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ACCRETION DISC VISCOSITY 

CHRISTOPHER A. TOUT 
Institute of Astronomy, The Observatories, Madingley Road, 
Cambridge CBS OH A, UK 

Abst rac t . We review the various physical processes that could lead to 
viscosity in accretion discs. A local magnetic dynamo offers the most plau­
sible mechanism and we discuss a simple model in some detail. The dynamo 
operates even in partially and very weakly ionized discs without much mod­
ification. 

1. Introduction 

Accretion discs occur where high angular momentum material is falling 
on to a central object. Material that cannot be accreted directly forms a 
disc rotating around the object. Accretion discs (of about 1 RQ in radius) 
form in cataclysmic variables. Material overflowing from the low-mass star 
filling its Roche lobe cannot accrete directly on to the white dwarf, collides 
with itself and forms an accretion disc around the star. Accretion discs (of 
about 100AU « 20 000 R©) are inferred to be an integral part of the process 
of star formation. Once a denser, self-gravitating core has formed within 
a rotating cloud it cannot directly accrete further material. This material 
first collapses and then accretes on to a disc perpendicular to the rotation 
axis. Accretion discs (of about 1 kpc « 41O1OR0) are probably the supply 
route to black holes at the centre of active galactic nuclei. 

If material is to fall inwards through the accretion disc its angular mo­
mentum must be transferred outwards. If the material in the disc is orbiting 
in circular Keplerian orbits with angular velocity ft oc r~3>2, where r is the 
radius in the disc, such a transfer is energetically favourable because the 
lowest energy state for any rotating object of given angular momentum is 
one of complete corotation. The transfer of angular momentum outwards 
serves to slow down the inner, rapidly rotating parts of the disc while spin­
ning up the outer, more slowly rotating parts. This can be achieved if a 
simple shear viscosity acts within the disc fluid. The stress between adja-
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cent annuli will then be 
dV

 (,\ 
°r4> = Vv-^; (1) 

where the suffices r<f> indicate the force per unit area in the azimuthal 
direction owing to the velocity gradient dV/dr in the radial direction. The 
dynamic viscosity is r]v = pv, where p is the density of the fluid and v 
its kinematic viscosity. Gravitational forces will generally dominate over 
viscous forces ensuring that material in the disc follows near Keplerian 
orbits for a non-self-gravitating disc and tidal effects will ensure that these 
orbits are circular. If v is known we can write a diffusion equation for 
the disc surface density (Lynden-Bell & Pringle 1974). The time-scale for 
viscous processes to influence the disc will be T„ = R2 /v, where R is the 
radius of the disc. For the disc to remain in a steady accreting state this 
must be much less than the accretion time-scale, which is about 109 yr for 
typical cataclysmic variables. Taking the radius of the disc to be about 
1010cm we find v > 3 x 103cm2s- 1 . 

2. Molecular viscosity 

For normal material, molecular viscosity is several orders of magnitude 
too small. Even honey has a kinematic viscosity of about 5 cm2 s_ 1 and 
astrophysical discs are made of much more slippery stuff. On the other 
hand if a disc becomes degenerate then its electrons have very long mean 
free paths. In just the same way that degenerate matter is highly conducting 
it is also very viscous (Paczyhski & Jaroszynski 1978). 

3. Turbulent viscosity 

Turbulent motions within the fluid can transport angular momentum. First 
consider a radial turbulent cell of length /, average velocity ct and cross 
section a. There will be a velocity difference 6V between the ambient ma­
terial at the two ends of the cell such that 6V — SI, where S is the shear 
in the medium. Now in a time At = l/ct the cell transports momentum 
Ap = pal.SI from one end to the other. This provides an effective force 

F = ^ = P»S° (2) 

from which we deduce that v « lct. We expect / < H, the disc thickness, 
and ct < cs, the sound speed, so that 

v « aHc, (3) 
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with a < 1 (Shakura & Sunyaev 1973). A calculation of vertical structure 
within the disc gives H « cs/fi so that 

run 

j / R j ^ a l O ^ a c m V 1 . (4) 

However, this simple argument breaks down because we have exchanged 
higher angular momentum material from the outer end of the cell for 
lower from the inner end. This is neither what we want nor is it ener­
getically favourable. Had we consulted Rayleigh's criterion for stability to 
axisymmetric perturbations we would have found our disc to be stable 
to such turbulence. Consider an incompressible uniform fluid rotating in 
cylindrical shells at Cl(r) = V(r)/r. Interchange two cylinders of fluid each 
of mass m at r\ and r2 with r2 > r\. If the specific angular momentum 
h = rV = r2Q, is conserved then the energy change on interchange is 

(6) 

If the interchange is energetically favourable and thence unstable AE < 0 
and hence h\ > h\ or specific angular momentum must decrease outwards. 
Alternatively if 

iyn? > o (^ 
the disc is stable to axisymmetric perturbations. This is indeed the case 
with Keplerian discs. 

