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Abstract
Aerodynamic characterisation from flight testing is an integral subroutine for evaluating a new flight vehicle’s aero-
dynamic performance, stability and controllability. The estimation of aerodynamic parameters from flight test data
has extensively been explored, in the past, using estimation methods such as the equation error method, output error
method and filter error method. However, in the current era, non-gradient-based estimation techniques are gaining
attention from researchers due to their inherent data-driven optimisation capability to find the global best solution.
In this paper, a novel non-gradient-based estimation method is proposed for the aerodynamic characterisation of
unmanned aerial vehicles from flight data, which relies on the maximum likelihood method augmented with par-
ticle swarm optimisation. Flight data sets of a wing-alone unmanned aerial vehicle are used to demonstrate the
capabilities of the proposed method in estimating aerodynamic derivatives. Estimates from the proposed method
are corroborated with the wind tunnel test and output error method results. It has been observed that simulated flight
vehicle responses using estimated parameters are in good agreement with measured data in most of the manoeuvers
considered. Confidence in the estimates of linear and nonlinear aerodynamic parameters is well established with the
lower limit of Cramer-Rao bounds, which are minimal. The proposed method also demonstrates good predictabil-
ity of the quasi-steady stall aerodynamic model by estimating stall characteristic parameters such as aerofoil static
stall characteristics parameter, hysteresis time constant and breakpoint. The overall performance of the proposed
estimation method is on par with the output error method and is validated with the proof-of-match exercise.

Nomenclature
a aerofoil static stall characteristics parameter
b wing span in m
c̄ mean aerodynamic chord in m
CD nondimensional drag force coefficient
CD0 drag force coefficient at zero lift
CDX derivative of drag force coefficient w.r.t X
Cl nondimensional rolling moment coefficient
Cl0 rolling moment coefficient at zero deg sideslip angle
Clβ derivative of rolling moment coefficient w.r.t sideslip angle
Clp damping coefficient of rolling moment w.r.t roll rate
Clr damping coefficient of rolling moment w.r.t yaw rate
Clδa derivative of rolling moment coefficient w.r.t aileron deflection
Clδr derivative of rolling moment coefficient w.r.t rudder deflection
CL nondimensional lift force coefficient
CL0 lift force coefficient at zero deg angle-of-attack
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CLα derivative of lift force coefficient w.r.t angle-of-attack
CL

α2 derivative of lift force coefficient w.r.t square of angle-of-attack
CLq damping coefficient of lift force w.r.t pitch rate
CLδe derivative of lift force coefficient w.r.t elevator deflection
Cm nondimensional pitching moment coefficient
Cm0 pitching moment coefficient at zero deg angle-of-attack
Cmα derivative of pitching moment coefficient w.r.t angle-of-attack
Cmq damping coefficient of pitching moment w.r.t pitch rate
CmX derivative of pitching moment coefficient w.r.t X
Cmδe derivative of pitching moment coefficient w.r.t elevator deflection
Cn nondimensional yawing moment coefficient
Cn0 yawing moment coefficient at zero deg sideslip angle
Cnβ derivative of yawing moment coefficient w.r.t sideslip angle
Cnp damping coefficient of yawing moment w.r.t roll rate
Cnr damping coefficient of yawing moment w.r.t yaw rate
Cnδr derivative of yawing moment coefficient w.r.t rudder deflection
CY nondimensional side force coefficient
CY0 side force coefficient at zero deg sideslip angle
CYβ derivative of side force coefficient w.r.t sideslip angle
CYp damping coefficient of side force w.r.t roll rate
CYr damping coefficient of side force w.r.t yaw rate
CYδa derivative of side force coefficient w.r.t aileron deflection
Ft thrust produce by engine in N
g acceleration due to gravity in m/s2

IX moment of inertia along body x-axis in kg-m2

IY moment of inertia along body y-axis in kg-m2

IZ moment of inertia along body z-axis in kg-m2

IXZ product of inertia in body xz-plane in kg-m2

J cost function
k induced drag force correction factor
m mass of UAV in kg
p roll rate in rad/s
q pitch rate in rad/s
r yaw rate in rad/s
S wing planform area in m2

V air speed in m/s
X nondimensional distance of flow separation point

Greek symbol
α angle-of-attack in rad
α� breakpoint
β sideslip angle in rad
δa aileron deflection angle in rad
δe elevator deflection angle in rad
δr rudder deflection angle in rad
φ roll angle in rad
ψ yaw angle in rad
ρ air density in kg/m3

