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The Eigenvalue Method in Coding Theory
Aida Abiad, Loes Peters and Alberto Ravagnani

Abstract. We lay down the foundations of the Eigenvalue Method in coding theory. The method uses
modern algebraic graph theory to derive upper bounds on the size of error-correcting codes for vari-
ousmetrics, addressingmajor open questions in the field.We identify the core assumptions that allow
applying theEigenvalueMethod, test it formultiplewell-knownclasses of error-correcting codes, and
compare the results with the best bounds currently available. By applying the EigenvalueMethod, we
obtain new bounds on the size of error-correcting codes that often improve the state of the art. Our
results show that spectral graph theory techniques capture structural properties of error-correcting
codes that are missed by classical coding theory approaches.

1 Introduction

This paper is about the interplay between spectral graph theory and algebraic cod-
ing theory. Spectral graph theory focuses on describing the combinatorial properties
of a graph via the eigenvalues (spectrum) of its adjacency matrix, while coding the-
ory is the science of adding redundancy to data in such a way it becomes resistant to
noise. Redundancy is added using mathematical objects called error-correcting codes,
whose theory dates back to Shannon’s celebrated paper “A mathematical theory of
communication” [49].

There exist several classes of error-correcting codes, each of which is best suited
to correct the error patterns introduced by a specific type of noisy channel. However,
most classes of error-correcting codes can be described with the same high-level frame-
work. The starting point is a finite “ambient” set 𝐴 endowed with a distance function
𝑑 : 𝐴×𝐴→ R, which reflects the underlying channel. The pair (𝐴, 𝑑) is called a discrete
metric space. An error-correcting code is a subset C ⊆ 𝐴, where the distance between
distinct elements is bounded from below by a given number 𝑑∗, measuring the correc-
tion capability of C. There is a trade-off between having large 𝑑∗ and having a large
cardinality: The main task in this context is to find the largest possible C for a given
value 𝑑∗. Depending on the combinatorial structure of 𝐴, this problem can be relatively
easy [23], or inspire conjectures that are almost 70 years old [48, 17, 56, 35, 9, 8]. This
paper concentrates on establishing the foundations of the Eigenvalue Method for solving
this central task. Recently, this method has been successfully applied to three distinct
metrics, see [1, 5, 6].

There is a natural connection between coding theory and graph theory. Let the ele-
ments of 𝐴 be the vertices of a graph𝐺 . Connect twovertices 𝑥, 𝑦 if their distance 𝑑 (𝑥, 𝑦)
is atmost 𝑑∗−1. Then the largest cardinality of an error-correcting codewith the desired
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2 A. Abiad, L. Peters, and A. Ravagnani

correction capability is precisely the independence number of 𝐺 . This observation has
been used in various instances to obtain bounds on the size of error-correcting codes,
or to revisit bounds established using different techniques; see for instance [28, 37, 40].

Algebraic graph theory is the foundation of one of the best known methods to
estimate the size of an error-correcting code, namely Delsarte’s Linear Programming
Bound [22]. Delsarte’s method makes use of an association scheme describing the prop-
erties of the space (𝐴, 𝑑) to construct a linear program, whose maximum value is an
upper bound for the size of a code. Delsarte’s method is widely used and applies to
several classes of codes, even though it’s a quite technical result that requires specific
computations for each scheme at hand; see [23, 24, 27, 7, 51, 47, 4] among many oth-
ers. Furthermore, not all spaces (𝐴, 𝑑) come with a natural structure of an association
scheme. For instance the sum-rank-metric space does not comewith this natural associ-
ation scheme, but an alternative scheme was recently derived [4]. In sharp contrast with
Delsarte’s approach, the method proposed in this paper does not rely on association
schemes and it only requires computing the spectrum of a graph. Even when Delsarte’s
method can be used, the approach proposed in this paper is easier to apply and pro-
vides competitive bounds. Furthermore, for small minimum distances, the Eigenvalue
Method provides closed formulas and therefore the optimal polynomials, while for Del-
sarte’s approach this is not known formostmetrics. Such closed formulas for the bounds
from the EigenvalueMethod can then be used to show non-existence and characteriza-
tion results for several metrics, as it was done for instance for the sum-rank metric [5]
and for the Lee metric [6].

The EigenvalueMethod, which is the centerpiece of this paper, stems from the obser-
vation that, for several ambient spaces 𝐴 relevant for coding theory, the graph𝐺 defined
above is the (𝑑∗ − 1)-th power graph of a simpler graph 𝐺′. When this happens, the
independence number of𝐺 is the (𝑑∗ − 1)-independence number of𝐺′. The graph𝐺′

is defined as follows: Instead of connecting 𝑥 and 𝑦 if 𝑑 (𝑥, 𝑦) ≤ 𝑑∗−1, we connect them
if 𝑑 (𝑥, 𝑦) = 1.

Interestingly, several ambient spaces 𝐴 that arise in coding theory naturally have
the regularity properties that are needed to write 𝐺 as the power graph of a graph
𝐺′. In turn, this simple observation is surprisingly powerful, as it allows for the use of
recent spectral techniques developed by the first author and collaborators [2] to study
the higher independence numbers of𝐺′ from its eigenvalues. Note that the spectrum of
𝐺 is not generally related with the spectrum of𝐺′ [3, 21], making the approach of con-
sidering𝐺′ substantially different from (and more feasible than) the one of considering
𝐺 directly. In this paper, we focus on two spectral graph theory techniques, which yield
the Inertia-type and Ratio-type bounds; see [2] for more details.

The approach we just described has been recently applied to some classes of
error-correcting codes, most notably to sum-rank-metric codes [5], Lee codes [6]
and alternating-rank-metric codes [1], obtaining bounds that often outperform those
derived with more traditional arguments, see e.g. [36, 16]. Eigenvalue bounds like the
ones proposed in this paper can also be used to prove that codes meeting a certain
bound with equality cannot exist, see e.g. [5, 30]. This strongly suggests that spectral
graph theory methods can uncover structural properties of ambient spaces that are rel-
evant to coding theory, but that are not captured by classical techniques. An example is
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The Eigenvalue Method in Coding Theory 3

the sum-rank-metric space [5], which is a hybrid between rank-metric and Hamming-
metric spaces, and for which classical coding theory arguments can lead to quite coarse
bounds [16].

