref 1, ref 1)
∧I

Thus, the example elaborates to

let r=(ref 1, ref 1) in

(proj1 r) := 0;

(!proj2 r) : pos

which is well-typed, but does not “go wrong” in the type-safety sense: the assignment
writes to the first cell (∧E1), and the dereference reads the second cell (∧E2), which still
contains the original value 1. The restriction-free ∧I thus appears sound in our setting.
Being sound is not the same as being useful, though; such behavior is less than intuitive,
as we discuss in the next section.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

154 J. Dunfield

Fig. 10. Example of overloading.

7 Coherence

The merge construct, while simple and powerful, has serious usability issues when the
parts of the merge have overlapping types. Or, more accurately, when their types would
overlap—have nonempty intersection—in a merge-free system; in our system, all intersec-
tions A ∧ B of nonempty A, B are nonempty: if vA : A and vB : B then vA,, vB : A ∧ B by
merge1, merge2, and ∧I.

According to the elaboration rules, the expression 0,, 1 (checked against nat) could
elaborate to either 0 or 1. Our implementation would elaborate 0,, 1 to 0, because it tries
the left part 0 first. Arguably, this is better behavior than actual randomness, but hardly
helpful to the programmer. Perhaps even more confusingly, suppose we check 0,, 1 against
pos ∧ nat, where pos and nat are as in Section 6.5. Our implementation elaborates 0,, 1 to
(1, 0), but elaborates 1,, 0 to (1, 1).

Since the behaviour of the target program depends on the particular elaboration typing
used, the system lacks coherence (Reynolds, 1991). To recover a coherent semantics, we
could limit merges according to their surface syntax, as Reynolds did in Forsythe, but
crafting an appropriate syntactic restriction depends on details of the type system, which
is not robust as the type system is extended. A more general approach would be to reject
(or warn about) merges in which more than one part checks against the same type, or the
same part of an intersection type; we will return to this in Section 11.

Leaving merges aside, the mere fact that ∧I elaborates the expression twice creates
problems with mutable references, as we saw in Section 6.5. To address this, we could
revive the value restriction in ∧I, at least for expressions whose types might overlap.

8 Applying intersections and unions

8.1 Overloading

A very simple use of unrestricted intersections is to “overload” operations such as mul-
tiplication and conversion of data to printable form. SML provides overloading only for
a (syntactically) fixed set of built-in operations; it is not possible to write an overloaded
square function, such as ours in Figure 10.

Unlike Standard ML, we provide a convenient syntax for type annotations that conforms
to SML module signatures. For example, val square : . . . is a type annotation that applies

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 155

to the subsequent declaration of square. (Previous versions of our system, including the
one described in Dunfield (2012), used a different syntax that allowed source programs to
be valid Standard ML programs—a futile goal in the context of unrestricted intersection
and union types.)

In its present form, this idiom is less powerful than type classes (Wadler and Blott, 1989).
We could extend toString for lists, which would handle lists of integers and lists of reals,
but not lists of lists; the version of toString for lists would use the earlier occurrence of
toString, defined for integers and reals only. Adding a mechanism for naming a type and
then “unioning” it, recursively, is future work.

8.2 Records

Reynolds (1996) developed an encoding of records using intersection types and his version
of the merge construct; similar ideas appear in Castagna et al. (1995). Though straightfor-
ward, this encoding is more expressive than SML records.

The idea is to add single-field records as a primitive notion, through a type {fld:A}

with introduction form {fld=e} and the usual eliminations (explicit projection and pattern
matching). Once this is done, the multifield record type {fld1:A1, fld2:A2} is simply
{fld1:A1} ∧ {fld2:A2}, and it can be introduced by a merge:

{fld1=e1},, {fld2=e2}

More standard concrete syntax, such as {fld1=e1, fld2=e2}, can be handled trivially
during parsing.