τ hysteresis time constant
θ pitch angle in rad
� vector of unknown parameters
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1.0 Introduction
Aerodynamic characterisation of flight vehicles is one of the keen interests of many researchers and,
indeed, a subroutine for aircraft design development, simulation and control. Analytical, semi-empirical,
computational, and experimental methods have evolved and adapted to address the aforementioned
objectives. Though wind tunnel testing suffers wall/sting interference, scale factor, and Reynolds num-
ber duplication, it is still a high-fidelity tool to estimate static aerodynamic parameters [1, 2]. With the
advent of micro-electro-mechanical sensors and actuators, instrumentation of small-scale unmanned
aerial vehicles (UAVs) is made feasible, which aids in acquiring flight data during manoeuvers for aero-
dynamic characterisation. Parameter estimates obtained from flight tests enable researchers to find out
static and dynamic derivatives with great confidence that overcome the limitations of wind tunnel test-
ing and computational fluid dynamics techniques. Equation error eethod [3–5], output error method
(OEM) [6–8], filter error method [9–11], neural networks and fuzzy logic-based estimation methods
[12–15] are extensively used by many researchers to estimate the aerodynamic parameters of manned
and unmanned aircraft in various flight regimes. The equation error method based on the least squares
cost function demands relatively less computational power, which can handle the estimation of linear
aerodynamic derivatives from flight data in the absence of both measurement and process noise [16].
Due to the scale and size of small UAVs, sensors onboard are prone to the interference of various subsys-
tems, like propulsion units, which eventually leads to measurement noise. Output error method based
on maximum likelihood estimator is proved suitable, even in the presence of measurement noise, for
estimating linear and nonlinear aerodynamic parameters of UAVs from flight tests data pertaining to
various flight regimes [17, 18]. However, the OEM only estimates system parameters deterministically
if system dynamics are appropriately modeled. Filter error method is a class of OEM formulated using
the extended Kalman filter, which can estimate nondimensional aerodynamic derivatives of UAVs effec-
tively even in the presence of both process and measurement noise [19]. Though filter error method is an
efficient method for the aerodynamic characterisation of UAVs, the necessity of accurate priori informa-
tion of states and heavy computational resources for gradient calculations and a solution to the Riccati
equation might have limited its application for UAVs. It is well observed that the OEM and filter error
method are sensitive to a priori information about initial conditions for better convergence.

On the contrary, the estimation methods with data-based intelligence make convergence faster, even
if initial guess values have a large offset from actual values. The neural network estimation method is
used to estimate linear, nonlinear and near-stall flight regime’s aerodynamic parameters of mini UAVs
[16, 18]. The idea behind this method lies in the fact that the trained model from measured data is used
to replace the system’s dynamics, which can not be a generalised flight dynamic model. Moreover, the
confidence in estimates heavily depends upon the training criteria of neural networks, which may be dif-
ferent for different data sets. The fuzzy logic-based estimation method is also used by many researchers to
characterise flight vehicle aerodynamics. Unlike the OEM and filter error method, the fuzzy logic-based
estimation method does not require a mathematical model of system dynamics [20, 21]. It is generally
observed that the model-based estimation techniques suffer sensitivity issues with data and artificial
intelligence estimation methods have limitations with the data training, and all these techniques require
heavy computational capabilities for accurate estimation. Without compromising the confidence and
consistency in the estimates, the aforementioned challenges can be addressed with a hybrid method that
involves data search optimisation with classical cost functions.

Particle swarm optimisation (PSO), a non-gradient-based optimisation method developed by Dr.
Eberhart and Kennedy in 1995, is a technique inspired by the social behaviour of birds or fish around
a food source [22]. Right from its invention, this optimisation tool has been widely used for numerous
applications in engineering and sciences. In aerospace engineering, PSO has been employed to carry
out aircraft design optimisation [23], flight controller gains optimisation [24] and flight routes opti-
misation [25]. Recently, PSO has started getting attention from the research community as a tool for
the aerodynamic characterisation of flight vehicles. The maximum likelihood method augmented with
PSO (ML-PSO) has been used as a technique in estimating linear longitudinal aerodynamic parameters
of vertical takeoff and landing aircraft, symmetrical projectile, and UAV from flight test data [26–29].
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Though the results from ML-PSO are auspicious, its applicability in estimating aerodynamic parameters
in the nonlinear and near-stall flight regimes still needs to be explored.

In this paper, a comprehensive study is conducted to demonstrate the applicability and effectiveness
of the ML-PSO in estimating the aerodynamic parameters in longitudinal linear, longitudinal nonlinear,
longitudinal near stall and lateral-directional flight regimes of a UAV with limited control surfaces. The
UAV considered for the current research is designed with cropped delta planform and reflex aerofoil
wing cross-section; it is named Cropped Delta Reflex Wing (CDRW) configuration. Predefined control
inputs are used to excite dynamic modes of the UAV to generate various flight data sets pertaining
to different flight envelopes. The estimated aerodynamic parameters using the ML-PSO method are
corroborated with the OEM and wind tunnel results. Furthermore, a proof-of-match exercise is also
performed to validate the considered aerodynamic model and the estimates. The rest of the paper is
organised as follows. Section 2 presents the mathematical and aerodynamic modeling of the UAV. The
mathematical formulation of the ML-PSO is given in Section 3. Details of the UAV and flight data sets
used for the study are presented in Section 4. The outcomes of the implementation of the ML-PSO are
given in Section 5. Finally, the advantages and limitations of the ML-PSO in estimating aerodynamic
derivatives are presented in Section 6.

