
JFP 32, e16, 40 pages, 2022. c© The Author(s), 2022. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S0956796822000119

Send to me first: Priority in synchronous
message-passing

C H E N G - E N C H U A N G
University at Buffalo, Buffalo, NY 14260, USA

(e-mail: chengenc@buffalo.edu)

G R A N T I R A C I
University at Buffalo, Buffalo, NY 14260, USA

(e-mail: grantira@buffalo.edu)

L U K A S Z Z I A R E K
University at Buffalo, Buffalo, NY 14260, USA

(e-mail: lziarek@buffalo.edu)

Abstract

In this paper, we introduce a tiered-priority scheme for a synchronous message-passing language
with support for selective communication and first-class communication protocols. Crucially, our
scheme allows higher priority threads to communicate with lower priority threads, providing the
ability to express programs that would be rejected by classic priority mechanisms that disallow
any (potentially) blocking interactions between threads of differing priorities. We formalize our
scheme in a novel semantic framework featuring a collection of actions to represent possible com-
munications. Utilizing our formalism, we prove several important and desirable properties of our
priority scheme. We also provide a prototype implementation of our tiered-priority scheme capa-
ble of expressing Concurrent ML and built in the MLton SML compiler and runtime. We evaluate
the viability of our implementation through three case studies: a prioritized buyer-seller protocol
and predictable shutdown mechanisms in the Swerve web server and eXene windowing toolkit. Our
experiments show that priority can be easily added to existing CML programs without degrading
performance. Our system exhibits negligible overheads on more modest workloads.

1 Introduction

Message-passing is a common communication model for developing concurrent and dis-
tributed systems where concurrent computations communicate through the passing of
messages via send and recv operations. With growing demand for robust concurrent pro-
gramming support at the language level, many programming languages or frameworks,
including Scala (Haller & Odersky, 2009), Erlang (Armstrong et al., 1996), Go (Gerrand,
2010), Rust (Klabnik & Nichols, 2020), Racket (Rac, 2019), Android (And, 2020), and
Concurrent ML (Reppy, 1991), have adopted this model, providing support for writing
expressive (sometimes first-class) communication protocols.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S0956796822000119
mailto:chengenc@buffalo.edu
mailto:grantira@buffalo.edu
mailto:lziarek@buffalo.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956796822000119&domain=pdf
https://doi.org/10.1017/S0956796822000119

2 C.-E. Chuang et al.

In many applications, the desire to express priority over communication arises. The
traditional approach to this is to give priority to threads (Mueller, 1993). In a shared mem-
ory model, where concurrent access is regulated by locks, this approach works well. The
trivial application of priority to message-passing languages, however, fails when mes-
sages are not just simple primitive values but communication protocols themselves (i.e.
first-class representations of communication primitives and combinators). These first-class
entities allow threads to perform communication protocols on behalf of their communi-
cation partners – a common paradigm in Android applications. For example, consider a
thread receiving a message carrying a protocol from another thread. It is unclear with
which priority the passed protocol should be executed – should it be the priority of the
sending thread, the priority of receiving thread, or a user-specified priority?

In message-passing models such as Concurrent ML (CML), threads communicate syn-
chronously according to the protocols constructed from send and receive primitives and
combinators. In CML, synchronizing on the communication protocol triggers the execu-
tion of the protocol. Importantly, CML provides selective communication, allowing for
computations to pick nondeterministically between a set of available messages or block
until a message arrives. As a result of nondeterministic selection, the programmer is unable
to impose preference over communications. If the programmer wants to encode preference,
more complicated protocols must be introduced, whereas adding priority to selective com-
munication gives the programmer to ability to specify the order in which messages should
be picked.

Adding priority to such a model is challenging. Consider a selective communication,
where multiple potential messages are available, and one must be chosen. If the selective
communication only looks at messages and not their blocked senders, a choosing thread
may inadvertently pick a low priority thread to communicate with when there is a thread
with higher priority waiting to be unblocked. Such a situation would lead to priority inver-
sion. Since these communication primitives must therefore be priority-aware, a need arises
for clear rules about how priorities should compose and be compared. Such rules should not
put an undue burden on the programmer or complicate the expression of already complex
communication protocols.

In this paper, we propose a tiered-priority scheme that defines prioritized messages as
first-class citizens in a CML-like message-passing language. Our scheme introduces the
core computation within a message, an action, as the prioritized entity. We provide a real-
ization of our priority scheme called PrioCML, as a modification to Concurrent ML. To
demonstrate the practicality of PrioCML, we evaluate its performance by extending an
existing web server and X-windowing toolkit. The main contributions of this paper are:

1. We define a meaning for priority in a message-passing model with a tiered-priority
scheme. To our knowledge, this is the first definition of priority in a message-
passing context. Crucially, we allow the ability for threads of differing priorities
to communicate and provide the ability to prioritize first-class communication
protocols.

2. We present a new language PrioCML, which provides this tiered-priority scheme.
PrioCML can express the semantics of polling, which cannot be modeled correctly
in CML due to nondeterministic communication.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 3

3. We formalize PrioCML using a novel approach to Concurrent ML semantics focus-
ing on communication as the reduction of communication actions. We leverage
this approach to express our tiered-priority scheme and prove several important
properties, most notably, freedom from communication derived priority inversions.

4. We implement the language PrioCML and evaluate its performance on the buyer-
seller protocol, Swerve web server, and the eXene windowing toolkit as well as
microbenchmarks.

This paper extends our previous work of PrioCML (Chuang et al., 2021) by providing
a formal semantics of PrioCML, a case study and discussion of the buyer-seller protocol,
added implementation details, as well as the tiered-priority scheme.

2 Background

We realize our priority scheme in the context of Concurrent ML (CML), a language exten-
sion of Standard ML (Milner et al., 1997). CML enables programmers to express first-class
synchronous message-passing protocols with the primitives shown in Figure 1. The core
building blocks of protocols in CML are events and event combinators. The two commu-
nication base events are sendEvt and recvEvt. Both are defined over a channel, a conduit
through which a message can be passed. Here sendEvt specifies putting a value into the
channel, and recvEvt specifies extracting a value from the channel. It is important to
note both sendEvt and recvEvt are the functions to construct events, and those events
do not perform their specified actions until synchronized on using the sync primitive.
Thus, the meaning of sending or receiving a value is the composition of synchronization,
and an event – sync (sendEvt(c, v)) will place the value v on channel c and, sync
(recvEvt(c)) will remove a value v from channel c. In CML, both sending and receiv-
ing are synchronous, and therefore, the execution of the protocol will block unless there is
a matching action.

The expressive power of CML is derived from the ability to compose events using
event combinators to construct first-class communication protocols. We consider two such
event combinators: wrap and choose. The wrap combinator takes an event e1 and a post-
synchronization function f and creates a new event e2. Note that the function f is a value
of type ’a -> ’b. When the event e2 is synchronized on, the actions specified in the orig-
inal event e1 are executed; then, the function f is applied to the result. Thus, the result of
synchronizing on the event e2 is the result of the function f.

To allow the expression of complex communication protocols, CML supports selec-
tive communication. The event combinator choose takes a list of events and picks an
event from this list to be synchronized on. For example, sync (choose([recvEvt(c1),
sendEvt(c2, v2)])) will pick between recvEvt(c1) and sendEvt(c2, v2) and
based on which event is chosen will execute the action specified by that event. The
semantics of choice depends on whether any of the events in the input event list have a
matching communication partner available. Simply put, choose picks an available event,
if only one is available, or nondeterministically picks an event from the subset of available
events out of the input list. For example, if some other thread in our system performed
sync (sendEvt(c1, v1)), then choose will pick recvEvt(c1). However, if a third

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

4 C.-E. Chuang et al.

Fig. 1. Core CML primitives.

thread has executed recvEvt(c2), then choose will pick nondeterministically between
recvEvt(c1) and sendEvt(c2, v2). If no events are available, then choose will block
until one of the events becomes available. The always event (alwaysEvt) creates an event
that is always available and returns the value it stores when synchronized on. Always
events are useful for providing default behaviors within choice. Dually, the never event
(neverEvt) creates an event that is never available. If part of a choice, it can never be
selected, and if synchronized on directly, the synchronization will never complete. This is
useful for providing general definitions of constructs using choice.

A key innovation in the development of CML was support for protocols as first-class
entities. Specifically, this means a protocol, represented by an event, is a value and can
itself be passed over a channel. Once an event has been constructed from base events and
event combinators, it can be communicated to another participant. This is the motivation
for the division of communication into two distinct parts: the creation of an event and
the synchronization on that event. In CML, the first-class nature of events means these
phases may happen a different number of times and on different threads. In CML programs,
first-class events provide an elegant encoding of call-back like behaviors.

3 Motivation

The desire for priority naturally occurs anywhere we wish to encode preference. Consider
the Buyer-Seller protocol, commonly used an example protocol in both distributed sys-
tems (Ezhilchelvan & Morgan, 2001) and session types work (Vallecillo et al., 2006). The
protocol is a model of the interactions between a used book seller and a buyer negotiating
the price for a book. We consider the variant in which there are two buyers submitting
competing bids on a book from the seller. The seller receives the offers one at a time and
solicits another offer if the offer is rejected. The protocol progresses until a buyer places
an offer that the seller accepts. We can implement this protocol in CML by giving each
buyer a channel along which they can submit bids to the seller. The seller selects a bid
using the CML choose primitive to nondeterministically select a pending offer. The syn-
chronous nature of CML send means that a buyer may only submit one bid at a time; they
are blocked from executing until the bid is chosen. The core of this protocol is shown in
Figure 2. We use the CML wrap event combinator to attach a label to the bid indicating
which buyer it was received from.

Observe the choose primitive is entirely responsible for picking which buyer gets a
chance to submit a bid. Although we express no preference in this protocol, the seman-
tics of choose in CML are nondeterministic. Thus, while we would like for both buyers to

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 5

Fig. 2. The two buyer-seller protocol.

have equal opportunity to submit bids, CML provides no guarantee of this. Fundamentally,
what we desire is a notion of fairness in the choice between the buyers. We roughly expect
that the nondeterministic selection grants both buyers equal chance to be chosen. If the
selections each round are statistically independent however, one buyer may, by chance, be
able to place a significantly larger number of offers. This is because the number of bids
placed has no influence on the selection in the next round. If a buyer is unlucky, they may
be passed over several rounds in a row. To combat this CML integrates a heuristic for pre-
venting thread starvation. That heuristic will attempt to prevent one buyer from repeatedly
being selected, but makes no guarantees. We examine the effectiveness of this heuris-
tic in Section 6.2. With priority, we could encode a much stronger fairness property. If we
could express a preference between the buyers based on number of previous bids, we could
enforce a round-robin selection that would guarantee the buyers submit an equal number
of bids. The addition of priority would allow the programmer to control the undesirable
aspects of nondeterminism in the system.

Where to add priority in the language, however, is not immediately clear. In a message-
passing system, we have two entities to consider: computations, as represented by threads,
and communications, as represented by first-class events. In our example, the prioritized
element is communication, not computation. If we directly applied a thread-based model
of priority to the system, the priority of that communication would be tied to the thread
that created it. To prioritize a communication alone, we could isolate a communication
into a dedicated thread to separate its priority. While simple, this approach has a few major
disadvantages. It requires an extra thread to be spawned and scheduled. This approach also
is not easily composed, with a change of priority requiring the spawning of yet another
thread. A bigger issue is that the introduction of the new thread would then pass the com-
munication message to the spawned thread, and the original thread is then unblocked as
the message is sent to the spawned thread. This breaks the guarantee that the sent value
will have been received in the continuation of the send that the synchronous behavior of
CML provides. When communication is the only method to order computations between
threads, this is a major limitation on what can be expressed.