With subtyping on intersections, we get the desired behavior of what SML calls “flex
records”—records with some fields not listed—with fewer of SML’s limitations. Using this
encoding, a function that expects a record with fields x and y can be given any record that
has at least those fields, whereas SML only allows one fixed set of fields. For example, the
code in Figure 11 is legal in our language but not in SML.

One problem with this approach is that expressions with duplicated field names are
accepted. This is part of the larger issue discussed in Section 7.

8.3 Heterogeneous data

A common argument for dynamic typing over static typing is that heterogeneous data
structures are more convenient. For example, dynamic typing makes it very easy to cre-
ate and manipulate lists containing both integers and strings. The penalty is the loss of
compile-time invariant checking. Perhaps the lists should contain integers and strings, but
not booleans; such an invariant is not expressible in traditional dynamic typing.

A common rebuttal from advocates of static typing is that it is easy to simulate dynamic
typing in static typing. Want a list of integers and strings? Just declare a datatype

datatype int or string = Int of int

| String of string

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

156 J. Dunfield

Fig. 11. Example of flexible multifield records.

and use lists of type list int or string3. This guarantees the invariant that the list has only
integers and strings, but is unwieldy: each new element must be wrapped in a constructor,
and operations on the list elements must unwrap the constructor, even when those opera-
tions accept both integers and strings (such as a function of type (int → string) ∧ (string →

string)).
In this situation, our approach provides the compile-time invariant checking of static

typing and the transparency of dynamic typing. The type of list elements (if we bother to
declare it) is just a union type:

type int union string = int ∨ string

The elaboration process transforms programs that use int union string into programs
that use int or string.

Along these lines, we use in Figure 12 a type dyn, defined as int ∨ real ∨ string. It
would be useful to also allow lists, but the current implementation lacks recursive types of
a form that could express “dyn = ... ∨ list dyn”.

Note that the η-expansion in toString is necessary: if we instead wrote

val toString = Int.toString ,, (fn s ⇒ s : string) ,, Real.toString

we would attempt to check the merge against the type (int ∨ real ∨ string)→string.
However, we cannot apply →E because the term is a merge, not a λ-abstraction. We also
cannot apply merge because no single part of the merge can handle int ∨ real ∨ string—
each part handles only one type from the union. In the η-expanded version, the variable x

has type int ∨ real ∨ string and appears in an evaluation position (recall that a merge of
values is a value), so we can apply ∨E.

3 In our syntax, type constructors are given first, as in Haskell.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 157

Fig. 12. Example of heterogeneous data (dyn.sdml).

Alternatively, we could try to check the unexpanded version against an intersection of
arrows:

val toString : (int → string)∧ (real → string)∧ (string → string)
val toString = Int.toString ,, (fn s ⇒ s : string) ,, Real.toString

This typechecks, but is less than ideal: while the subtyping relation

(int→ string)∧ (real→ string)∧ (string→ string) � (int∨ real∨ string)→ string

is sound, it is not derivable in our system of subtyping rules, so we cannot pass this
version of toString to a function expecting an argument of type (int ∨ real ∨ string) →

string. It does, however, suffice to make the rest of the example typecheck: In the body of
hetListToString we have the application (toString h), where h has union type, so we
can apply ∨E. Even if we extended the subtyping rules, the user would still have to write
out the intersection, instead of simply writing dyn → string.

9 Implementation

Our prototype implementation, called Stardust, is faithful to the spirit of the elabora-
tion rules above, but is substantially richer. It builds on an earlier implementation (Dun-
field, 2007) of a typechecker for a subset of core Standard ML with support for inductive
datatypes, products, intersections, unions, refinement types, and indexed types, extended
with support for (first-class) polymorphism (Dunfield, 2009). The current implementation
does not fully support some of these features; support for first-class polymorphism looks
hardest, since Standard ML compilers cannot even compile programs that use higher-rank
predicative polymorphism. Elaborating programs that use ML-style prenex polymorphism
should work, but we currently lack any significant testing, much less proof, to back that
up.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

158 J. Dunfield

Our implementation does currently support merges, intersections, and unions, a top
type, a bottom (empty) type, single-field records and encoded multifield records (Section
8.2), and inductive datatypes. It also supports a form of exception; the expression raise e

does not return a value, and checks against the bottom type. Support for refinement and
indexed types is spotty, but some of the examples that worked in the old system (Dunfield,
2007) work in the new one. Stardust includes both refinement and unrestricted versions of
intersection and union; however, mixing them in the same program is not supported (and
appears nontrivial to solve; see the discussion in Section 11).

