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Abstract

The estimation of P(Sn > u) by simulation, where Sn is the sum of independent,
identically distributed random varibles Y1, . . . , Yn, is of importance in many applications.
We propose two simulation estimators based upon the identity P(Sn > u) =
nP(Sn > u, Mn = Yn), where Mn = max(Y1, . . . , Yn). One estimator uses importance
sampling (for Yn only), and the other uses conditional Monte Carlo conditioning upon
Y1, . . . , Yn−1. Properties of the relative error of the estimators are derived and a numerical
study given in terms of the M/G/1 queue in which n is replaced by an independent
geometric random variable N . The conclusion is that the new estimators compare
extremely favorably with previous ones. In particular, the conditional Monte Carlo
estimator is the first heavy-tailed example of an estimator with bounded relative error.
Further improvements are obtained in the random-N case, by incorporating control
variates and stratification techniques into the new estimation procedures.

Keywords: Bounded relative error; complexity; conditional Monte Carlo conditioning;
control variate; logarithmic efficiency; M/G/1 queue; Pollaczek–Khinchin formula; rare
event; regular variation; stratification; subexponential distribution; Weibull distribution

2000 Mathematics Subject Classification: Primary 65C60
Secondary 60K25

1. Introduction

This paper is concerned with the evaluation of z(u) = P(Sn > u) by simulation, where
Sn = Y1 + · · · + Yn and the Yi are positive, independent, identically distributed, heavy-tailed
random variables, in situations where u is large and z(u) is thus small. By definition S0 = 0.
We will also consider the case in which n is replaced by a nonnegative, integer-valued random
variable N independent of {Yi}. An example where this is of relevance is the steady-state
waiting time of the M/G/1 queue, which, according to the Pollaczek–Khinchin formula, has the
same distribution as SN for a certain choice of parameters (see [4, p. 237]). In insurance risk,
P(SN > u) is also a representation of the ruin probability with initial reserve u (see [4, p. 399]).
In financial mathematics, such compound Poisson sums with independent terms occur widely
in models for operational risk (see, e.g. [11] and [14]). In the last two examples, the interesting
values of z(u)may be of order 10−2. In the first (arising from problems in telecommunications
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and data transmission, where z(u) could be a bit loss rate) the magnitude could drop to, say,
10−10. As is well known (see, e.g. [6] and [16]), the efficiency of crude Monte Carlo simulation
greatly deteriorates as z(u) decreases, making the simulation a nontrivial problem requiring
variance reduction ideas.

Let F denote the common distribution of the Yi . Their being heavy tailed means, in general
terms, that their exponential moments fail to exist. However, most often a more narrow frame-
work is considered, e.g. the case in which F is subexponential [12, pp. 36–57, 564–587], [20],
or even just the special case (of primary importance) in which F is regularly varying with a
relatively small index, α; this means that the tail F̄ (x) equalsL(x)/xα for some slowly varying
function L(·). We will not go into the general subexponential framework here but be satisfied
with treating the regularly varying case as well as what is perhaps the second-most important
example: the heavy-tailed Weibull case in which F̄ (x) = e−uβ with 0 < β < 1. The relevance
to applications of such modeling assumptions has been convincingly argued (see, e.g. [12,
pp. 1–19] and [2]).

We call a random variable Z ≡ Z(u) an estimator for z(u) if Z can be generated by
simulation and E∗[Z] = z(u), where E∗ is the expectation corresponding to P∗ ≡ P∗,u, the
probability measure used in the simulation (the given distribution ofY1, Y2, . . . or an importance
sampling distribution). As is standard, we say that Z(u) has bounded relative error to indicate
that var(Z(u))/z(u)2 is bounded in u, and say that Z(u) is polynomial time to indicate that
var(Z(u))/z(u)2−ε is bounded in u for any ε > 0 (often the term logarithmic efficient, or just
efficient, is also used to describe this [6], [16], [7], [17]). Similar terminology is used in the case
of a random number, N , of random variables. With light tails, the most established approach
for simulation of z(u) is the exponential change of measure, as determined by the saddle-point
method; see [4, pp. 373–376]. As discussed there, this scheme can be seen as an implementation
of the general principle in importance sampling of taking the changed measure used for the
simulation to be as close as possible to the conditional distribution given the rare event. In the
present case this means samplingY1, . . . , Yn using an asymptotic description of their conditional
distribution Pn,u given Sn > u. The traditional description in the subexponential setting states
that one of theYi is larger thanu and the rest are in some sense ‘typical’, that is, unaffected by the
conditioning (for the precise statements, see Proposition 1.2 of [3, p. 252] and Lemma 6.6 of [4,
p. 405]). However, as noted in [7], the most straightforward ideas of how to use this asymptotics
as a basis for importance sampling fail. The first polynomial time algorithm reported in the
literature (see [5]) in fact uses a different idea, namely conditional Monte Carlo conditioning,
invoking the order statistics Y(1), . . . , Y(n), Y(1) < · · · < Y(n), for the conditioning. The
estimator is

P(Sn > u | Y(1), . . . , Y(n−1)) = F̄ (Y(n−1) ∨ (u− S(n−1))