2.0 Mathematical modeling of UAV dynamics
Newtonian mechanics was used to formulate the rigid body dynamics of a UAV. In general, equa-
tions representing UAV dynamics are coupled in nature, which can be decoupled in longitudinal and
lateral-directional cases with suitable assumptions based on flight manoeuvers for aerodynamic charac-
terisation. Equations (1)–(4) and Equations (6)–(9) are derived for longitudinal and lateral-directional
motion, respectively, by considering that manoeuvers performed are independent of each other.

V̇ = −ρSV2

2m
CD + g sin(α − θ ) + Ft

m
cos α (1)

α̇ = −ρSV

2m
CL + g

V
cos(α− θ ) − Ft

mV
sin α + q (2)

q̇ = ρSc̄V2

2IY

Cm (3)

θ̇ = q (4)

ẊL = f (XL,�L, u) (5)

where XL = [
V α q θ

]T , �L is the vector of longitudinal aerodynamic parameters based on the
longitudinal flight regime and u is the vector of control inputs.

β̇ = −ρSV

2m
CY − Ft

mV
sin β + g

V
sin φ − r (6)

ṗ = 1

2
ρSV2b[IZCl + IXZCn]

1

IXIZ − I2
XZ

(7)

ṙ = 1

2
ρSV2b[IXZCl + IXCn]

1

IXIZ − I2
XZ

(8)

φ̇ = p (9)
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(a)

(b)

Figure 1. Wind tunnel results of CDRW UAV.

ẊLD = f (XLD,�LD, u) (10)

where XLD = [
β p r φ

]T , �LD is the vector of lateral-directional aerodynamic parameters based
on the lateral-directional flight regime and u is the vector of control inputs.

In general, the aerodynamics of a UAV is a nonlinear function of the angle-of-attack (α) and angle of
sideslip (β). However, the aerodynamic model can be classified into linear, nonlinear and stall regime
models based on flight conditions. Rigorous wind tunnel tests of CDRW were performed at National
Wind-tunnel Facility, Indian Institute of Technology Kanpur, to identify the aerodynamic model as a
function of flow angles. During wind tunnel tests, the α and β were varied from −5 to 50deg and −15 to
15deg, respectively, using the β-mechanism. A six-component load balance was used to precisely mea-
sure aerodynamic forces and moments acting on a UAV. The obtained data is then processed to calculate
the variation of nondimensional aerodynamic coefficients with flow angles, and the corresponding find-
ings are presented in Fig. 1. From Fig. 1(a), it can be observed that the variation of nondimensional lift
coefficient (CL) with α is linear and nonlinear from −5 to 11deg and 11 to 20deg, respectively. Maximum
CL is observed at α = 21deg, which remains almost constant with α more than 21deg. From Fig. 1(b),
it can be referred that the nondimensional side force coefficient (CY), roll moment coefficient (Cl) and
yaw moment coefficient (Cn) vary linearly from −5 to 5deg with β. Based on the wind tunnel results, a
detailed aerodynamics model is represented by Equations (11)–(23), and aerodynamic parameters that
need to be estimated are given in Equations (24)–(27).

The aerodynamic model for the linear longitudinal (low angle-of-attack) flight regime is given by
Equations (11)–(13) and the corresponding vector of aerodynamic parameters �LG in Equation (24).

CL = CL0 + CLαα + CLq

qc̄

2V
+ CLδe

δe (11)

CD = CD0 + kC2
L (12)

Cm = Cm0 + Cmαα + Cmq

qc̄

2V
+ Cmδe

δe (13)

The aerodynamic model for the nonlinear longitudinal (moderately high angle-of-attack) flight regime is
given by Equations (14)–(16) and the corresponding vector of aerodynamic parameters�NL in Equation
(25).
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CL = CL0 + CLαα+ CL
α2α

2 + CLq

qc̄

2V
+ CLδe

δe (14)

CD = CD0 + kC2
L (15)

Cm = Cm0 + Cmαα + Cmq

qc̄

2V
+ Cmδe

δe (16)

The aerodynamic model for the quasi-steady stall [30] (near-stall angle-of-attack) is given by
Equations (17)–(20) and the corresponding vector of aerodynamic parameters �ST in Equation (26).

X = 1

2
[1 − tanh{a(α− τ α̇ − α�)}] (17)

CL = CL0 + CLαα

[
1 + √

X

2

]2

+ CLq

qc̄

2V
+ CLδe

δe (18)

CD = CD0 + kC2
L + CDX (1 − X) (19)

Cm = Cm0 + Cmαα+ Cmq

qc̄

2V
+ Cmδe

δe + CmX (1 − X) (20)

Equations (21)–(23) represent the linear (low angle-of-sideslip) lateral-direction aerodynamic model
and the corresponding vector of aerodynamic parameters �LD are given in Equation (27).