Motivated by these encouraging results, in this paper we investigate the funda-
mental assumptions underlying the applicability of the Eigenvalue Method in coding
theory, and investigate its generality. More precisely, we identify the key compatibil-
ity assumptions between the ambient space 𝐴 and the corresponding graph that allow
the application of the spectral graph theory machinery. We then apply these techniques
to several ambient spaces and metrics that naturally arise in coding theory, highlight-
ing the cases where the new approach improves on the state of the art. The Eigenvalue
Method can be seen as a variation of Delsarte’s linear programming (LP) method, but it
does not require any regularity on the graph associated to the metric, making it possible
to be easily used in cases when Delsarte’s method does not apply. While for distance-
regular graphs one can use the celebrated linear programming bound by Delsarte on
𝐺𝑘 , some of the newly proposed eigenvalue bounds are much more general (indeed,
they can also be applied to vertex-transitive graphs which are not distance-regular or, in
general, to walk-regular graphs which are not distance-regular). Thus, our aim is to use
spectral graph theory to go beyond Delsarte theory/Delsarte’s method in metric spaces
that do not have the necessary regularity (i.e. metric association schemes). In order to
illustrate the applicability and the power of the proposed Eigenvalue Method, we use it
to improve on several known results such as [11, Theorem 13.49] and [33, Theorem 3.1]
(city block metric), and [46] (phase-rotation metric), besides the known improvements
that the Eigenvalue Method gave on the for the sum-rank metric [5] and the Lee metric
[6]. Moreover, by applying the new method we also obtain multiple sharp bounds that
give an alternative approach to known results such as [13] (block metric and cyclic 𝑏-
burst metric), [12] and [53] (Varshamov metric), on top of the known equivalent bounds
that the Eigenvalue Method gave for the alternating forms metric [1].

The remainder of this paper is organized as follows. In Section 2 the necessary
preliminaries on coding theory and on graph theory are treated. A description of the
Eigenvalue Method is given in Section 3. This section also contains conditions on the
applicability of themethod. In Section 3.1 the spectral bounds that are used in the Eigen-
value Method are stated. In order to illustrate the applicability range and power of
this newly proposed method, the Eigenvalue Method is applied to several discrete met-
ric spaces. Two of such new applications are discussed in Section 4. In particular, the
method is applied to the city blockmetric in Section 4.1 and to the phase-rotationmetric
in Section 4.3. A fewmore applications of the EigenvalueMethod are given in Section 5.

2 Preliminaries

In this section, we establish the notation for the rest of the paper and briefly survey
the needed background. By “natural numbers” we mean the positive integers, i.e. N =

{1, 2, 3, . . .}. The set of natural numbers with zero is denoted byN0. For𝑚 ∈ N, let [𝑚]
denote the set of integers from 1 to 𝑚 and let [[𝑚]] denote the set of integers from 0 to
𝑚; [𝑚] := {1, . . . , 𝑚} and [[𝑚]] := {0, 1, . . . , 𝑚}. We denote the standard basis vectors
of any 𝑛-dimensional vector space as e1, . . . , e𝑛. The all-zeros vector and the all-ones
vector in such a vector space are denoted as 0 and 1, respectively.
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In this paperwe take𝑚, 𝑛 ∈ N and 𝑞 a prime power, i.e. 𝑞 = 𝑝𝑘 for some prime 𝑝 and
𝑘 ∈ N. The set of integers modulo𝑚 is denoted as Z/𝑚Z. The finite field of 𝑞 elements
is denoted F𝑞 . Moreover, F∗𝑞 denotes the multiplicative group of nonzero elements of
F𝑞 .

The indicator function of an event 𝑆 is denoted as 1𝑆 , or as 1{𝑥 ∈ 𝑆} = 1𝑆 (𝑥).

2.1 Coding theory

We briefly recall some definitions from coding theory. A discrete metric space is a pair
(X, 𝑑) whereX is a finite set and 𝑑 : X × X → R≥0 is a function such that

• for all x, y ∈ X we have 𝑑 (x, y) = 0 ⇔ x = y;
• for all x, y ∈ X we have 𝑑 (x, y) = 𝑑 (y, x);
• for all x, y, z ∈ X we have 𝑑 (x, z) ≤ 𝑑 (x, y) + 𝑑 (y, z), which is the triangle
inequality.

The classic example of a discrete metric space in coding theory is the set F𝑛𝑞 with the
Hamming metric 𝑑H, which is defined as 𝑑H (x, y) := |{1 ≤ 𝑖 ≤ 𝑛 : 𝑥𝑖 ≠ 𝑦𝑖}| for
x = (𝑥1, . . . , 𝑥𝑛), y = (𝑦1, . . . , 𝑦𝑛) ∈ F𝑛𝑞 .

A code is a subset C ⊆ X with |C| ≥ 2. The elements of a code C are called code words.
The minimum distance of a code C ⊆ X is defined as

𝑑 (C) := min{𝑑 (x, y) | x, y ∈ C, x ≠ y}.

The main problem of classical coding theory is understanding how large a code of cer-
tain minimum distance can be. In this regard the largest cardinality of a code C ⊆ F𝑛𝑞
of minimum distance 𝑑 is denoted as 𝐴𝑞 (𝑛, 𝑑). For the Hamming metric several upper
bounds exist for this quantity 𝐴H

𝑞 (𝑛, 𝑑), e.g. the Singleton bound [36, Theorem 2.4.1],
the Hamming bound (or sphere-packing bound) [36, Theorem 1.12.1], and the Plotkin
bound [36, Theorem2.2.1].On the other hand, code constructions can give lower bounds
for 𝐴H

𝑞 (𝑛, 𝑑); see [36, 43] among others.
While the problem of computing themaximum cardinality of a code with givenmin-

imum distance has been extensively studied for the Hamming metric, the question is
less understood for other metrics. The Lee metric, the rank metric, and the sum-rank
metric, among others, are examples of metrics that are also often used in coding theory.
Sum-rank-metric codes, for instance, have been used formulti-shot network coding [44]
and space-time coding [50]. More discrete metric spaces follow in the remainder of this
paper.

2.2 Graph theory

Nextwe recall somenotions of graph theory,with a special focus on the graph properties
that are used in the rest of this paper.

Definition 2.1 A graph is 𝛿-regular if every vertex in the graph has degree 𝛿. A graph is
said to be regular if the graph is 𝛿-regular for some 𝛿 ∈ N0.
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A graph automorphism of a graph 𝐺 = (𝑉, 𝐸) is a permutation 𝜎 of the vertex set 𝑉
such that (𝑥, 𝑦) ∈ 𝐸 if and only if (𝜎(𝑥), 𝜎(𝑦)) ∈ 𝐸 . A graph is vertex-transitive if for
any two vertices 𝑥, 𝑦 there exists a graph automorphism 𝜎 such that 𝜎(𝑥) = 𝑦. Note
that vertex-transitive graphs are regular.

A graph is a Cayley graph over a group 𝐺 with connecting set 𝑆 if the vertices of the
graph are the elements of 𝐺 , and two vertices 𝑥, 𝑦 are adjacent if and only if there is
an element 𝑠 ∈ 𝑆 such that 𝑥 + 𝑠 = 𝑦. In this work we assume that the connecting
set 𝑆 does not contain the identity element of 𝐺 and that 𝑆 is closed under inverses.
This assumption implies that the corresponding Cayley graph is undirected and has no
self-loops. Note that Cayley graphs are vertex-transitive.