F̄ (Y(n−1))
, (1.1)

where S(n−1) = Y(1) + · · · + Y(n−1) and x ∨ y is shorthand notation for max(x, y). Later,
polynomial time importance sampling ideas were given in [7] and [17]. Here we only consider
the (more efficient) ideas of [17], which are based upon the hazard rate, �(x) = − log F̄ (x).
A key ingredient (not the only one) in the algorithms of [17] is hazard rate twisting, which
changes�(x) to θ�(x) for some small θ . That is, the tail F̄ is changed to F̄θ = F̄ θ . The more
refined weighted delayed hazard rate twisting simulates the Yi from a distribution which is a
mixture of F conditioned to (0, x∗] and Fθ conditioned to (x∗,∞), with the weights, θ and x∗,
chosen to depend appropriately on u.

Despite the good computational and theoretical properties of the algorithms reported in [17],
it appears intuitively unnatural that the importance sampling change of measure is independent
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and identically distributed. Indeed, the above description of Pn,u is highly asymmetric, showing
the particular role taken by one of the Yi (the large one). Our contribution in this paper is to
present some modified algorithms that take this into account, and which will turn out to yield
very substantial efficiency improvements over existing algorithms. Our algorithms depart from
the identity

P(Sn > u) = nP(Sn > u, Mn = Yn),

where, since Mk = max(Y1, . . . , Yk), we have Y(n) = Mn. If f is the density of F and f ∗ the
density of an importance sampling distribution (we return to the choice of f ∗ later), we twist
only the distribution of Yn, and arrive at the estimator

n
f (Yn)

f ∗(Yn)
1(Sn > u, Mn = Yn). (1.2)

Using conditional Monte Carlo conditioning instead yields the estimator

nP(Sn > u, Mn = Yn | Y1, . . . , Yn−1) = nF̄ (Mn−1 ∨ (u− Sn−1)). (1.3)

The paper is organized as follows. In Section 2, we give a theoretical proof of the efficiency
of our estimators for the Pareto case and present some numerical studies. In Section 3, we
address the same issues for the Weibull case, where it turns out that there is a certain critical
value of β for which the estimator in (1.3) is polynomial time. The empirical performance
of the estimators in (1.2) and, in particular, (1.3) is excellent. For example, for an M/G/1
queue with Pareto service times of index α = 1.5, Table 1 below shows that (1.3) reduces the
variance by a factor of between five and 14 compared to [5], and a factor of between 33 and 529
compared to [17]. The performance improvement over [17] for Weibull tails is similar, while
the algorithm of [5] is not even polynomial in this case. In addition to this, we would like to
point out the simplicity of (1.3), which makes the code much shorter and more transparent than
it is for some of the estimators we compare it with.

In Section 4, we discuss combinations with other variance reduction ideas (control variates
and stratification) in the case in which n = N is random as in the examples above.

2. The regularly varying case

In this section, we assume that f (x) = L(x)/(1 + x)1+α , x > 0, with L slowly varying
and α > 0 (we do not need conditions like α ≥ 1, to exclude infinite mean, etc.). Then
F̄ (x) ∼ L(x)/(1 + x)α by Karamata’s theorem (see [13, pp. 275–284]). Here the notation ‘∼’
has the following meaning: a(x) ∼ b(x) ⇔ limx→∞ a(x)/b(x) = 1.

We first consider the estimator in (1.2). It remains to specify the importance sampling density
f ∗(y). As in [17] and [9], we take f ∗ to be regularly varying with index α∗ of the form b/ log u,
and, for simplicity, to be just Pareto: f ∗(x) = α∗/(1 + x)1+α∗

.

Theorem 2.1. (a) With f ∗ as stated, the estimator (1.2) is polynomial time for any fixed n.

(b) More precisely, if there exist u0 and z0 such that L(uz)/L(u) is either monotonically
increasing or monotonically increasing in u, u ≥ u0, for all z ≥ z0, then an asymptotic upper
bound for the squared relative error is c1n

2 log u, where c1 is a constant independent of n.

(c) In the random-N case, the estimator is polynomial time provided that E[N3α+3] < ∞.

(Some discussion of the condition in part (b) is given in Remark 2.1, below.)
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In the proof, we need the density, g∗, proportional to L(x)2/(1 + x)1+2α−α∗
(note the

dependence on u via α∗ = b/ log u). That is, g∗ = f 2/(f ∗c∗), where

c∗ =
∫ ∞

0

f 2(x)

f ∗(x)
dx ∼ c2 log u, c2 = b−1

∫ ∞

0

L(x)2

(1 + x)2α+1 dx.

Lemma 2.1. Let Y ∗ have density g∗. Then, (a) for any ε > 0, there is a constant, cε, such that
P(Y ∗ > u) ≤ cε(1+u)−(2α−ε) for all large u, and, (b) under the conditions of Theorem 2.1(b),
P(Y ∗ > u) ∼ c3F̄ (u)

2 log u.

Proof. We have

P(Y ∗ > u) ∼ c4

∫ ∞

u

L(z)2

(1 + z)2α−α∗+1 dz ∼ c4

∫ ∞

u

L(z)2

z2α−α∗+1 dz.