CY = CY0 + CYβ β + CYp

pb

2V
+ CYr

rb

2V
+ CYδr

δr (21)

Cl = Cl0 + Clβ β + Clp

pb

2V
+ Clr

rb

2V
+ Clδa

δa + Clδr
δr (22)

Cn = Cn0 + Cnβ β + Cnp

pb

2V
+ Cnr

rb

2V
+ Cnδr

δr (23)

�LG = [CD0 , k, CL0 , CLα , CLq , CLδe
, Cm0 , Cmα , Cmq , Cmδe

]T (24)

�NL = [CD0 , k, CL0 , CLα , CL
α2 , CLq , CLδe

, Cm0 , Cmα , Cmq , Cmδe
]T (25)

�ST = [CD0 , k, CL0 , CLα , CLq , CLδe
, Cm0 , Cmα , Cmq , Cmδe

, a, τ , α�, CDX , CmX ]T (26)

�LD = [CY0 , CYβ , CYp , CYr , CYδr
, Cl0 , Clβ , Clp , Clr , Clδa

, Clδr
, Cn0 , Cnβ , Cnp , Cnr , Cnδr

]T (27)

where �LG, �NL, �ST and �LD are the vectors of unknown parameters related to longitudinal linear,
longitudinal nonlinear, longitudinal stall and lateral-directional flight regimes, respectively.

3.0 Formulation of ML-PSO
In general, nonlinear dynamics of an aircraft system without modeling uncertainties can be represented
by Equations (28)–(30).

ẋ(t) = f [x(t), u(t),�], x(0) = x0, (28)

y(t) = g[x(t), u(t),�], (29)

z(tk) = y(tk) + Gv(tk) (30)
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where
x(t) the vector of state variables,
u(t) the vector of control inputs independent of the system dynamics,
� the vector of unknown parameters,
y(tk) output vector at kth discrete time,
z(tk) the vector of sensor outputs at kth discrete time,
f , g the nonlinear real-valued functions,
G the measurement noise distribution matrix,
ν(tk) the measurement noise with zero mean and nonzero variance

Since sensor outputs are corrupted with measurement noise, z can be considered as a vector-valued
random variable of dimension ny. If N measurements of z are available, a likelihood function [31] using
multivariate-Gaussian distribution can be defined as in Equation (31):

p(z|�, R1) = {(2π )nz |R1|}−N/2 exp

[
−1

2
�N

k=1[z(tk) − y(tk)]
TR−1

1 [z(tk) − y(tk)]

]
(31)

where p(z|�, R1) is the probability of z with given � and R1. R1 is the measurement noise covariance
matrix. The maximisation likelihood function can be changed to the following minimisation problem
by taking the negative logarithmic of Equation (31).

L(z|�, R1) = 1

2
�N

k=1[z(tk) − y(tk)]
TR−1

1 [z(tk) − y(tk)] + N

2
ln[ det (R1)] + Nnz

2
ln(2π ) (32)

If R1 is unknown, it can be obtained by minimising L(z|�, R1) w.r.t R1.

R1 = 1

N
�N

k=1[z(tk) − y(tk)]
T[z(tk) − y(tk)] (33)

here R1 changed to nothing but residual co-variance matrix and value of L(z|�, R1) for above R1 can be
written as follows:

L(z|�) = nyN

2
+ N

2
ln[ det (R1)] + Nnz

2
ln(2π ) (34)

The maximum likelihood (ML) estimate of� can be obtained by minimising the following simplified
cost function based L(z|�):

J(�) = det (R) (35)

where R = 1
N
�N

k=1[z(tk) − y(tk)]T[z(tk) − y(tk)] is the residual co-variance matrix. Minimisation of J(�)
is a nonlinear optimisation problem, which can be solved using the particle swarm optimisation (PSO)
algorithm. The following steps are involved in implementing PSO:

STEP 1: (Initialisation) If S is the search space for optimal solution (�gbp), the possible solutions
(positions of each particle) can be selected randomly as follows:

�i(0) ∈ S,∀i ∈ {1, 2, 3, . . . , NP} (36)

where�i(0) is ith initial possible solution in the search space and NP is the number of possible solutions
selected randomly. The initial personal best position (pbp), the global best position (gbp) and the velocity
(change in position) of each particle are assigned as:

��i(0) = 0,∀i ∈ {1, 2, 3, . . . , NP} (37)

�i
pbp(0) =�i(0),∀i ∈ {1, 2, 3, . . . , NP} (38)

�gbp(0) = min
�i(0)

{J(�i(0))},∀i ∈ {1, 2, 3, . . . , NP} (39)

https://doi.org/10.1017/aer.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.2


1442 Kumar et al.

where ��i(0), �i
pbp(0) and �gbp(0) are the initial changes in the position, personal best position and

global best position of ith particle.

STEP 2: (Position Update) Each particle’s velocity (change in position) is calculated using the
previous personal best and the global best position of the population.

��i(k + 1) = w��i(k) + c1R1(�i
pbp(k) −�i(k)) + c2R2(�gbp(k) −�i(k)) (40)

�i(k + 1) =�i(k) +��i(k + 1) (41)

where i and k denote ith particle and kth iteration, respectively.��i(k) and�i(k) represent the change in
the position of ith particle at kth iteration and the position of ith particle at kth iteration, respectively. �i

pbp

is the personal best position of ith particle and�gbp is the position of global best particle. w, c1 and c2 are
the inertial weight, the personal cognitive coefficient and the social cognitive coefficient, respectively.
R1 and R2 are the diagonal matrices of random numbers from 0 to 1.