Definition 2.2 A graph is 𝑘-partially walk-regular if for any vertex 𝑥 and any positive
integer 𝑖 ≤ 𝑘 the number of closed walks of length 𝑖 that start and end in 𝑥 does not
depend on the choice of 𝑥. A graph iswalk-regular if it is 𝑘-partially walk-regular for any
positive integer 𝑘 .

Note that vertex-transitive graphs are necessarily walk-regular.
For any two vertices 𝑥 and 𝑦 at distance 𝑖 from each other, let 𝑝𝑖

𝑗 ,ℎ
(𝑥, 𝑦) denote the

number of vertices at distance 𝑗 from 𝑥 and at distance ℎ from 𝑦.

Definition 2.3 A graph is 𝑘-partially distance-regular if for any integers 𝑖, 𝑗 , ℎ such that
𝑗 , ℎ ≤ 𝑘 and 𝑖 ≤ 𝑗 + ℎ ≤ 𝑘 the values 𝑝𝑖

𝑗 ,ℎ
(𝑥, 𝑦) do not depend on the choice of 𝑥 and

𝑦. A graph is distance-regular if it is 𝑘-partially distance-regular for any integer 𝑘 .

In particular, a graph is 𝑘-partially distance-regular if for any integer 𝑖 ≤ 𝑘 the val-
ues 𝑐𝑖 (𝑥, 𝑦) := 𝑝𝑖1,𝑖−1 (𝑥, 𝑦), 𝑎𝑖−1 (𝑥, 𝑦) := 𝑝𝑖−1

1,𝑖−1 (𝑥, 𝑦), and 𝑏𝑖−2 := 𝑝𝑖−2
1,𝑖−1 (𝑥, 𝑦) do not

depend on the choice of 𝑥 and 𝑦. For distance-regular graphs these values are captured
in the intersection array (𝑏0, 𝑏1, . . . , 𝑏𝐷−1; 𝑐1, . . . , 𝑐𝐷), where 𝐷 is the diameter of the
graph. Since distance-regular graphs are 𝛿-regular for some 𝛿 ∈ N0, the following rela-
tions hold: 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 = 𝛿 for 0 ≤ 𝑖 ≤ 𝐷 , 𝑏0 = 𝛿, 𝑎0 = 𝑐0 = 0. Note that 𝑘-partially
distance-regular graphs are also 𝑘-partially walk-regular.

Recall the Cartesian product of two graphs 𝐺 and 𝐻, denoted as 𝐺□𝐻, which is the
graphwith vertex set equal to the Cartesian product of the vertex sets of𝐺 and𝐻, where
two vertices (𝑔1, ℎ1) and (𝑔2, ℎ2) are adjacent if 𝑔1 ∼ 𝑔2 and ℎ1 = ℎ2, or 𝑔1 = 𝑔2 and
ℎ1 ∼ ℎ2. Here∼ denotes adjacency of the vertices in the graph. TheCartesian product of
two graphs can be inductively extended to a Cartesian product of finitely many graphs.
It is well-known that if 𝐺 and 𝐻 are graphs with respective eigenvalues 𝜆𝑖 , 𝑖 ∈ 𝐼 and
𝜇 𝑗 , 𝑗 ∈ 𝐽 , then the eigenvalues of 𝐺□𝐻 are 𝜆𝑖 + 𝜇 𝑗 for 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (see for instance
[20]). This can be inductively extended to the Cartesian product of finitely many graphs.

Definition 2.4 The 𝑘-independence number of a graph𝐺 , denoted as 𝛼𝑘 (𝐺), is the size
of the largest set of vertices in 𝐺 such that any two vertices in the set are at geodesic
distance greater than 𝑘 from each other.

2025/09/15 08:46

https://doi.org/10.4153/S0008414X25101600 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101600
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Alternatively we can consider the 𝑘-th power graph𝐺𝑘 of a graph𝐺 = (𝑉, 𝐸), which
is the graph with vertex set𝑉 where two vertices 𝑥, 𝑦 ∈ 𝑉 are adjacent if 𝑑𝐺 (𝑥, 𝑦) ≤ 𝑘 .
Here 𝑑𝐺 (𝑥, 𝑦) denotes the geodesic distance between vertices 𝑥 and 𝑦 in the graph 𝐺 .
The 𝑘-independence number of 𝐺 equals the (1-)independence number of 𝐺𝑘 , which
is the size of the largest independent set in𝐺𝑘 . Despite this, even the simplest algebraic
or combinatorial parameters of the power graph𝐺𝑘 cannot be easily deduced from the
corresponding parameters of the graph 𝐺 , e.g. neither the spectrum [21], [3], nor the
average degree [26], nor the rainbow connection number [10] of 𝐺𝑘 can be derived in
general directly from those of the original graph 𝐺 . In this regard, several eigenvalue
bounds on 𝛼𝑘 (𝐺) that only depend on the spectrum of 𝐺 have been proposed in the
literature. Another upper bound on the independence number, and after extension the
𝑘-independence number, of a graph is the Lovász theta number [42], although this bound
requires the graph adjacency matrix as input. The Lovász theta number can be used as
an upper bound on the 𝑘-independence number of a graph 𝐺 by computing it for the
𝑘-th power graph𝐺𝑘 .

The 𝑘-independence number of a graph and these eigenvalue bounds are the bases
on which the Eigenvalue Method is built, as we see in the next section.

3 The Eigenvalue Method

In this sectionwe give a description of the EigenvalueMethod andwe give conditions on
the applicability of the method. In later sections applications of the Eigenvalue Method
are discussed.

As introduced earlier, there is a natural connection between coding theory and graph
theory, which enables the use of bounds on the 𝑘-independence number for the con-
struction of bounds on the cardinality of codes with given correction capability. The
method can be formalized as follows. Let (X, 𝑑) be a discrete metric space. Define
the distance graph 𝐺𝑑 (X) for (X, 𝑑) as the graph with vertex set X where vertices
𝑥, 𝑦 ∈ X are adjacent if 𝑑 (𝑥, 𝑦) = 1. If the geodesic distance between vertices in𝐺𝑑 (X)
equals the distance between corresponding elements in the discrete metric space, then
there is an equivalence between the maximum cardinality of codes in (X, 𝑑) and the
𝑘-independence number of𝐺𝑑 (X). The next result formalizes this equivalence.

Lemma 3.1 ([5, Corollary 16]) Let (X, 𝑑) be a discrete metric space. Suppose the geodesic
distance in𝐺𝑑 (X) equals the distance in the discrete metric space (X, 𝑑), i.e. 𝑑𝐺𝑑 (X) (𝑥, 𝑦) =
𝑑 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X. Then the maximum cardinality of a code C ⊆ X of mini-
mum distance 𝑑′ equals the 𝑘-independence number of 𝐺𝑑 (X) for 𝑘 = 𝑑′ − 1, namely
𝛼𝑑′−1 (𝐺𝑑 (X)).