The implementation, including examples, can be downloaded from stardust.qc.com.

9.1 Bidirectional typechecking

Our implementation uses bidirectional typechecking (Pierce and Turner, 2000; Dunfield
and Pfenning, 2004; Dunfield and Krishnaswami, 2013). This technique offers two ma-
jor benefits over Damas–Milner type inference: it works for many type systems where
annotation-free inference is undecidable, and it seems to produce better-localized error
messages. See Dunfield and Krishnaswami (2013) for references.

Bidirectional typechecking does need more type annotations than Damas–Milner infer-
ence. However, by following the approach of Dunfield and Pfenning (2004), annotations
are never needed except on redexes. The implemented typechecker allows some annota-
tions on redexes to be omitted, as well.

The basic idea of bidirectional typechecking is to separate the activity of checking
an expression against a known type from the activity of synthesizing a type from the
expression itself:

Γ � e ⇐ A e checks against known type A

Γ � e ⇒ A e synthesizes type A

In the checking judgment, Γ , e and A are inputs to the typing algorithm, which either
succeeds or fails. In the synthesis judgment, Γ and e are inputs and A is output (assuming
synthesis does not fail). The direction of the arrows (⇐, ⇒) corresponds to the flow of
type information.

Syntactically speaking, crafting a bidirectional type system from a type assignment
system (like the one in Figure 4) is largely a matter of taking the colons in the Γ � e : A

judgments and replacing some with “⇐” and some with “⇒”. Except for the rules for
merges, all our typing rules can be found in Dunfield and Pfenning (2004), which argued
that introduction rules should check and elimination rules should synthesize. For functions,
this leads to the rules

Γ,x : A � e ⇐ B

Γ � λx.e ⇐ A → B
→I⇐

Γ � e1 ⇒ A → B Γ � e2 ⇐ A

Γ � e1 e2 ⇒ B
→E⇒

The merge rule, however, neither introduces nor eliminates. We implement the obvious
checking rule (which, in practice, always tries to check against e1 and, if that fails, against
e2):

Γ � ek ⇐ A

Γ � e1,, e2 ⇐ A
mergek⇐

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 159

Fig. 13. Bidirectional typing for the source language.

Since it can be inconvenient to annotate merges, we also implement synthesis rules, in-
cluding one that can synthesize an intersection (merge∧⇒); see Figure 13.

Given a bidirectional typing derivation, it is generally easy to show that a corresponding
type assignment exists: replace all “⇒” and “⇐” with “:” (and erase explicit type annota-
tions from the expression). In the other direction, given a type assignment derivation, we
can show that a bidirectional derivation exists after adding some type annotations. Bidirec-
tional typing is certainly incomplete in the sense that it cannot synthesize a type for every
(well-typed) unannotated term—but since type assignment for most, if not all, intersection
type systems is undecidable (Coppo et al., 1981), completeness is not achievable.

That said, the system in Figure 13 seems excessively incomplete; for example, no rule
can synthesize a type for (), nor for a function λx.e, even in cases where the body e

synthesizes and does not use x (or makes it obvious what type x must have). More elaborate
systems of bidirectional typechecking require fewer annotations, and can support paramet-
ric polymorphism; the implementation is based on an algorithm given by Dunfield (2009),
but a better reference is the simpler approach developed by Dunfield and Krishnaswami
(2013).