From this (a) follows by noting that we can bound α∗ by ε for sufficiently large u, and that∫ ∞
u
L(z)2/z1+β dz ∼ L(u)2/uβ by Karamata’s theorem. For (b), substitute z = uy to obtain

P(Y ∗ > u) ∼ c4
L(u)2

u2α−α∗

∫ ∞

1

L(uy)2/L(u)2

(1 + y)2α−α∗+1 dy.

Here uα
∗ → b whereas L(uy)/L(u) → 1 for all y, as u → ∞. The convergence is in fact

uniform on [1, z0], so using monotone convergence on (z0,∞) ensures the existence of a limit
of the integral. This completes the proof.

Proof of Theorem 2.1. LetA = {x1 +· · ·+xn > u, xn = maxk≤n xk}. The second moment
of (1.2) is then

n2
∫

· · ·
∫
A

f 2(xn)

f ∗(xn)
dxn

n−1∏
i=1

f (xi) dxi = n2c∗
∫

· · ·
∫
A

g∗(xn) dxn

n−1∏
i=1

f (xi) dxi

= n2c∗P∗∗(Mn = Yn, Sn > u),

where P∗∗ is the probability measure under which theYi are independent, withYn having density
g∗ and the rest having density f .

Let β ∈ ( 2
3 , 1) and let

u′ = uβ

n− 1
and u′′ = u− (n− 1)u′ = u(1 − uβ−1).

Then Yn > u′′ on the event {Mn−1 ≤ u′}. It follows that

P∗∗(Sn > u, Mn = Yn) ≤ P∗∗(Yn > u′′)+ P∗∗(Mn−1 > u′, Yn > u′)
≤ P∗∗(Yn > u′′)+ nP∗∗(Yn > u′)P∗∗(Y1 > u′).

Choose δ, ε > 0 such that 2α + δ < 2α + δ + εβ < 3αβ. Then, using Lemma 2.1(a), the
second term, i.e. nP∗∗(Yn > u′)P∗∗(Y1 > u′), can be bounded by

c5n

(
n− 1

uβ

)2α−ε(
n− 1

uβ

)α−ε
= c5n

(n− 1)3α−2ε

u3αβ−2εβ ≤ c5n
(n− 1)3α−2ε

u2α+δ .
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Again by Lemma 2.1(a), (u(1 − uβ−1))−(2α−ε) is an upper bound for the first term. Since the
asymptotics of this expression is u−(2α−ε), part (a) of the theorem follows.

Part (b) of the theorem now follows immediately by invoking part (b) of Lemma 2.1 rather
than part (a). To prove part (c) of the theorem, simply condition on {N = n} and use dominated
convergence to control the second term.

Remark 2.1. The improvement over hazard rate twisting obtained when using (1.2) can be
understood as follows. Assume, for simplicity, that F is Pareto with density α/(1 + x)α+1,
x > 0, and that n is fixed. The second moment in hazard rate twisting is

∫
· · ·

∫
x1+···+xn>u

n∏
i=1

f 2(xi)

f ∗(xi)
dxi =

(
α2

α∗αx

)n ∫
· · ·

∫
x1+···+xn>u

n∏
i=1

fu(xi) dxi

=
(
α2

α∗αu

)n
F̄ ∗n
u (x),

where Fu is the Pareto distribution with parameter αu = 2α − α∗.
Simple modifications of arguments of [13, pp. 278–279] show that F̄ ∗n

u (u) ∼ nebu−2α , as
expected from the fact that uα

∗ → eb. Thus, the asymptotics of the second moment is

eb
(
α

2b

)n
n(log u)nF̄ (u)2.

Comparison with Theorem (2.1) then shows that (1.2) improves the squared relative error by a
factor of (log u)n−1.

An immediate corollary of Theorem 2.1 is that the estimator (1.3) is also polynomial time.
To see this, note that (1.3) is the conditional expectation of (1.2) given Y1, . . . , Yn−1 (the choice
of f ∗ is immaterial here) and recall the well-known fact that conditioning reduces variance. In
fact, the following, stronger result holds.

Theorem 2.2. The estimator (1.3) has bounded relative error, assuming, in the case of a random
N , that

lim sup
u→∞

E[L(u/2N)2N2α+4]
L1(u)2

< ∞ (2.1)

for some function L1(u) satisfying L1(u) ∼ L(u).

Remark 2.2. In the examples we considered above, condition (2.1) is equivalent to or only
marginally stronger than E[N2α+4] < ∞. To see this, note that L(u/2N)/L1(u) → 1 since
L(u) is slowly varying. Thus, a sufficient condition for the left-hand side of (2.1) to equal
E[N2α+4] is that L(ut)/L1(u) be bounded or monotone in u for a fixed t (which is essentially
the condition of Theorem 2.1). If, e.g.L(x) = (log(a+x))β , then we can letL1(x) = (log x)β ,
to have

L(ut)

