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Abstract In this work we study the following class of elliptic systems:

∆u = a(x)u + b(x)v + Hu(x, u+, v+) + f1(x) in Ω,

−∆v = b(x)u + c(x)v + Hv(x, u+, v+) + f2(x) in Ω,

u = 0, v = 0 on ∂Ω,

where Ω ⊂ R
2 is a smooth bounded domain, H is a C1 function in [0, +∞) × [0, +∞) which is assumed

to be in the critical growth range of Trudinger–Moser type and f1, f2 ∈ Lr(Ω), r > 2. Under suitable
hypotheses on the functions a, b, c ∈ C(Ω̄) and using variational methods, we prove the existence of two
solutions depending on f1 and f2.
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1. Introduction

In this work we study the following elliptic system:

−∆u = a(x)u + b(x)v + Hu(x, u+, v+) + f1(x) in Ω,

−∆v = b(x)u + c(x)v + Hv(x, u+, v+) + f2(x) in Ω,

u = 0, v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.1)

where Ω is a bounded and smooth domain in R
2, H is a C1 function in [0, +∞)× [0, +∞)

satisfying a Trudinger–Moser growth condition uniformly in x ∈ Ω. We define w+ =
max{w, 0} and assume f1, f2 ∈ Lr(Ω), r > 2. By analysing the interaction between the
matrix A ∈ C(Ω̄, M2×2(R)) given by

A(x) =

(
a(x) b(x)
b(x) c(x)

)

and the spectrum of (−∆, H1
0 ), we prove the existence of two solutions depending on the

forcing terms f1 and f2.
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This system is motivated by the famous paper by Ambrosetti and Prodi [2], which has
been studied, explored and extended by an enormous variety of authors during the last
30 years. We refer the reader to [9, 18] for a review. Bringing the discussion closer to
our interests, we mention the work of de Figueiredo and Yang [9]; they considered the
following problem:

−∆u = λu + g(x, u+) + f(x) in Ω,

u = 0 on ∂Ω,

}
(1.2)

where Ω is bounded and smooth in R
N , N � 7, g(x, u+) = u2∗−1

+ and 2∗ = 2N/(N − 2)
is the critical Sobolev exponent. They proved the existence of two solutions provided
that f satisfies appropriate conditions regarding the sign of solutions to a related linear
problem. Then, in an attempt to improve the restrictive condition on the dimension,
Calanchi and Ruf [5] studied the same problem, providing an alternative approach that
showed the existence of solutions for N � 6 and then, by adding a suitable subcritical
perturbation, for the lower-dimensional cases 3 � N � 5. Some of these results were
extended to the system in [19]. Following these works, the natural problem concerning
the bi-dimensional case, in which the critical growth of Sobolev type is replaced by a
Trudinger–Moser growth condition, was investigated by Calanchi et al . [6].

Here we extend the results obtained in [6] for the scalar case, but we slightly change
the arguments, weakening some hypotheses and strengthening others, in order to better
explain some crucial results needed in both [6] and the present paper. Calanchi et al . [6]
studied problem (1.2) in a bounded domain Ω in R

2, where g is a function satisfying an
unilateral critical Trudinger–Moser-type growth. They showed that for a given class of
functions f and for λk < λ < λk+1, k � 1 (λi being the eigenvalues of (−∆, H1

0 (Ω))),
there exist two solutions for (1.2), one of which is negative. More precisely, this class of f

is exactly the class for which the unique solution of the linear problem −∆u = λu+f(x)
in Ω and u = 0 on ∂Ω is negative.

As is well known, one of the main difficulties in leading with this kind of growth
condition in g is proving that the minimax level of the functional associated to this
problem avoids levels of non-compactness. This is done in [6] by assuming an additional
hypothesis, imposed to guarantee that this level lies below some critical constant. In
order to reach the appropriate level, the techniques used therein require that the Moser
functions zr

n (defined below) must have support in a ball Br such that r > 0 is chosen to
be sufficiently small in many steps of the arguments.

The problem is that the minimax level and its estimates depend on r (since they
depend on the Moser functions) and, as far as we are concerned, these estimates must
occur uniformly in r (in order to prove that the weak limit of the Palais–Smale sequence
of this level is non-trivial), but it is not clear whether such a uniform estimate can be
proved in that case. Thus, in this paper we have considered different arguments in order
to overcome this difficulty. Moreover, since Calanchi et al . assumed that λ > λ1, the
forcing term f was not a problem in the control of their minimax level: in such a case,
f must be positive in some set of positive measure in Ω and so, by choosing a path in
the linking geometry where the involved functions are supported in this set, they avoid
possible loss of control. Being aware that f may be negative in all of Ω if λ is assumed
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to be below λ1, they give a brief comment on how to proceed, but, as far as we know,
that approach may not seem to work. We provide an alternative answer to that issue as
well.

For the linear part of the problem, given by the continuous functions a, b and c, we
analyse some generalizations of the scalar case, mainly inspired by [7] for non-constant
a, b and c and by [10] for constant a, b and c. We also improve the hypothesis imposed
in [10,11,19].

2. Hypothesis and main results

Let us rewrite (1.1) in its vector form:

−∆U = A(x)U + ∇H(x, U+) + F (x) in Ω,

U = 0 on ∂Ω,

}
(2.1)

where

U =

(
u

v

)
, U+ =

(
u+

v+

)
, A(x) =

(
a(x) b(x)
b(x) c(x)

)
∈ M2×2(R) for all x ∈ Ω

and

F (x) =

(
f1(x)
f2(x)

)
∈ Lr(Ω) × Lr(Ω).

We also define

∇H(x, U+) =

(
Hu(x, U+)

Hv(x, U+)

)
.

Denoting by µ1(x) and µ2(x) the eigenvalues of A(x) for each x ∈ Ω, we suppose that
the following hold.

(i) Either A is constant and

(A1) µ1 � µ2 < λ1 or

(A2) there exists k � 1 such that λk < µ1 � µ2 < λk+1.

(ii) Or b(x) � 0 for all x ∈ Ω and maxx∈Ω max{a(x), c(x)} > 0 and

(A3) 1 < λA
1 or

(A4) there exists k � 1 such that λA
k < 1 < λA

k+1.

By λA
i we denote the eigenvalues associated to the linear problem

−∆U = λA(x)U in Ω,

U = 0 on ∂Ω.

}
(2.2)
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Condition (ii) allows us to apply the theory of compact and self-adjoint operators
(see [8] as well as some results obtained in [7]) to ensure the existence of an unbounded
sequence of eigenvalues

0 < λA
1 < λA

2 � λA
3 � · · ·

(and its corresponding eigenfunctions ΦA
1 , ΦA

2 , . . . ) such that the first one is simple and
is the only one admitting a strictly positive eigenfunction. Defining

E0 = {0},

Ek = span{ΦA
1 , . . . , ΦA

k },

}
(2.3)

the following useful inequalities are consequences of this theory and will be used exten-
sively in this work:

‖V ‖2 � λA
k

∫
Ω

(A(x)V, V )R2 for all V ∈ Ek,

‖V ‖2 � λA
k+1

∫
Ω

(A(x)V, V )R2 for all V ∈ E⊥
k .

⎫⎪⎪⎬
⎪⎪⎭ (2.4)

Here we denote by (·, ·)R2 the Euclidian inner product in R
2 and by | · | its associated

norm.
For the nonlinearity H we suppose that the following hold.

(H0) H ∈ C1(Ω̄ × R+ × R+, R+), Hu, Hv � 0.

(H1) ∇H is subcritical if

lim
|U |→∞

|∇H(x, U)|
exp(α|U |2) = 0 for all α > 0

uniformly in x ∈ Ω.

On the other hand, ∇H has a critical growth if there exists α0 > 0 such that

lim
|U |→∞

|∇H(x, U)|
exp(α|U |2) =

{
0 for all α > α0,

+∞ for all α < α0,

uniformly in x ∈ Ω.