The implementation also transforms programs to a variant of let-normal form before
checking them, which (partly) addresses one source of backtracking during typechecking:
the choice of evaluation context in the ∨E rule. This transformation is described in Dun-
field (2011), with the caveat that the system considered there lacks the merge rules.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

160 J. Dunfield

9.2 Performance

Intersection typechecking is PSPACE-hard (Reynolds, 1996). In practice, we elaborate the
examples in Figures 10–12 in less than a second, but they are very small. On somewhat
larger examples, such as those discussed by Dunfield (2007), the non-elaborating version
of Stardust could take minutes, thanks to heavy use of backtracking search (trying ∧E1

then ∧E2, etc.) and the need to check the same expression against different types (∧I) or
with different assumptions (∨E). Elaboration doesn’t help with this, but it shouldn’t hurt
by more than a constant factor: the shapes of the derivations and the labor of backtracking
remain the same.

To scale up the approach to larger programs, we will need to consider how to efficiently
represent elaborated intersections and unions. Like the theoretical development, the imple-
mentation has two-way intersection and union types, so the type A1 ∧ A2 ∧ A3 is parsed as
(A1 ∧ A2) ∧ A3, which becomes (A1 ∗A2)∗A3. A flattened representation A1 ∗A2 ∗A3

would be more efficient, except when the program uses values of type (A1 ∧ A2) ∧ A3

where values of type A1 ∧ A2 are expected; in that case, nesting the product allows the
inner pair to be passed directly with no reboxing. Symmetry is also likely to be an issue:
passing v : A1 ∧ A2 where v : A2 ∧ A1 is expected requires building a new pair. Here, it
may be helpful to put the components of intersections into a canonical order.

The foregoing applies to unions as well—introducing a value of a three-way union can
lead to two injections, and so on.

10 Related work

Intersections were originally developed by Coppo et al. (1981) and Pottinger (1980), among
others; Hindley (1992) gives a useful introduction and bibliography. Building on Pot-
tinger’s work, Lopez-Escobar (1985) called intersection a proof-functional connective (as
opposed to truth-functional) and defined a variant of the sequent calculus with intersection
instead of conjunction. In that system, intersection introduction is allowed only when the
two subderivations have a similar structure, roughly analogous to the requirement that each
subderivation of our intersection has the same subject term. Work on union types began
later (MacQueen et al., 1986); a key paper on type assignment for unions is Barbanera
et al. (1995).

Forsythe. In the late 1980s, Reynolds invented Forsythe (Reynolds, 1996), the first prac-
tical programming language based on intersection types. (The citation year 1996 is the
date of the revised description of Forsythe; the core ideas are found in Reynolds 1988.)
In addition to an unmarked introduction rule like ∧I, the Forsythe type system includes
rules for typing a construct p1,p2—“a construction for intersecting or ‘merging’ mean-
ings” (Reynolds, 1996, p. 24). Roughly analogous to e1,, e2, this construct is used to
encode a variety of features, but in Forsythe (unlike our present system) merges can only
be used unambiguously. For instance, a record and a function can be merged, but two
functions cannot. Forsythe does not have union types.

Pierce’s work. Pierce (1991) describes a prototype compiler for a language with intersec-
tion and union types that transforms intersections to products, and unions to sums. Pierce’s

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 161

language includes a construct for explicitly eliminating unions. But this construct is only
a marker for where to eliminate the union: it has only one branch, so the same term must
typecheck under each assumption. Another difference is that this construct is the only way
to eliminate a union type in his system, whereas our ∨E is marker-free. Intersections, also
present in his language, have no explicit introduction construct; the introduction rule is like
our ∧I.