L1(u)
=

(
1 + log(t + a/u)

log u

)β
,

which is decreasing for β > 0 and increasing for β < 0 (note that log(t + a/u)/ log u is
decreasing, it being the ratio between a decreasing function and an increasing function).
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Proof of Theorem 2.2. We split the second moment in (1.3) (with n + 1 instead of n for
notational convenience, and omitting the factor (n+ 1)2) into the three parts

v1 = E[F̄ (Mn ∨ (u− Sn))
2;Mn > u/2],

v2 = E[F̄ (Mn ∨ (u− Sn))
2;Mn ≤ u/2, Y(n−1) ≤ εu],

v3 = E[F̄ (Mn ∨ (u− Sn))
2;Mn ≤ u/2, Y(n−1) > εu],

where ε = 1/2n. Here v1 ≤ F̄ (u/2)2 ∼ 22αF̄ (u)2. If Mn ≤ u/2 and Y(n−1) ≤ εu, then
Sn ≤ u(1 − 1/2n) and, hence,

v2 ≤ F̄

(
u

2n

)2

≤ L(u)2

u2α

L(u/2n)2(2n)2α

L(u)2
∼ F̄ (u)2(2n)2α.

Finally,

v3 ≤ P(Y(n−1) > εu) ≤ n2F̄ (εu)2 ≤ n2L(u)
2

u2α

L(u/2n)2(2n)2α

L(u)2
∼ 4αn2+2αF̄ (u)2.

Combining these estimates completes the proof.
For the case of a randomN , just condition upon {N = n+1}, to find that the squared relative

error of the estimator, Z, given by the right-hand side of (1.3) (where N replaces n) is

E∗[Z2]
F̄ (u)2

∼
∞∑
n=0

P(N = n+ 1)(n+ 1)2
(

1 + (n2α + n2α+2)4α
L(u/2n)2

L(u)2

)
.

Therefore, the relative error is bounded provided that (2.1) holds.

Theorem 2.2 appears to give the first example of an estimator with bounded relative error
in a heavy-tailed setting. However, asymptotic efficiency does not guarantee efficiency for any
given set of parameters (a good example of this is the importance sampling algorithm of [7]).
Nevertheless, complexity studies can guide the decision of whether or not to proceed with
an estimator. Encouraged by Theorems 2.1 and 2.2, we performed a comparison of different
estimators for the Pareto case F̄ (x) = (1+x)−α and the M/G/1 queue in whichN is geometric
with

P(N = n) = (1 − ρ)ρn, n = 0, 1, 2, . . . ,

and

f (y) = P(U > y)

E[U ] ,

where U is a generic service time. Here, ρ = λE[U ] is the traffic intensity, with λ the arrival
rate. Thus, F plays the role of the integrated tail distribution, so the service time distribution
itself is Pareto, but with indexαU = α+1 instead ofα. The most important range forαU is often
argued to be the interval (1, 2) (implying finite mean but infinite variance), so we chose αU = 3

2 ,
corresponding to α = 1

2 and supplemented this with the larger value α = 3
2 , corresponding to

αU = 5
2 . Three different traffic intensities, ρ = 0.25, 0.5, 0.75, were considered, whereas for

u we considered the four values for which the standard approximation

P(W > u) ∼ ρ

1 − ρ
F̄ (u) (2.2)

is 10−k , k = 2, 5, 8, 11.
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Table 1: Results for the Pareto case with α = 0.5.

ρ k (1.1) (1.2)CE (1.3) JS (1.2)JS Estimator (1.3)

0.25 2 0.071 0.152 0.032 0.185 0.224 9.9928×10−3

0.25 5 0.105 0.260 0.031 0.421 0.506 1.0000×10−5

0.25 8 0.122 0.335 0.031 0.582 0.703 9.9980×10−9

0.25 11 0.115 0.397 0.031 0.713 0.859 9.9985×10−12

0.50 2 0.111 0.192 0.045 0.253 0.402 9.9945×10−3

0.50 5 0.144 0.301 0.044 0.515 0.812 1.0004×10−5

0.50 8 0.146 0.380 0.044 0.702 1.098 9.9989×10−9

0.50 11 0.153 0.445 0.044 0.855 1.337 9.9996×10−12

0.75 2 0.141 0.232 0.054 0.314 0.744 9.9958×10−3

0.75 5 0.205 0.341 0.054 0.591 1.381 1.0003×10−5

0.75 8 0.188 0.423 0.054 0.795 1.888 1.0005×10−8

0.75 11 0.180 0.494 0.054 0.960 2.272 1.0003×10−11

Table 2: Results for the Pareto case with α = 1.5.

ρ k (1.1) (1.2)CE (1.3) JS (1.2)JS Estimator (1.3)

0.25 2 0.100 0.169 0.051 0.200 0.255 1.1216×10−2

0.25 5 0.150 0.260 0.031 0.420 0.518 1.0021×10−5

0.25 8 0.124 0.335 0.031 0.583 0.702 1.0001×10−8

0.25 11 0.102 0.396 0.031 0.715 0.861 9.9998×10−12

0.50 2 0.161 0.234 0.077 0.282 0.492 1.2606×10−2

0.50 5 0.201 0.302 0.044 0.514 0.835 1.0027×10−5

0.50 8 0.152 0.381 0.044 0.703 1.113 1.0002×10−8

0.50 11 0.149 0.446 0.044 0.854 1.340 9.9966×10−12

0.75 2 0.212 0.333 0.114 0.361 0.933 1.5297×10−2

0.75 5 0.201 0.342 0.054 0.589 1.469 1.0044×10−5

0.75 8 0.189 0.422 0.054 0.795 1.848 9.9948×10−9

0.75 11 0.231 0.492 0.054 0.961 2.298 1.0005×10−11

In the implementation we used

P(W > u) = P(Y1 + · · · + YN > u) = ρP(Y1 + · · · + YN∗ > u),

where
P(N∗ = n) = (1 − ρ)ρn−1, n = 1, 2, . . . ,

and simulated usingN∗. The algorithms were replicatedR = 107 times. Tables 1 and 2 give the
corresponding relative errors defined as the half-widths of the 95% confidence interval divided
by the point estimate.