Instead, consider what happens if we attach priority directly to communication. In the
case of CML, since communications are first-class entities, this would mean prioritiz-
ing events. Assume we extend our language with new forms of events, like sendEvtP

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

6 C.-E. Chuang et al.

Fig. 3. The prioritized two buyer-seller protocol.

and recvEvtP which take an additional parameter that specifies the priority as shown in
following type signature

sendEvtP: ’a chan * ’a * prio -> unit event
recvEvtP: ’a chan * prio -> ’a event

We can use these new primitives to realize a prioritized variant of the protocol as code
shown in Figure 3. Each receive event is wrapped with a post-synchronization function
that increases the priority of the other buyer. This means that the higher priority will go to
the buyer that has submitted fewer bids. PrioCML choice will always pick the event with
highest priority within a selection.

This need to express a preference when presented with nondeterminism occurs in many
CML programs. Consider as another example a web server written in CML. For such a
server, it is important to handle external events gracefully and without causing errors for
clients. One such external event is a shutdown request. We want the server to terminate,
but only once it has reached a consistent state and without prematurely breaking client con-
nections. Conceptually, each component needs to be notified of the shutdown request and
act accordingly. We can elegantly accomplish this by leveraging the first-class events of
CML. If a server is encoded to accept new work via communication in its main processing
loop, we can add in shutdown behavior by using selective communication. Specifically,
we can pick between a shutdown notification and accepting new work. The component
can either continue or begin the termination process. However, by introducing selective
communication, we also introduce nondeterminism into our system. The consequence is
that we have no guarantee that the server will process the shutdown event if it consis-
tently has the option to accept new work. The solution is to again use priority to constrain
the nondeterministic behavior. By attaching a higher priority to the shutdown event, we
express our desire that given the option between accepting new work and termination, we
would prefer termination.

While event priority allows us to express communication priority, we still desire a way
to express the priority of the computations. In the case of our server, we may want to give a
higher priority to serving clients over background tasks like logging. The issue here is not
driven by communications between threads but rather competing for computation. As such,
we need a system with both event (communication) and thread (computation) priority.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 7

The introduction of priorities in computation presents several problems when integrated
with synchronous message-passing. Considering the priorities of threads and events in iso-
lation gives rise to priority inversion caused by communication. Priority inversion happens
when communication patterns result in a low priority thread getting scheduled in place of
a high-priority thread due to a communication choosing the low priority thread over the
high-priority one. This arises because we have no guarantee that the communication prior-
ities agree with the thread priorities. To see this effect, consider the CML program shown
in code where we use TP to annotate the thread priority as high, medium, or low priority.

[TH] sync (sendEvt (c1 , v1))
[TM] sync (sendEvt (c2 , v2))
[TL] sync (choose [recvEvt (c1), recvEvt (c2)])

The programmer is free to specify event priorities that contradict the priorities of threads.
Therefore, to avoid priority inversion, we must make choose aware of thread priority. A
naive approach is to force the thread priority onto events. That is, an event would have
the priority equal to that of the thread that created it. We can realize this approach in this
example by changing sendEvt and recvEvt to sendEvtP and recvEvtP with thread
priorities as the arguments. At first glance, it seems to solve the problem that shows up in
the example above. The choice in TL now can pick recvEvtP(c1, LOW) as the matching
sendEvtP(c1, v1, HIGH) comes from TH . This approach effectively eliminates event
priorities, reviving all of the above issues with a purely thread-based model.

The desirable solution is to combine the priorities of the thread and the event. In order
to avoid priority inversion, the thread priority must take precedence. This scheme resolves
the problem illustrated. To resolve choices between threads of the same priority, we allow
the programmer to specify an event priority. This priority is considered after the priority
of all threads involved. This allows the message in our shutdown example to properly take
precedence over other messages from high-priority threads.

This scheme is nearly complete but is complicated by CML’s exposure to events as
first-class entities. Specifically, events can be created within one thread and sent over a
channel to another thread for synchronization. When that happens, applying the priority of
the thread that created the event brings back the possibility of priority inversion. To see
why, consider the example in code:

[TH] sync (sendEvt(c3 , sendEvt(c2 , v2))); sync(sendEvt(c1 , v1))
[TM] sync (recvEvt(c3))
[TL] sync (choose ([recvEvt(c1), recvEvt(c2)]))

In this example, TH sends a sendEvt over the channel c3 which will be received and
synchronized on by TM . It is to be noted that this sendEvt will be at the highest priority
(which was inherited from its creator TH) even though it is synchronized on by TM . TH

then sends out a value v1 on channel c1. TL has to choose between receiving the value
on channel c1 or on channel c2. Since TH and TM are both of higher priority than TL,
they will both execute their communications before TL does. Thus, TL will have to make
a choice between either unblocking TM or TH (by receiving on channel c2 or c1 respec-
tively). Recall that the priority is determined by the thread that created the event and not
by the thread that synchronizes it in the current scenario. Therefore, this choice will be
nondeterministic; both communications are of the same priority as those created by the

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

8 C.-E. Chuang et al.

same thread. TL might choose to receive on channel c2 and thus allow the medium priority
thread TM to run while the high-priority thread TH is still blocked – a priority inversion.

The important observation to be made from this example is that priority, when inherited
from a thread, should be from the thread that synchronizes on an event instead of the thread
that creates the event. This matches our intuition about the root of priority inversion, as the
synchronizing thread is the one that blocks, and priority inversion happens when the wrong
threads remain blocked.

We have now reconciled the competing goals of user-defined event priority and
inversion-preventing thread priority. In doing so, we arrive at a tiered-priority scheme. The
priority given to threads takes precedence, as is necessary to prevent priority inversion. A
communication’s thread priority inherits from the thread that synchronizes on the event, as
was shown to be required. When there is a tie between thread priorities, the event priority
is used to break it. We note that high-priority communications tend to come from higher
priority computations. Thus, this approach is flexible enough to allow the expression of
priority in real-world systems.

4 Semantics

We now provide a formal semantics of PrioCML. Prior semantic frameworks for CML
(e.g. Reppy, 2007; Ziarek et al., 2011) maintain per-channel message queues. This closely
mirrors the main implementations of CML. To introduce priorities, we must assert that
prioritization is correct with respect to all other potential communications. These proper-
ties can be expressed more clearly when the full set of possible communications is readily
accessible. We thus model our semantics on actions, which encode the effect to be pro-
duced by an event and represent an in-flight message. These actions are kept in a single
pool called the action collection. In Section 5, we show how these semantics can be realized
as a modification to existing CML implementations with per-channel queues.

4.1 The PrioCML communication lifecycle

Before defining the semantics, we explore the process of PrioCML communication in
the abstract, highlighting several key steps in the lifecycle. To express a communica-
tion, a programmer starts by creating an event. Themselves values, events represent a
series of communication steps to be enacted and are constructed by taking a small set of
base events, and applying event combinators to construct a desired communication. Base
events in PrioCML come in one of four forms: send, receive, always, and never. Send
and receive allow synchronous communication over channels. Always and never represent
single ended communications that can either always succeed immediately or will block
forever. While useful in defining generic event combinators, they will also play a crucial
internal role in the given PrioCML semantics by capturing the state of inactive threads.
Each base event has a matching constructor (sendEvtP , recvEvtP , alwaysEvt , and
neverEvt). These can be freely combined using event combinators (e.g. choose, wrap)
and passed along channels as first-class values.

Event values have the form ε [q], where q is one of following action-generating prim-
itive: sendAct , recvAct , alwaysAct , neverAct , chooseAct , and wrapAct . The

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 9

event context ε does not contain any event information but represents that no further reduc-
tion of the action-generating primitives is possible until synchronization. This delineation
is important as it means the actions are generated at synchronization time and thus inherit
the thread priority of the synchronizing thread and not the thread which created the event
value.

When it is time for the enclosed communication steps (protocol) to be enacted, the sync
primitive is used to perform event synchronization. The action-generating primitive inside
the event context is reduced to a set of actions. For each base event type, there is a cor-
responding action. These actions represent the effect of a potential communication. In the
case of a choice event, there may be multiple actions generated as there may be multiple
potential (but mutually exclusive) communications. As each synchronization has exactly
one result, we conceptualize any synchronization as being a choice between all of the
generated actions. Nested choices are effectively flattened, and base events interpreted as
choices with one element. Each action carries a choice id, a tag which uniquely identifies
the synchronization that created it. This is used to prevent multiple actions from a single
synchronization from being enacted.

Upon synchronization, the new actions are added to the action collection, a pool of all
actions active in the system. From this pool, communication is chosen by an oracle which
implements the prioritization. If the oracle picks a communication that is an always action,
the enclosed value is given to the corresponding thread to restart execution. A communi-
cation can also be a pair of send and receive actions. In this case, any competing actions
from the same choices are removed, the value is passed to form two always actions (one
with the passed value for the receiving end and one with a unit value for the sending end),
and the always actions thrown back into the pool. The selection process is then repeated
until an always action is chosen, thereby passing a value to a thread and unblocking it.

We note that synchronization serves as the context switching point. A thread stops exe-
cution upon synchronizing, and the thread corresponding to the selected action takes its
place. A fundamental property of our system (4.23) is that the thread executing always has
the highest possible priority. In our system, this property can only be invalidated upon a
communication, which requires synchronization and thus gives the system an opportunity
to context switch.

4.2 Semantic rules

The syntax of our formalism is given in Figure 4. We define a minimal call-by-value
language with communication primitives. We use q to define communication event prim-
itives, which must appear wrapped in an event context ε [q]. Such a context prevents the
reduction of the inner event until synchronization, at which point the thread information is
captured. Event contexts are never encoded by the programmer directly but instead gener-
ated by the event primitive expressions. The full set of expressions is represented by e and
values by v.

Our program state is a triple of a currently executing thread (T), a collection of sus-
pended threads

(
T
)
, and a collection of current actions (α). A thread contains a thread

id (t) coupled with a thread priority of HIGH, MED, or LOW, and a current expression in
an evaluation context E [·]. We assume thread ids to be opaque values supporting only

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

10 C.-E. Chuang et al.

x ∈ Ident

f ∈ Function

c ∈ ChannelID

ω ∈ ChoiceID

ε [q] ∈ Event

t ∈ ThreadID

pe ∈ EventPrio := N

pt ∈ ThreadPrio = LOW | MED | HIGH

p = (pt, pe) ∈ ActionPrio = ThreadPrio × EventPrio

αω,f ,p ∈ Action := Aω,f ,p
v | Sω,f ,p

c,v | Rω,f ,p
c | Nω,f ,p

α ∈ ActionCollection = 2Action

γ ∈ Comm :=
〈
Aω,f ,p
v

〉
|

〈
Sω,f ,p

c,v , Rω
′,f ′,p′

c

〉

γ ∈ CommCollection = 2Comm

q ∈ Prim := alwaysAct (v, pe) | neverAct (pe) | sendAct (c, v, pe)

| recvAct (c, pe) | chooseAct (ε [q1] , . . . , ε [qn]) | wrapAct (q, e)

v ∈ Val := () | c | p | λx.e | ε [q]

e ∈ Exp := v | x | e e | sync e | ch ()

| alwaysEvt (e, e) | neverEvt ()

| sendEvt (e, e, e) | recvEvt (e, e)

| choose (e, . . . , e) | wrap (e, e)

| spawn (e, e)

E := • | E e | v E | sync E

| alwaysEvt (E, e) | alwaysEvt (v, E)

| sendEvt (E, e, e) | sendEvt (c, E, e) | sendEvt (c, v, E)

| recvEvt (E, e) | recvEvt (c, E)

| choose (E, . . . , e) | choose (ε [q] , . . . , E)

| wrap (E, e) | wrap (v, E)

| spawn (E, e) | spawn (v, E)

T = (
tpt , e

) ∈ Thread = ThreadID × ThreadPrio × Exp

T ∈ ThreadCollection = 2Thread

〈T〉 T ,α ∈ State = Thread × ThreadCollection × ActionCollection

Fig. 4. Core syntax.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 11

equality. A program begins execution with a single thread containing the program as its
expression and an empty thread collection and action collection.