In order to establish a variational structure for (1.1) we should also consider the fol-
lowing assumptions.

(H2) H(x, 0, 0) = Hu(x, 0, v) = Hv(x, u, 0) = 0 for all u, v � 0, x ∈ Ω.

(H3) lim
|U |→∞

H(x, U) + |∇H(x, U)|
(∇H(x, U), U)R2

= 0 uniformly in x ∈ Ω.

(H4) |∇H(x, U)| = o(|U |) when |U | → 0 uniformly in x ∈ Ω.
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Remark 2.1. By (H2), H can be extended to the whole plane: letting H(x, u, v) =
H(x, u+, v+), we still have H ∈ C1(Ω × R

2) satisfying (H0)–(H4). Therefore, H will
always denote this extension.

Remark 2.2. We give some examples of functions H satisfying (H0)–(H4):

(i) H(x, u, v) = γ(u) + γ(v), where

γ(s) =
∫ s

0
t+ exp(t2 + t) dt;

(ii) H(x, u, v) = γ(u) + γ(v) + γ(u)γ(v).

Remark 2.3. Assumption (H3) is equivalent to the Ambrosetti–Rabinowitz condition
for H and |∇H| for all θ > 0. This means that for each θ > 0 there exists sθ � 0 such
that

H(x, S) + |∇H(x, S)| � 1
θ
(∇H(x, S), S)R2 for all x ∈ Ω and |S| � sθ.

We also remark that in the scalar case there is no need to impose such a condition in
h = (H)′, since it is obviously satisfied.

We seek solutions in E = H1
0 (Ω) × H1

0 (Ω), which is considered with its usual norm

‖(u, v)‖2 = ‖u‖2
H1

0
+ ‖v‖2

H1
0
.

More precisely, U = (u, v) ∈ E is a (weak) solution of (2.1) if∫
Ω

∇u∇ϕ +
∫

Ω

∇v∇ψ −
∫

Ω

(A(u, v), (ϕ, ψ))R2

−
∫

Ω

(∇H(x, u+, v+), (ϕ, ψ))R2 −
∫

Ω

(F (x), (ϕ, ψ))R2 = 0 for all (ϕ, ψ) ∈ E,

where we define ∇u∇v = (∇u, ∇v)R2 following the usual conventions.
We shall prove the existence of solutions for (2.1) in cases of both subcritical and

critical growth. The results also differ according to the conditions on the matrix A, and
we begin by showing that independently of H satisfying (H0) there is always a region on
Lr(Ω)×Lr(Ω) such that if F = (f1, f2) belongs to it, then (2.1) has a negative solution,
which will be denoted by Φ = (ϕ, ψ). This region is precisely determined by the subset
of Lr(Ω) × Lr(Ω), where the unique solution of the linear problem

−∆U = A(x)U + F (x) in Ω,

U = 0 on ∂Ω,

}
(2.5)

is negative (and therefore it is also a solution of (2.1)). As usual in Ambrosetti–Prodi
problems, we can construct this region by a suitable parametrization related to the first
eigenfunction: if (A1) or (A2) is satisfied, let

F (x) = FT (x) = P (x) + Te1(x), (2.6)
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(a)

b > 0

(b)

b = 0

(c)

b < 0

t t t

s s s

Figure 1. The regions determined in Theorem 2.4 under (A1).

where T = (s, t) ∈ R
2, e1 is the first positive eigenfunction of (−∆, H1

0 (Ω)) and P =
(p1, p2) is such that ∫

Ω

p1(x)e1(x) =
∫

Ω

p2(x)e1(x) = 0.

If we are assuming (A3) or (A4), then the parametrization will occur in one dimension
only, setting

F (x) = Ft(x) = P (x) + tA(x)ΦA
1 (x), (2.7)

where t ∈ R and ΦA
1 denotes the first positive eigenfunction of (2.2).

The first theorem gathers our results on the linear problem.

Theorem 2.4. The following claims hold.

(i) If (A1) is satisfied, then there exists an unbounded region R ⊂ R
2 (described

below) such that (2.5) admits a negative solution ΦT provided that F = FT with
T = (s, t) ∈ R.

(ii) If (A2) is satisfied, then there exists an unbounded region S ⊂ R
2 (described

below) such that (2.5) admits a negative solution ΦT provided that F = FT with
T = (s, t) ∈ S.

(iii) If (A3) is satisfied, then there exists C1 � 0 such that (2.5) admits a negative
solution Φt provided that F = Ft with t � −C1.

(iv) If (A4) is satisfied, then there exists C2 � 0 such that (2.5) admits a negative
solution Φt provided that F = Ft with t � C2.

The regions determined in Theorem 2.4 are delimited by a curve obtained by the
intersection of two appropriate lines and depend on the sign of b. For (A1), we have the
following.

(i) If b > 0 (Figure 1 (a)),

R = {(θ, τ) ∈ R
2; τ < α1(θ), τ < α2(θ)},

where α1 and α2 are two intersecting lines with negative slopes.

(ii) If b = 0 (Figure 1 (b)),

R = {(θ, τ) ∈ R
2; θ < −C2, τ < −C1},

where C1, C2 > 0.
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(a) (b) (c)

t t t

s s s

b = 0 b < 0b > 0

Figure 2. The regions determined in Theorem 2.4 under (A2).

(iii) If b < 0 (Figure 1 (c)),

R = {(θ, τ) ∈ R
2; τ < α1(θ), τ > α2(θ)}.

Here α1 and α2 are two intersecting lines with positive slopes.

For (A2) we have the following.

(i) If b > 0 (Figure 2 (a)),

S = {(θ, τ) ∈ R
2; τ > β1(θ), τ < β2(θ)},

where β1 and β2 are two intersecting lines with positive slopes.

(ii) If b = 0 (Figure 2 (b)),

S = {(θ, τ) ∈ R
2; θ > C2, τ > C1},

where C1, C2 > 0 (Figure 2 (c)).

(iii) If b < 0,
S = {(θ, τ) ∈ R

2; τ > β1(θ), τ > β2(θ)},

where β1 and β2 are two intersecting lines with negative slopes.

The precise definition of all these lines is given in the proof of Theorem 2.4 in the next
section.

The main results of this work show that there exists a second solution to (2.1), provided
that a negative one is already given. Theorems 2.4–2.6 give the multiplicity results of
Ambrosetti–Prodi type for (2.1).

Theorem 2.5. Let F ∈ Lr(Ω) × Lr(Ω) with r > 2 such that the solution Φ = (φ, ψ)
of (2.5) is negative. Suppose that (H0), (H1) (subcritical growth), (H2)–(H4) and one of
hypotheses (A1)–(A4) hold. Then there exists a second solution for (2.1).

We shall make use of variational methods and critical-point theorems such as the
mountain pass or linking theorems. Since we are leading with subcritical growth, we
can prove a Palais–Smale condition on the functional associated to the problem. So the
arguments in the proof follow traditional methods and we shall give them briefly. The
next theorem assumes critical growth of Trudinger–Moser type in H and more complex
methods and proofs are used.
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Theorem 2.6. Let F ∈ Lr(Ω) × Lr(Ω) with r > 2 such that the solution Φ = (φ, ψ)
of (2.5) is negative. Suppose that (H0), (H1) (critical growth), (H2)–(H4) and one of the
hypotheses (A1)–(A4) hold. Moreover, consider the following assumption.

(H5) For all γ � 0 there exists cγ � 0 such that

(∇H(x, S), S)R2 � γh(x, u) exp(α0u
2)

for all S = (s, t) ∈ R
2, u ∈ R and x ∈ Ω; s, t � u � cγ , where h : Ω × R → R

+ is a
Carathéodory function satisfying

lim inf
u→+∞

log(h(x, u))
u

> 0,

uniformly in x ∈ Ω.

Then there exists a second solution for (2.1).