STEP 3: (Personal Best and Global Best Update) Personal best position (�pbp) and global best position
(�gbp) are updated as follows:

�i
pbp(k + 1) =

{
�i

pbp(k) if J(�i(k + 1))> J(�i
pbp(k))

�i(k + 1) if J(�i(k + 1)) ≤ J(�i
pbp(k))

(42)

�i
gbp(k + 1) =

{
�i

gbp(k) if J(�i
pbp(k + 1))> J(�i

gbp(k))

�i
pbp(k + 1) if J(�i

pbp(k + 1)) ≤ J(�i
gbp(k))

(43)

STEP 4: (Checking for Convergence) If the convergence criteria are met, terminate the iteration; else,
go to STEP 2.

Brief convergence analysis of the proposed method and estimation of the confidence bound are given
as follows [32]:

Definition 1: For a real-valued cost function J(�), and �� ∈ S, if

J(��) ≤ J(�),∀� ∈ S (44)

then �� is said to be a global optimal solution on S, where S is the search space for optimal solution.

Definition 2. ∀ε > 0, let

Bε = {�εS‖J(�) − J(��)|< ε} (45)

Then Bε is called a ε-optimal solution set, where �εBε is said to be an -optimal solution.

According to PSO algorithm, the sequence {J(θgbp(k))}, ∀k ∈ {1, 2, 3, . . .} is a monotone-decreasing
sequence. p{�gbp(k) ∈ Bε} and p{�gbp(k) ∈ S} are the probabilities of global best solution in Bε and S,
respectively, at kth iteration. Hence,

lim
k→∞

p{�gbp(k) ∈ Bε} = 1 (46)

and

lim
k→∞

p{�gbp(k) ∈ S} = 1 (47)

From the above two statements, it is evident that the probability of getting an optimal solution in the
predefined search space is very high with a sufficient number of iterations.

Furthermore, the confidence in the estimates of unknown parameters using the ML-PSO method can
be quantified in terms of the lower Cramer-Rao bound, and it can be found using diagonal elements of
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Figure 2. Instrumented prototype of CDRW UAV [33].

Figure 3. Comparison of measured and estimated outputs of CDRW UAV in the low angle-of-attack
flight regime.

the Fisher information matrix (F).

F =�N
k=1

[
∂y(tk)

∂�

]T

R−1

[
∂y(tk)

∂�

]
(48)

σ = √
diag(F−1) (49)

4.0 Details of UAV and flight data acquisition system
A wing-alone cropped delta propeller-driven UAV, named CDRW, was used to generate various flight
data sets. Its wing planform is designed with a root chord of 0.9m, a taper ratio of 0.167, and a wingspan
of 1.5m. UAV’s pitch and roll motion are controlled using elevons of 0.125m chord and 0.45m span. In
contrast, yaw motion is controlled by an all-movable dedicated vertical tail of 0.2m root chord, 0.08m tip
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Figure 4. Comparison of measured and estimated outputs of CDRW UAV in the moderately high
angle-of-attack flight regime.

Figure 5. Comparison of measured and estimated outputs of CDRW UAV in the stall flight regime.

chord and 0.42m span. The total takeoff weight of CDRW is 3.6kg, and a fully instrumented prototype
of CDRW UAV is given in Fig. 2.

UAV was integrated with sensors to measure its response during flight tests, and a high-fidelity data
acquisition system was used for data recording from various sensors and actuators. A high-accuracy
9 degree-of-freedom inertial measuring unit was used to measure components of the UAV’s linear accel-
eration, angular rates, and attitude angles. Initial bias error of accelerometer, gyro and magnetometers
were ±0.002g, ±0.25deg/s and ±0.003g, respectively. Airflow angles and airspeed were measured with
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(a) (b)

Figure 6. Comparison of measured and estimated outputs of CDRW UAV in the low angle-of-sideslip
flight regimes.

Figure 7. Proof-of-match exercise for CDRW UAV.

the help of vane-type in-house-fabricated sensors and pitot-static probe, respectively. Accuracy main-
tained by airflow angles, and airspeed sensor were ±0.1deg and ±1.5m/s, respectively. Pulse width
modulated signals to the actuators of control surfaces and electronic speed controller for the motor to
control the thrust produced were recorded and converted to their physical quantities using calibration
relationships while post-processing.
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Table 1. Longitudinal aerodynamic parameters of CDRW UAV at the low angle-of-attack