On the other hand, should the disc be unstable to turbulent motions 
predominantly in an azimuthal direction, the situation is different. Consider 
a small region of fluid moving at an azimuthal velocity ct faster than the 
ambient flow. This region has excess angular momentum and experiences 
a coriolis force in the outward radial direction. In this way higher angu­
lar momentum material can be transported outwards while lower angular 
momentum material falls inwards. 

We can now ask when such turbulence might set in. For fluid of known 
viscosity we can construct the Reynolds number 

Ke = — , (8) 
V 

where L is a typical length scale over which the fluid velocity, typically V, 
varies. In the disc L a R and V ~ RSI. If we write v « aH2Q then 

"•"HI)'"1- (9) 
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In the laboratory, turbulence sets in when §?e > 103. Lynden-Bell & Pringle 
(1974) argued that the fluid in the disc might be self-regulating in the sense 
that the viscosity is such that the fluid is just turbulent and 

«*io3(f)2 . (io) 

If the viscosity were smaller 5?e would be larger and turbulence would in­
crease. If the viscosity were larger then turbulence would be suppressed. 
Although a reasonable numerical value is obtained there is no real physical 
justification for this approach. It has proved popular because it allows a to 
take much smaller values in thin discs with H/R <C 1 than in thicker discs, 
a phenomenon that might explain dwarf novae outbursts. 

4. Convection 

Convective turnover would indeed give rise to turbulence that can cause 
viscosity. Whether or not a disc is convectively unstable depends on how 
and where the gravitational energy of the material flowing through the 
disc is liberated. Although parts of some cataclysmic variable discs may 
be convective, we can conclude from Livio & Shaviv (1977) that they are 
generally stable and convection is not the source of viscosity. However in 
protostellar discs Lin & Papaloizou (1980) have claimed that convection 
will be important simply because, as the disc contracts to its mid plane, 
the released gravitational energy sets up a temperature gradient sufficient 
to drive convection. Convective cells, although essentially vertical, must 
close on themselves to avoid accumulation of matter. Suppose a cell is able 
to move a distance / before being disrupted. If disruption takes place when 
the two extremes of the cell have been sheared around the disc, / « vc/fi, 
where vc is the convective velocity to be calculated using mixing length 
theory. The viscosity is then v « v%/£l-

Kley, Papaloizou Si Lin (1993) were able to create two-dimensional axi-
symmetric fluid simulations in which they found convective cells trans­
porting angular momentum. However they had to introduce an additional 
artificial viscosity to get the model to work and then found that the cells 
themselves carry angular momentum inwards because their axisymmetry 
forces them to close in a radial direction. The situation might be improved 
if convective cells can close in an azimuthal direction but, since top and 
bottom must move in opposite directions, each end of the cell will experi­
ence oppositely directed coriolis forces and it is difficult to see how such a 
cell can close on itself at all. 
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5. Dynamical processes 

Paczynski (1978) pointed out that, if it is left to cool, an accretion disc 
will contract until its own self-gravity becomes important. The density at 
which this occurs is given by 

M\VD - i / x 
Pdisc > — — < l g c m , (11) 

where the second condition avoids degenerate support. A similar situation 
to that seen in galactic discs results, with the formation of denser clumps 
throughout the disc. Torques between these clumps will act so as to enforce 
corotation which directly transfers angular momentum outwards in Keple-
rian discs. Laughlin & Bodenheimer (1994) constructed numerical models 
of a cool disc which becomes unstable and gives rise to viscosity equivalent 
to 0.01 < a < 0.03. Cataclysmic variable discs, however, are generally hot 
and far from self-gravitating. 

6. Magnetic fields 

Magnetic fields are the most promising source of viscosity. Magnetohydro-
dynamics in astrophysics is based on Maxwell's equations with two simpli­
fying assumptions. The first that 

| V A B | > ^ | E | , (12) 

that electromagnetic waves are unimportant, holds well in all quantifiable 
situations. This leads to the induction equation 

B = V A (u A B) + r/V2B, (13) 

where r? = 1/4TT<7 is the magnetic diffusivity (a being the electrical con­
ductivity). The second assumption commonly made is that 77 is small in 
astrophysical plasmas so that, except where |V2B| is large, field lines are 
linked to the fluid or fluid can flow freely only along the field lines. 