In both Theorems 2.5 and 2.6, we suppose that F is such that (2.1) admits a negative
solution Φ. A second solution is given by V + Φ, where V is a non-trivial solution of the
following problem:

−∆V = A(x)V + ∇H(x, (V + Φ)+) in Ω,

V = 0 on ∂Ω.

}
(2.8)

Therefore, our work consists of proving the existence of a non-trivial solution of (2.8)
assuming the hypotheses in either Theorem 2.5 or Theorem 2.6.

3. The linear problem

This section is devoted to the proof of Theorem 2.4.
Let Φ0 = (φ0, ψ0) be the solution to the linear problem

−∆U = A(x)U + P (x) in Ω,

U = 0 on ∂Ω,

}
(3.1)

where we assume one of the conditions (A1)–(A4) holds, with corresponding P given in
either (2.6) or (2.7).

Proof of Theorem 2.4. For the moment, let us suppose (A1) or (A2) holds.
Notice that in either case, one must have det(λ1I−A) > 0. Indeed, assuming (A1), this

inequality is proven by using that det(µ2I − A) = 0 and a, c � µ2 < λ1. For condition
(A2), one must use that det(µ1I − A) = 0 and a, c � µ1 > λ1.

Consider a 2 × 1 matrix µ(T ) such that µ(T )e1 solves

−∆U = AU + Te1(x) in Ω,

U = 0 on ∂Ω.
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A direct calculation shows that

µ(T ) =
1

det(λ1I − A)

(
(λ1 − c)s + bt

bs + (λ1 − a)t

)
.

Defining

φT =
(λ1 − c)s + bt

det(λ1I − A)
e1 + φ0

and

ψT =
bs + (λ1 − a)t
det(λ1I − A)

e1 + ψ0,

it is obvious that ΦT = (φT , ψT ) satisfies

−∆ΦT = AΦT + FT (x) in Ω,

U = 0 on ∂Ω,

}
(3.2)

where FT is defined in (2.6).
We need to find parameters T such that ΦT is negative and therefore a solution of (2.1),

with F = FT .
We recall that P ∈ Lr(Ω) × Lr(Ω) with r > 2. Thus, elliptic regularity guarantees

that Φ0 ∈ C1,ν × C1,ν for some 0 < ν < 1. Then∥∥∥∥ det(λ1I − A)
(λ1 − c)s + bt

φT − e1

∥∥∥∥
C1

=
∥∥∥∥ det(λ1I − A)

(λ1 − c)s + bt
φ0

∥∥∥∥
C1

and ∥∥∥∥ det(λ1I − A)
bs + (λ1 − a)t

ψT − e1

∥∥∥∥
C1

=
∥∥∥∥ det(λ1I − A)

bs + (λ1 − a)t
ψ0

∥∥∥∥
C1

.

Let ε > 0 be such that if ‖φ− e1‖C1 < ε, then φ > 0; since we want φT , ψT < 0, we must
have

(c − λ1)s − bt > ε−1 det(λ1I − A)‖φ0‖C1 ,

−bs + (a − λ1)t > ε−1 det(λ1I − A)‖ψ0‖C1 .

}
(3.3)

Assuming, for instance, (A1), one has µ1 � µ2 < λ1 and so a, c < λ1. Therefore, (3.3) is
satisfied in the following cases.

(a) If b > 0,

t <

(
c − λ1

b

)
s − (εb)−1 det(λ1I − A)‖φ0‖C1 , (3.4)

t <

(
b

a − λ1

)
s − [ε(λ1 − a)]−1 det(λ1I − A)‖ψ0‖C1 . (3.5)
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(b) If b = 0,

s < −[ε(λ1 − c)]−1 det(λ1I − A)‖φ0‖C1 , (3.6)

t < −[ε(λ1 − a)]−1 det(λ1I − A)‖ψ0‖C1 . (3.7)

(c) If b < 0,

t >

(
c − λ1

b

)
s + (−εb)−1 det(λ1I − A)‖φ0‖C1 , (3.8)

t <

(
b

λ1 − a

)
s − [ε(λ1 − a)]−1 det(λ1I − A)‖ψ0‖C1 . (3.9)

Therefore, (3.4)–(3.9) determine exactly the region R in Theorem 2.4 (i), thus proving
this claim.

The proof of Part (ii) of Theorem 2.4 is analogous. The only difference is that, assuming
(A2), we have µ2 � µ1 > λ1 and then a, c > λ1. Consequently, (3.4)–(3.9) are inverted
and define the region S.

If we are analysing conditions (A3) or (A4), we proceed in the following way: let again
Φ0 be the solution of (3.1) and consider the problem

−∆U = A(x)U + tA(x)ΦA
1 (x) in Ω,

U = 0 on ∂Ω.

Notice that
t

λA
1 − 1

ΦA
1

is the solution of the above problem. We readily see that

Φt = Φ0 +
t

λA
1 − 1

ΦA
1

solves (2.1) (with F = Ft), provided it is negative. Let us show that this is possible for
some values of t: notice that∥∥∥∥λA

1 − 1
t

Φt − ΦA
1

∥∥∥∥
C1×C1

=
∣∣∣∣λA

1 − 1
t

∣∣∣∣‖Φ0‖C1×C1 .

But ΦA
1 = (φA

1 , ψA
1 ) is such that ∂φA

1 /∂ν, ∂ψA
1 /∂ν < 0, where we denote by ∂h/∂ν the

outward normal derivative of h on ∂Ω. Indeed, since φA
1 , ψA

1 > 0 and a ∈ L∞(Ω), by
letting a(x) = max{a(x), 0} + min{a(x), 0} = a+(x) + a−(x) we have

−∆φA
1 = λA

1 (a+(x) + a−(x))φA
1 + λA

1 b(x)ψA
1 ⇒ (−∆ + K)φA

1 � 0,

where we have taken 0 � −a−(x) � K for all x ∈ Ω. Therefore, since φA
1 > 0 in Ω and

φA
1 = 0 on ∂Ω, Hopf’s Lemma guarantees that ∂φA

1 /∂ν < 0 for all x ∈ ∂Ω. The same
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procedure is carried out in order to prove that ∂ψA
1 /∂ν < 0. Consequently, let ε > 0 be

such that ‖Φ − ΦA
1 ‖C1×C1 < ε implies Φ > 0. Then, we need to prove that

1 − λA
1

t
> 0 and

1 − λA
1

t
‖Φ0‖C1×C1 < ε.

So, in the case (A3), since 1 < λA
1 , we get t < −ε−1‖Φ0‖C1×C1(λA

1 − 1) ≡ C1, and if we
assume (A4), since 1 > λA

1 , we must have t > ε−1‖Φ0‖C1×C1(1 − λA
1 ) ≡ C2, as required.

This completes the proof of Theorem 2.4. �

4. The subcritical case

This section is dedicated to the proof of Theorem 2.5.

4.1. Preliminaries

Since we shall use variational techniques, we require the well-known Trudinger–Moser
inequality (see [16,20]):

sup
u∈B

∫
Ω

exp(βu2) < +∞, β � 4π, and sup
u∈B

∫
Ω

exp(βu2) = +∞, β > 4π, (4.1)

where B denotes the unitary ball in H1
0 (Ω).

We shall make use of the classic mountain pass theorem of Ambrosetti–Rabinowitz [3]
in case for (A1) or (A3), and the linking theorem of Rabinowitz [17] in the other cases.

For the sake of a better exposition let us define, for each U = (u, v) ∈ E,

Ũ := (U + Φ)+,

ũ = (u + φ)+, ṽ = (v + ψ)+.

}
(4.2)

We seek non-trivial critical points for J : E → R associated to (2.8) and given by

J(U) = 1
2‖U‖2 − 1

2

∫
Ω

(A(x)U, U)R2 −
∫

Ω

H(x, Ũ). (4.3)

First of all, we see that J ∈ C1(E, R). For further details, we refer the reader to the
results in [12].

The following lemma gives an estimate in H that will become useful in several steps
of our arguments.