LG1 LG2

Parameters Wind Tunnel [16] OEM ML-PSO OEM ML-PSO
CD0 0.02 0.02 0.02 0.02 0.02

[4.00E-06]∗ [1.70E-05] [6.92E-08] [9.93E-06]
k – 0.151 0.144 0.160 0.165

[8.50E-05] [3.45E-04] [9.13E-07] [1.19E-04]
CL0 0.067 0.063 0.034 0.068 0.073

[1.60E-05] [1.89E-04] [9.10E-07] [7.26E-05]
CLα 2.980 2.997 3.156 2.972 2.820

[3.57E-04] [3.70E-03] [9.01E-05] [1.60E-03]
CLq – 0.652 0.579 0.58 0.569

[8.21E-04] [5.90E-03] [5.53E-05] [3.10E-03]
CLδe

0.401 0.50 0.698 0.381 0.111
[6.13E-04] [6.40E-03] [4.24E-05] [3.20E-03]

Cm0 0.01 0.01 0.012 0.01 0.01
[1.00E-06] [5.51E-06] [3.62E-08] [1.79E-06]

Cmα −0.241 –0.240 –0.242 –0.24 –0.238
[1.10E-05] [5.81E-05] [7.79E-07] [4.52E-05]

Cmq – –0.068 –0.049 –0.071 –0.091
[4.20E-05] [5.37E-04] [2.27E-06] [2.01E-04]

Cmδe
–0.41 –0.41 –0.402 –0.409 –0.408

[2.40E-05] [1.63E-04] [1.71E-06] [6.43E-05]
∗Values in the square brackets represent lower Cramer-Rao bounds.

5.0 Results and discussion
A total of eight compatible flight data sets generated using CDRW UAV pertaining to low angle-of-
attack, moderately high angle-of-attack, stall angle-of-attack, and low angle-of-sideslip flight regimes
are presented in Figs. 3–7 with legend ‘EXP’. These data sets are used for aerodynamic characterisation
and validation of estimated parameters with the help of a proof-of-match exercise. Each flight data is rep-
resented with a specific name. The nomenclature of flight data is based on flight regimes. Abbreviations
LG, NL, ST and LD represent flight data pertaining to the longitudinal linear, longitudinal nonlinear,
longitudinal stall, and lateral-directional flight regimes, respectively. Simulated responses using OEM
and ML-PSO have been denoted, in Figs. 3–7, with legends ‘OEM’ and ‘ML-PSO’, respectively.

Aerodynamic parameters of longitudinal linear flight regimes, given in Equation (24), are estimated
with the help of the aerodynamic model presented in Equations (11)–(13) from the flight data sets LG1
and LG2 using the ML-PSO method. Estimated parameters are presented in Table 1, along with the
measurements obtained from full-scale wind tunnel testing and OEM estimates. Though the control
inputs are different for LG1 and LG2, the consistency in the estimates of CLα and Cmα , can be observed
from Table 1 for the CDRW configuration. Estimates of CLδe

obtained from LG1 and LG2 using the
proposed method are at the offset of 0.297 and 0.29 w.r.t wind tunnel results, whereas 0.099 and 0.02
offsets in CLδe

estimates w.r.t wind tunnel results are observed with the OEM estimates. Relative errors
of 0% & 0.2% and 2% & 0.5% are observed in estimates of Cmδe

w.r.t wind tunnel values from flight
data LG1 & LG2 using OEM and ML-PSO, respectively. Although some of the estimated aerodynamic
parameters have relative offsets with wind tunnel results, the simulated responses of the UAV using
OEM and ML-PSO estimates match well with real flight data without any significant relative error that
can be referred from Fig. 3.

Nonlinear aerodynamic parameters mentioned in Equation (25) and aerodynamic model represented
by Equations (14)–(16) are used to characterise CDRW configuration in high angle-of-attack flight
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Table 2. Longitudinal aerodynamic parameters of CDRW in moderately high angle-of-attack

NL

Using Nonlinear
Aerodynamic Model

Using Linear Aerodynamic
Model

Parameters Wind tunnel [34] OEM ML-PSO OEM ML-PSO
CD0 0.02 0.02 0.021 0.021 0.021

[4.97E-07]∗ [7.01E-06] [1.19E-06] [2.06E-05]
k – 0.154 0.147 0.147 0.146

[1.13E-05] [1.57E-04] [2.98E-05] [4.05E-04]
CL0 0.067 0.06 0.068 0.064 0.073

[2.54E-05] [1.20E-04] [3.31E-05] [1.22E-04]
CLα 2.98 3.035 2.838 2.915 2.824

[5.37E-04] [2.60E-03] [6.63E-04] [2.50E-03]
CL

α2 – −0.886 −0.402 – –
[6.89E-04] [6.90E-03]

CLq – 0.118 0.681 0.394 0.533
[8.45E-04] [5.30E-03] [1.10E-03] [8.00E-03]

CLδe
0.401 0.18 0.324 0.268 0.154

[8.13E-04] [4.50E-03] [1.20E-03] [4.50E-03]
Cm0 0.01 0.01 0.01 0.01 0.01

0.01 [1.02E-06] [5.81E-06] [1.54E-06] [5.46E-06]
Cmα −0.241 −0.237 −0.244 −0.24 −0.239

[1.28E-05] [7.31E-05] [1.97E-05] [9.18E-05]
Cmq – −0.068 −0.10 −0.068 −0.081

[5.59E-05] [3.22E-04] [8.76E-05] [3.13E-04]
Cmδe

−0.41 −0.401 −0.45 −0.41 −0.412
[3.32E-05] [1.92E-04] [5.13E-05] [2.12E-04]