Actions, representing the communication action to be effected by an event, can be one of

four varieties: always
(

Aω,f ,p
v

)
, send

(
Sω,f ,p

c,v

)
, receive

(
Rω,f ,p

c

)
, or never

(
Nω,f ,p

)
. Actions

carry a choice id ω, a wrapping function f , a priority (containing both a thread priority
pt and a non-negative integer event priority pe) p, and if appropriate a channel c or value
v. The choice id ω uniquely identifies the choice to which the action belongs and thus the
corresponding thread. We note that channels in our semantics are not a structure that stores
pending actions, but merely a tag used to determine if a send and receive action can be
paired. Actions that are able to be enacted are represented by communications (γ), which

can consist of either a lone always action
〈
Aω,f ,p
v

〉
or a matching pair of send and receive

actions
〈
Sω,f ,p

c,v , Rω′,f ′,p′
c

〉
. We note that the channel must match between the send and receive

actions in a communication. We refer to a set of actions (communications, threads) as an
action collection α (communication collection γ , thread collection T), which is an element
of the power set of actions (communications, threads).

Program steps are represented by state transitions →. We define several auxiliary rela-
tions used in defining the program step. Selection � maps an action collection to the
chosen action and an action collection containing all action still valid after that choice. We
note that section is a relation, and any one of multiple valid choices may result from a
given action collection. Action generation ↪→ creates an action from an action primitive,
a thread priority, and a choice id. Communication generation ⇒α is a relation between an
action and all possible communications involving that action, parameterized by the set of
available actions. We adopt the convention that when applied to a set of actions, the com-
munication generation relation maps to the union of all sets resulting from the application
of the relation to each element of the input set.

→ ∈ State → State

� ∈ ActionCollection → Comm × ActionCollection

↪→ ∈ Prim × ThreadPrio × ChoiceID → ActionCollection

⇒α ∈ ActionCollection → 2Action ×Comm

� ∈ CommCollection → Comm

≤prio ∈ Comm × Comm

Function application is defined in the rule APP. Channel creation happens when a
channel expression is evaluated (rule CHAN), and a new channel id c is generated.

〈(
tpt , E [(λx.e) v]

)〉
T ,α → 〈(

tpt , E [e [v/x]]
)〉

T ,α

(APP)

c fresh〈(
tpt , E [ch()]

)〉
T ,α → 〈(

tpt , E [c]
)〉

T ,α

(CHAN)

Threads are created through the spawn primitives with a user-specified priority. Spawn
broken up in two cases, SPAWN-NPREEMPT and SPAWN-PREEMPT. These two rules cover
the cases of spawning a thread with lower or higher priority, respectively. We distinguish

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

12 C.-E. Chuang et al.

here because we wish to maintain the invariant that the highest priority thread able to make
progress is the one executing. If the thread we are spawning has lower (or equal) priority,
we can continue executing the current thread. We add the newly spawned thread to the

thread collection by blocking it on an always action
(

Aω,λx.x,p′
unit

)
and adding that action

to the action collection
(
α′). This preserves the invariant that all threads in the thread

collection are blocked synchronizing on a choice (here, a choice of one action). If it is
the case that the newly created thread has a higher priority than the one executing, we
must switch to it immediately. To switch threads, we block the currently executing thread
by synchronizing on an always action with the event priority equal to zero. We then set
the new thread as the currently executing thread. In both cases, the expression that forms
the body is the composition (represented by the function composition operator, ◦) of the
always synchronization, the function e given to spawn, and a synchronization on a never
event at thread completion. This approach avoids the complication of removing the threads
from the collection and ensures that the thread will cease execution. As its name implies,
a never action cannot be part of communication and thus will not be selected.

t′ fresh ω fresh p′
t ≤ pt p′ = (

p′
t, 0

)

α′ = α ∪
{

Aω,λx.x,p′
unit

}
T

′ = T ∪
{(

t′
p′

t
, (λx.sync neverEvt) ◦ e ◦ sync ω

)}
〈(

tpt , E
[
spawn

(
e, p′

t

)])〉
T ,α → 〈(

tpt , E [unit]
)〉

T
′
,α′

(SPAWN-NPREEMPT)

t′ fresh ω fresh p′
t > pt p = (pt, 0)

α′ = α ∪
{

Aω,λx.x,p
unit

}
T

′ = T ∪ {(
tpt , E [sync ω]

)}
〈(

tpt , E
[
spawn

(
e, p′

t

)])〉
T ,α →

〈(
t′
p′

t
, ((λx.sync neverEvt) ◦ e) unit

)〉
T

′
,α′

(SPAWN-PREEMPT)

Following rules form the mechanism by which an event is evaluated. For each base
action, there is a corresponding event primitive. Each event is reduced to an action-
generating function inside an event context ε. Note that the action-generating function only
carries the event priority and not the thread priority. This is because this reduction happens
at event creation time and not event synchronization time. If we were to capture the thread
priority at this point, it would allow for priority inversion as outlined in Section 3.

〈(
tpt , E [alwaysEvt (v, pe)]

)〉
T ,α → 〈(

tpt , E [ε [alwaysAct (v, pe)]]
)〉

T ,α

(ALWAYSEVT)

〈(
tpt , E [sendEvt (c, v, pe)]

)〉
T ,α → 〈(

tpt , E [ε [sendAct (c, v, pe)]]
)〉

T ,α

(SENDEVT)

〈(
tpt , E [recvEvt (c, pe)]

)〉
T ,α → 〈(

tpt , E [ε [recvAct (c, pe)]]
)〉

T ,α

(RECVEVT)

〈(
tpt , E [neverEvt]

)〉
T ,α → 〈(

tpt , E [ε [neverAct]]
)〉

T ,α

(NEVEREVT)

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 13

The rules CHOICEEVT and WrapEvt expand the event context ε, the new context
will have chooseAct and wrapAct, respectively. Both chooseAct and wrapAct
enclose their inner actions and then unpack it upon the synchronization. We also note that
nested choices retain their nested structure at this stage (rule CHOICEEVT); for example,
a choose event is in the list of another choose event. These are later collapsed in the rule
CHOICEACT.

〈(
tpt , E [choose (ε [q1] , . . . , ε [qn])]

)〉
T ,α → 〈(

tpt , E [ε [chooseAct (q1, . . . , qn)]]
)〉

T ,α
(CHOICEEVT)

〈(
tpt , E [wrap (ε [q] , f)]

)〉
T ,α → 〈(

tpt , E [ε [wrapAct (q, f)]]
)〉

T ,α

(WRAPEVT)

The action semantics deal with the process of synchronizing on an action. They are aided
by an auxiliary relation, the action generation operator ↪→. In the simplest case, shown in
the rule ALWAYSACT, a single always action-generating function is transformed into the
corresponding always action. Note that this rule is where the thread priority is incorporated
into the action because this reduction happens at synchronization. Therefore, we capture
the thread priority of the thread that will be blocked by this action, as is necessary for
our desired properties to hold (see Theorem 4.23 and Lemma 4.22). The rules SENDACT

and RECVACT work similarly. In the more complex case of choice, handled by the rule
CHOICEACT, we need to combine all of the actions produced by the events being com-
bined, as a choice can result in multiple actions being produced. In the case of a nested
choice operation, the rule applies recursively, taking the union of all generated actions and
effectively flattening the choice. For rule WRAPACT, the wrap operation also relies on the
action set and maps each action in the set to an action with the function to wrap composed
with the wrapping function f of each action.

p = (pt, pe)

alwaysAct (v, pe) , pt,ω ↪→
{

Aω,λx.x,p
v

} (ALWAYSACT)

p = (pt, pe)

sendAct (c, v, pe), pt,ω ↪→
{

Sω,λx.x,p
c,v

} (SENDACT)

p = (pt, pe)

recvAct (c, pe) , pt,ω ↪→
{

Rω,λx.x,p
c

} (RECVACT)

p = (pt, 0)

neverAct, pt,ω ↪→
{
Nω,λx.x,p

} (NEVERACT)

∀i qi, pt,ω ↪→ αi α = ⋃
i αi

chooseAct (q1, . . . , qn) , pt,ω ↪→ α
(CHOICEACT)

q, pt,ω ↪→ α α′ = {
αω,λx.e ◦f | αω,f ∈ α}

wrapAct (q, λx.e) , pt,ω ↪→ α′ (WRAPACT)

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

14 C.-E. Chuang et al.

The actual synchronization is defined by the rule SYNC. It generates a fresh choice id
ω, as each choice id conceptually represents a single synchronization operation and con-
nects the synchronizing thread to the actions in the action collection. The action generation
operator ↪→ is then used to create the set of new actions

(
α′) to be added to the action col-

lection. This set of new actions is combined with the existing actions (α) to derive the
intermediate action collection α′′. This collection is then fed into the selection relation�
to obtain the chosen communication and the new action collection α′′′. The SYNC rule
requires that this communication be an always. If not, it must be a send-receive pair, and
thus, the rule REDUCEPAIR can be applied repeatedly until an always communication is
selected. The oracle is responsible for selecting a communication as described in ORACLE.
The choice id ω′ from the chosen communication is used to select the correct thread out of
the thread collection. Because the chosen communication may belong to the currently exe-
cuting thread, which is not in the thread collection T , we must search the set of all threads
T

′′
. Upon finding the desired thread, we remove it from the set of all threads to obtain

the new thread collection T
′′
. Lastly, we must continue executing the resumed thread by

applying the wrapping function f to the value stored in the action.

ω fresh q, pt,ω ↪→ α′ α′′ = α ∪ α′

α′′�
〈
Aω

′,f ,p
v

〉
, α′′′ T

′′ = T ∪ {(
tpt , E [sync ω]

)}
(

t′
p′

t
, E′ [sync ω′]) ∈ T

′′
T

′ = T
′′ −

{(
t′
p′

t
, E′ [sync ω′])}

〈(
tpt , E [sync ε [q]]

)〉
T ,α →

〈(
t′
p′

t
, E′ [f v]

)〉
T

′
,α′′′

(SYNC)

Now com the rules that govern the grouping of actions from the action collection
into communications. A communication γ is either a single always action or a send
and receive pair. The communication generating operator ⇒α is parameterized by α the
action collection it is operating in. We define the operator over a single action in the rules
COMMALWAYS and COMMPAIR, then adopt the convention that application of the oper-
ator to a set produces the image of that set, which is a set of all possible outputs of the
operator from the elements of that input set. We note that in the rule COMMPAIR we only
operate on send actions and ignore receive actions. We do assert, however, that a com-
patible receive action is present in the set and generates one possible output (and thus
communication) for each receive action. This choice is arbitrary, but either the sends or
the receives must be ignored as inputs to prevent duplicate entries in the communication
set. Further, the channel of the send and receive actions must match. Here the channel
ids are treated as a tag which indicates which send and receive actions are allowed to be
paired.

γ =
〈
Aω,f ,p
v

〉

Aω,f ,p
v ⇒α γ

(COMMALWAYS)

Rω
′,f ′,p′

c ∈ α γ =
〈
Sω,f ,p

c,v , Rω
′,f ′,p′

c

〉

Sω,f ,p
c,v ⇒α γ

(COMMPAIR)

The remaining next rules define the selection relation�. This relation maps an action
collection to a chosen communication and an action collection. This new action collection

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 15

contains all of the actions that do not conflict with the chosen communication. This is
critical in the case of choice, as it removes all unused actions generated during the choice.

In the simplest case, there is an always communication that is chosen by the oracle. This
behavior is defined in the rule PICKALWAYS. Here the communication collection γ is
generated from the action collection α, and the oracle � is invoked. The action collection
is then filtered to remove any actions with a choice id ω′ matching the chosen action’s ω.
The always communication chosen by the oracle is returned, along with the filtered action
collection α′.

In the more complicated case, the oracle picks a send-receive communication. Then the
rule PICKPAIR applies. Similar to PICKALWAYS, we generate the communications, pick
one, and filter out all actions that conflict with either action in the communication. Note that
PICKPAIR results in a send-receive communication as the output of the selection relation
�. However, in order to continue the execution of a thread, the SYNC rule requires that
right side of the relation be an always communication.