Lemma 4.1. Suppose that (H0)–(H4) hold. Then, for all ε > 0 and α > 0 (if H has
critical growth, α > α0) there exists Kε > 0 such that

H(x, u, v) � ε(u2 + v2) + Kε(u3 + v3) exp(α(u2 + v2)) for all x ∈ Ω and (u, v) � (0, 0).

Proof. By (H4) we see that

H(x, u, v) − H(x, 0, v) =
∫ u

0
Hu(x, s, v) ds � ε

∫ u

0
|(s, v)| ds � εC( 1

2u2 + uv)
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and
H(x, 0, v) − H(x, 0, 0) =

∫ v

0
Hv(x, 0, t) dt � 1

2εCv2.

Therefore, since H(x, 0, 0) = 0 we see that

H(x, u, v) � εC( 1
2u2 + uv + 1

2v2) � εC(u2 + v2) = εC|(u, v)|2 if |(u, v)| � cε.

By (H0) and (H1) there exists C1 � 1 such that, if |(u, v)| > C1, then

(∇H(x, u, v), (u, v))R2 � (Hu(x, u, v) + Hv(x, u, v))(u + v)

� ε exp(α|(u, v)|2)(u + v)

� εC exp(α|(u, v)|2)(u3 + v3).

Thus, let C2 > 0 be such that H(x, u, v) � (∇H(x, u, v), (u, v))R2 for all |(u, v)| � C2

(here we use (H3)). Then, if |(u, v)| � max{C1, C2}, we get

H(x, u, v) � εC exp(α|(u, v)|2)(u3 + v3),

which completes the proof. �

4.2. The Palais–Smale condition

The following result is easily proven for conditions (A1) or (A3) using arguments similar
to the other cases, which are more delicate. We give the details below.

Lemma 4.2. Under the hypotheses of Theorem 2.5, the functional (4.3) satisfies the
Palais–Smale condition.

Proof. Let {Un} = {(un, vn)} ⊂ E be a Palais–Smale sequence. That means

| 12‖Un‖2 −
∫

Ω

(A(x)Un, Un)R2 −
∫

Ω

H(x, Ũn)| � C (4.4)

and∣∣∣∣
∫

Ω

∇Un∇Ψ −
∫

Ω

(A(x)Un, Ψ)R2 −
∫

Ω

(∇H(x, Ũn), Ψ)R2

∣∣∣∣ � εn‖Ψ‖ for all Ψ ∈ E. (4.5)

By (H3), let us take c � 0 such that

H(x, S) � 1
4 (∇H(x, S), S)R2 for all x ∈ Ω and |S| � c.

Thus, using (4.4), (4.5), we have∫
Ω

(∇H(x, Ũn), Ũn)R2 � C + εn‖Un‖. (4.6)

However, for (A2) or (A4) we need to estimate the L1 norm of ∇H(·, Ũn): by (H3),
there exist C1, C2 > 0 such that

|∇H(x, S)| � C1 + C2(∇H(x, S), S)R2 for all S ∈ R
2.
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Then, we get ∫
Ω

|∇H(x, Ũn)| � C + C

∫
Ω

(∇H(x, Ũn), Ũn)R2 ,

and so ∫
Ω

|∇H(x, Ũn)| � C + εn‖Un‖. (4.7)

The situation is simpler if the interaction between the matrix A(x) and the spectrum
of (−∆, H1

0 (Ω)) occurs only at the first eigenvalue. This is the case when (A1) or (A3)
holds. In either case (using (2.4) when (A3) holds), one can see that

εn‖Un‖ � J ′(Un)Un

� C‖Un‖2 −
( ∫

Ω

Hu(x, Ũn)un +
∫

Ω

Hv(x, Ũn)vn

)

� C‖Un‖2 −
∫

Ω

(∇H(x, Ũn), Ũn)R2

� C‖Un‖2 − (C + εn‖Un‖),

which implies that (Un) is bounded.
The same holds for (A2) or (A4). It is now convenient to decompose E into appropriate

subspaces. If (A2) is valid, we consider E = Hk ⊕ H⊥
k , where Hk = span{e1, . . . , ek},

and for (A4) we take E = Ek ⊕ E⊥
k , with Ek defined in (2.3). For all V ∈ E let us take

V = V k + V ⊥, where V k ∈ Hk and V ⊥ ∈ H⊥
k if (A2) holds or V k ∈ Ek and V ⊥ ∈ E⊥

k

for (A4).
Using the variational inequalities of the eigenvalues (when (A4) holds, they are given

in (2.4)), in both cases we have

−εn‖Uk
n‖ � J ′(Un)Uk

n

=
∫

Ω

∇Un∇Uk
n −

∫
Ω

(A(x)Un, Uk
n)R2 −

∫
Ω

(∇H(x, Ũn), Uk
n)R2

� −C‖Uk
n‖2 −

∫
Ω

(∇H(x, Ũn), Uk
n)R2 .

Therefore,

C‖Uk
n‖2 � εn‖Uk

n‖ −
∫

Ω

(∇H(x, Ũn), Uk
n)R2 (4.8)

and, analogously,

C‖U⊥
n ‖2 � εn‖U⊥

n ‖ +
∫

Ω

(∇H(x, Ũn), U⊥
n )R2 . (4.9)

Then, since dim(Hk) and dim(Ek) are finite, by (4.7), (4.8) we have

C‖Uk
n‖2 � εn‖Uk

n‖ + ‖Uk
n‖∞

∫
Ω

|∇H(x, Ũn)|

� εn‖Uk
n‖ + C‖Un‖(C + εn‖Un‖)

� C + C‖Un‖ + Cεn‖Un‖2.
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On the other hand, from (4.6), (4.7) and (4.9) we can see that

C‖U⊥
n ‖2 � εn‖U⊥

n ‖ +
∫

Ω

(∇H(x, Ũn), Un)R2 + ‖Uk
n‖∞(C + εn‖Un‖)

� εn‖U⊥
n ‖ + C + εn‖Un‖ + ‖Φ‖∞

∫
Ω

|∇H(x, Ũn)| + C‖Un‖(C + εn‖Un‖)

� C + C‖Un‖ + Cεn‖Un‖2.

By summing the latter two inequalities, we get

‖Un‖2 � C + C‖Un‖ + Cεn‖Un‖2, (4.10)

proving the boundedness of the sequence (Un) as desired.

Remark. Up to this point in this proof there is no difference between assuming sub-
critical or critical growth. We can therefore conclude that in the case of critical growth
every Palais–Smale sequence is bounded.

To conclude, let {Un} be an appropriate subsequence such that Un ⇀ U in E, Un → U

in Lp(Ω) × Lp(Ω) for all p � 1 and Un → U almost everywhere in Ω for some U ∈ E.
Notice that there is nothing else to prove in the case when ‖Un‖ → 0. Thus, one may
suppose that ‖Un‖ � k > 0 for n sufficiently large.

Claim 4.3. We claim that∫
Ω

(∇H(x, Ũn), U)R2 →
∫

Ω

(∇H(x, Ũ), U)R2 ,∫
Ω

(∇H(x, Ũn), Un)R2 →
∫

Ω

(∇H(x, Ũ), U)R2 .

⎫⎪⎪⎬
⎪⎪⎭ (4.11)

The proof of this claim is given later for completeness.
Taking Ψ = U and n → ∞ in (4.5) and using (4.11), we have

‖U‖2 =
∫

Ω

(A(x)U, U)R2 +
∫

Ω

(∇H(x, Ũ), U)R2 .