Bounds on the 𝑘-independence number cannowbeused to obtain bounds on the car-
dinality of codes. Specifically, we consider two spectral bounds for the 𝑘-independence
number, namely the Inertia-type bound and the Ratio-type bound, which are the main
tools of the Eigenvalue Method. These spectral bounds can be found in Section 3.1,
together with their respective linear programming implementations. The graph𝐺𝑑 (X)
should have certain graph properties for these spectral bounds to be applicable to the
graph.
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For the Inertia-type bound from Theorem 3.2 and corresponding mixed-integer lin-
ear program (MILP) (3.1) there are no extra graph properties that𝐺𝑑 (X) needs to have.
This MILP requires as input the adjacency matrix of the graph besides the graph adja-
cency spectrum. A fasterMILP for the Inertia-type boundwhich only requires the graph
adjacency spectrum as input is MILP (3.2); this MILP only works for 𝑘-partially walk-
regular graphs, so it is desirable for𝐺𝑑 (X) to have this property. The Ratio-type bound
from Theorem 3.3 only applies to regular graphs, so regularity of 𝐺𝑑 (X) is preferred.
For the linear program (LP) (3.3), which corresponds to the Ratio-type bound, the input
graph is required to be 𝑘-partially walk-regular. So 𝑘-partial walk-regularity of𝐺𝑑 (X)
is preferred here as well. Note that this LP only needs the graph adjacency spectrum as
input.

We compare the Eigenvalue Method to Delsarte’s linear programming method. In
general it is not known if bounds obtained via Delsarte’s method are stronger than
bounds obtained using the Inertia-type bound or the Ratio-type bound. However,
since Delsarte’s LP method directly applies when 𝐺𝑑 (X) is distance-regular, we pre-
fer to restrict to discrete metric spaces where the corresponding graph 𝐺𝑑 (X) is not
distance-regular.

The only necessary condition for the applicability of the Eigenvalue Method is the
following:

(C1) The geodesic distance in 𝐺𝑑 (X) equals the distance in the discrete metric space
(X, 𝑑), i.e., 𝑑𝐺𝑑 (X) (𝑥, 𝑦) = 𝑑 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ X.

Moreover, some graph properties of 𝐺𝑑 (X) are highly desired. These can be sum-
marized as follows.

(P1) The graph 𝐺𝑑 (X) is regular. This property is desirable as the Ratio-type bound
applies if this is the case.

(P2) The graph 𝐺𝑑 (X) is 𝑘-partially walk-regular. This property is desirable as the
fasterMILP implementation of the Inertia-type bound and the LP implementation
of the Ratio-type bound apply if this is the case.

(P3) The graph 𝐺𝑑 (X) is not distance-regular. This property is desirable as Delsarte’s
LP method is not directly applicable if this is the case.

3.1 Eigenvalue bounds

In this section we give the eigenvalue bounds that are used in the Eigenvalue Method.
First the Inertia-type bound and its MILP implementation are given. Then the Ratio-
type bound and its LP implementation are stated.

DefineR𝑘 [𝑥] as the set of all polynomials in the variable 𝑥 with real coefficients and
degree at most 𝑘 . The Inertia-type bound is an upper bound on the 𝑘-independence
number of a graph.

Theorem 3.2 (Inertia-type bound, [2, Theorem 3.1]) Let𝐺 be a graph with 𝑛 vertices, adja-
cency eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛, and adjacency matrix 𝐴. Let 𝑝 ∈ R𝑘 [𝑥] with correspond-
ing parameters𝑊 (𝑝) := max𝑢∈𝑉 (𝐺) {(𝑝(𝐴))𝑢𝑢},𝑤(𝑝) := min𝑢∈𝑉 (𝐺) {(𝑝(𝐴))𝑢𝑢}. Then
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the 𝑘-independence number 𝛼𝑘 of 𝐺 satisfies

𝛼𝑘 ≤ min {|{𝑖 : 𝑝(𝜆𝑖) ≥ 𝑤(𝑝)}|, |{𝑖 : 𝑝(𝜆𝑖) ≤ 𝑊 (𝑝)}|} .

Note that for 𝑘 = 1 the Inertia-type bound reduces to the well-known inertia bound
by Cvetković [18].

In [3] an MILP has been proposed that finds the optimal polynomial for the
Inertia-type bound, which is the polynomial that minimizes the upper bound on the 𝑘-
independence number. This MILP subsequently finds this minimized upper bound on
the 𝑘-independence number. Let𝐺 be a graph with 𝑛 vertices, distinct adjacency eigen-
values 𝜃0 > · · · > 𝜃𝑟 with respective multiplicities 𝑚0, . . . , 𝑚𝑟 , and adjacency matrix
𝐴. Let 𝑝(𝑥) := 𝑎𝑘𝑥𝑘 + · · · + 𝑎0, b = (𝑏0, . . . , 𝑏𝑟 ) ∈ {0, 1}𝑟+1, andm = (𝑚0, . . . , 𝑚𝑟 ).
Then the following MILP with variables 𝑎0, . . . , 𝑎𝑘 and 𝑏0, . . . , 𝑏𝑟 finds the optimal
polynomial for Theorem 3.2:

minimizem⊤b

subject to
𝑘∑︁
𝑖=0

𝑎𝑖 (𝐴𝑖)𝑣𝑣 ≥ 0, 𝑣 ∈ 𝑉 (𝐺)\{𝑢}

𝑘∑︁
𝑖=0

𝑎𝑖 (𝐴𝑖)𝑢𝑢 = 0

𝑘∑︁
𝑖=0

𝑎𝑖𝜃
𝑖
𝑗 − 𝑀𝑏 𝑗 + 𝜖 ≤ 0, 𝑗 = 0, . . . , 𝑑

b ∈ {0, 1}𝑟+1

(3.1)

Here𝑀 is some fixed large number and 𝜖 > 0 is small. ThisMILPhas to run for every
𝑢 ∈ 𝑉 (𝐺) and the best objective value is then the minimum of all separate objective val-
ues. This lowest objective value is exactly the best upper bound for the 𝑘-independence
number that can be obtained from the Inertia-type bound.

In [3] it is discussed that if the graph 𝐺 is 𝑘-partially walk-regular, then MILP (3.1)
only has to run for one 𝑢 ∈ 𝑉 (𝐺). In this case, using the same notation as above, MILP
(3.1) simplifies to the following MILP:

minimizem⊤b

subject to
𝑟∑︁
𝑖=0

𝑚𝑖 𝑝(𝜃𝑖) = 0

𝑘∑︁
𝑖=0

𝑎𝑖𝜃
𝑖
𝑗 − 𝑀𝑏 𝑗 + 𝜖 ≤ 0, 𝑗 = 0, . . . , 𝑑

b ∈ {0, 1}𝑟+1

(3.2)
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For 𝑘-partially walk-regular graphs 𝐺 , the objective value of MILP (3.2) is exactly
the best upper bound for the 𝑘-independence number that can be obtained from the
Inertia-type bound.