In the list of algorithms in the tables, (1.1) and (1.3) are self-explanatory. JS is the weighted
delayed hazard rate twisting of [17], implemented using the parameters suggested there. The
asymmetric importance sampling (1.2) was implemented for two different densities: (1.2)CE
means a Pareto f ∗ with α∗ = 1/ log u, as suggested by a cross-entropy argument similar to
that of [9] and [19] (we omit the details of the derivation), and (1.2)JS corresponds to the same
f ∗ as was used in algorithm JS. The final column gives the point estimates, calculated using
the most accurate procedure, namely (1.3).
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The point estimates show excellent agreement with approximation (2.2) in the present Pareto
case, but we note that regularly varying cases in which (2.2) is quite inaccurate (and, hence,
simulation is a realistic alternative) have been reported in, e.g. [1] and [18].

The findings in Tables 1 and 2 are that the conditional Monte Carlo algorithms (1.1) and (1.3)
perform better than any of the importance sampling algorithms, with (1.3) representing a
substantial improvement over (1.1). The weighted delayed hazard rate twisting in algorithm JS is
substantially more efficient than the naive twisting of α in the CE algorithm, but when combined
with asymmetric importance sampling, the CE algorithm is improved very substantially and
the JS algorithm is not. A possible intuitive argument as to why this is the case is that the role of
the delay in the JS algorithm (represented by the change point x∗) is to ensure that a sufficient
number of the Yi are not large, even if Y1 + · · · + YN is.

3. The Weibull case

In this section, we assume that F is Weibull-like (in the terminology of [18]), meaning that
the density f (x) is asymptotically of the form cxγ e−xβ where 0 < β < 1. The tail then
satisfies

F̄ (x) ∼ cx1+γ−βe−xβ

β
.

We will only give a theoretical study of the efficiency properties of the estimator (1.3), and
not of (1.2). This is motivated by our findings (both theoretical and empirical) in the Pareto
case and the numerical studies below.

Theorem 3.1. Assume that β < β̄ = log 3
2/ log 2 = 0.585, i.e. 21+β < 3. Then the

estimator (1.3) is polynomial time for any fixed n.

Remark 3.1. Inspection of the proof of Theorem 3.1 given in Appendix A shows that the
condition on β is indeed necessary. This may not be surprising, since the algorithms are
specifically designed for heavy tails and, as β ↑ 1, we approach the border, β = 1, to the light
tails region. The occurrence of a critical value ofβ is not uncommon for the Weibull distribution;
see, e.g. [8], where some of the results take a different form for 1

2 < β < 1, 1
3 < β < 1

2 , and
so on. The criticality of having β < 1

2 for a certain result to hold has been found in many later
cases and is often referred to as square root insensitivity (see, e.g. [10] and references therein).
The authors have not seen the present critical value, 0.585, appear before.

Theorem 3.1 is obviously weaker than the corresponding Theorem 2.1 for the Pareto case,
which additionally features bounded relative error and is valid in the random-N case. The
numerical examples presented below strongly suggest that both of these extensions also hold
for the Weibull case, but we have no proof of this.

Tables 3–5 contain the results of a geometric sum numerical study similar to that for the
Pareto case, considering a (standard) Weibull F with tail e−xβ and three different values, 0.25,
0.50, and 0.75, for β (we omit algorithm (1.1) since it is not polynomial time in the Weibull
case). The choices of F and β = 0.5 are as in [17] and, as a check, we reconstructed Table 2
of [17] and obtained very similar point estimates and confidence bands (in fact, algorithm JS
gave slightly better results here than in [17], probably due to our usingN∗ instead ofN ). We do
not include the table here. Note, however, that e−xβ is not the tail of an integrated tail distribution
(as the derivative is not monotone) and, therefore, that there is no direct interpretation in terms
of an M/G/1 queue.
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Table 3: Results for the Weibull case with β = 0.25.

ρ k (1.2)CE (1.3) JS (1.2)JS Estimator (1.3)

0.25 2 0.154 0.035 0.186 0.228 1.0152×10−2

0.25 5 0.261 0.032 0.419 0.508 1.0040×10−5

0.25 8 0.335 0.031 0.583 0.702 1.0008×10−8

0.25 11 0.396 0.031 0.716 0.860 1.0004×10−11

0.50 2 0.200 0.052 0.258 0.420 1.0545×10−2

0.50 5 0.303 0.045 0.513 0.821 1.0097×10−5

0.50 8 0.380 0.044 0.702 1.099 1.0018×10−8

0.50 11 0.446 0.044 0.854 1.336 1.0005×10−11

0.75 2 0.256 0.071 0.331 0.823 1.1468×10−2

0.75 5 0.347 0.056 0.588 1.406 1.0215×10−5

0.75 8 0.424 0.054 0.795 1.867 1.0049×10−8

0.75 11 0.494 0.054 0.963 2.238 1.0023×10−11

Table 4: Results for the Weibull case with β = 0.5.