α⇒α γ � (γ)=
〈
Aω,f ,p
v

〉
α′ =

{
αω

′,f ′ ∈ α | ω =ω′
}

α�
〈
Aω,f ,p
v

〉
, α′ (PICKALWAYS)

α⇒α γ � (γ)=
〈
Sω,f ,p

c,v , Rω
′,f ′,p′

c

〉
α′ =

{
αω

′′,f ′′,p′′ ∈ α | ω′′ =ω ∧ω′′ =ω′
}

α�
〈
Sω,f ,p

c,v , Rω
′,f ′,p′

c

〉
, α′ (PICKPAIR)

In order to output an always communication from the send-receive communication
in rule PICKPAIR, we apply the recursive rule REDUCEPAIR (rule at the bottom). If
the selection over an action collection results in a send-receive pair as communication,
we can reduce the send and receive to a pair of always actions and retry the selection.
Conceptually, the send and receive actions are paired, and the values are passed through
the channel. Each resultant always action carries the value to be returned: unit for the
send and v for the receive. Those are added to the action collection, which is then used in
the recursive usage of the selection relation�

Rule REDUCEPAIR is what makes selection a relation and not a true functional map. This
rule is necessary to create an invariant fundamental to the operation of these semantics: if
there exists a member of the relation α� γ , α′, then there exists a member α� γ ′, α′,
where γ ′ is an always communication. This stems from the ability to apply REDUCEPAIR

if the relation can produce a send-receive pair. Note that ω =ω′ assert the two actions
of the pair γ are from different threads since each choice id ω and ω′ is generated upon
synchronization. Once this rule is applied, there is an always action in the collection that
has the priority inherited from the original send-receive communication. We know this
priority to be (at least tied as) the highest. As a consequence, any action collection that can
produce a communication can produce an always communication, as required by SYNC.

α�
〈
Sω,f ,p

c,v , Rω
′,f ′,p′

c

〉
, α′ α′ ∪

{
Aω,f ,p
unit, Aω

′,f ′,p′
v

}
� γ , α′′ ω =ω′

α� γ , α′′ (REDUCEPAIR)

Conceptually, REDUCEPAIR encodes the act of communication in our system. The pair-
ing of the send and receive and subsequent replacement by always actions is where values

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

16 C.-E. Chuang et al.

are passed from the sender to the receiver. We believe this view of communication as
a reduction from a linked send and receive pair to two independent always actions pro-
vides a novel and useful way to conceptualize communication in message-passing systems.
It provides a way to encode a number of properties, proofs of which can be found in
Section 4.3.

The priority of communication is derived from the priority of its constituent actions. For
an always communication, handled by the rule PRIOALWAYS, this is simply the priority
of the action. In the case of a send-receive pair, we need the max to be taken. We must take
the max because this ensures that the priority of communication is always at least that of
any of its actions. This invariant is crucial in our proofs of correctness. The rule PRIOPAIR

implements this behavior.

ψ
(〈

Aω,f ,p
v

〉)
= p

(PRIOALWAYS)

p = (pt, pe) p′ = (
p′

t, p′
e

)
p′′

t = max
{
pt, p′

t

}
p′′

e = max
{
pe, p′

e

}

ψ
(〈

Sω,f ,p
c,v , Rω

′,f ′,p′
c

〉)
= (

p′′
t , p′′

e

) (PRIOPAIR)

pt < p′
t

(pt, pe)≤prio
(
p′

t, p′
e

) (CMPTHREADPRIO)

pt = p′
t pe ≤ p′

e

(pt, pe)≤prio
(
p′

t, p′
e

) (CMPEVENTPRIO)

Priority is given a lexographic ordering. It is compared first by the thread component, as
shown in the rule CMPTHREADPRIO. This ensures that a lower priority thread’s commu-
nication will never be chosen over a higher priority thread’s communication. If the thread
priorities are the same, the rule CMPEVENTPRIO says we then look at the event priorities.

The selection of a communication γ from the set of all possible communications γ is
done by an oracle �. The oracle looks at all possible communications and (under these
semantics) picks the one with the highest priority. The rule ORACLE defines the oracle’s
selection to have the highest priority of all possible communications. If there is a tie, we
allow the oracle to choose nondeterministically.

γ ∈ γ ∀γ ′∈γ ψ
(
γ ′) ≤prio ψ (γ)

� (γ)= γ
(ORACLE)

4.3 Proof of important properties

To provide some intuition about the operation of the above semantics, we now present
proofs of several important properties of our semantic model.

4.3.1 Communication priority inversion

We start by showing that the selection operation fulfills the necessary properties used
later to prove the lack of communication priority inversion and correctness of thread

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 17

scheduling (Theorem 4.4). We say a selection causes a communication priority inver-
sion (Definition 4.2) if the selection makes it impossible for an existing higher priority
communication to be selected in the future. This happens when a selection eliminates
(Definition 4.1) a communication, meaning it is no longer present in the communication
collection derived from the resulting action collection. We note this is a relaxed defini-
tion of communication priority inversion that opens up opportunities for an oracle to make
locally suboptimal decisions as long as they do not preclude making the optimal decision
later. The oracle given in the semantics does not use this flexibility and will always choose
the immediately highest priority communication.

Definition 4.1 (Elimination). A communication γ is eliminated by the selection α� γ ′, α′,
where α⇒α γ and α′ ⇒α γ

′, if γ ∈ γ but γ /∈ γ ′.

Definition 4.2 (Selection Communication Priority Inversion). A selection α� γ , α′

exhibits Communication Priority Inversion if it eliminates a communication γ ′, (γ ′ = γ)
where ψ

(
γ ′) ≤prio ψ (γ)

Lemma 4.3 (Selection Priority). For a selection α� γ , α′, we have that for all γ ′′ ∈ γ ,
ψ

(
γ ′′) ≤prio ψ (γ) where α⇒α γ .

Proof. By induction over the depth of the recursion. There are three rules by which a
selection can be made: PICKALWAYS, PICKPAIR, and REDUCEPAIR.

In the case that the selection was by rules PICKALWAYS or PICKPAIR, we have that
� (γ)= γ . By the definition of � in the rule ORACLE, we have that for all γ ′′ ∈ γ ,
ψ

(
γ ′′) ≤prio ψ (γ).

If the selection was made by the recursive rule REDUCEPAIR, we have by the induc-

tive hypothesis that our property holds for the antecedents α�
〈
Sω,f ,p

c,v , Rω′,f ′,p′
c

〉
, α′′

and α′′ ∪
{

Aω,f ,p
unit, Aω′,f ′,p′

v

}
� γ , α′. Thus, we know that for all γ ′′ ∈ γ , ψ

(
γ ′′) ≤prio

ψ
(〈

Sω,f ,p
c,v , Rω′,f ′,p′

c

〉)
. By the rule PRIOPAIR, we have that the priority of the selection〈

Sω,f ,p
c,v , Rω′,f ′,p′

c

〉
was both p ≤prio ψ

(〈
Sω,f ,p

c,v , Rω′,f ′,p′
c

〉)
and p′ ≤prio ψ

(〈
Sω,f ,p

c,v , Rω′,f ′,p′
c

〉)
.

This is because the communication priority takes the max of each priority component and
thus can be no less than either action priority. We note that the priorities of the gener-

ated always events are p and p′, and that
〈
Aω,f ,p
unit

〉
and

〈
Aω′,f ′,p′
v

〉
are members of γ ′′, where

α′′ ⇒α′′ γ ′′. Assume WLOG, the higher priority, and thus priority of the selection, to be
p. Then again by our inductive hypothesis we obtain for all γ ′′ ∈ γ , ψ

(
γ ′′) ≤prio p ≤prio

ψ (γ). By transitivity, our property thus holds. �

Theorem 4.4 (Selection Priority Inversion Freedom). No selection α� γ , α′ exhibits
Communication Priority Inversion under the given oracle �.

Proof. Assume for sake of contradiction a selection α� γ , α′ exhibits Communication
Priority Inversion by eliminating a communication γ ′. Then by the rules PICKALWAYS

and PICKPAIR, we have that � (γ)= γ , where α⇒α γ . By the definition of � in the

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

18 C.-E. Chuang et al.

rule ORACLE, we have that for all γ ′′ ∈ γ , ψ
(
γ ′′) ≤prio ψ (γ). Because γ ′ was elimi-

nated, we know γ ′ ∈ γ . Thus ψ
(
γ ′) ≤prio ψ (γ). This contradicts our assumption, as by

our definition of Communication Priority Inversion, ψ
(
γ ′) ≤prio ψ (γ). �

4.3.2 Reduction relation

We can now show that any possible program transition does not produce a communication
priority inversion (Theorem 4.8). Here we define our communication priority inversion
over reductions and programs (Definition 4.7) analogously to our previous definition over
selections (Definition 4.2). For the proof, we define an annotation to the reduction relation
that encapsulates the communication used by that reduction (or ∅ in the case that no com-
munication occurs during the reduction). Leveraging this annotation, we can examine if
the selection in the reduction eliminates a higher priority communication. Under the given
oracle (and for any correct oracle), such elimination can never happen. Thus, a reduction,
and by extension, a program trace, cannot exhibit communication priority inversion.

Definition 4.5 (Annotation). If S → S′ by application of rule SYNC where α� γ ′, α′, then
S →γ ′ S′. If S → S′ by any other rule, S →∅ S′.

Definition 4.6 (Reduction Elimination). A communication γ is eliminated by the reduction
〈T〉 T ,α → 〈T〉′

T
′
,α′ , where α⇒α γ and α′ ⇒α γ

′, if γ ∈ γ but γ /∈ γ ′.

Definition 4.7 (Reduction Communication Priority Inversion). A reduction S →γ S′

exhibits Communication Priority Inversion if it eliminates a communication γ ′, (γ ′ = γ)
where ψ

(
γ ′) ≤prio ψ (γ)

Theorem 4.8 (Priority Inversion Freedom). No reduction S → S′ exhibits Communication
Priority Inversion under the given oracle �.

Proof. Assume for sake of contradiction a reduction S → S′ exhibits Communication
Priority Inversion by eliminating a communication γ ′. Note that by Definition 4.7, the
reduction must be of the annotated form S →γ S′ and therefore been an application of the
rule SYNC. Let S = 〈T〉 T ,α and S′ = 〈T〉′

T
′
,α′ , and α⇒α γ and α′ ⇒α γ

′. By Definition 4.6,

we have that γ ′ ∈ γ but γ ′ /∈ γ ′. Thus, the selection performed, α� γ , α′, eliminates γ ′.
by applying Definition 4.2, we have that the selection exhibits Communication Priority
Inversion. This contradicts the prior result of Theorem 4.4. Hence, no such γ ′ can exist,
and therefore, no reduction exhibits Communication Priority Inversion. �

Corollary 4.9 (Program Priority Inversion Freedom). Any program trace S →∗ S′ does
not contain a Communication Priority Inversion.

4.3.3 Thread scheduling

Building on top of our prior results around communication priority inversion, we can now
make the even stronger statement that under the given oracle, the highest priority thread
that can make progress is the one executing. To do so, we must first define what it means

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 19

for a thread to make progress. We say a thread is capable of making progress if it is ready
(Definition 4.17). This happens when the thread is able to participate in a communication
(see Definitions 4.13, 4.14, 4.15, and 4.16). We also observe that the semantics preserve an
important invariant about the form of the threads waiting in the thread collection. They all
must be synchronizing on a set of actions represented by a choice id (Lemma 4.19). This
is integral to the cooperative threading model specified by the semantics because it implies
that all threads are blocked from communicating. Even in cases where the communication
is not meaningful, blocking can be encoded as synchronizing on an always action and
termination as synchronizing on never.

These definitions provide the groundwork for inductively asserting that in any valid pro-
gram state, the thread executing has higher priority than any ready thread in the collection
(Theorem 4.23). The proof of this breaks down into three cases representing the three rules
that modify the thread and action collections. The spawn cases are the simpler ones. We
need two variants of the spawn rules to capture which thread should be blocked based on
priority: the newly spawned thread or the spawning thread. Correctness stems from the
fact that spawn always injects a synchronization to block the lower priority thread. The
sync case is more complicated. At its core, the proof asserts that the priority of an action
is linked to the thread that created it, and that thread is the one waiting on it. Note again
that an action is generated from an event by the synchronizing thread, as was shown to
be necessary in Section 3. Correctness of communication selection implies the correctness
of action selection because thread and action priorities are linked, and this linkage is pre-
served through selection as well as the replacement of a communication pair with always
actions. This in turn implies the correctness of thread selection. As a result, the thread
currently executing is always the highest priority, showing our cooperative semantics are
equivalent to traditional preemptive semantics that chooses only to preempt a thread for a
higher priority one.