A particular consequence of this is that if there are radial field lines in 
a disc the shear flow will tend to wrap them around the disc generating 
azimuthal field. In so doing work must be done on the field and mechanical 
energy is converted to magnetic energy. This conversion is the basis of a 
magnetic dynamo. At the same time the field lines will be bent. Curved 
field lines will attempt to straighten themselves and in so doing enforce 
corotation of the fluid and hence angular momentum transport outwards 
in the disc. Lynden-Bell (1969) suggested that magnetic fields are in this 
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way responsible for viscosity in accretion discs. The magnetic torque can 
be calculated from the Lorentz force 

F = J A B 

= ^ ( V A B ) A B (14) 

= ^ [ ( B . V ) B - V ( i | B | 2 ) ] . 

The second term provides an additional contribution to isotropic pressure 
while the first is the magnetic curvature force. By evaluating the mean of 
the component of this force in the azimuthal direction, 

F c u r v , ,=^mvwh « ̂  (is) 
we obtain an effective viscosity [from equation (1)] of 

47r/>ft 

or 
BRB^ 

(16) 

a ~ T ^ - (17) 

Now in order to have viscosity all we need do is generate radial magnetic 
field in the disc. Radial turbulent motions can generate radial field from az­
imuthal but we have already shown that the disc is stable to such turbulence 
and isotropic turbulence might in itself generate the necessary viscosity. A 
major break-through was made when Balbus & Hawley (1991) recognised 
the importance of an instability first recorded by Velikhov (1959). 

6.1. THE BALBUS-HAWLEY INSTABILITY 

Discs with weak vertical fields are unstable if 

d(ft)2 

dr 
< 0, (18) 

if |ft| decreases outwards. The instability can be understood by considering 
a vertical field line. Suppose a perturbation moves material together with 
the field line in the azimuthal direction of the ambient flow. In the absence 
of the field this would be a neutral perturbation. In this case the field line 
is stretched and bent so that the curvature force slows down the displaced 
material relative to the surrounding fluid. Losing angular momentum it 
falls radially inwards where it is caught up in yet faster flowing material. 
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If the shear is stronger than the magnetic tension the material will be 
dragged yet further from its equilibrium increasing the magnetic tension as 
it goes. More angular momentum is carried outwards and the material falls 
in further. Alternatively, if the field is strong enough the tension will win 
over the shear straightening the field line and stabilizing against the inflow. 
Growth occurs only on wavelengths A > Acr;t oc Bz so that if Acr;t > 2H, 
the total disc thickness, it will be stable. 

We now have an instability that will generate viscosity if there is a 
weak vertical magnetic field in the disc. Various sources of vertical field can 
be envisaged. If the whole system is embedded in a region of magnetised 
space, field might be advected in with the material flowing through the disc. 
Alternatively field anchored on the central accreting object may thread 
through the disc and interact with it. This is the case in DQ Her systems 
or intermediate polars in which the central-object field disrupts the inner 
parts of the disc. However it is not clear that weaker fields can thread a 
differentially rotating disc at all. The disc may appear super-conducting to 
external field which can then be excluded entirely. A third, more promising 
mechanism is the regeneration of vertical field within the disc itself by some 
dynamo process. 

6.2. PARKER INSTABILITY 

Magnetic buoyancy can provide the source of vertical field. Consider a tube 
of magnetic flux B embedded in non-magnetic fluid of density pe and pres­
sure pe. If the tube is in pressure balance with its surroundings its own 
thermal pressure p\ will be supplemented by its magnetic pressure. 

B2 

Pe = Pi + T - > Pi- (19) 

Thus its internal density p\ < pe and the tube will float to the surface. 
Once a section of a flux tube begins rising material can flow down the tube 
towards the mid plane leaving the rising part of the tube less dense still, 
so that it rises yet faster. This is the Parker instability. Its fastest growing 
mode has a wavelength some eight times the disc scale height (Horiuchi et 
al. 1988) and a growth rate rf1 two to five times slower than the Alfven 
crossing rate. In the disc it is the azimuthal and radial field in the plane of 
the disc that buoys up generating new vertical field. 