The λ&-calculus. Castagna et al. (1995) developed the λ&-calculus, which has &-terms—
functions whose body is a merge, and whose type is an intersection of arrows. In their
semantics, applying a &-term to some argument reduces the term to the branch of the merge
with the smallest (compatible) domain. Suppose we have a &-term with two branches, one
of type nat → nat and one of type pos → pos. Applying that &-term to a value of type pos

steps to the second branch, because its domain pos is (strictly) a subtype of nat.
Despite the presence of a merge-like construct, their work on the λ&-calculus is markedly

different from ours: it gives a semantics to programs directly, and uses type information to
do so, whereas we elaborate to a standard term language with no runtime type information.
In their work, terms have both compile-time types and run-time types (the run-time types
become more precise as the computation continues); the semantics of applying a &-term
depends on the run-time type of the argument to choose the branch. The choice of the
smallest compatible domain is consistent with notions of inheritance in object-oriented
programming, where a class can override the methods of its parent.

Semantic subtyping. Following the λ&-calculus, Frisch et al. (2008) investigated a notion
of purely semantic subtyping, where the definition of subtyping arises from a model of
types, as opposed to the syntactic approach used in our system. They support intersec-
tions, unions, function spaces, and even complement. Their language includes a dynamic
type dispatch which, very roughly, combines a merge with a generalization of our union
elimination. Again, the semantics relies on run-time type information.

Flow types. Turbak et al. (1997) and Wells et al. (2002) use intersections in a system with
flow types. They produce programs with virtual tuples and virtual sums, which correspond
to the tuples and sums we produce by elaboration. However, these constructs are internal:
nothing in their work corresponds to our explicit intersection and union term constructors,
since their system is only intended to capture existing flow properties. They do not compile
the virtual constructs into the ordinary ones.

Heterogeneous data and dynamic typing. Several approaches to combining the trans-
parency of dynamic typing and the guarantees of static typing have been investigated. Soft
typing (Cartwright and Fagan, 1991; Aiken et al., 1994) adds a kind of type inference
on top of dynamic typing, but provides no ironclad guarantees. Typed Scheme (Tobin-
Hochstadt and Felleisen, 2008), developed to retroactively type Scheme programs, has a
flow-sensitive type system with union types, directly supporting heterogeneous data in the
style of Section 8.3. Unlike soft typing, Typed Scheme guarantees type safety and provides
genuine (even first-class) polymorphism, though programmers are expected to write some
annotations.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

162 J. Dunfield

Type refinements. Restricting intersections and unions to refinements of a single base type
simplifies many issues, and is conservative: programs can be checked against refined types,
then compiled normally. This approach has been explored for intersections (Freeman and
Pfenning, 1991; Davies and Pfenning, 2000), and for intersections and unions (Dunfield
and Pfenning, 2003, 2004).

11 Conclusion

We have laid a simple yet powerful foundation for compiling unrestricted intersections
and unions: elaboration into a standard functional language. Rather than trying to directly
understand the behaviors of source programs, we describe them via their consistency with
the target programs.

The most immediate challenge is coherence: While our elaboration approach guarantees
type safety of the compiled program, the meaning of the compiled program depends on the
particular elaboration typing derivation used; the meaning of the source program is actually
implementation-defined.

One possible solution is to restrict typing of merges so that a merge has type A only if
exactly one branch has type A. We could also partially revive the value restriction, giving
nonvalues intersection type only if (to a conservative approximation) both components
of the intersection are provably disjoint, in the sense that no merge-free expression has
both types. Alternatively, we could introduce a distinct type constructor for “disjoint in-
tersection,” which would be well-formed only when its components are provably disjoint.
This does not seem straightforward, especially with parametric polymorphism. Consider
checking the expression

λx. lety=(0,, x) inx

against type ∀α. α → α. The merge is ambiguous only if α is instantiated with int, so
we need to track which types and type variables are (potentially) overlapping. While this
seems feasible in special cases, such as polymorphic records—see, for example, Rémy
(1989)—it seems highly nontrivial in full generality. But our goal is to use intersections
and unions as general mechanisms for encoding language features, so we really should do
it in full generality, or not at all.