Definition 4.10 (Initial State). The initial state of a program is the state S0 =
〈(0LOW , e0)〉 ∅,∅.

Definition 4.11 (Reachable State). A reachable state S is a state such that S0 →∗ S.

Definition 4.12 (Final State). A final state S is a state such that S = 〈(
tpt , E [sync ω]

)〉
T ,α

where α⇒α ∅.

Definition 4.13 (Choice Participant). A choice id ω is a participant in a communi-

cation γ iff the communication is of the form γ =
〈
Aω,f ,p
v

〉
, or γ =

〈
Sω,f ,p

c,v , Rω′,f ′,p′
c

〉
, or

γ =
〈
Sω

′,f ′,p′
c,v , Rω,f ,p

c

〉
.

Definition 4.14 (Waiting). A thread T is waiting on choice id ω iff T = (
tpt , E [sync ω]

)
.

Definition 4.15 (Thread Participant). A thread T is a participant in a communication γ iff
T is waiting on choice id ω and ω is a participant in γ .

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

20 C.-E. Chuang et al.

Definition 4.16 (Available). A choice ω is available in α iff there exists a communication
γ ∈ γ such that ω is a participant in γ where α⇒α γ .

Definition 4.17 (Ready). A thread T ∈ T is ready in the state S = 〈
T ′〉

T ,α
iff it is waiting

on the choice id ω and ω is available in α.

Definition 4.18 (Blocked). A thread T ∈ T is blocked in the state S = 〈
T ′〉

T ,α
iff it is waiting

on the choice id ω and ω is not available in α.

Lemma 4.19 (Thread Form). For any reachable state S = 〈T〉 T ,α all threads T ′ in the
thread collection T are of the form T ′ = (

tpt , E [sync ω]
)
.

Proof. By induction over program steps Sn → Sn+1 in S0 →∗ S. At each step, we assume
our desired property holds. By Definitions 4.11 and 4.10, all programs start in the ini-
tial state S0 = 〈(0LOW , e0)〉 ∅,∅. Since the initial thread collection is empty, the property is
vacuously true in the initial state.

Proceed by case analysis over the rule applied in Sn → Sn+1. By our inductive hypothe-
sis, the property holds over the thread collection in state Sn. Thus, we only consider rules
that modify the thread collection.

Case SPAWN-NPREEMPT: Here we have that the new thread collection T
′

is equal

to the old one plus a new thread T ′ =
(

t′
p′

t
, (λx.sync neverEvt) ◦ e ◦ sync ω

)
. The new

thread is indeed of the form T ′ = (
tpt , E [sync ω]

)
. Since all other threads in the collec-

tion are unchanged, by the inductive hypothesis, they too have the desired form. Hence,
our property holds over thread collection T

′
and thus in state Sn+1.

Case SPAWN-PREEMPT: By the same argument as in the previous case, except the new
thread here is T ′ = (

tpt , E [sync ω]
)
.

Case SYNC: Here the new thread collection T
′

is a subset of an intermediate thread
collection T

′′
, and the intermediate thread collection is the union of the current thread col-

lection and the current thread state with the choice id applied. That state is of the form(
tpt , E [sync ω]

)
. Since all other threads in the intermediate collection are unchanged

from the current collection, by the inductive hypothesis, they too have the desired form.
As all threads in the intermediate collection have the desired form, all threads in the new
collection must too as T

′ ⊂ T
′′
. Hence, our property holds over thread collection T

′
and

thus in state Sn+1. �

Corollary 4.20 (Thread Status). For any reachable state S = 〈T〉 T ,α, all threads T ′ in the
thread collection T are either ready or blocked.

Lemma 4.21 (Action Thread Priority). For any reachable state S = 〈T〉 T ,α, all threads
T ′ in the thread collection T are waiting on a choice id ω where for all actions with that
choice id αω,f ,p ∈ α, the thread priority of p matches the thread priority of T ′.

Proof. By induction over program steps Sn → Sn+1 in S0 →∗ S. At each step, we assume
our desired property holds. By Definitions 4.11 and 4.10, all programs start in the initial

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 21

state S0 = 〈(0LOW , e0)〉 ∅,∅. Since the initial thread collection is empty, the property is
vacuously true in the initial state.

Since the property holds in Sn, we consider only rules that modify T or α. By
Lemma 4.19, all threads in the action collection are waiting on a choice id. Thus, we
must only show that the priority of all actions matches the thread’s priority.

Case SYNC: New actions can be generated by either the action generation operator ↪→
or the communication selection operator�. Rules ALWAYSACT, SENDACT, RECVACT,
NEVERACT, CHOICEACT, and WRAPACT collectively define the action generation oper-
ator ↪→. In all cases, the actions generated share both a thread priority and choice id
with the synchronizing thread. Thus by our inductive hypothesis and the definition of
action generation, we have that the property holds over the union α′′. The only way for
the communication selection operator � to introduce a new action is through the rule
REDUCEPAIR. There the generated always actions share both a choice id and priority with
their respective send or receive actions. Thus, the property is preserved.

Case SPAWN-NPREEMPT: Here the only new action generated is the always action asso-
ciated with the new thread. Trivially, we see that this action has thread priority that matches
the new thread being added to the thread collection. Since the choice id is fresh and all other
threads in the collection are unchanged, our property still holds.

Case SPAWN-PREEMPT: Similar to the non-preemption case, the generated action is
an always action associated with the thread being added to the collection. This time that
thread is the preempted thread. Again, we see that this action has matching thread priority.
As all other threads stay the same, again the property holds.

As all other rules do not modify either the thread collection or the action collection, our
property holds in state Sn+1, and by induction in all reachable states. �

Lemma 4.22 (Participant Priority). In any reachable state S = 〈T〉 T ,α , if thread T ′ =(
tpt , e

) ∈ T, is a participant in a communication γ ∈ γ , where α⇒α γ , then ψt (γ)≥ pt.

Proof. Here we have two cases: γ =
〈
Aω,f ,p
v

〉
, or γ =

〈
Sω,f ,p

c,v , Rω′,f ′,p′
c

〉
.

Case γ =
〈
Aω,f ,p
v

〉
: Here the communication involves only a single always action. Thus

by Lemma 4.21, we have that the priority ψt (p)= pt. Since by rule PRIOALWAYS, the
priority of an always communication matches that of its action, our desired property holds.

Case γ =
〈
Sω,f ,p

c,v , Rω′,f ′,p′
c

〉
: Here the communication involves two actions and we thus

have two possibilities: one where T ′ shares a choice id with send action and another where
it shares a choice id with the receive action. By Lemma 4.21, the priority of the action
will match that of the thread T ′. Without loss of generality, assume the thread is asso-
ciated with the send action. Now we have two further options, either our send action
has thread priority greater than or equal to the receive action, or it has a thread prior-
ity less than the receive action. If the thread priority is greater than or equal to, by rule
PRIOPAIR, the communication will have a thread priority equal to that of T ′. In the case
that the thread priority is less than the receive action, the thread priority will be that of
the receive action as the rule PRIOPAIR takes the maximum of the thread priorities. In this
case, the thread priority of the communication will be greater than that of T ′. In either case,
ψt (γ)≥ pt. �

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

22 C.-E. Chuang et al.

Theorem 4.23 (Thread Scheduling). For any reachable state S = 〈T〉 T ,α , T = (
tpt , e

)
, all

threads T ′ =
(

t′
p′

t
, e′

)
in the thread collection T have priority p′

t ≤prio pt if the thread T ′ is

ready in state S.

Proof. By induction over program steps Sn → Sn+1 in S0 →∗ S. At each step, we assume
our desired property holds. By Definitions 4.11 and 4.10, all programs start in the ini-
tial state S0 = 〈(0LOW , e0)〉 ∅,∅. Since the initial thread collection is empty, the property is
vacuously true in the initial state.

Since the property holds in Sn, we again consider only rules that modify T or α.
Case SYNC: By contradiction. Consider the state Sn+1 = Assume for sake of con-

tradiction that there exists a thread T ′′ ∈ T
′

such that T ′′ is ready and has priority p′′
t > p′

t.
Then there must exist a communication γ ′ ∈ γ ′, where α′′′ ⇒α′′′ γ ′, that makes T ′′ avail-
able by Definition 4.17. By Lemma 4.22 ψt

(
γ ′) ≥ p′′

t > p′
t. We have that ψt (γ)= p′

t by
Lemma 4.22 and the fact that γ is an always communication. By the definition of ≤prio

given in rule CMPTHREADPRIO, it must be the case that ψ
(
γ ′) ≤prio ψ (γ), because

ψt

(
γ ′)>ψt (γ).

Now either γ ′ ∈ γ or γ ′ /∈ γ , where α′′ ⇒α′′ γ . In the case that γ ′ ∈ γ , our earlier
statement ψ

(
γ ′) ≤prio ψ (γ) directly contradicts Lemma 4.3. If γ ′ /∈ γ , then γ ′ was pro-

duced by α′′� γ , α′′′. Hence, the rule REDUCEPAIR was applied, as only that rule can
introduce new actions and thus communications. In the rule REDUCEPAIR, only always
actions are produced, meaning the new communications (including γ ′) must be always
communications. Since the priority of the generated always actions match that of the
matched send and receive action respectively, it must be the case that there existed a
send-receive communication γ ′′ ∈ γ where the either constituent send or receive action
had the priority p′′ = (

p′′
t , p′′

e

)
. The priority of a send-receive communication, by defini-

tion in rule PRIOPAIR, is the maximum of the event and thread priorities, and is thus no
less than the priority of either constituent action. Therefore, ψ

(
γ ′) ≤prio ψ

(
γ ′′) and so(

γ ′′) ≤prio ψ (γ), again contradicting Lemma 4.3.
Case SPAWN-NPREEMPT: By the inductive hypothesis, thread T =(

tpt , E
[
spawn

(
e, p′

t

)])
must be no lower priority than all ready threads in T . Since

the action added to the action collection is an always action with a fresh choice id, no
blocked threads in the thread collection may become ready. Thus, the only new ready
thread in the thread collection is the one added here. This thread is ready because we add
a corresponding always action to the action collection, but we assert that it has thread
priority no higher than the priority of T . Thus, T must still have priority no lower than any
ready thread in the new thread collection.

Case SPAWN-PREEMPT: By the inductive hypothesis, thread T =(
tpt , E

[
spawn

(
e, p′

t

)])
must be no lower priority than all ready threads in T . The

newly spawned thread has priority greater than T and thus higher than all ready threads in
the thread collection T . Since the action added to the action collection is an always action
with a fresh choice id, no blocked threads in the thread collection may become ready.
Thus, again the only new ready thread in the thread collection is the one added here with
priority pt. Therefore, the newly spawned thread must have priority greater (and thus no
less) than any ready thread in the new thread collection T

′
.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 23

Fig. 5. Encoding priority atop CML primitives.

As all other rules (APP, CHAN, *EVT) do not modify either the thread collection or
the action collection, our property holds in state Sn+1, and by induction in all reachable
states. �

5 Implementation

To demonstrate that our priority scheme is practically realizable, we have implemented
it as an extension to the CML implementation in MLton, an open-source compiler for
Standard ML. Our implementation of PrioCML consists of approximately 1400 LOC,
wholly in ML. It implements the tiered-priority scheme outlined in semantics while
preserving the properties.

5.1 Priority atop CML

To understand why priority at the CML language level is needed, we first consider a pri-
oritized communication channel built from existing CML primitives as shown in Figure 5.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

24 C.-E. Chuang et al.

Fig. 6. PrioCML primitives.

Implementing communication using a prioritized channel requires two-step communica-
tion. We need one step to convey the event priority and another to effect the event’s
communication. The prioritized channel itself is encoded as a server that accepts com-
munications and figures out the appropriate pairings of sends and receives (in this case,
based on priority).