6.3. RECONNECTION 

Unless the vertical field Bz decays it will build up until the Balbus-Hawley 
instability is stabilized, when the generation of radial and azimuthal field 
ceases. The vertical field generated through the two instabilities will not be 
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uniform but will change direction on a length scale Arec « H, determined 
by the wavelengths of the fastest growing modes of the Balbus-Hawley and 
Parker instabilities and the action of shear in the disc which will tend to 
reduce Arec (see Tout & Pringle 1992 for details). Between regions of oppo­
sitely directed field reconnection can take place rapidly. Once reconnection 
begins at one point reconnected loops attempt to straighten pulling mate­
rial away from the reconnection region. Excess pressure outside the region 
pushes more field in close enough to continue reconnecting. The reconnec­
tion time-scale is then rrec ~ Arec/0.1[VAk, where the vertical Alfven speed, 
[VA]Z = BzI^Tp. 

6.4. OPERATIONAL MODEL 

Tout h Pringle (1992) put together these processes in a description of a 
magnetic dynamo that leads directly to disc viscosity without the need for 
any externally imposed turbulence. The equilibrium B = 0 is unstable. 
Initially both BR and B<j, grow on a time-scale fi_1 but decay only on a 
time-scale max(rp,rrec) > fi-1; a. second equilibrium is reached only when 
Bz is close to its maximum for instability when the ratios of the Alfven 
speeds to the ambient sound speed for the three field components are 

IM„U^k«0.8, I^£»0.1. (20) 
cs cs cs 

The equilibrium value of a is about 0.1. This equilibrium is also unstable 
and Fig. 1 shows how the fields oscillate around their equilibrium values. In 
each cycle BR and B^ build up until Bz is sufficient to shut off the Balbus-
Hawley instability. While BR and B^ begin to decay Bz increases further. 
Eventually Bz decays faster than it is replenished until the Balbus-Hawley 
instability begins to operate again and BR and B^ rise once more. Fig. 2 
illustrates the variation of a [from equation (17)] for the same system. 

6.5. NUMERICAL SIMULATIONS 

The above model simplifies all the processes involved to make the solu­
tion tractable. Numerically we can try to model more of the details but a 
number of specific problems beset such attempts. First, because of limited 
resolution, an artificial magnetic diffusivity is always present so that the 
magnetic Reynolds number 3?m = RV/r] is several orders of magnitude too 
large, seed magnetic fields must already be large in order to grow and re­
connection cannot be modelled properly. Second, only a small region of the 
disc can be followed and boundary conditions limit the size of large scale 
growth and enforce certain field structures. 
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Figure 1. Variation of component field strengths relative to their equilibrium values. 
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Figure 2. The variation of a with time. 

Not withstanding these problems Hawley, Gammie & Balbus (1995) 
showed that a self excited dynamo can be maintained even with zero gravity. 
Brandenburg et al. (1995) have included gravity but their surface bound­
ary condition still limits the growth of Parker's instability. They found 
a fa 0.004 from magnetic stress. 

6.6. PARTIAL IONIZATION 

We have described processes operating in fully ionized media. Regos (1996) 
has asked the question of what happens when some material is neutral. Neu-
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tral particles feel the magnetic fields only through collisions with ions and 
two-component magnetohydrodynamic equations are needed. Cataclysmic 
variable discs in quiescence are partially ionized with 0.1 < pi/pn < 0.9. 
Regos has recalculated the rates for the various instabilities and finds that 
a does not differ much from the fully ionized case. 

In protostellar discs the ionization fraction may be as little as p\/pa « 
10- 1 0 . In this case the velocities of neutral particles and ions differ widely 
and the induction equation becomes a diffusion equation. As a result recon­
nection is faster and a increases because BR and B$ can build up to larger 
values before the Balbus-Hawley instability switches off. Brandenburg et 
al. find their models in agreement with these conclusions. 

7. Conclusions 

Magnetic fields are probably the source of viscosity in cataclysmic vari­
able discs and are a viable source in protostellar and AGN discs too. A 
radial component of magnetic field is needed and this can be generated 
by the Balbus-Hawley instability which overcomes the Rayleigh stability 
criterion. The Parker instability or ensuing turbulence can regenerate ver­
tical field by dynamo activity. Theoretically acceptable values of a « 0.1 
are predicted. Limited numerical models give smaller but still reasonable 
values, a « 0.004. The gravitational energy from the inward flowing ma­
terial will not all be dissipated where the viscosity acts. It is released by 
reconnection of vertical field which may occur in the disc corona or it may 
escape altogether in a disc wind or jet. The inability of a disc dynamo to 
find a stable equilibrium may account for disc flickering. 
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