Another challenge is to reconcile, in spirit and form, the unrestricted view of intersec-
tions and unions of this paper with the refinement approach. Elaborating a refinement in-
tersection like (pos → neg) ∧ (neg → pos) to a pair of functions seems pointless (unless it
can somehow facilitate optimizations in the compiler). The current implementation actually
uses different type constructors for “refinement intersection” and unrestricted intersection
(and union), which seems to work as long as the two are not mixed. For example, applying
a function of type (pos → neg) ∧ (neg → pos) to an argument of type pos ∨ neg is fine:
the ∨ becomes a sum, and an explicit case analysis picks out the component of the ∧-
pair. However, applying such a function to an argument of type pos ∨∨ neg—where ∨∨

is refinement union—would require runtime analysis of the argument value to determine
whether it had type pos or type neg, since refinement unions are not elaborated to sums. For
atomic values like integers, such an analysis seems feasible, but for a refinement like list
evenness or bitstring parity, determining the branch of the union would require traversing
the entire data structure—a dramatic and non-obvious increase in asymptotic complexity.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 163

Acknowledgments

In 2008, Adam Megacz suggested (after I explained the idea of compiling intersection to
product) that one could use an existing ML compiler “as a backend.” This version has (I
hope) benefited through the comments of the JFP reviewers (as an earlier version did from
the ICFP reviewers’ suggestions). Finally, I have had useful discussions about this work
with Yan Chen, Matthew A. Hammer, Scott Kilpatrick, Neelakantan R. Krishnaswami, and
Viktor Vafeiadis.

References

Aiken, A., Wimmers, E. L. & Lakshman, T. K. (1994) Soft typing with conditional types. In
Principles of Programming Languages, New York: ACM Press, pp. 163–173.

Barbanera, F., Dezani-Ciancaglini, M. & de’Liguoro, U. (1995) Intersection and union types: syntax
and semantics. Inf. Comput. 119, 202–230.

Barendregt, H., Coppo, M. & Dezani-Ciancaglini, M. (1983) A filter lambda model and the
completeness of type assignment. J. Symb. Log. 48(4), 931–940.

Cartwright, R. & Fagan, M. (1991) Soft typing. In Programming Language Design and
Implementation, New York: ACM Press, pp. 278–292.

Castagna, G., Ghelli, G. & Longo, G. (1995) A calculus for overloaded functions with subtyping.
Inf. Comput. 117(1), 115–135.

Coppo, M., Dezani-Ciancaglini, M. & Venneri, B. (1981) Functional characters of solvable terms.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik 27, 45–58.

Davies, R. (2005) Practical Refinement-Type Checking. PhD thesis, Carnegie Mellon University,
CMU-CS-05-110.

Davies, R. & Pfenning, F. (2000) Intersection types and computational effects. In International
Conference on Functional Programming (ICFP), pp. 198–208.

Dunfield, J. (2007) Refined typechecking with Stardust. In Programming Languages meets Program
Verification (PLPV ’07), New York: ACM Press, pp. 21–32.

Dunfield, J. (2009) Greedy bidirectional polymorphism. In ML Workshop, pp. 15–26. Available at:
http://www.cs.queensu.ca/∼jana/papers/poly/

Dunfield, J. (2011) Untangling typechecking of intersections and unions. In Proceedings of the
2010 Workshop on Intersection Types and Related Systems, vol. 45 of EPTCS, pp. 59–70.
arXiv:1101.4428v1 [cs.PL].

Dunfield, J. (2012) Elaborating intersection and union types. In International Conference on
Functional Programming (ICFP), pp. 17–28. arXiv:1206.5386 [cs.PL].

Dunfield, J. (2013) Twelf proofs accompanying this work, September. Available at:
∼jana/intcomp-twelf-2013.tar

Dunfield, J. & Krishnaswami, N. R. (2013) Complete and easy bidirectional typechecking for
higher-rank polymorphism. In International Conference on Functional Programming (ICFP).
arXiv:1306.6032 [cs.PL].

Dunfield, J. & Pfenning, F. (2003) Type assignment for intersections and unions in call-by-value
languages. In Foundations of Software Science and Computation Structures (FoSSaCS ’03),
pp. 250–266.