On the other hand, if n → ∞ in (4.5) with Ψ = Un,

‖Un‖2 →
∫

Ω

(A(x)U, U)R2 +
∫

Ω

(∇H(x, Ũ), U)R2 ,

again by (4.11). Consequently, ‖Un‖ → ‖U‖ and so Un → U in E. �

Proof of Claim 4.3. Let K > 0 be such that ‖Un‖ � K and take α > 0 satisfying
K2α < 2π. Since ∇H is subcritical, given ε > 0, let M be sufficiently large that

|(∇H(x, Ũn), U)R2 | � ε exp
(

K2α

(
|Un|
‖Un‖

)2 )
|U |
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if |Ũn| � M . Choose also δ > 0 such that∫
A

|(∇H(x, Ũ), U)R2 | < ε for all A; |A| < δ. (4.12)

Since ∫
Ω

|Ũn| � C,

take M even larger, so that An = {x ∈ Ω; |Ũn(x)| � M} is such that |An| < δ. We have

∫
Ω

|(∇H(x, Ũn), U)R2 − (∇H(x, Ũ), U)R2 |

=
( ∫

An

+
∫

|Ũn|<M

)
|(∇H(x, Ũn), U)R2 − (∇H(x, Ũ), U)R2 |

and we notice that the second integral on the right tends to zero as n → ∞ by the
Dominated Convergence Theorem since

|(∇H(x, Ũn), U)R2 − (∇H(x, Ũ), U)R2 |X|Ũn|<M (x) → 0

and

|(∇H(x, Ũn), U)R2 − (∇H(x, Ũ), U)R2 |X|Ũn|<M (x) � C,

for almost every x ∈ Ω. Here XA denotes the characteristic function of A. It remains to
estimate the first integral on the right. We have that∫

An

|(∇H(x, Ũn), U)R2 − (∇H(x, Ũ), U)R2 |

�
∫

An

|(∇H(x, Ũn), U)R2 | +
∫

An

|(∇H(x, Ũ), U)R2 |

= I1 + I2.

But we can see that

I1 � ε

∫
Ω

exp
(

K2α

(
|Un|
‖Un‖

)2 )
|U |

� ε

( ∫
Ω

exp
(

2K2α

(
|Un|
‖Un‖

)2 ))1/2

‖U‖L2×L2

� εC.

In this last estimate we used the Trudinger–Moser inequality, since we chose α > 0 to
be such that 2K2α < 4π. Finally, we obtain I2 < ε, by using (4.12) and the definition
of An. The proof of the second convergence in (4.11) follows the same arguments with
obvious small modifications. �
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4.3. The geometric conditions and proof of Theorem 2.5

The case of the mountain pass geometry, which involves conditions (A1) or (A3), is
easy to prove and can be concluded by making small modifications in parts of the proof
of the case of the linking geometry. Therefore, we provide only this case.

Let us take the same decomposition of E given in the proof of the Palais–Smale con-
dition (Lemma 4.2). The following proposition proves the geometric conditions needed
in the linking theorem.

Proposition 4.4. Suppose that (A2) (or (A4)), (H0), (H1) (subcritical) and (H2)–(H4)
hold. Then,

(i) there exist ρ, β > 0 such that J(U) � β if U ∈ ∂Bρ ∩ H⊥
k (or E⊥

k ),

(ii) there exist W ∈ H⊥
k (or E⊥

k ) and R > 0 such that R‖W‖ > ρ and if

Q := B̄R ∩ Hk (or Ek) ⊕ {sW : 0 � s � R},

then J(U) � 0 for all U ∈ ∂Q.

Proof. (i) The variational characterization of the eigenvalues implies that

1
2

(
‖U‖2 −

∫
Ω

(A(x)U, U)R2

)
� C‖U‖2

for all U ∈ H⊥
k (or E⊥

k ). Therefore, Lemma 4.1, with α < π, ‖U‖ � 1, shows that

J(U) � 1
2 (C − Cε)‖U‖2 − Kε

( ∫
Ω

exp(2α(u2 + v2))
)1/2

‖U‖3
L6×L6

� C‖U‖2 − C

( ∫
Ω

exp(4αu2)
)1/4( ∫

Ω

exp(4αv2)
)1/4

‖U‖3.

Consequently, the Trudinger–Moser inequality gives us

J(U) � C‖U‖2 − C‖U‖3

for all U ∈ H⊥
k (or E⊥

k ) such that ‖U‖ � 1, proving item (i).

(ii) Let us choose W in the following way: fix R0 > ρ and take W = (w1, w2) in H⊥
k

(or E⊥
k ) such that

(a) we have

‖W‖2 <

⎧⎪⎪⎨
⎪⎪⎩

µ1

λk
− 1 for (A2),

1
λA

k

− 1 for (A4),
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(b) there exists Γ ⊂ Ω, |Γ | > 0, such that

w1 � 2
(

K +
‖φ‖∞
R0

)
and w2 � 2

(
K +

‖ψ‖∞
R0

)
a.e. in Γ,

with K > 0 satisfying ‖V ‖∞ � K‖V ‖ for all V ∈ Hk(or Ek).

This choice is possible because H⊥
k and E⊥

k possess unbounded functions.
As usual, let us split ∂Q: consider ∂Q = Σ1 ∪ Σ2 ∪ Σ3, where

Σ1 = B̄R ∩ Hk (or Ek),

Σ2 = {V + sW ; ‖V ‖ = R},

Σ3 = {V + RW ; ‖V ‖ � R}.

If U ∈ Σ1,

J(U) � 1
2‖U‖2 − 1

2

∫
Ω

(A(x)U, U)R2 � 0

independently of R > 0.

As for Σ2, for (A2) we get that

J(V + sW ) � 1
2‖V ‖2 + 1

2s2‖W‖2 − 1
2

∫
Ω

(AV, V )R2

� 1
2R2 + 1

2R2‖W‖2 − 1
2µ1

∫
Ω

|V |2

� 1
2R2

(
1 − µ1

λk
+ ‖W‖2

)
< 0,

independently of R > 0.
If (A4) is considered, by (2.4) we see that

J(V + sW ) � 1
2‖V ‖2 + 1

2s2‖W‖2 − 1
2

∫
Ω

(A(x)V, V )R2

� 1
2R2

(
1 − 1

λA
k

+ ‖W‖2
)

< 0,

also independently of R > 0.
To conclude, let V + RW ∈ Σ3. By virtue of (H3), it is possible to determine θ > 2,

Cθ > 0 and Dθ � 0 such that

H(u, v) � Cθ(uθ + vθ) − Dθ for all u, v � 0. (4.13)

We refer to [13] for the proof of this inequality. Consequently,

J(V + RW )

� 1
2R2‖W‖2 − Dθ − RθCθ

( ∫
Ω

[(
w1 +

φ + v1

R

)
+

]θ

−
∫

Ω

[(
w2 +

ψ + v2

R

)
+

]θ)
,
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and so we get

J(V + RW ) � 1
2R2‖W‖2 − Dθ − RθCθ(I1(R) + I2(R)). (4.14)

I1(R) and I2(R) are the integrals that appear in the last estimate above. Consider R �
R0. So

I1(R) =
∫

Ω

[(
w1 +

φ + v1

R

)
+

]θ

�
∫

Ω

[(
w1 − ‖φ‖∞ + ‖v1‖∞

R

)
+

]θ

�
(

K +
‖φ‖∞
R0

)θ

|Γ |

=: τ1 > 0.

Notice that τ1 does not depend on R � R0. Analogously, for I2,

I2(R) �
(

K +
‖ψ‖∞
R0

)θ

|Γ | =: τ2 > 0.

Therefore, coming back to (4.14), we obtain

J(V + RW ) � 1
2R2‖W‖2 − RθCθ(τ1 + τ2) − Dθ.

Since θ > 2, we have the desired result. �

Proof of Theorem 2.5. We have proved that J satisfies the geometric and com-
pactness conditions required in the mountain pass theorem (for (A1) and (A3)) and in
the linking theorem (assuming (A2) or (A4)). That means the existence of a non-trivial
critical point for J and so a solution of (2.8). �

5. The critical case

This section is devoted to the proof of Theorem 2.6. So we shall assume the hypotheses
of this theorem through this section.