ρ k (1.2)CE (1.3) JS (1.2)JS Estimator (1.3)

0.25 2 0.171 0.054 0.201 0.255 1.4027×10−2

0.25 5 0.334 0.072 0.432 0.677 2.0509×10−5

0.25 8 0.378 0.056 0.590 0.859 1.9035×10−8

0.25 11 0.414 0.070 0.719 0.886 1.6725×10−11

0.50 2 0.261 0.098 0.295 0.515 2.8526×10−2

0.50 5 0.614 0.185 0.650 1.415 9.9016×10−5

0.50 8 0.465 0.097 0.733 1.939 1.1539×10−7

0.50 11 0.502 0.101 0.876 1.486 7.3482×10−11

0.75 2 0.388 0.153 0.315 0.863 9.6750×10−2

0.75 5 7.128 0.665 3.820 8.015 2.7456×10−3

0.75 8 1.319 0.597 1.101 3.077 4.0061×10−5

0.75 11 0.683 0.118 1.068 10.251 2.5753×10−7

Table 5: Results for the Weibull case with β = 0.75.

ρ k (1.2)CE (1.3) JS (1.2)JS Estimator (1.3)

0.25 2 0.198 0.082 0.222 0.290 1.1380×10−2

0.25 5 1.580 0.476 1.208 2.534 1.1059×10−5

0.25 8 6.673 1.296 2.652 7.588 1.0519×10−8

0.25 11 2.951 4.532 1.927 6.643 1.0337×10−11

0.50 2 0.304 0.135 0.268 0.487 1.5223×10−2

0.50 5 2.815 1.110 3.689 7.396 1.3290×10−5

0.50 8 10.451 8.043 19.517 25.075 1.1556×10−8

0.50 11 7.396 13.190 13.483 61.513 1.1001×10−11

0.75 2 0.329 0.141 0.189 0.516 3.1421×10−2

0.75 5 2.088 0.713 1.326 4.067 2.5138×10−5

0.75 8 13.584 5.239 12.860 37.925 1.5581×10−8

0.75 11 86.575 43.958 70.867 193.427 1.3302×10−11
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The algorithms show a considerable performance degradation not just for β = 0.75 (which
is above the critical value, β̄) but even for β = 0.5 (which is close to β̄), when ρ = 0.75. For
other parameter values, the conclusions of Tables 3 and 4 are very similar to those in the Pareto
case.

4. Combination with stratification and control variates

The subexponential asymptotics

P(Sn > u) ∼ nF̄ (u), (4.1)

which is valid for a fixed n, indicates that a substantial part of the variability of the estimators
in the random-N tables may be due to the variability in N . Two ways to eliminate this are
to use N as control variate (as suggested by the linearity of (4.1) in n) or to stratify N . Note
that both methods guarantee variance reduction. We refer the reader to, e.g. [15, pp. 186–279]
for the basic facts on these variance reduction techniques (for control variates, we used the
version with an estimated control coefficient [15, p. 187, Equation (4.5)]). Tables 6–10 contain
the results of numerical studies pertaining to this issue, using the same parameter values as
in Tables 1–5. For the stratification (using proportional allocation; cf. [15, pp. 209–235]), we
took eight strata, N∗ = 1, . . . , 7, and N∗ > 7 for ρ = 0.25, and 17 strata, N∗ = 1, . . . , 16,
and N∗ > 16 for both ρ = 0.50 and ρ = 0.75. The tables again give the half-widths of
the confidence intervals, and the subscripts ‘CV’ and ‘str.’ respectively denote combination of
the relevant algorithm with control variates and stratification. Our results are precise to three
decimal places, so ‘0.000’ simply indicates a result less than 5 × 10−4.

The conclusion to be drawn is that the control variate method and stratification perform
rather similarly. The variance reduction is by far the largest for algorithm (1.3), which we take
as indication that the algorithm estimates P(Sn > u) very accurately for a fixed n and that
the variability of the M/G/1 estimators is largely due to the variability in N . In contrast, for
the other estimators the variability in the estimates of P(Y1 + · · · + Yn > u) is nonnegligible
compared to the variation in N .

Table 6: Variance reduction results for the Pareto case with α = 0.5.

ρ k (1.2)CV (1.2)str. (1.3)CV (1.3)str. JSCV JSstr.