The Ratio-type bound is another upper bound on the 𝑘-independence number, but
specifically for regular graphs.

Theorem 3.3 (Ratio-type bound, [2, Theorem 3.2]) Let𝐺 be a regular graph with 𝑛 vertices,
adjacency eigenvalues 𝜆1 ≥ · · · ≥ 𝜆𝑛, and adjacency matrix 𝐴. Let 𝑝 ∈ R𝑘 [𝑥] with cor-
responding parameters 𝑊 (𝑝) := max𝑢∈𝑉 (𝐺) {(𝑝(𝐴))𝑢𝑢}, 𝜆(𝑝) := min𝑖∈[2,𝑛]{𝑝(𝜆𝑖)}.
Assume that 𝑝(𝜆1) > 𝜆(𝑝). Then the 𝑘-independence number 𝛼𝑘 of 𝐺 satisfies

𝛼𝑘 ≤ 𝑛𝑊 (𝑝) − 𝜆(𝑝)
𝑝(𝜆1) − 𝜆(𝑝)

.

For 𝑘 = 1 the Ratio-type bound can be reduced to the well-known ratio bound by
Hoffman (unpublished, see e.g. [34, Theorem 3.2]).

For 𝑘 = 2, 3 there are closed-form expressions for the Ratio-type bound that no
longer depend on the choice of 𝑝 ∈ R𝑘 [𝑥] and that are optimal in the sense that no
better bound can be obtained via Theorem 3.3.

Theorem 3.4 ([2, Corollary 3.3]) Let𝐺 be a regular graph with 𝑛 vertices and distinct adja-
cency eigenvalues 𝜃0 > 𝜃1 > · · · > 𝜃𝑟 with 𝑟 ≥ 2. Let 𝜃𝑖 be the largest eigenvalue such that
𝜃𝑖 ≤ −1. Then the 2-independence number 𝛼2 of 𝐺 satisfies

𝛼2 ≤ 𝑛 𝜃0 + 𝜃𝑖𝜃𝑖−1

(𝜃0 − 𝜃𝑖) (𝜃0 − 𝜃𝑖−1)
.

Moreover, this is the best possible bound that can be obtained by choosing a polynomial via
Theorem 3.3.

Theorem 3.5 ([38, Theorem 11]) Let𝐺 be a regular graph with 𝑛 vertices, distinct adjacency
eigenvalues 𝜃0 > 𝜃1 > · · · > 𝜃𝑟 with 𝑟 ≥ 3, and adjacency matrix 𝐴. Let 𝜃𝑠 be the
smallest eigenvalue such that 𝜃𝑠 ≥ − 𝜃2

0 +𝜃0 𝜃𝑟−Δ
𝜃0 (𝜃𝑟+1) , where Δ = max𝑢∈𝑉 (𝐺) {(𝐴3)𝑢𝑢}. Then the

3-independence number 𝛼3 of 𝐺 satisfies

𝛼3 ≤ 𝑛Δ − 𝜃0 (𝜃𝑠 + 𝜃𝑠+1 + 𝜃𝑟 ) − 𝜃𝑠𝜃𝑠+1𝜃𝑟

(𝜃0 − 𝜃𝑠) (𝜃0 − 𝜃𝑠+1) (𝜃0 − 𝜃𝑟 )
.

Moreover, this is the best possible bound that can be obtained by choosing a polynomial via
Theorem 3.3.

In [30] an LP has been proposed that finds the optimal polynomial for the Ratio-type
bound, which is the polynomial thatminimizes the upper bound on the 𝑘-independence
number, in case the graph 𝐺 is 𝑘-partially walk-regular. The objective value of this LP,
which uses the socalled minor polynomials, subsequently equals this minimized upper
bound. Let 𝐺 be a 𝑘-partially walk-regular graph with distinct adjacency eigenvalues
𝜃0 > 𝜃1 > · · · > 𝜃𝑟 with respective multiplicities𝑚0, 𝑚1, . . . , 𝑚𝑟 . The 𝑘-minor polyno-
mial is the polynomial 𝑓𝑘 ∈ R𝑘 [𝑥] that minimizes

∑𝑟
𝑖=0 𝑚𝑖 𝑓 (𝜃𝑖). Define the polynomial
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10 A. Abiad, L. Peters, and A. Ravagnani

𝑓𝑘 as 𝑓𝑘 (𝜃0) := 𝑥0 = 1 and 𝑓𝑘 (𝜃𝑖) := 𝑥𝑖 for 𝑖 = 1, . . . , 𝑟 , where (𝑥1, . . . , 𝑥𝑟 ) is a solution
of the following LP:

minimize
𝑟∑︁
𝑖=0

𝑚𝑖𝑥𝑖

subject to 𝑓 [𝜃0, . . . .𝜃𝑠] = 0, 𝑠 = 𝑘 + 1, . . . , 𝑟
𝑥𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑟

(3.3)

Here 𝑓 [𝜃0, . . . , 𝜃𝑠] denotes the 𝑠-th divided difference of Newton interpolation, recur-
sively defined by

𝑓 [𝜃𝑖 , . . . , 𝜃 𝑗 ] :=
𝑓 [𝜃𝑖+1, . . . , 𝜃 𝑗 ] − 𝑓 [𝜃𝑖 , . . . , 𝜃 𝑗−1]

𝜃 𝑗 − 𝜃𝑖
,

where 𝑗 > 𝑖, starting with 𝑓 [𝜃𝑖] = 𝑓 (𝜃𝑖) = 𝑥𝑖 for 𝑖 = 0, 1, . . . , 𝑟 . The best upper bound
for the 𝑘-independence number of 𝑘-partially walk-regular graphs that can be obtained
via the Ratio-type bound is exactly the objective value of LP (3.3), which follows from
[30, Theorem 4.1].

Note that the Lovász theta number is at least as good as the Ratio-type bound, but the
Ratio-type bound can be computed exactly and more efficiently since it only requires
the graph spectrum, while the Lovász theta number is an approximation and requires
the graph adjacency matrix. The relation between the performance of the Lovász theta
number and the Inertia-type bound is not known.

4 Improved bounds in several metrics

In this section we apply the Eigenvalue Method to some discrete metric spaces to esti-
mate the size of codes. The results show that it is a new powerful tool for coding theory.
Indeed, the bounds obtained using the Eigenvalue Method turn out to improve on state
of the art upper bounds on the cardinality of codes in those discrete metric spaces. See
Table 1 for an overview of the metrics already considered in literature and considered
in the remainder of this paper. In this section we consider discrete metric spaces with
the following distance functions: the city block metric, the projective metric (which is
a class of distance functions that includes well-known metrics such as the Hamming
metric, the rank metric and the sum-rank metric), and the phase-rotation metric.