One of the main problems involving critical growth of Trudinger–Moser type consists of
proving that the minimax level determined by the geometric properties of the associated
functional avoids the levels of non-compactness. In other words, we have to ensure that
such a level lies below an appropriate constant, which, in our case, is given by 2π/α0,
where α0 is as defined in the critical case of condition (H1). This is where condition (H5)
plays its role: the presence of the function h ‘brings down’ suitable levels of J , given
in (4.3). Such a condition has already been used, for instance, in [1].
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5.1. Modified Moser functions

Consider the following well-known Moser sequence [16]: let B1(0) be the open ball of
radius r, r > 0, in R

2. Thus, for each m ∈ N, define

zr
m(x) =

1√
2π

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(log m)1/2 if 0 � |x| � r

m
,

log(r/|x|)
(log m)1/2 if

r

m
� |x| � r,

0 if |x| � r.

We know that zr
m ∈ H1

0 (Br(0)), ‖zr
m‖ = 1 and, for each r > 0 fixed, ‖zr

m‖L2 =
O(1/(log m)1/2).

Let r0 ∈ R be sufficiently small so that it is possible to choose xr0 ∈ Ω satisfying
B4r0(xr0) ⊂ Ω, and

|e1(x)|, |e2(x)|, . . . |ek(x)| � Cr0 (for (A2))

and

|ΦA
1 (x)|, |ΦA

2 (x)|, . . . , |ΦA
k (x)| � Cr0 (for (A4))

for all x ∈ B4r0(xr0) and some C > 0. This is possible since ei and ΦA
i are Lipschitz

continuous functions and vanish on ∂Ω (thus, x0 may be chosen close to ∂Ω). Notice
that once r0 and xr0 have been chosen, then for each r < r0 we can find xr satisfying
the above conditions. Notice also that we can always assume that the xr are such that
dist(xr, ∂Ω) → 0 when r → 0.

For each r � r0 define Zr
m : Ω → R

2 by

Zr
m(x) = (zr

m(x − xr), zr
m(x − xr)). (5.1)

Obviously, supp(Zr
m) ⊂ Br(xr) ⊂ B4r(xr) ⊂ Ω and therefore Zr

m ∈ E = H1
0 (Ω)×H1

0 (Ω)
for all r � r0 and m ∈ N.

Our goal is to place the Moser sequence ‘inside the ball’, where the eigenfunctions are
nearly zero. The next step consists of ‘making holes’ in these eigenfunctions in such a
way that they vanish exactly where the Moser functions are supported. Consequently, we
separate their supports, making many estimates easier to prove. This approach is inspired
by the techniques developed in [14]. Evidently, this is only necessary under conditions
(A2) or (A4), because of the interaction between A(x) and higher-order eigenvalues.

Consider r � r0 and xr given above and ζr ∈ C∞(RN ) such that 0 � ζr � 1, |∇ζr(x)| �
2/r and

ζr(x) =

{
0 if x ∈ Br(xr),

1 if x ∈ Ω \ B2r(xr).

Define

er
i = ζrei,

Φr
i = ζrΦ

A
i

https://doi.org/10.1017/S0013091510001112 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510001112


234 B. Ribeiro

and consider the following finite-dimensional subspaces:

Hr
k = span{(er

i , 0), (0, er
i ); 1 � i � k},

Er
k = span{Φr

i ; 1 � i � k}.
(5.2)

The lemma below is needed in order to control the error caused by these truncated
eigenfunctions. We omit its proof, since it can be proved exactly as in [14].

Lemma 5.1. If r → 0, then er
i → ei in H1

0 (Ω) and Φr
i → ΦA

i in E for all 1 � i � k.
Moreover, for each r small enough, we have the following.

(i) There exists ck > 0 such that

‖V ‖2 � (λk + ckr2)
∫

Ω

|V |2 for all V ∈ Hr
k .

(ii) There exists ck > 0 such that

‖V ‖2 � (λA
k + ckr2)

∫
Ω

(A(x)V, V )R2 for all V ∈ Er
k.

The following lemma gives the boundedness of Palais–Smale sequences associated
to (4.3). Its proof is exactly the same as that of Lemma 4.2, up to the point where
we proved (4.10).

Lemma 5.2. Under the conditions of Theorem 2.6, every Palais–Smale sequence
of (4.3) is bounded.

5.2. Geometric conditions

As in the subcritical case, the geometric hypothesis of the mountain pass theorem can
be derived under assumption (A1) or assumption (A3). The proofs are small modifica-
tions of those for the linking geometry and are in fact simpler to handle. Therefore, we
concentrate our efforts only on such a case: let us suppose (A2) or (A4) holds. As usual,
we must choose an appropriate decomposition for E. Observe that, for r sufficiently
small, one can split the space as follows: E = Hr

k ⊕ H⊥
k and E = Er

k ⊕ E⊥
k , where Hr

k

and Er
k are defined in (5.2).

Now, fix r small enough in order to ensure that(
µ1

λk + ckr2 − 1
)

,

(
1

λA
k + ckr2 − 1

)
> 0. (5.3)

and δ > 0 such that

δ2 <

⎧⎪⎪⎨
⎪⎪⎩

µ1

λk + ckr2 − 1 for (A2),

1
λA

k + ckr2 − 1 for (A4).
(5.4)

We have the following proposition.
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Proposition 5.3. Suppose that (A2) (or (A4)), (H0), (H1) (critical growth) and (H2)–
(H4) hold. Then

(i) there exist ρ, β > 0 such that J(U) � β if U ∈ ∂Bρ ∩ H⊥
k (or E⊥

k ),

(ii) for each m large enough, there exists R = R(m) > 0 such that if

Q := B̄R ∩ Hr
k (or Er

k) ⊕ {sδZr
m : 0 � s � R},

then J(U) � 0 for all U ∈ ∂Q; moreover, R = R(m) → ∞ when m → ∞.

Proof. The proof of (i) is exactly the same as that of Proposition 4.4.

Let us prove (ii): first, notice that the way we defined Hr
k and Er

k, given in (5.2),
implies that

J(V + sδZr
m) = J(V ) + J(sδZr

m) for all V ∈ Hr
k or V ∈ Er

k, (5.5)

since the support of the modified eigenfunctions in Hr
k or Er

k is disjoint from the support
of Zr

m.
Therefore, let us estimate J(V ) for all V ∈ Hr

k or Er
k.

Let V ∈ Hr
k and notice that by Lemma 5.1 we obtain

J(V ) � 1
2‖V ‖2 − 1

2µ1

∫
Ω

|V |2

� 1
2

(
1 − µ1

λk + ckr2

)
‖V ‖2.

Analogously, if V ∈ Er
k, Lemma 5.1 shows that

J(V ) � 1
2‖V ‖2 − 1

2

∫
Ω

(A(x)V, V )R2

� 1
2

(
1 − 1

λA
k + ckr2

)
‖V ‖2.

Since µ1 < λk and 1 < λA
k , we can take C1 > 0 such that

C1 <

(
µ1

λk + ckr2 − 1
)

or C1 <

(
1

λA
k + ckr2 − 1

)

for all r small enough. Therefore,

J(V ) � −C1‖V ‖2 for all V ∈ Hr
k or Er

k. (5.6)

As in Proposition 4.4, we split ∂Q as follows: let ∂Q = Σ1 ∪ Σ2 ∪ Σ3, where

Σ1 = B̄R ∩ Hr
k (or Er

k),

Σ2 = {V + sδZr
m; ‖V ‖ = R},

Σ3 = {V + RδZr
m; ‖V ‖ � R}.
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If U ∈ Σ1, from (5.6) we see that

J(U) � 0 independently of R > 0.