The sender blocks, waiting to receive a notification from the server acting as the priority
queue, while it waits for its message to be delivered by the priority queue to a matching
receiver. Once the priority queue successfully sends the value to a receiver, it unblocks the
sender by sending a message. The mechanism is nearly identical for a receiver, but since
we need to return a value, we pass an event generating function to the channel. While
the per-communication overhead is undesirable, this encoding captures the behavior of
event priority for send and receive. On selective communication, however, this encod-
ing becomes significantly more complicated. A two-stage communication pattern makes
encoding the clean-up of events that are not selected during the choice challenging.

We also still lack the ability to extract the priority information from threads. Although
we can send the thread priority from the synchronizing thread together with the event
priority, but now the thread priority becomes the part of message. The consequence is that
pchannel will need to receive the message to know the thread priority. Observe that in the
loop function of pchannel , we synchronize on a choice between either the sendEvtp
or recvEvtp event. Here, the choice is resolved by in the order the clients synchronized
on the channel since CML does not use the thread priority to order the messages.

Recall that preventing priority inversions requires reasoning about the priority of both
threads and events. Therefore, implementing priority requires deep visibility into the inter-
nals of message-passing. As shown above, we could gain this by building an additional
structure on top of CML. However, to encompass the full richness of CML, including
thread priority and arbitrary use of choice, we would need effectively to reimplement all
of it. Instead, we opt to realize our priority mechanism as a series of slight modifications
to the existing CML runtime.

5.2 Extensions to CML

The major changes made to CML are in the thread scheduler and channel structure. These
changes are exposed through a set of new prioritized primitives, shown in Figure 6.

We extend the thread scheduler to be a prioritized round-robin scheduler with three
fixed thread priorities. While other work has explored finer-grained approaches to priority
(Muller et al., 2018), for simplicity, we use a small, fixed number of priority levels. We
opted for three priority levels as that is enough to encode complex protocols such as earliest
deadline first scheduling (Buttazzo, 2011). Our implementation could be extended to more

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 25

priority levels if desired. The new primitive spawnP spawns a new thread with a user-
specified thread priority: LOW, MED, or HIGH. Threads within the highest priority level are
executed in a round-robin fashion until all are either blocked or have completed. A thread
is considered blocked when it is waiting on communication. If all high-priority threads
are blocked, then medium priority threads are run until either (1) a high-priority thread is
unblocked or (2) all medium threads block or have completed. If there are no available
high-priority threads or medium priority threads to execute, then low priority threads will
be scheduled. This scheme guarantees that a thread will never be chosen to run unless there
are no higher priority threads that can make progress.

Event priority is managed by three primitives: sendEvtP, recvEvtP, and changePrio.
The eventPrio is a positive integer where a larger number implies higher priority. The
two base event primitives sendEvt and recvEvt are replaced by their prioritized ver-
sions. These functions take in an event priority and tie that priority to the created events.
The changePrio function allows the priority of an existing event to be changed. All other
CML primitives exist in PrioCML. The primitive spawn creates a thread with LOW prior-
ity. The base event constructors are given default priority levels and reduce calls to the
new prioritized primitives. The combinators continue to work unchanged. In this way, our
system is fully backward compatible with existing CML programs.

5.3 Realizing tiered priority

The main challenges in implementing the semantics given in Section 4 are dealing with the
thread scheduling and action collection. The CML runtime uses preemptive scheduling,
in contrast with our formal semantics where scheduling is cooperative. To avoid priority
inversion, we must preserve the invariant formalized in Theorem 4.23: the currently run-
ning thread must always have a priority equal to or higher than every ready thread. We
achieve this by ensuring in the scheduler that a thread can be preempted only by a thread
of equal or higher priority. This maintains the core thread scheduling property required by
the semantics.

Care is needed to efficiently implement the selection process. The semantics operate
over an action collection, and for every communication must evaluate every possible pair
within the system. Implementing this approach directly would be prohibitively expensive,
as it would require maintaining all available pairs across the whole system in a global
shared set. We thus instead localize the decisions by leveraging a more traditional channel
structure. While channels in the formal semantics are merely tags, in our implementation,
as in CML, they are backed by a queue at runtime.

In our implementation, action values fulfill roughly the same role as base events in
CML. Since the channel of an action can never change, we can store all actions in their
associated channel. In the semantics, the action collection contains all actions on which
threads are currently blocked. We obtain the same behavior more efficiently by instead
keeping the actions segmented by channel. Observe that any communication pair chosen
by the oracle must involve the running thread. Because the action collection starts empty
and each synchronization results in at most one communication, there can be no send-
recv communication pairs waiting in the action collection before a synchronization. Thus,
the oracles selection must be a communication pair involving an action generated by the

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

26 C.-E. Chuang et al.

synchronization of the currently running thread if one is available, or a context switch to
another thread (via an always action) if not. As a result, we know any communication pair
must come from within the channels of the actions from the current synchronization. This
allows us to reduce the search for a pair from the entire global action collection to only the
pairs in the channels which are synchronized on by the running thread.

The challenge now is to pick the communication that complies with the decision of the
oracle. When a running thread synchronizes on a set of events, a set of candidate commu-
nication pairs is generated by pairing the corresponding action from the channels of the
synchronized actions. In the case of a single send or receive event being synchronized, the
candidates are all from the same channel. In the more complicated case of synchronizing
on multiple actions with choose, the candidates may come from different channels. Note
that synchronization on an always event is a special case where the candidate commu-
nication is an always communication and not a pair. Similarly, never events result in no
candidate communications. From the observation above, we know that the oracles chosen
communication is one of these candidates, or a context switch to another thread if no can-
didates exist. As a result, the highest priority communication among the candidates must
be the oracle’s chosen communication.

To find this communication when an event is synchronized, we leverage the channel
structure. To see how this is done, first consider the event matching mechanism in unmod-
ified CML (Reppy, 2007). When an event is synchronized, the corresponding action is
placed in a queue over the channel it uses. If there is a match already in the channel queue,
the actions are paired and removed. In the case of choice, all potential actions are enqueued.
Each carries a reference to a shared flag that indicates if the choice is still valid. Once the
first action in a given a choice is paired, the flag is set to invalid. If upon attempting a match,
the action has its flag set to invalid, it is removed, and the following action in the queue is
considered. This lazy cleaning of the channel queues amortizes the cost of removal.

To evaluate the decision of the PrioCML oracle, we must look at the entire set of actions
generated at synchronization. When a running thread synchronizes directly on a send or
receive event, there is only one generated action and thus the candidate communications
are all from the same channel. We consider every possible pairing within this channel and
take the communication with the highest priority. The more general approach is required
when a thread synchronizes on a choice event. Here multiple actions may be generated
and thus multiple channels may need to be examined. As in the semantics, we treat always
actions as generating a communication with the priority of the always action and ignore
never actions. When multiple channels are involved, PrioCML generates a set of candidate
communications for each channel used by a generated action. The highest priority candi-
date from each channel is then compared to find the highest priority of all. We rely on
the associativity of the max priority operation to avoid realizing the entire set of candidate
communications explicitly.

We now give an example to show how the decision is made in the implementation of
PrioCML. Note that we use the subscript on the thread to denote the thread priority.

[T1H] sync (sendEvtP(c1, v1 , 5))
[T2H] sync (sendEvtP(c1, v2 , 10))
[T3M] sync (sendEvtP(c2, v3 , 15))
[T4L] sync (sendEvtP(c2 , v4 , 20))
[T5L] sync (choose ([recvEvtP(c1 , 0), recvEvtP(c2 , 0)]))

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 27

In this example, we have four pairs of communication pairs. There are two candidate pairs
on the channel c1 and the other two pairs on the channel c2. First we pick best pairs from
c1 and c2 respectively. In channelc1, we pick the candidate pair between thread T2 and T5
as the best pair from channel c1 due to this pair has a higher event priority. On the channel
c2, we pick the candidate pair between thread T3 and T5 since T3 has a higher thread
priority than T4. Then, we move on to pick the final pair from the best candidate pairs of
channel c1 and c2. We compare the best candidate pairs according to the prioritization
scheme from the oracle again to pick the final pair in the selective communication. As a
result, the candidate pair between thread T2 and T5 is the chosen pair of the decision due
to its thread priority is higher than the other candidate pair.

In our prioritized implementation, we split the channel queue into three queues: one
for each thread priority level. Further, each queue is a priority queue ordered by event
priority. Keeping those three priority queues separate allows us to access the queue for
a given thread priority. We need to do this both for efficient insertion and for a correct
implementation of pairing. We maintain these per-channel queues as highQ, medQ, and
lowQ. We note that while, as in CML, these are kept separately for send and receive, it is
impossible to have both pending send and receive actions over the same channel. We thus
are always referring to the non-empty set of queues in our discussion.

As noted previously, the highest priority communication must always involve the cur-
rent thread. Consider the case where the current thread is communicating on a channel c.
Our system looks first at the thread priority. If there is a thread blocked on channel c of
higher thread priority, we must pair it with the blocked thread of highest priority. If the
current thread has a priority higher than (or equal to) all blocked threads, under our seman-
tics, the possible communications will all have a thread priority equal to the current thread.
Thus, we consider them tied for thread priority and pick by highest event priority among
all possible communications.

We implement this logic with the code given below, which shows how the highest prior-
ity communication is found for a given channel. We are given the thread priority, syncTp,
of the current thread, and the event priority of the current action ep.

fun pickPrio ((p1, q1), (p2 , q2)) =
(* Pick from p1 and p2 by tiered -priority scheme *)

val ls = [((HIGH , case Q.peek highQ of
SOME e => SOME (maxEvtPrio (ep , Q.Elt.key e))

| NONE => NONE), HIGH),
((maxThreadPrio (syncTp , MED), case Q.peek medQ of

SOME e => SOME (maxEvtPrio (ep , Q.Elt.key e))
| NONE => NONE), MED),

((maxThreadPrio (syncTP , LOW), case Q.peek lowQ of
SOME e => SOME (maxEvtPrio (ep , Q.Elt.key e))

| NONE => NONE), LOW)]
val ((commTP , commEP), queue) = List.foldl pickPrio (List.hd ls) (List

.tl ls)

For each of the queues, we look at the highest (event) priority action within. The list ls
contains, for each queue, the priority of a communication between the current thread and
the action from that queue, along with a tag marking which queue that communication
came from. Following the semantic rule PRIOPAIR, we compute the priority of those poten-
tial communications by taking the maximum thread and event priorities. We use an option

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

28 C.-E. Chuang et al.

type and store NONE if a queue is empty. Note that because the number of thread prior-
ities is fixed, the list ls is of constant length (three in our system). From the possible
communications in ls, we then use the helper function pickPrio to pick the queue with
the highest priority communication. We return both the priority (useful when handling
selective communication) and identify the queue involved.

Choice is handled similarly to how it was handled before priority. Again, lists are cleared
lazily to amortize the costs of removal. The major overhead our scheme introduces is that
inserting an action into a channel now requires additional effort to keep the queues in order.
For a choice, this overhead must be dealt with for each possible communication path. The
impacts of this are measurable but minor, as discussed in Section 6.1.

5.4 Polling

Polling, a common paradigm in concurrent programming, is fundamentally the ability to
do a non-blocking query on an event. The primitives of CML (Figure 1 from Section 2)
do not provide the ability to express non-blocking synchronization. The only available
synchronization operation is sync, which is blocking.

This problem is illustrated by Reppy in Concurrent Programming in ML (Reppy, 2007).
At first glance, the always event primitive could provide a non-blocking construction.
This event is constructed with a value, and when synchronized, it immediately yields the
wrapped value. By selecting between always and recv events, the synchronization is
guaranteed not to block. Although this approach reflects the non-blocking behavior of
polling, it has a flaw, as explained by Reppy, would look as follows:

fun pollCh ch = sync (choose [alwaysEvt NONE , wrap (recvEvt ch , SOME)
])

While it is true that this construction will never block, it may also ignore available com-
munications on the channel. The choose operation in CML is nondeterministic and could
choose the alwaysEvt branch, even if the recvEvt would not block. This problem led
to the introduction of a dedicated polling primitive recvPoll in CML. While its use is
generally discouraged, it is vital in some communications protocols outlined by Reppy.