Dunfield, J. & Pfenning, F. (2004) Tridirectional typechecking. In Principles of Programming
Languages, New York: ACM Press, pp. 281–292.

Freeman, T. & Pfenning, F. (1991) Refinement types for ML. In Programming Language Design and
Implementation, New York: ACM Press, pp. 268–277.

Frisch, A., Castagna, G. & Benzaken, V. (2008) Semantic subtyping: dealing set-theoretically with
function, union, intersection, and negation types. J. ACM 55(4), 1–64.

Gentzen, G. (1969) Investigations into logical deduction. In Collected Papers of Gerhard Gentzen,
Szabo, M. (ed), North-Holland: Amsterdam, pp. 68–131.

http://www.cs.queensu.ca/

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

http://www.cs.queensu.ca/~jana/papers/poly
http://www.cs.queensu.ca/~jana/intcomp-twelf-2013.tar
https://doi.org/10.1017/S0956796813000270

164 J. Dunfield

Hindley, J. R. (1984) Coppo–Dezani types do not correspond to propositional logic. Theor. Comput.
Sci. 28, 235–236.

Hindley, J. R. (1992) Types with intersection: An introduction. Form. Asp. Comput. 4, 470–486.
Kfoury, A. J. & Wells, J. B. (2004) Principality and type inference for intersection types using

expansion variables. Theor. Comput. Sci. 311(1–3), 1–70.
Lopez-Escobar, E. G. K. (1985) Proof functional connectives. In Methods in Mathematical Logic,

vol. 1130 of Lecture Notes in Mathematics, Springer: Berlin, pp. 208–221.
MacQueen, D., Plotkin, G. & Sethi, R. (1986) An ideal model for recursive polymorphic types. Inf.

Control 71, 95–130.
Milner, R., Tofte, M. Harper, R. & MacQueen, D. (1997) The Definition of Standard ML (Revised).

Cambridge: Massachusetts, USA, MIT Press.
Neergaard, P. M. & Mairson, H. G. (2004) Types, potency, and idempotency: why nonlinearity

and amnesia make a type system work. In International Conference on Functional Programming
(ICFP), pp. 138–149.

Pfenning, F. & Schürmann, C. (1999) System description: Twelf—a meta-logical framework for
deductive systems. In International Conference on Automated Deduction (CADE-16), pp. 202–
206.

Pierce, B. C. (1991) Programming with Intersection Types, Union Types, and Polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University.

Pierce, B. C. & Turner, D. N. (2000) Local type inference. ACM Trans. Program. Lang. Syst. 22,
1–44.

Pottinger, G. (1980) A type assignment for the strongly normalizable lambda-terms. In To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press, pages
561–577.

Rémy, D. (1989) Typechecking records and variants in a natural extension of ML. In Principles of
Programming Languages, New York: ACM Press.

Reynolds, J. C. (1988) Preliminary Design of the Programming Language Forsythe.
Technical Report CMU-CS-88-159, Carnegie Mellon University. http://doi.library.

cmu.edu/10.1184/OCLC/18612825.
Reynolds, J. C. (1991) The coherence of languages with intersection types. In Theoretical Aspects of

Computer Software, vol. 526 of LNCS, Springer: Berlin, pp. 675–700.
Reynolds, J. C. (1996) Design of the Programming Language Forsythe. Technical Report CMU-CS-

96-146, Carnegie Mellon University.
Tobin-Hochstadt, S. and Felleisen, M. (2008) The design and implementation of Typed Scheme. In

Principles of Programming Languages, New York: ACM Press, pp. 395–406.
Turbak, F., Dimock, A., Muller, R. & Wells, J. B. (1997) Compiling with polymorphic and

polyvariant flow types. In International Workshop on Types in Compilation. Available at:

http://cs.wellesley.edu/∼fturbak/pubs/tic97.pdf.
Twelf. (2012) Twelf wiki. Available at: http://twelf.org/wiki/Main Page.
Wadler, P. and Blott, S. (1989) How to make ad-hoc polymorphism less ad hoc. In Principles of

Programming Languages, New York: ACM Press, pp. 60–76.
Wells, J. B., Dimock, A., Muller, R. & Turbak, F. (2002) A calculus with polymorphic and

polyvariant flow types. J. Funct. Program. 12(3), 183–227.
Wright, A. K. (1995) Simple imperative polymorphism. LISP Symb. Comput. 8(4), 343–355.