0.25 2 0.150 0.121 0.008 0.008 0.132 0.181
0.25 5 0.258 0.210 0.000 0.000 0.303 0.419
0.25 8 0.335 0.272 0.000 0.000 0.420 0.583
0.25 11 0.396 0.323 0.000 0.000 0.513 0.713
0.50 2 0.192 0.179 0.009 0.009 0.222 0.248
0.50 5 0.301 0.285 0.000 0.000 0.458 0.512
0.50 8 0.381 0.362 0.000 0.000 0.625 0.700
0.50 11 0.445 0.424 0.000 0.000 0.761 0.855
0.75 2 0.232 0.225 0.009 0.011 0.301 0.308
0.75 5 0.341 0.334 0.000 0.005 0.572 0.588
0.75 8 0.423 0.419 0.000 0.005 0.773 0.793
0.75 11 0.491 0.487 0.000 0.005 0.938 0.961
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Table 7: Variance reduction results for the Pareto case with α = 1.5.

ρ k (1.2)CV (1.2)str. (1.3)CV (1.3)str. JSCV JSstr.

0.25 2 0.169 0.143 0.025 0.024 0.159 0.193
0.25 5 0.259 0.211 0.001 0.001 0.302 0.418
0.25 8 0.334 0.272 0.000 0.000 0.419 0.582
0.25 11 0.396 0.323 0.000 0.000 0.514 0.712
0.50 2 0.234 0.220 0.043 0.038 0.259 0.273
0.50 5 0.302 0.286 0.001 0.001 0.457 0.512
0.50 8 0.380 0.362 0.000 0.000 0.626 0.702
0.50 11 0.445 0.425 0.000 0.000 0.760 0.851
0.75 2 0.329 0.315 0.074 0.069 0.344 0.348
0.75 5 0.342 0.336 0.002 0.006 0.573 0.587
0.75 8 0.423 0.418 0.000 0.005 0.772 0.797
0.75 11 0.492 0.486 0.000 0.005 0.937 0.963

Table 8: Variance reduction results for the Weibull case with β = 0.25.

ρ k (1.2)CV (1.2)str. (1.3)CV (1.3)str. JSCV JSstr.

0.25 2 0.153 0.124 0.011 0.011 0.135 0.182
0.25 5 0.260 0.212 0.005 0.005 0.302 0.418
0.25 8 0.335 0.273 0.002 0.001 0.419 0.582
0.25 11 0.396 0.322 0.000 0.000 0.511 0.714
0.50 2 0.200 0.188 0.018 0.018 0.230 0.253
0.50 5 0.303 0.289 0.007 0.007 0.457 0.511
0.50 8 0.381 0.361 0.002 0.002 0.625 0.698
0.50 11 0.446 0.424 0.001 0.001 0.762 0.853
0.75 2 0.257 0.248 0.031 0.032 0.318 0.323
0.75 5 0.347 0.341 0.011 0.012 0.571 0.584
0.75 8 0.424 0.419 0.003 0.006 0.771 0.790
0.75 11 0.494 0.488 0.001 0.006 0.939 0.964

Table 9: Variance reduction results for the Weibull case with β = 0.5.

ρ k (1.2)CV (1.2)str. (1.3)CV (1.3)str. JSCV JSstr.

0.25 2 0.170 0.146 0.029 0.028 0.162 0.195
0.25 5 0.344 0.318 0.054 0.057 0.339 0.431
0.25 8 0.412 0.326 0.063 0.046 0.446 0.587
0.25 11 0.411 0.350 0.020 0.025 0.534 0.718
0.50 2 0.261 0.247 0.062 0.058 0.272 0.283
0.50 5 0.789 0.565 0.140 0.140 0.620 0.607
0.50 8 0.635 0.585 0.090 0.126 0.678 0.733
0.50 11 0.503 0.486 0.044 0.032 0.802 0.874
0.75 2 0.373 0.367 0.109 0.101 0.290 0.295
0.75 5 2.266 2.269 0.638 0.788 2.846 2.241
0.75 8 1.063 0.948 0.241 0.259 1.063 1.101
0.75 11 0.736 0.662 0.074 0.077 1.059 1.072
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Table 10: Variance reduction results for the Weibull case with β = 0.75.

ρ k (1.2)CV (1.2)str. (1.3)CV (1.3)str. JSCV JSstr.

0.25 2 0.197 0.176 0.049 0.047 0.190 0.209
0.25 5 1.492 1.469 0.471 0.418 1.864 2.263
0.25 8 4.205 4.374 1.726 1.581 1.893 3.403
0.25 11 2.303 1.778 2.099 1.864 3.474 1.725
0.50 2 0.290 0.283 0.091 0.085 0.240 0.247
0.50 5 3.050 3.249 1.105 0.956 3.619 3.578
0.50 8 14.864 27.744 11.819 15.355 17.372 34.213
0.50 11 17.251 9.784 11.914 20.099 28.343 10.382
0.75 2 0.266 0.311 0.101 0.096 0.156 0.159
0.75 5 2.020 2.009 0.659 0.594 1.268 1.306
0.75 8 15.617 16.337 4.926 4.950 13.290 12.996
0.75 11 46.885 81.367 32.731 41.419 174.065 74.014

Appendix A. Proof of Theorem 3.1

In the proof of Theorem 3.1 we make use of Figure 1, where the two areas shaded differently
together form the support of the distribution of (Mn, Sn). Note that u − y > x in the dark-
shaded area and that x > u− y in the light-shaded area. For each u, we divide the support into
the 2n− 1 regions labeled 0, 1′, . . . , (n− 1)′, 1′′, . . . , (n− 1)′′ shown in Figure 1 (e.g. region
k′ is the triangle with border lines u = x + y, y = kx, and y = (k + 1)x). We will denote by
γ1, γ2, . . . certain powers of x or uwhose particular values are unimportant (note that it suffices
to bound the relative error by uγke−2uβ ) and by c1, c2, . . . denote constants.