In our implementation of the semantics, always events can be associated with an event
priority. Thus, we can assign the always event to a lower event priority in PrioCML:

fun pollCh ch = sync (choose [
alwaysEvt (NONE , 0),
wrap ((recvEvtP ch , 1), SOME)
])

This correctly captures the polling behavior desired. Because of our guarantee that an event
is always picked if one is available, the thread executing the choice will still never block.
Therefore, under our prioritized implementation, the above polling example from Reppy
works with the intended polling behavior.

6 Evaluation

To demonstrate that our implementation is practical, we have conducted a series of
microbenchmarks to measure overheads as well as a case study in an example web server
and GUI framework written wholly in CML.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 29

Fig. 7. Spawn.

Fig. 8. Send-receive.

We evaluate the feasibility of our implementation in two ways: microbenchmarks to
measure overheads, and a series of case studies see how priority can be applied in prac-
tice. These experiments were run on MLton 20180207 and our implementation (which is
derived from it). The system used for running the microbenchmaks and buyer-seller and
eXene case studies has Intel i7-6820HQ quad-core processor with 16 GB of RAM and ran
macOS 12. We note that MLton is a single-core implementation, so although it supports
multiple threads, these are multiplex over a single OS thread. Due to a limitation on the
number of concurrent sockets available in macOS, the Swerve benchmark was run on a
Linux system with a Intel i7-1185G7 quad-core processor with 32 GB of RAM.

6.1 Microbenchmarks

We present microbenchmarks that exercise spawn, send-receive, and choice. In spawn and
send-receive, we see constant overheads for each communication as shown in Figures 7
and 8. We note that the send-receive benchmark performs n total communications where
n is the number of iterations, so the constant overhead leads to a steeper slope to the
line. To benchmark choice, we build a lattice of selective communication. The threads
are arranged in a n × n cylindrical mesh. Each thread performs a selective communication
between two input channels, one from each thread immediately above it. It then sends the
resulting message on its output channel, connects to the two threads below it in the mesh.
To trigger the chained selective communication, a single message is sent to one cell in
the top row. The message is exchanged nondeterministically through the mesh until it is
received by the bottom cell. To show the growth behavior of this benchmark, we scaled

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

30 C.-E. Chuang et al.

Fig. 9. Lattice of choice.

Fig. 10. Imbalance between buyers in Buyer-Seller.

both the height and width, so for a run parameterized by n, there were n2 choice cells, of
which the message would pass through n. From the results shown in Figure 9, we observe
that the runtimes of both CML and PrioCML appear quadratic. Our implementation shows
a cost higher by a constant factor and thus a steeper curve. We manually examined the
Swerve and eXene codebase to confirm that nested choice does not occur in any selective
communication. Thus, while our implementation does exhibit measurable slowdown on
this synthetic benchmark, we do not expect real-world performance to be severely affected.

6.2 Case study: Prioritized buyer-seller

A key issue in some protocols is ensuring fairness between participants. We consider a pro-
tocol modeling the interactions between a bookseller and clients making offers to purchase
a book. Introduced in the session types literature (Vallecillo et al., 2006), this protocol is
typically used to illustrate dyadic interactions that can be modeled with behavioral types.
We explore an extension to this protocol that utilizes priority to enforce that the seller con-
siders two competing buyers fairly. As introduced in Section 3, the buyer who missed a
chance to bid will increase in priority. The higher event priority for this buyer means that
bid will be chosen next by the seller.

We evaluate the performance on both MLton’s default CML implementation and
PrioCML. The results shown in Figure 10 illustrate the difference between the number
of offers placed by Buyer 1 and Buyer 2 as a function of the number of total offers made.
To understand the behavior of the CML implementation, consider a system in which the

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 31

buyer to interact with is determined by tossing a fair coin at each step. The difference
between offers received from the buyers is then a one dimensional random walk process
where the probabilities of a +1 step and a −1 step are both 0.5. Such processes are com-
mon in many application domains and have well-known statistical properties (Weisstein,
n.d.). Specifically, we are interested in the expectation of the absolute difference: the aver-

age size of the imbalance. For large N , this is well approximated by E(|dN |) =
√

2N
π

. Thus,
after 5 million offers, we would expect the system that flips a fair coin to choose a buyer

to exhibit an average imbalance of E(|d5×106 |) =
√

2·5×106

π
≈ 1174 offers. Thus while this

system has a probabilistic idea of fairness, as the coin we flip is fair, the imbalance present
would still be undesirably large. Ideally, we would want the difference to be at most 1
offer.

Turning our attention to the performance of CML, we see that the imbalance observed
after 5 million iterations is in fact 34 offers. While the output of a random walk is, as
implied by the name, random, 34 is quite a bit smaller than the 1,174 expected from a
fair coin flip. We take this as evidence the fairness heuristics in the CML implementation
do perform quite well. Notably, as discussed in Section 7, CML implementations have
traditionally had internal priority that is used heuristically to maintain fairness in nonde-
terministic choice. Such prioritization is considered an implementation detail in CML and
not exposed to the programmer.

By exposing priority, we can allow the programmer to decide and encode what fairness
means in their protocol. Here, we aim for a round-robin behavior, where the buyers take
turns making offers. This has the desirable property that the imbalance in offers is capped
at 1 offer. Looking at the results obtained in Figure 10, we see the imbalance stays very
close to this ideal, but has occasional slight excursions to −1 or 2. We attribute this behav-
ior to preemptive thread scheduling. While our prioritization controls the nondeterminism
present in communication actions, especially choice, we still have some nondeterminism
present in thread preemption. This is because, unlike the cooperative semantics, the thread
scheduling used in MLton’s CML implementation is preemptive. Thus, a buyer can occa-
sionally be preempted before it is able to submit a new offer. If it fails to be scheduled soon
enough, the other buyer may be able to submit two offers in a row because it is the only
communication available. Importantly, our priority mechanism corrects for this behavior
over time. The priority is based not on the last offer, but the total number of offers placed.
Thus when the preempted buyer is able to place another offer it is given preference until
it catches up to the other buyer. This protocol keeps the imbalance very small, even when
presented with additional nondeterminism.

6.3 Case study: Termination in Swerve

To illustrate other uses of priority in message-passing programs, we take a look at a large
CML project: the Swerve web server. Swerve is a modular web server written using CML
with approximately 30,000 lines of code (Shipman, 2002). Written in the early 00s, Swerve
was designed to showcase the utility of Concurrent ML in writing modular networked sys-
tems. We again note that the MLton CML runtime, and thus Swerve, is limited to utilizing
a single CPU core. Even within single-core concurrent systems, the addition of priority

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

32 C.-E. Chuang et al.

Fig. 11. Swerve.

Fig. 12. Graceful shutdown in Swerve.

to protocols can facilitate the easy addition of new features with minimal performance
penalty.

As noted by Shipman, Swerve lacks a graceful shutdown mechanism. Currently, the
shutdown of the web server is accomplished by sending a UNIX signal to terminate the
process. This approach has several drawbacks. As the process is killed immediately, it
does not have the opportunity to flush the asynchronous logging channel. This can lead to
incomplete logs near the server shutdown. Additionally, clients being served at the time of
server shutdown have their connections closed abruptly, without a chance for the server to
finish a reply. This can lead to an error on the client-side or, in the case that the request was
not idempotent, an inconsistent, or partially updated state server-side. Thus to cleanly exit
the server, it is important to allow all currently running tasks to complete, including both
flushing the log and handling connected clients. As Shipman (2002) explains, this can be
handled by rejecting all new clients and waiting for existing ones to finish before flushing
the logs and exiting the process. We implement such a system in Swerve, the core of which
is seen in Figure 12.

Here we select between the three possible actions in the main connection handling loop.
We can accept an incoming connection over the channel acceptChan by invoking the
function new_connect. Alternatively, we can handle a client disconnect event, sent as
a message on the channel lchan via handle_msg. Lastly, we can receive a shutdown
signal via the event shutdownEvt. This event is a receive event on a channel shared
with the signal handler registered to the UNIX interrupt signal. Upon receipt of such
a signal, the handler will send a message on that channel to indicate the server should
begin shutdown. We leverage CML’s first-class events to encapsulate this mechanism and
hide the implementation from the main loop. When the event shutdownEvt is chosen,
we invoke the shutdown function, which stops accepting new connections, waits for all
existing connections to close, flushes the log, then removes a lock file and exits.

While this change successfully resolves the possibility of broken connections and incon-
sistent server states, it still has a notable limitation. We have no guarantee of a timely

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 33

Fig. 13. Prioritized shutdown in Swerve.

shutdown. The original approach of killing the process via a signal is effectively instan-
taneous. However, because we want to complete the currently running server tasks, the
server cannot shutdown immediately. We want to be sure that the server does not accept
additional work after being told to shutdown. Under the existing CML semantics, the
server is free to continue to accept new connections indefinitely after the shutdown event
has become ready, provided a steady stream of new connections is presented. This is
because there is no guarantee as to which event in a choice list is selected, only that it
does not unnecessarily block. Since CML only allows safe interactions between threads
via message-passing, we have no other way for the signal handler to alert the main loop
that it should cease accepting new connections. Thus, under heavy load, the server could
take on arbitrarily more work than needed to ensure a safe shutdown. We note that the
MLton implementation of CML features an anti-starvation heuristic which in our test-
ing was effective at preventing shutdown delays. This approach however is not a semantic
guarantee. By adding priority, as shown in Figure 13, we obtain certainty that our shutdown
will be effected timely.

We verify the operation of this mechanism by measuring the number of clients that
report broken connections at shutdown. With a proper shutdown mechanism, we would
see no broken connections as the server would allow all to complete before termination. As
seen in Figure 11, without the shutdown mechanism in place, clients can experience bro-
ken connections. When there are very few clients, the chances that any client is connected
when the process terminates are low. As the number of clients increases, however, the
odds of a broken connection do as well. By adding our shutdown mechanism, we prevent
these broken connections. We emphasize that the introduction of priority means achieving
a guarantee that the shutdown is correct is simple. The implementing code is short and con-
cise because our mechanism integrates nicely with CML and retains its full composability.
We note that event priorities are crucial to ensuring this timely shutdown. For example,
consider when the signal handler was extended to pass on an additional type of signal,
such as configuration reload. We would still want to ensure that the shutdown event takes
precedence. Thus, we need to assign more granular priorities than those available based
solely on the priority of the communicating thread.

We observe that this protocol can be introduced to Swerve with minimal changes to
the existing system. Importantly, this new functionality is not possible to correctly imple-
ment using existing CML primitives due to their inherent nondeterminism. While existing
heuristics in CML provide an effective implementation of fairness, they make no promises
of timely shutdown. By making the minor changes shown above, we obtain a semantic
guarantee of priority that prevents the indefinite delay of the shutdown.

6.4 Case study: A GUI shutdown protocol

We now present an evaluation of response time measurement with a shutdown protocol in
the context of eXene (Gansner & Reppy, 1993), a GUI toolkit in CML. A typical eXene

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

34 C.-E. Chuang et al.

program contains widgets. To realize a graceful shutdown protocol, our eXene program
needs to wait for all widgets to close upon receiving a shutdown request. Busy widgets
tend to slow down the shutdown protocol as the protocol cannot continue while the wid-
get is computing. Worse, the nondeterministic nature of choice can also have a negative
impact on the latency of the shutdown protocol as widgets may overlook a shutdown
request if other events are also available in the choice. We improve the response time,
both shortening and stabilizing it (a reduction in mean and variance), by leveraging prior-
ity in the communication protocol. The priority here provides a clean mechanism to encode
the preference of the shutdown events over regular processing events for widgets.