4.1 City block metric

The city block metric, also called the 𝐿1-metric or the Manhattan metric, was used
already in the 18th century. Its first appearance in a coding-theoretical context is in [52],
although it is not properly defined as a metric yet. The city block metric can be viewed
as an extension of the Lee metric, which is widely used in coding theory, to Z𝑛 instead
of F𝑛𝑞 .
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Metric Sharp Improvement
Alternating rank [1] Ratio-type -
Block Section 5.1 Ratio-type -
City block Section 4.1 Inertia-type Inertia-type
Cyclic 𝑏-burst Section 5.2 Ratio-type -
Lee [6] Ratio-type Ratio-type
Phase-rotation Section 4.3 Inertia-type, Ratio-type Inertia-type, Ratio-type
Sum-rank [5] Ratio-type Ratio-type
Varshamov Section 5.3 Inertia-type -

Table 1: Overview of the metrics studied in literature and in this paper in the con-
text of the Eigenvalue Method. If one of the proposed spectral bounds is sharp in some
instances, this is indicated in the column “Sharp”. If a spectral bound gives an improve-
ment compared to the state of the art bounds in some instances, this is indicated in the
column “Improvement”.

Definition 4.1 The city block distance between x = (𝑥1, . . . , 𝑥𝑛), y = (𝑦1, . . . , 𝑦𝑛) ∈
[[𝑚 − 1]]𝑛 is defined as 𝑑cb (x, y) :=

∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖 |.

Note that for 𝑚 = 2 the city block metric coincides with the Hamming metric.
Therefore we assume 𝑚 ≥ 3.

Nowwe consider the discretemetric space ( [[𝑚−1]]𝑛, 𝑑cb) and apply the Eigenvalue
Method. Define the city block distance graph𝐺cb ( [[𝑚 − 1]]𝑛) as the graph with vertex set
[[𝑚 − 1]]𝑛 where vertices x, y ∈ [[𝑚 − 1]]𝑛 are adjacent if 𝑑cb (x, y) = 1. First we verify
that condition (C1) holds for this graph.

Lemma 4.1 The geodesic distance in 𝐺cb (Z𝑛𝑚) equals the city block distance.

Proof Let x = (𝑥1, . . . , 𝑥𝑛), y = (𝑦1, . . . , 𝑦𝑛) ∈ [[𝑚 − 1]]𝑛. Define 𝑟𝑖 := |𝑥𝑖 − 𝑦𝑖 | for
𝑖 = 1, . . . , 𝑛. Then 𝑑cb (x, y) =

∑𝑛
𝑖=1 𝑟𝑖 . We can make a path in 𝐺cb (Z𝑛𝑚) from x to the

vertex where the first coordinate is replaced by 𝑦1 of length 𝑟1 by going to a neighboring
vertex which has 1 added to (or subtracted from) the first coordinate until we reach the
desired vertex (𝑦1, 𝑥2, . . . , 𝑥𝑛). Similarly, we can make a path in𝐺cb ( [[𝑚 − 1]]𝑛) from
(𝑦1, 𝑥2, . . . , 𝑥𝑛) to the vertex where the second coordinate is replaced by 𝑦2 of length
𝑟2, and so on for all other coordinates. Traversing these paths one after another gives
a path of length

∑𝑛
𝑖=1 𝑟𝑖 from vertex x to vertex y in 𝐺cb ( [[𝑚 − 1]]𝑛). So the geodesic

distance from x to y is at most
∑𝑛

𝑖=1 𝑟𝑖 .
If the geodesic distance is less than

∑𝑛
𝑖=1 𝑟𝑖 , then, using the same path construc-

tion as before, it follows from the triangle inequality that 𝑑cb (x, y) <
∑𝑛

𝑖=1 𝑟𝑖 . This
is a contradiction, so the geodesic distance in 𝐺cb ( [[𝑚 − 1]]𝑛) equals the city block
distance. ■

Since condition (C1) holds, the EigenvalueMethod is applicable to the discretemetric
space ( [[𝑚 − 1]]𝑛, 𝑑cb). Next we check the desired properties (P1), (P2), and (P3).
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Remark 4.2 The graph𝐺cb ( [[𝑚−1]]𝑛) is not regular. Theneighbors of0 are the vectors
x = (𝑥1, . . . , 𝑥𝑛) ∈ [[𝑚−1]]𝑛 such that 𝑥𝑖 = 1 for exactly one 𝑖 ∈ {1, . . . , 𝑛} and 𝑥 𝑗 = 0
for all 𝑗 ≠ 𝑖. So 0 has 𝑛 neighbors. The neighbors of 1 are the vectors x = (𝑥1, . . . , 𝑥𝑛) ∈
[[𝑚 − 1]]𝑛 such that 𝑥𝑖 = 0 or 𝑥𝑖 = 2 for exactly one 𝑖 ∈ {1, . . . , 𝑛} and 𝑥 𝑗 = 1 for
all 𝑗 ≠ 𝑖. So 1 has 2𝑛 neighbors, implying that 𝐺cb ( [[𝑚 − 1]]𝑛) is not regular. Hence
𝐺cb ( [[𝑚 − 1]]𝑛) is also not walk-regular nor distance-regular.

Remark 4.2 shows that properties (P1) and (P2) are not satisfied, while (P3) is. This
implies that only the Inertia-type bound is applicable to the graph𝐺cb ( [[𝑚 − 1]]𝑛) and
not the Ratio-type bound as it requires regularity of the graph. In order to apply the for-
mer bound,we first determine the adjacency eigenvalues of the graph. These eigenvalues
follow directly from the next result.

Lemma 4.3 The graph𝐺cb ( [[𝑚− 1]]𝑛) equals the Cartesian product of 𝑛 path graphs on𝑚
vertices.

Proof Fix 𝑚. We prove the result by induction on 𝑛.
For 𝑛 = 1 the graph 𝐺cb ( [[𝑚 − 1]]𝑛) has 𝑚 vertices indexed as 0, 1, . . . , 𝑚 − 1 and

edge set {(𝑖, 𝑖 + 1) : 𝑖 = 0, . . . , 𝑚 − 2}. So𝐺cb ( [[𝑚 − 1]]𝑛) indeed equals the path graph
on 𝑚 vertices (after renumbering of the vertices).