For Σ2, if (A2) is assumed, the choices of r and δ in (5.3) and (5.4) give us

J(V + sδZr
m) = J(V ) + J(sδZr

m)

� 1
2R2

(
1 − µ1

λk + ckr2 + δ2
)

< 0,

independently of R > 0.
For (A4), using (2.4), we see that

J(V + sδZr
m) � 1

2R2
(

1 − 1
λA

k + ckr2 + δ2
)

< 0,

again by (5.3) and (5.4) and independently of R > 0.
To conclude, let V + RδZr

m ∈ Σ3. Making use of (4.13),

J(V + RδZr
m)

= J(V ) + J(RδZr
m)

� −C1‖V ‖2 + 1
2R2δ2 −

∫
Ω

H((Rδzr
m(· − xr) + φ)+, (Rδzr

m(· − xr) + ψ)+)

� 1
2δ2R2 − RθCθ

( ∫
Br/m(0)

[(
δzr

m − ‖φ‖∞
R

)
+

]θ

+
[(

δzr
m − ‖ψ‖∞

R

)
+

]θ)
− Dθ.

Let us choose m sufficiently large that

δzr
m(x) =

δ√
2π

log1/2 m � max
{

2‖φ‖∞
R0

,
2‖ψ‖∞

R0

}
for all x ∈ Br/m(0), (5.7)

and, consequently,

J(V + RδZr
m) � 1

2δ2R2 − RθCθ

( ∫
Br/m(0)

(
‖φ‖∞
R0

)θ

+
+

(
‖ψ‖∞
R0

)θ

+

)
− Dθ.

Thus, we obtain
J(V + RδZr

m) � 1
2δ2R2 − CmRθ − Dθ,

where

Cm =
[(

‖φ‖∞
R0

)θ

+
+

(
‖ψ‖∞
R0

)θ

+

]
π

(
r

m

)2

→ 0 if m → ∞.

Since θ > 2, this completes the proof. �
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For the mountain pass case, which involves (A1) or (A3), we define the minimax level
of J by

c̃ = c̃(m) = inf
υ∈Υ

sup
W∈υ(E)

J(W ) (5.8)

where
Υ = {υ ∈ C(E, E) : υ(0) = 0 and υ(RmZr

m) = RmZr
m},

Rm being such that J(RmZr
m) � 0.

It is well known that such a minimax level has a Palais–Smale sequence. That means
that there exists (Vn) ⊂ E such that J(Vn) → c̃ and J ′(Vn) → 0. We refer the reader
to [15] for the proof of this claim.

For the linking geometry case, we define

ĉ = ĉ(m) = inf
γ∈Γ

max
W∈γ(Q)

J(W ), (5.9)

where Γ = {h ∈ C(Q, E); h(u) = u if u ∈ ∂Q}. Once again, the existence of a Palais–
Smale sequence in this level is proven in [15].

5.3. Control of the minimax levels

In this subsection we prove that the minimax levels given in (5.8) and (5.9) stay below
2π/α0 for m sufficiently large. The additional assumption (H5) is used here.

Proposition 5.4. Let c̃(m) be given as in (5.8). Then there exists m large enough
such that

c̃(m) <
2π

α0
.

Proof. We begin by fixing some constants that we shall use in this proof. We can
assume, without loss of generality, that

lim sup
u→+∞

log(h(x, u))
u

< ∞.

Thus, from (H5) we have the existence of 0 < ε0 < C0 < ∞ such that

ε0 � log(h(x, u))
u

� C0 (5.10)

for all u large enough.
Let us also choose and fix r and the corresponding xr ∈ Ω close enough to ∂Ω, such

that, denoting by ‖Φ‖∞,r the L∞(Br(xr)) × L∞(Br(xr)) norm of Φ, we have

‖Φ‖∞,r � ε0

2α0
. (5.11)

Finally, consider γ such that

γ >
4

α0r2 exp
(

(C0)2

4α0

)
. (5.12)
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The proof is by contradiction: assume that for all m we have c̃(m) � 2π/α0. By
definition,

c̃(m) � max
t�0

J(tZr
m).

But notice that for t � Rm we have J(tZr
m) � 0 and therefore for each m there exists

tm > 0 such that

J(tmZr
m) = max

t�0
J(tZr

m). (5.13)

Then

J(tmZr
m) � 2π

α0
for all m ∈ N

and, consequently,

t2m � 4π

α0
for all m ∈ N. (5.14)

Let us prove that t2m → 4π/α0: from (5.13) we get

d
dt

(J(tZr
m))

∣∣∣∣
t=tm

= 0.

So

tm‖Zr
m‖2 − tm

∫
Ω

(A(x)Zr
m, Zr

m)R2 −
∫

Ω

(∇H(x, (tmZr
m + Φ)+), Zr

m)R2 = 0.

Multiplying this last equation by tm and noticing that ‖Zr
m‖2 = 1, Φ < 0 and Hu, Hv � 0,

we have

t2m �
∫

Br/m(xr)
(∇H(x, (tmZr

m + Φ)+), tmZr
m)R2

�
∫

Br/m(xr)
(∇H(x, (tmZr

m + Φ)+), (tmZr
m + Φ)+)R2 .

Since tm � 2π/
√

α0 > 0, we can take m so large that (tm(
√

2π)−1 log1/2 m − ‖Φ‖∞,r) �
cγ , where cγ is given in (H5). Then

(tmZr
m + Φ)+ = (tmZr

m + Φ) = (tm(
√

2π)−1 log1/2 m + φ, tm(
√

2π)−1 log1/2 m + ψ)

in Br/m(xr) and so (H5) implies that

t2m � γ

∫
Br/m(xr)

h

(
x,

tm√
2π

log1/2 m − ‖Φ‖∞,r

)
exp

(
α0

(
tm√
2π

log1/2 m − ‖Φ‖∞,r

)2 )
.
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For convenience, let us rewrite ex as exp(x) in what follows. We have

t2m � γ

∫
Br/m(xr)

exp
[
−

(
log[h(x, (tm/

√
2π) log1/2 m − ‖Φ‖∞,r)]

2
√

α0((tm/
√

2π) log1/2 m − ‖Φ‖∞,r)

)2

+ α0((tm/
√

2π) log1/2 m − ‖Φ‖∞,r +
log[h(x, (tm/

√
2π) log1/2 m − ‖Φ‖∞,r)]

2α0((tm/
√

2π) log1/2 m − ‖Φ‖∞,r)

)2 ]
.

But if m is large, (5.10) shows that

−
(

log[h(x, (tm/
√

2π) log1/2 m − ‖Φ‖∞,r)]

2
√

α0((tm/
√

2π) log1/2 m − ‖Φ‖∞,r)

)2

� − (C0)2

4α0

and

log[h(x, (tm/
√

2π) log1/2 m − ‖Φ‖∞,r)]

2α0((tm/
√

2π) log1/2 m − ‖Φ‖∞,r)
� ε0

2α0
,

from which we obtain

t2m � γπ
r2

m2 exp
(

− (C0)2

4α0

)
exp

(
α0

(
tm√
2π

log1/2 m − ‖Φ‖∞,r +
ε0

2α0

)2 )
,

and by the choice of r and xr in (5.11) we see that

t2m � γπ
r2

m2 exp
(

− (C0)2

4α0

)
exp

(
α0

t2m
2π

log m

)

= exp
(

− (C0)2

4α0

)
γπr2 exp

((
α0

t2m
2π

− 2
)

log m

)
.

Therefore, (tm) is a bounded sequence. Because of (5.14), we have t2m → 4π/α0. Letting
m → ∞ in the inequality above, one gets

γ � 4
α0r2 exp

(
(C0)2

4α0

)
,

which is contrary to the choice of γ in (5.12). This contradiction follows from the assump-
tion c̃(m) � 2π/α0 for all m ∈ N, which concludes the proof. �

Analogously to the cases for (A2) or (A4), we have the following.