∗Values in the square brackets represent lower Cramer-Rao bounds.

regime. A linear approximation is also made using the linear aerodynamic model given by Equations
(11)–(13), to characterise UAV in nonlinear flight regime. Estimated aerodynamic parameters of CDRW
configuration are presented in Table 2. It can be referred from the same table that estimates of pitching
moment aerodynamic derivatives are not changing significantly with the linear and nonlinear aerody-
namic model, which is also in good agreement with wind tunnel results given in Fig. 1 where Cm vs. α
plot is almost linear below 15deg angle-of-attack. Relative errors of 1.8 % and 4.7 % w.r.t wind tunnel
values are observed in CLα estimates of CDRW obtained using a nonlinear aerodynamic model with
OEM and ML-PSO method, respectively, whereas 5.7% and 5.1% relative errors are observed for the
same UAV using the linear aerodynamic model with OEM and ML-PSO method, respectively. Estimated
values of CL

α2 are −0.886 and −0.402 using OEM and ML-PSO method for CDRW, respectively. It can
be referred that Cmα estimates obtained for CDRW using OEM and ML-PSO method with the nonlin-
ear aerodynamic model have relative offsets of 0.004 and 0.003 w.r.t wind tunnel values, respectively,
whereas 0.001 and 0.001 offsets are observed for the same UAV using OEM and ML-PSO method with
the linear aerodynamic model, respectively. Simulated outputs using estimated aerodynamic parameters
obtained using OEM and ML-PSO method with the nonlinear aerodynamic model are compared with
measured flight data, which are closely matched with measured flight data and that can be seen from
Fig. 4.

Aerodynamic parameters in stall flight regime and aerodynamic model given by Equations (26) and
(17)–(20) are estimated using OEM and ML-PSO method, and estimated parameters of the UAV are
presented in Table 3. Estimated values of a, τ , α�, CDX and CmX for CDRW are 9.401, 14.187, 26.885deg,
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Table 3. Longitudinal aerodynamic parameters of CDRW UAV in stall-flight regime

ST

Parameters Wind Tunnel [35] OEM [35] ML-PSO
CD0 0.02 0.024

[9.80E-03]
0.009

[1.10E-03]
k – – 0.118

[2.40E-03]
CL0 0.067 0.077

[1.10E-03]
0.117

[1.75E-02]
CLα 2.980 3.340

[2.59E-01]
1.938

[3.51E-01]
CLq – 5.105

[4.39E-01]
3.369

[6.77E-01]
CLδe

0.401 0.677
[3.00E-01]

−0.607
[4.01E-01]

Cm0 0.010 0.022
[3.20E-03]

0.014
[5.19E-04]

Cmα −0.241 −0.182
[9.20E-03]

−0.192
[1.10E-02]

Cmq – −0.669
[2.40E-03]

−0.772
[3.10E-02]

Cmδe
−0.410 −0.299

[1.34E-02]
−0.296

[1.60E-02]
a 7.62 9.401

[1.51E-01]
2.368

[6.63E-01]
τ – 14.187

[5.33E-02]
10.295

[1.50E0]
α�(deg) 23.200 26.885

[8.95E-01]
25.61

[1.04E-01]
CDX – 0.09

[1.48E-02]
0.095

[3.26E-03]
CmX – −0.055

[4.70E-03]
−0.035

[2.5E-03]
∗Values in the square brackets represent lower Cramer-Rao bounds.

0.09 and −0.055 using OEM, whereas, 2.368, 10.295, 25.61deg, 0.095 and −0.035 for the same UAV
using ML-PSO method. From Fig. 5, it can be said that simulated CD, CL and Cm using ML-PSO method
estimates are closely matched with reconstructed data, whereas simulated outputs with OEM estimates
have a relative mismatch with reconstructed data. A similar trend can also be seen in the stall hysteresis
plot, where OEM predictions are relatively weak compared to the ML-PSO method.

The effectiveness of the proposed method is also analysed in low angle-of-sideslip flight regimes,
where the vector of unknown parameters given in Equation (27) and aerodynamic model represented by
Equations (21)–(23) are used for estimation. All the estimated aerodynamic parameters using the ML-
PSO method are presented in Table 4 for CDRW UAV. From Table 4, it can be observed that estimated
values of CYβ using OEM and ML-PSO method have relative offsets of 0.059 and 0.005 and 0.051
and 0.072, from flight data LD1 & LD2, w.r.t wind tunnel values. Relative errors in Clβ of 10.9% and
10.9%, and 10.9% and 19.8% w.r.t wind tunnel values are observed using OEM and ML-PSO method
from flight data LD1 and LD2. Estimated values of Cnβ using OEM and ML-PSO method from data
LD1 and LD2 have relative offsets of 0.001 and 0.001 and 0.001 & 0.002 w.r.t wind tunnel values. From
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Table 4. Lateral-directional aerodynamic parameters of CDRW UAV at low angle-of-sideslip