Lemma A.1. Let (x, y) ∈ k′ ∪ k′′ for some k = 1, . . . , n − 1. Then the conditional density,
g(· | x), of Sn given Mn = Yn = x satisfies

g(y | x) ≤ c1x
γ1 exp{−(k − 1)xβ − (y − kx)β}, y ≥ x.

Proof. We have f (x) ≤ c2(1 + x)γ e−xβψ(x), where

c3 = sup
y≥a

ψ(y) < ∞, ψ(y) ≤ c4f (y), y ≤ a, (A.1)

for some a > 0. Let S be the compact simplex in R
n−1 specified by the constraints

0 ≤ x1 ≤ x, . . . , 0 ≤ xn−1 ≤ x, x1 + · · · + xn−1 = y − x,

and let µ be the Lebesgue measure on S. We then have

g(y | x) =
∫
S

f (x1) · · · f (xn−1) dµ(x1, . . . , xn−1)

≤ [c2(1 + x)γ2 ]n−1 sup
S

exp{−xβ1 − · · · − x
β
n−1}

×
∫
S

ψ(x1) · · ·ψ(xn−1) dµ(x1, . . . , xn−1)

≤ c5(1 + x)γ1 sup
S

exp{−xβ1 − · · · − x
β
n−1},
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Figure 1: Division of the support of the distribution of (Mn, Sm) into 2n− 1 regions.

where in the last step we have used (A.1) to bound the µ-integral by ck4[c3(x − a)]n−k−1 over
a region of the form

S ∩ {x1 ≤ a, . . . , xk ≤ a, xk+1 > a, . . . , Xn−1 > a}.
Being concave, xβ1 + · · · + xβn−1 attains its minimum on S at an extremal point, which is easily
seen to imply that at a minimum point k−1 of the xi must equal x, one of the xi must equal y−kx,
and the rest must equal 0. Thus, the supremum can be bounded by exp{−(k−1)xβ−(y−kx)β}.

Proof of Theorem 3.1. Let h(x, y) denote the joint density of Mn and Sn. The second
moment of the estimator is then∫∫

k(x, y) dx dy, k(x, y) = exp{−2(x ∨ (u− y))β}h(x, y).

Consider the partition, shown in Figure 1, of the support of h (the shaded area) into the
regions 0, 1′, . . . , (n − 1)′, 1′′, . . . , (n − 1)′′. We will prove the theorem by showing that
the contributions, I0, I1′ , . . . , to the above integral from the separate regions grow no faster
than cmuγme−2uβ . This is simple for region 0, and for the other regions we will use ideas based
upon concavity and extremal points (marked by bullet points in Figure 1) similar to those in
the proof of Lemma A.1; note that the areas grow at rate at most u2.

In region 0, x > u− y and x > u/2. Thus, recalling the well-known fact that the density of
Mn is nf (x)F (x)n−1 ≤ nf (x), we obtain

I0 ≤ e−2(u/2)βP(Mn ≥ u/2) ≤ c6u
γ3e−3(u/2)β ≤ c6u

γ3e−2uβ .

In region k′, u− y ≥ x and, by Lemma A.1,

h(x, y) ≤ c7x
γ4 exp{−kxβ − (y − kx)β}.

Thus (note that x ≤ u when x ∈ k′),

Ik′ ≤ c7u
γ4

∫∫
k′

exp{−kxβ − (y − kx)β − 2(u− y)β} dx dy.
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Since the area of region k′ grows like u2, it suffices to check that minus the value of the exponent
is at least 2uβ at each of the three boundary points. This is clear at (0, 0). The two other boundary
points (on the line x+y = u) are (u/(k+1), ku/(k+1)) and (u/(k+2), (k+1)u/(k+2)), where
minus the values of the exponents are respectively (k+2)uβ/(k+1)β and (k+3)uβ/(k+2)β ,
which are both greater than 2uβ (the function (x + 2)/(x + 1)β is 3/2β > 2 at x = 1 and
increasing, as is easily seen by checking that the log derivative is positive for β < β̄ and x ≥ 1).

In region k′′, u− y ≤ x and, so, as in the argument for region k′,

Ik′′ ≤ c8u
γ5

∫∫
k′′
nxn exp{−(k + 2)xβ − (y − kx)β} dx dy.

We must again check that minus the value of the exponent is at least 2uβ at each of the four
boundary points. The two boundary points on the line u = x + y and, thus, the values to be
checked, are the same as for region k′, so these behave as they should. The two boundary points
on the line x = u/2 are (u/2, (k + 1)u/2) and (u/2, ku/2), and at each of these points minus
the value of the exponent is at least (k + 2)xβ = (k + 2)uβ/2β ≥ 2uβ .
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