Proposition 5.5. Let ĉ(m) be given as in (5.9). Then there exists m large enough
that

ĉ(m) <
2π

α0
.
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Proof. The proof is almost the same as that of Proposition 5.4, since we are able to
separate the supports of functions in Hr

k and Er
k from the Moser functions Zr

m. Indeed,
by definition of ĉ(m) one gets

ĉ(m) � max{J(V + tZr
m); V ∈ Hr

k (or Er
k) ∩ BR(m), t � 0}

= max{J(V ) + J(tZr
m); V ∈ Hr

k (or Er
k) ∩ BR(m), t � 0}

� max{J(V ); V ∈ Hr
k (or Er

k) ∩ BR(m)} + max{J(tZr
m); t � 0}.

But we have already seen in (5.6) that J(V ) � 0 for all V ∈ Hr
k (or Er

k) and therefore

ĉ(m) � max{J(tZr
m); t � 0}.

The rest of the proof is exactly the same as that of Proposition 5.4. �

5.4. Proof of Theorem 2.6

From now on we shall make no distinction between the mountain pass minimax level
and the linking minimax level. This means that we define c(m) = c̃(m) for (A1) or (A3),
and c(m) = ĉ(m) for (A2) or (A4).

Let us take m such that c(m) < 2π/α0. Let (Un), Un = (un, vn) be a Palais–Smale
sequence of this level c(m). Since (Un) is bounded, consider a suitable subsequence still
denoted by (Un) and U ∈ H1

0 (Ω) such that Un ⇀ U weakly in E = H1
0 (Ω) × H1

0 (Ω),
Un → U in Lp(Ω) × Lp(Ω) for all p � 1 and almost everywhere in Ω. The following
lemma is an auxiliary convergence result needed later.

Lemma 5.6. If Un ⇀ U weakly in E and (Un) satisfies (4.6), then, if n → ∞, the
following convergences hold.

(i) ∇H(·, Ũn) → ∇H(·, Ũ) in L1(Ω) × L1(Ω).

(ii) H(·, Ũn) → H(·, Ũ) in L1(Ω).

Proof. We can suppose that Ũn(x) → Ũ(x) for almost every x ∈ Ω. Since (Un) is
bounded, from (4.6) we see that∫

Ω

(∇H(x, Ũn), Ũn)R2 �
∫

Ω

(∇H(x, Ũn), Un)R2 � C0. (5.15)

For (i) we must prove that Hu(·, Ũn) → Hu(·, Ũ) and Hv(·, Ũn) → Hv(·, Ũ), both in
L1(Ω). Let us prove only the expression involving Hu, since the other is exactly the
same. This proof is similar to that of Claim 4.3, but we give it here for the sake of
completeness. Indeed, by Hu(·, Ũ) ∈ L1(Ω), we have that for all ε > 0 there exists δ > 0
such that ∫

A

Hu(x, Ũ(x)) < ε for all A; |A| < δ. (5.16)
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Since ∫
Ω

|Ũn(x)| � C for all n,

let us take M0 such that the sets An ≡ {x ∈ Ω; |Ũn| � M0} satisfy

|An| < δ. (5.17)

By (H3), given ε > 0 there exists cε > 0 such that

Hu(x, S) � ε

C0
(∇H(x, S), S)R2 for all |S| � cε, (5.18)

where C0 is given by (5.15).
So take M = max{M0, cε}. Observe that∫
Ω

|Hu(x, Ũn(x)) − Hu(x, Ũ(x))| �
∫

|Ũn|<M

|Hu(x, Ũn(x)) − Hu(x, Ũ(x))|

+
∫

|Ũn|�M

Hu(x, Ũn(x)) +
∫

|Ũn|�M

Hu(x, Ũ(x))

≡ I1 + I2 + I3.

Using (5.15), (5.18) and the M chosen above, we obtain

I2 � ε

C0

∫
Ω

(∇H(x, Ũn), Ũn)R2 � ε.

By (5.16) and (5.17) we also have

I3 �
∫

An

Hu(x, Ũ(x)) � ε.

Therefore, it remains to prove that I1 → 0 if n → ∞. Since Hu is continuous, we have
that

|Hu(x, Ũn(x)) − Hu(x, Ũ(x))|X|Ũn|<M (x) → 0

for almost every x ∈ Ω. Here XA denotes the characteristic function of A. Since

|Hu(x, Ũn(x)) − Hu(x, Ũ(x))|X|Ũn|<M (x) � C,

we prove part (i) by the Dominated Convergence Theorem.

Let us prove (ii): we follow a similar scheme to the proof of [4, Lemma A.1]. Since
H is continuous, we get H(x, Ũn(x)) → H(x, Ũ(x)). As |Ω| < ∞, Egorov’s Theorem
ensures that this pointwise convergence is also a convergence in measure. Consequently,
Vitali’s Theorem implies that H(·, Ũn) → H(·, Ũ) in L1 occurs when H(·, Ũn) is uniformly
integrable in n. That means that we need to prove that for each ε > 0 there exists Kε � 0
such that ∫

H(x,Ũn)�Kε

H(x, Ũn) < ε.
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Indeed, by (H3) and given ε > 0, let us take cε such that

H(x, S) � ε

C0
(∇H(x, S), S)R2 for all x ∈ Ω and |S| � cε,

where C0 is given in (5.15). Moreover, we can take Kε > 0 such that

H(x, Ũn(x)) � Kε ⇒ |Ũn(x)| � cε.

Therefore,∫
H(x,Ũn)�Kε

H(x, Ũn) �
∫

|Ũn|�cε

H(x, Ũn) � ε

C0

∫
Ω

(∇H(x, Ũn), Ũn)R2 < ε,

as required. �

Proof of Theorem 2.6. Notice that U is a solution to (2.8): letting V ∈ C∞
c (Ω) ×

C∞
c (Ω) one gets

0 ← J ′(Un)V =
∫

Ω

∇Un∇V −
∫

Ω

(A(x)Un, V )R2 −
∫

Ω

(∇H(x, Ũn, )V )R2 .

But then, since ∫
Ω

∇Un∇V →
∫

Ω

∇U∇V,

∫
Ω

(A(x)Un, V )R2 →
∫

Ω

(A(x)U, V )R2

and ∫
Ω

(∇H(x, Ũn), V )R2 →
∫

Ω

(∇H(x, Ũ), V )R2

(the latter by Lemma 5.6), we have J ′(U)V = 0 for all V ∈ C∞
c (Ω) × C∞

c (Ω). However,
we still have to prove that U �= 0.

Let us suppose, by contradiction, that U = 0. Then

‖Un‖L2(Ω)×L2(Ω) → 0 and
∫

Ω

H(x, Ũn) →
∫

Ω

H(x, (Φ)+) = 0

(again by Lemma 5.6). Therefore,

c(m) = lim
n→∞

J(Un) = 1
2 lim

n→∞
‖Un‖2.

So, since c(m) < 2π/α0, we can pick δ > 0 such that

‖Un‖2 � 4π

α0
− δ (5.19)
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for all n large enough. Let us consider ε > 0 and p > 1 such that

p(α0 + ε)
(

4π

α0
− δ

)
� 4π.

By (H1) we can take C > 0 sufficiently large such that

Hu(x, s, t) + Hv(x, s, t) � exp((α0 + ε)(s2 + t2)) + C for all s, t � 0, x ∈ Ω.

Then we see that

‖Un‖2 � o(1) + C

( ∫
Ω

exp
(

p(α0 + ε)
(

4π

α0
− δ

)(
|Un|
‖Un‖

)2 )
+ C

)1/p

‖Un‖Lp′ (Ω)×Lp′ (Ω)

� o(1) + C

( ∫
Ω

exp
(

4π

(
|Un|
‖Un‖

)2 )
+ C

)1/p

‖Un‖Lp′ (Ω)×Lp′ (Ω).

However,
‖Un‖Lp′ (Ω)×Lp′ (Ω) → 0.

Since, by the Trudinger–Moser inequality, the last integral is bounded, we have ‖Un‖ → 0.
Therefore, Un → 0 in E and so J(Un) → 0 = c(m). This contradicts the definition of the
minimax level, concluding the proof. �
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