Appendix A. Guide to the Twelf development

The Twelf proofs underlying the paper are available on the web:

http://www.cs.queensu.ca/∼jana/intcomp-2013.tar tar archive
http://www.cs.queensu.ca/∼jana/intcomp-2013/ browsable files

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

http://www.cs.queensu.ca/~jana/intcomp-2013.tar
http://www.cs.queensu.ca/~jana/intcomp-2013/
https://doi.org/10.1017/S0956796813000270

Elaborating intersection and union types 165

All the lemmas and theorems in the paper were proved in Twelf version 1.7.1. The
only caveat is that, to avoid the tedium of using nontrivial induction measures (Twelf only
knows about subterm ordering), we use the %trustme directive to define pacify, yielding
a blatantly unsound induction measure; see base.elf. All uses of this unsound measure
can be found with

grep pacify *.elf

You can easily verify that in each case where pacify is used, the real inductive object is
smaller according to either the standard depth (maximum path length) or weight (number
of constructors, i.e., number of inference rules used) measures.

In any case, you will need to set Twelf’s unsafe flag (set unsafe true) to permit
the use of %trustme in the definition of pacify.

As usual, the Twelf configuration file is sources.cfg. We briefly describe the contents
of each included .elf file:

• base.elf Generic definitions not specific to this paper.
• syntax.elf Source expressions exp, target terms tm, and types ty, covering much

of Figures 2, 5 and 9.
• is-value.elfWhich source expressions are values (Figure 2).
• eval-contexts.elf Evaluation contexts (Figure 2).
• is-valuetm.elf Which target terms are values (Figure 5).
• typeof.elf A system of rules for a version of Γ � e : A without subtyping. This

system is related to the one in Figure 4 by Theorem 1 (coerce.elf).
• typeof+sub.elf The rules for Γ � e : A (Figure 4). Also defines subtyping
sub A B Coe CoeTyping, corresponding to A � B ↪→ Coe. In the Twelf develop-
ment, this judgment carries its own typing derivation (in the typeof.elf system,
without subtyping) CoeTyping, which shows that the coercion Coe is well-typed.

• sub-refl.elf and sub-trans.elf : Reflexivity and transitivity of subtyping.
• coerce.elf Theorem 1: Given an expression well-typed in the system given in
typeof+sub.elf, with full subsumption, coercions for function types can be in-
serted to yield an expression well-typed in the system of typeof.elf. Getting rid
of subsumption makes the rest of the development easier.

• elab.elf Elaboration rules deriving Γ � e : A ↪→ M from Figure 8.
• typeof-elab.elf Theorems 4 and 5.
• typeoftm.elf The typing rules deriving G � M : T from Figure 6.
• elab-type-soundness.elf Theorem 6.
• step.elf Stepping rules e� e ′ (Figure 3).
• step-eval-context.elf Lemma 7 (stepping subexpressions in evaluation posi-

tion).
• steptm.elf Stepping rules M �→ M ′ (Figure 7).
• tm-safety.elf Theorems 2 and 3 (target type safety and determinism).
• elab-union.elf, elab-sect.elf, elab-arr.elf Inversion properties of elab-

oration for ∨, ∧ and → (Lemmas 8, 9, and 10).
• value-mono.elf Value monotonicity of elaboration (Lemma 11).
• consistency.elf The main consistency result (Theorem 13) and its multistep

version (Theorem 14).
• summary.elf Theorems 15 and 16, which are corollaries of earlier theorems.

https://doi.org/10.1017/S0956796813000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000270