LD1 LD2

Parameters Wind Tunnel [16] OEM ML-PSO OEM ML-PSO
CY0 0 −0.009

[2.95E-05]∗
0 [1.40E-03] 0 [3.24E-06] 0 [6.23E-05]

CYβ −0.131 −0.19
[2.81E-05]

−0.136
[1.60E-03]

−0.182
[2.27E-05]

−0.203
[5.04E-04]

CYp – −0.059
[2.01E-05]

−0.051
[1.40E-03]

−0.071
[2.15E-05]

−0.080
[8.02E-04]

CYr – 0.227
[1.79E-04]

0.111
[9.50E-03]

0.126
[1.32E-04]

0.270
[4.50E-03]

CYδr
0.429 0.286

[5.77E-04]
0.449

[2.71E-02]
0.473

[2.40E-04]
0.490

[6.70E-03]
Cl0 0 0 [6.05E-07] 0 [1.23E-04] 0 [4.18E-08] 0 [5.11E-06]
Clβ −0.101 −0.09

[1.16E-04]
−0.090

[3.83E-04]
−0.09

[5.03E-07]
−0.081

[5.19E-05]
Clp – −0.506

[3.56E-06]
−0.506

[1.30E-03]
−0.506

[1.87E-06]
−0.464

[2.29E-04]
Clr – 0.103

[5.90E-06]
0.091

[1.30E-03]
0.103

[3.27E-06]
0.093

[3.01E-04]
Clδa

−0.102 −0.096
[5.95E-07]

−0.10
[2.35E-04]

−0.096
[3.08E-07]

−0.089
[4.41E-05]

Clδr
0.021 0.021

[1.83E-05]
0.019

[2.40E-03]
0.02

[4.56E-06]
0.018

[5.57E-04]
Cn0 0 0 [1.77E-07] 0 [1.53E-05] 0 [1.97E-08] 0 [7.04E-07]
Cnβ 0.02 0.019

[2.26E-07]
0.019

[1.58E-05]
0.019

[1.36E-07]
0.018

[7.19E-06]
Cnp – 0.019

[2.22E-07]
0.020

[1.63E-05]
0.019

[3.46E-07]
0.019

[9.72E-06]
Cnr – −0.028

[1.41E-06]
−0.027

[1.07E-04]
−0.028

[1.27E-06]
−0.030

[5.63E-05]
Cnδr

−0.011 −0.009
[3.46E-06]

−0.009
[301E-04]

−0.01
[2.23E-06]

−0.010
[7.57E-05]

∗Values in the square brackets represent lower Cramer-Rao bounds.

Fig. 6, it can be observed that simulated outputs with OEM and ML-PSO method are in good match
with measured flight data. A small apparent relative error w.r.t measured data can be seen in simulated
acceleration along the body y-axis.

Proof-of-match exercise is carried out with the average values of estimated aerodynamic parameters
from two flight data sets of linear longitudinal and lateral-directional flight regimes. From Fig. 7(a), it
can be seen that simulated outputs using OEM and ML-PSO method estimates are in very close agree-
ment with measured flight data. Similarly, from Fig. 7(b), it can be noticed that simulated outputs using
OEM and ML-PSO method estimates match well with measured flight data except the component of
acceleration along the body y-axis (ay). Simulated ay for CDRW using ML-PSO method estimates show-
ing a maximum overshoot of 0.05m/s2 w.r.t measured data, while a maximum overshoot of 0.25m/s2

can be observed for CDRW using OEM estimates. Proof-of-match exercise is not performed in nonlinear
and stall flight regimes due to limited flight data sets.
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6.0 Conclusions
Current research demonstrates the applicability and effectiveness of the proposed method in estimat-
ing linear and nonlinear aerodynamic parameters of the cropped delta-wing unmanned aerial vehicle.
A total of eight compatible flight data sets pertaining to linear, nonlinear and stall regimes are used
for aerodynamic characterisation. A comparative study is performed for estimated aerodynamic deriva-
tives belonging to different flight envelopes with wind tunnel testing and output error method. It is
observed that longitudinal aerodynamic stability and control derivatives estimated using the proposed
method have more relative offset than output error method w.r.t wind-tunnel values; however, simulated
responses are consistent with measured flight data. A higher-order lift coefficient is used to model non-
linear aerodynamics before stall, and its estimate is satisfactorily justified by lower Cramer-Rao bound.
While estimating stall characterising parameters, it is observed that the proposed estimation method
is able to predict stall hysteresis with good accuracy than the output error method. It is noticed from
lateral-directional aerodynamic estimates that static-stability derivatives obtained using the output error
method are better consistent with wind-tunnel values than the proposed estimation method. A proof-
of-match exercise is performed for linear longitudinal and lateral-directional flight regimes to ascertain
more faith in the estimated parameters. One major advantage of using the proposed method over the
output error method is that it is a non-gradient-based estimation method, which can reduce the compu-
tational burden. However, this can happen only when the search space of solutions, the number of search
particles, and social and personal cognitive coefficients are optimal, which may lead to another research
problem.
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