Now suppose that the city block distance graph for the discrete metric space ( [[𝑚 −
1]]𝑛, 𝑑cb) equals the Cartesian product of 𝑛 path graphs on 𝑚 vertices:

𝑃𝑚□ · · ·□𝑃𝑚︸          ︷︷          ︸
𝑛 times

=: 𝐺,

where 𝑃𝑚 denotes the path graph on𝑚 vertices. Consider the city block distance graph
𝐺cb ( [[𝑚−1]]𝑛+1), so for 𝑛+1. The vertex set of𝐺□𝑃𝑚 equals the vertex set of𝐺cb ( [[𝑚−
1]]𝑛+1) (given the right naming of the vertices of 𝑃𝑚, namely 0 through 𝑚 − 1). Let
x = (𝑥1, . . . , 𝑥𝑛+1), y = (𝑦1, . . . , 𝑦𝑛+1) ∈ [[𝑚 − 1]]𝑛+1 be two adjacent vertices in
𝐺□𝑃𝑚. Then

• (𝑥1, . . . , 𝑥𝑛) = (𝑦1, . . . , 𝑦𝑛) and 𝑥𝑛+1 ∼ 𝑦𝑛+1 so 𝑑cb ((𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑥𝑛) =
0 and 𝑑cb (𝑥𝑛+1, 𝑦𝑛+1) = 1, or

• (𝑥1, . . . , 𝑥𝑛) ∼ (𝑦1, . . . , 𝑦𝑛) and 𝑥𝑛+1 = 𝑦𝑛+1 so 𝑑cb ((𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑥𝑛) =
1 and 𝑑cb (𝑥𝑛+1, 𝑦𝑛+1) = 0.

In both cases 𝑑cb (x, y) = 1, sox andy are adjacent in𝐺cb ( [[𝑚−1]]𝑛+1).Moreover, these
are the only two options when x, y ∈ [[𝑚 − 1]]𝑛+1 are adjacent in 𝐺cb ( [[𝑚 − 1]]𝑛+1).
Hence the graph 𝐺cb ( [[𝑚 − 1]]𝑛+1) is equal to the Cartesian product of graphs 𝐺 and
𝑃𝑚. By induction,𝐺cb ( [[𝑚 − 1]]𝑛) equals the Cartesian product of 𝑛 path graphs on 𝑚
vertices. ■

Now we are ready to derive the eigenvalue of our graph of interest.
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Lemma 4.4 The adjacency eigenvalues of 𝐺cb ( [[𝑚 − 1]]𝑛) are

𝜆k =

𝑛∑︁
𝑗=1

2 cos
(
𝑘 𝑗𝜋

𝑚 + 1

)
for every tuple k = (𝑘1, . . . , 𝑘𝑛) ∈ [𝑚]𝑛.

Proof The adjacency eigenvalues of the path graph 𝑃𝑚 are given by 𝜆𝑘 = 2 cos
(

𝑘 𝜋
𝑚+1

)
for 𝑘 ∈ [𝑚] (see for instance [19]). Since𝐺cb ( [[𝑚 − 1]]𝑛) equals the Cartesian product
of 𝑛 path graphs 𝑃𝑚, the result follows. ■

This expression for the eigenvalues of the city block distance graph can now be used
in the Inertia-type bound to obtain new bounds on themaximum cardinality of codes in
the city block metric. We then compare the obtained bounds to state of the art bounds:
the Plotkin-type bound and the Hamming-type bound.

Theorem 4.5 (Plotkin-type bound, [11, Theorem 13.49]) Let C ⊆ [[𝑚 − 1]]𝑛 be a code of
minimum city block distance 𝑑. If 𝑑 > 𝑛(𝑚−1)

2 , then

|C| ≤ 2𝑑
2𝑑 − 𝑛(𝑚 − 1) .

Remark 4.6 The Plotkin-type bound does not follow immediately from [11, Theorem
13.49]. After the substitution 𝐷̄ := 1

𝑚

∑𝑚−1
𝑖=1 𝑑cb (0, 𝑖) = 𝑚−1

2 , the bound follows from
rewriting the inequality in [11, Theorem 13.49].

Theorem 4.7 (Hamming-type bound, [33, Theorem 3.1]) Let C ⊆ [[𝑚 − 1]]𝑛 be a code of
minimum city block distance 𝑑. Define 𝑡 := ⌊ 𝑑−1

2 ⌋. Then

|C| ≤ 𝑚𝑛

𝜂𝑡 ( [[𝑚 − 1]]𝑛) ,

where 𝜂𝑡 ( [[𝑚 − 1]]𝑛) := min {|𝐵𝑡 (x) | : x ∈ [[𝑚 − 1]]𝑛} and 𝐵𝑡 (x) :=
{y ∈ [[𝑚 − 1]]𝑛 : 𝑑cb (x, y) ≤ 𝑡}.

In [33, Algorithm 1] an algorithm is described that computes the value of 𝜂𝑡 ( [[𝑚 −
1]]𝑛) given specific values of 𝑡 and x. We use this algorithm to compute the Hamming-
type upper bound in specific instances.

Next, we compare the bound obtained using the Inertia-type boundwith the Plotkin-
type bound from Theorem 4.5 and the Hamming-type bound from Theorem 4.7. We
split the discussion in two cases.

Case 𝑘 = 1: For 𝑘 = 1 the Inertia-type bound reduces to the well-known inertia
bound, which is independent of the choice of the polynomial 𝑝 ∈ R𝑘 [𝑥]. Therefore, the
case 𝑘 = 1 is considered first. In this case 𝑑 = 𝑘 + 1 = 2, so for the Hamming-type
bound we get 𝑡 := ⌊ 𝑑−1

2 ⌋ = 0 and 𝜂𝑡 ( [[𝑚 − 1]]𝑛) = 1 since any ball around a code word
of radius 0 contains only the code word itself. The Hamming-type bound then becomes
|C| ≤ 𝑚𝑛, which is a trivial upper bound, so the inertia bound certainly performs better
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than the Hamming-type bound. Since 𝑑 = 2, the condition of the Plotkin-type bound,
𝑑 >

𝑛(𝑚−1)
2 , together with the constraint 𝑚 ≥ 3, gives only two instances where the

Plotkin-type bound applies: 𝑛 = 1, 𝑚 = 3 and 𝑛 = 1, 𝑚 = 4. For 𝑛 = 1, 𝑚 = 3 both the
inertia bound and thePlotkin-type bound give anupper boundof 2. For 𝑛 = 1, 𝑚 = 4 the
inertia bound gives 2,while the Plotkin-type bound gives 4. So in this instance the inertia
bound gives an improved upper bound. Note that in both instances the inertia bound
turns out to be sharp. All in all, the inertia bound, which is the Inertia-type bound in
the case 𝑘 = 1, performs no worse than the Plotkin-type bound and the Hamming-type
bound.

Case 𝑘 ≥ 2:Next we consider the case 𝑘 ≥ 2. Here we resort to the proposed MILP
for computing the value of the Inertia-type bound in specific instances. Since the city
block distance graph is not walk-regular, only the slower MILP (3.1) is applicable. This
MILP requires the construction of the graph𝐺cb ( [[𝑚−1]]𝑛) to use the adjacencymatrix
of this graph. In this case we also compute the Lovász theta number of the graph.