To fill up the work loads of each widget before triggering the shutdown protocol, we
need to saturated the selective communication network between the GUI widgets. To do so,
we leverage a synthetic network of widgets that computes Fibonacci numbers. Although
the workload is synthetic, it highlights a complex interaction pattern between widgets that
can easily be scaled as it creates a large number of selective communications. The number
of communications needed to compute the n-th Fibonacci number grows exponentially
with n. In order to compute Fibonacci numbers in our eXene widget network, each widget
has a number corresponding to a position in the Fibonacci sequence. Upon a user click, the
widget will calculate the corresponding Fibonacci number. By the definition of Fibonacci
sequence, the widget for fib(n), excepting fib(0) and fib(1), needs to communicate with the
other widgets responsible for computing fib(n − 1) and fib(n − 2). Meanwhile, we need to
encode the shutdown event so that widget has a chance to receive shutdown request. A
widget can be implemented with CML code in Figure 16.

Note that in Figure 16 we omit the case of sendEvt(fib_pre2_req, ()) for brevity.
On the outermost select, the widget is waiting for either a compute request from
out_ch_req or a shutdown request. Once it receives a compute request, it goes into the
middle select. There it picks between the other widgets it needs to communicate with and
the shutdown event. The code given shows the case where the widget for fib(n − 1) is
available. After we compute the result from fib(n − 1), it moves to fib(n − 2). Finally, it
adds the results and sends the sum to the output channel in the innermost select, selecting
another shutdown event. As for the shutdownEvt, every widget propagates the shutdown
request to the widget of fib(n − 1). Hence, the shutdown protocol in the Fibonacci network
is a linear chain from the largest Fibonacci widget.

We encode priority in two places. First, the priority of the shutdown event is higher than
other events. The use of priority in shutdown events ensures that the shutdown request will
be chosen whenever it is available during a selection. Second, we give priority to send and
recv on requesting and receiving the computation of the Fibonacci number. The message
priority is higher when the index in the Fibonacci sequence is larger in the network. As a
result, the widget with a larger number has a higher priority to request or receive compu-
tation. By giving these widgets preference, we boost the priority of shutdown protocol, as
the linear chain is from largest to smallest widget.

The histograms of shutdown latency in CML and PrioCML are shown in Figures 14 and
15, respectively. We run each setting for 100 times and record the time needed to finish the
shutdown protocol. We compute a large Fibonacci number to fill the network computation
requests so that every widget is saturated with Fibonacci computation before requesting the
shutdown protocol. The result shows that the average time spent on shutdown is improved

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 35

Fig. 14. CML.

Fig. 15. PrioCML.

by 26%, from 25.5 to 18.8 seconds. Also, it stabilizes the response time by reducing the
standard deviation from 20.7 to 9.2 seconds.

7 Related work

Priority in Multithreading: Exploration into prioritized computation extends far back
into research on multithreaded systems. Early work at Xerox on the Mesa (Lampson &
Redell, 1980) programming language, and its successor project Cedar (Swinehart et al.,

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

36 C.-E. Chuang et al.

Fig. 16. Communication protocol of Fibonacci Widget.

1985), illustrated the utility of multiple priority levels in a multithreaded system. These
systems exposed a fork-join model of concurrency, wherein the programmer would spec-
ify that any procedure shall be called by forking a new process in which to run it. The
join operation then provides a synchronization point between the two threads and allows
the computation to be obtained. This was implemented atop monitors, a form of mutual
exclusion primitive. These systems did not consider communication as a first-class entity
and only allowed it to use monitored objects.

First-Class Communication: Concurrent ML introduced first-class synchronous commu-
nication as a language primitive (Reppy, 1991). Since then, there have been multiple
incarnations of these primitives, both in languages other than ML (including Haskell
Russell, 2001; Chaudhuri, 2009, Scheme Flatt & Findler, 2004, Go Gerrand, 2010, and
MPI Demaine, 1996). Others adopted CML primitives as the base for the parallel pro-
gramming language Manticore (Fluet et al., 2010). Other work has considered extending
Concurrent ML with support for first-class asynchrony (Ziarek et al., 2011). We believe
our approach to priority would be useful in this context. It would, however, raise some
questions regarding the relative priority of synchronous and asynchronous events, analo-
gous to the aforementioned issues with always events. Another extension of interest would
be transactional events (Donnelly & Fluet, 2008; Effinger-Dean et al., 2008). The intro-
duction of priority would be a natural fit as it provides a precise expression of how multiple
concurrently executing transactions should be resolved. Crucially, this relies on an encod-
ing of priority in events as a thread can be a participant in multiple competing transactions.
Thus, the thread priority alone is not always enough to prioritize transactions.

Internal Use of Priority in CML Implementations: As mentioned by Reppy (2007) in
describing the SML/NJ implementation of CML, a concept of prioritization has been pre-
viously considered in selective communication (Reppy, 2007). There, the principal goal
is to maintain fairness and responsiveness. To achieve this goal, Reppy (2007) proposes
internally prioritizing events that have been frequently passed over in previous selective
communications. We note that these priorities are never exposed to the programmer and
exist only as a performance optimization in the runtime. Even if exposed to the user, this
limited notion of priority only encompasses selective communication and ignores any con-
sideration of the pairing communication. Our realization of priority and the associated

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 37

tiered-priority scheme is significantly more powerful. This is both due to the exposure of
priority to the programmer and our realization of priority to encompass information from
both parties in communication when considering the priority of an event.

Priority in ML: Recent work has looked at the introduction of priority to Standard ML
(Muller et al., 2018). To accomplish this, the system (Muller et al., 2018) propose, PriML,
“rejects programs in which a high priority may synchronize with a lower priority one.”
Since all communication in CML is synchronous, in order for a high-priority thread to
communicate with a lower priority thread, they must synchronize. This is exactly the inter-
action that is explicitly disallowed by PriML. A partial remedy to this problem would
be to only allow asynchronous communication. This would then allow communication
between lower and higher priority threads, but would still prevent any form of synchro-
nization between such threads. Our approach makes the decision to allow the programmer
the ability to express cross-priority synchronization.

8 Conclusion

This paper presents the design and implementation of PrioCML, an extension to
Concurrent ML that introduces priority to synchronous messages passing. By leveraging
a tiered-priority scheme that considers both thread priority and event priority, PrioCML
avoids potential priority inversions. Our evaluation shows that this scheme can be realized
to enable the adoption of priority with little effort and minimal performance penalties. We
have formalized PrioCML and shown that PrioCML programs are free of communication
induced priority inversion.

Conflicts of Interest

None.

Acknowledgements

This work is supported in part by National Science Foundation grants: CRI:1823230 and
SHF:1749539. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

Armstrong, J., Virding, R., Wikstrom, C. & Williams, M. (1996) Concurrent Programming in
Erlang, 2nd ed. Prentice-Hall.

Buttazzo, G. (2011) Hard Real-Time Computing Systems : Predictable Scheduling Algorithms and
Applications. Springer.

Chaudhuri, A. (2009) A concurrent ML library in concurrent Haskell. In Proceedings of the 14th
ACM SIGPLAN International Conference on Functional Programming. ICFP’09. Association for
Computing Machinery, pp. 269–280.

Chuang, C.-E., Iraci, G. & Ziarek, L. (2021) Synchronous message-passing with priority. In Practical
Aspects of Declarative Languages, Morales, J. F. & Orchard, D. (eds). Springer International
Publishing, pp. 37–53.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

38 C.-E. Chuang et al.

Demaine, E. (1996) First class communication in MPI. In Proceedings of the Second MPI Developers
Conference. MPIDC’96. IEEE Computer Society, p. 189.

Donnelly, K. & Fluet, M. (2008) Transactional events. J. Funct. Program. 18(5–6), 649–706.
Effinger-Dean, L., Kehrt, M. & Grossman, D. (2008) Transactional events for ML. In Proceedings

of the 13th ACM SIGPLAN International Conference on Functional Programming. ICFP’08.
Association for Computing Machinery, pp. 103–114.

Ezhilchelvan, P. & Morgan, G. (2001) A dependable distributed auction system: Architecture and
an implementation framework. In Proceedings 5th International Symposium on Autonomous
Decentralized Systems, pp. 3–10.

Flatt, M. & Findler, R. B. (2004) Kill-safe synchronization abstractions. In Proceedings of the ACM
SIGPLAN 2004 Conference on Programming Language Design and Implementation. PLDI’04.
Association for Computing Machinery, pp. 47–58.

Fluet, M., Rainey, M., Reppy, J. & Shaw, A. (2010) Implicitly threaded parallelism in Manticore.
J. Funct. Program. 20(5–6), 537–576.

Gansner, E. R. & Reppy, J. H. (1993) A Multi-Threaded Higher-Order User Interface Toolkit. User
interface software.

Gerrand, A. (2010) Share Memory By Communicating. Accessed May 26, 2021. Available at:
https://go.dev/blog/codelab-share

Haller, P. & Odersky, M. (2009) Scala actors: Unifying thread-based and event-based programming.
Theor. Comput. Sci. 410, 202–220.

Klabnik, S. & Nichols, C. (2020) The Rust Programming Language. No Starch Press.
Lampson, B. W. & Redell, D. D. (1980) Experience with processes and monitors in Mesa. Commun.

ACM 23(2), 105–117.
Milner, R., Tofte, M. & Macqueen, D. (1997) The Definition of Standard ML. MIT Press.
Mueller, F. (1993) A Library Implementation of POSIX Threads under UNIX. USENIX Winter.
Muller, S. K., Acar, U. A. & Harper, R. (2018) Competitive parallelism: Getting your priorities right.

Proc. ACM Program. Lang. 2(ICFP), 1–30.
Reppy, J. H. (1991) CML: A higher concurrent language. In Proceedings of the ACM SIGPLAN

1991 Conference on Programming Language Design and Implementation. PLDI’91. ACM,
pp. 293–305.

Reppy, J. H. (2007) Concurrent Programming in ML, 1st ed. Cambridge University Press.
Russell, G. (2001) Events in Haskell, and how to implement them. In Proceedings of the Sixth

ACM SIGPLAN International Conference on Functional Programming. ICFP’01. Association for
Computing Machinery, pp. 157–168.

Shipman, A. L. (2002) Unix System Programming with Standard ML. Accessed May 26, 2021.
Available at: http://mlton.org/References.attachments/Shipman02.pdf

Swinehart, D. C., Zellweger, P. T. & Hagmann, R. B. (1985) The structure of Cedar. In Proceedings
of the ACM SIGPLAN 85 Symposium on Language Issues in Programming Environments.
SLIPE’85. Association for Computing Machinery, pp. 230–244.

The Racket Reference (2019).
Using Binder IPC (2020).
Vallecillo, A., Vasconcelos, V. T. & Ravara, A. (2006) Typing the behavior of software components

using session types. Fundam. Inf. 73(4), 583–598.
Weisstein, E. W. Random Walk–1-Dimensional. From MathWorld–A Wolfram Web Resource.

Accessed March 17, 2022. Available at: https://mathworld.wolfram.com/RandomWalk1-
Dimensional.html

Ziarek, L., Sivaramakrishnan, K. & Jagannathan, S. (2011) Composable asynchronous events. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI’11. Association for Computing Machinery, pp. 628–639.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://go.dev/blog/codelab-share
http://mlton.org/References.attachments/Shipman02.pdf
https://mathworld.wolfram.com/RandomWalk1-Dimensional.html
https://mathworld.wolfram.com/RandomWalk1-Dimensional.html
https://doi.org/10.1017/S0956796822000119

Send to me first: Priority in synchronous message-passing 39

Appendix

Fig. A1. Derivation of a send and receive communication.

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

40 C.-E. Chuang et al.

Fig. A2. Derivation of a send and receive communication (Cont.).

https://doi.org/10.1017/S0956796822000119 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796822000119

	Send to me first: Priority in synchronous message-passing
	Introduction
	Background
	Motivation
	Semantics
	The PrioCML communication lifecycle
	Semantic rules
	Proof of important properties
	Communication priority inversion
	Reduction relation
	Thread scheduling

	Implementation
	Priority atop CML
	Extensions to CML
	Realizing tiered priority
	Polling

	Evaluation
	Microbenchmarks
	Case study: Prioritized buyer-seller
	Case study: Termination in Swerve
	Case study: A GUI shutdown protocol

	Related work
	Conclusion