Now we compare the upper bounds from the Inertia-type bound with the Plotkin-
type bound, the Hamming-type bound and the Lovász theta number for the following
instances:

𝑛 = 1, 2, 3, 𝑚 = 3, 4, 𝑘 = 1, . . . , 𝑛(𝑚 − 1) − 1.

and 𝑛 = 1, 2, 𝑚 = 5, 6, 𝑘 = 1, . . . 𝑛(𝑚 − 1) − 1.

and 𝑛 = 3, 𝑚 = 5, 𝑘 = 1, . . . , 7.

Note that we are also considering some instances where 𝑘 = 1 since we have only seen
two of those thus far. The results can be seen in Table 2. The column “Inertia-type” gives
the output of the Inertia-type bound for the given graph instance. Similarly the col-
umn “𝜗(𝐺𝑘)” contains the value of the Lovász theta number, the column “Plotkin-type”
contains the value of the Plotkin-type upper bound, and the column “Hamming-type”
contains the value of the Hamming-type bound. The column “𝛼𝑘” contains the value of
the 𝑘-independence number of the graph for that instance. Only the instances where the
Inertia-type boundperformednoworse than thePlotkin-type bound and theHamming-
type bound are present in the table. An upper bound in the column “Inertia-type” is
marked in bold when it is less than both the Plotkin-type upper bound (if applicable)
and the Hamming-type upper bound.

We see that there are several instances where the Inertia-type bound performs better
than both the Plotkin-type bound and theHamming-type bound. In all of these instances
the Inertia-type bound also performs as good as the Lovász theta number and is sharp.
Moreover, there are many other instances where the Inertia-type bound is also sharp.

4.2 Projective metric

The projective metric, introduced in [32] and recently investigated in [46], is a general
metric that depends on a specific choice of set. Many well-known metrics are instances
of this metric for the right choice of set, like the Hamming metric and the sum-rank
metric.
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𝑚 𝑛 𝑘 Inertia-type 𝛼𝑘 𝜗(𝐺𝑘) Plotkin-type
(Theorem 4.5)

Hamming-type
(Theorem 4.7)

3 1 1 2 2 2.0 2 3
4 1 1 2 2 2.0 4 4
4 1 2 2 2 2.0 2 2
5 1 1 3 3 3.0 - 5
5 1 2 2 2 2.0 3 5

2
5 1 3 2 2 2.0 2 5

2
6 1 1 3 3 3.0 - 6
6 1 2 2 2 2.0 6 3
6 1 3 2 2 2.0 2 3
6 1 4 2 2 2.0 2 2
3 2 2 3 2 2.33 3 3
4 2 3 3 3 3.0 4 16

3
5 2 4 4 3 3.06 5 25

6
5 2 5 3 2 2.33 3 25

6
6 2 5 6 3 3.17 6 6
3 3 3 4 4 4.0 4 27

4
4 3 1 32 32 32.0 - 64
4 3 5 4 4 4.0 4 32

5
4 3 8 2 2 2.0 2 2

Table 2: Results of the Inertia-type bound for the city block metric, compared to the
Plotkin-type bound, theHamming-type bound, theLovász theta number𝜗(𝐺𝑘), and the
actual 𝑘-independence number 𝛼𝑘 . Improvements of the Inertia-type bound compared
to the Plotkin-type bound and the Hamming-type bound are marked in bold.

Definition 4.2 Let F = {𝐹1, . . . , 𝐹𝑚} be a set of one-dimensional subspaces of F𝑛𝑞
such that span

(⋃𝑚
𝑖=1 𝐹𝑖

)
= F𝑛𝑞 . The projective F -weight of x ∈ F𝑛𝑞 is defined as

𝑤F (x) := min

{
|𝐼 | : x ∈ span

(⋃
𝑖∈𝐼

𝐹𝑖

)}
.

The projective F -distance between x, y ∈ F𝑛𝑞 is defined as 𝑑F (x, y) := 𝑤F (x − y).

From here on let F be such a set as in Definition 4.2. We consider the discrete metric
space (F𝑛𝑞 , 𝑑F) and apply the Eigenvalue Method to it. Define the projective F -distance
graph 𝐺F (F𝑛𝑞) as the graph with vertex set F𝑛𝑞 where vertices x, y ∈ F𝑛𝑞 are adjacent if
𝑑F (x, y) = 1. We need to verify first if condition (C1) is satisfied.

Lemma 4.8 The geodesic distance in 𝐺F (F𝑛𝑞) coincides with the projective F -distance.
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Proof Let x, y ∈ F𝑛𝑞 with 𝑑F (x, y) = 𝑑. Then, by definition, there is a subset
{𝑖1, . . . , 𝑖𝑑} ⊆ [𝑚] of size 𝑑 such that

x − y ∈ span

(
𝑑⋃
𝑗=1
𝐹𝑖 𝑗

)
.

Thismeans that for all 𝑗 ∈ {1, . . . , 𝑑} there exists an f𝑖 𝑗 ∈ 𝐹𝑖 𝑗 such thatx−y =
∑𝑑

𝑗=1 f𝑖 𝑗 .
Note that (x, x − f𝑖1 , x − f𝑖1 − f𝑖2 , . . . , x − ∑𝑑

𝑗=1 f𝑖 𝑗 = y) is a path in 𝐺F (F𝑛𝑞) from x
to y of length 𝑑. So the geodesic distance between x and y is at most 𝑑. By minimality
of the cardinality of {𝑖1, . . . , 𝑖𝑑} the geodesic distance cannot be less than 𝑑. Hence the
geodesic distance in𝐺F (F𝑛𝑞) equals the projective F -distance. ■

Since condition (C1) is satisfied, theEigenvalueMethod is applicable. Thenext results
show that the projective F -distance graph has desired properties (P1) and (P2).

Lemma 4.9 The graph 𝐺F (F𝑛𝑞) is a Cayley graph over F𝑛𝑞 with connecting set 𝑆 := {x ∈
F𝑛𝑞 : 𝑤F (x) = 1}.

Proof Let (x, y) ∈ 𝐸 (𝐺F (F𝑛𝑞)). Then 𝑤F (x − y) = 𝑑F (x, y) = 1, so x − y ∈ 𝑆 and
x = y + s for some s ∈ 𝑆. Now let x ∈ F𝑛𝑞 and s ∈ 𝑆. Then 𝑑F (x, x + s) = 𝑤F (s) = 1
since s ∈ 𝑆. So x and x + s are adjacent in𝐺F (F𝑛𝑞). ■

Corollary 4.10 The graph 𝐺F (F𝑛𝑞) is vertex-transitive, regular, and walk-regular.

Proof Since Cayley graphs are vertex-transitive, the graph 𝐺F (F𝑛𝑞) is vertex-
transitive. This immediately implies that𝐺F (F𝑛𝑞) is regular and walk-regular. ■

The last property to check is (P3). However, distance-regularity of the graph𝐺F (F𝑛𝑞)
depends on the choice of set F . The set FH = {𝐹1, . . . , 𝐹𝑛} with 𝐹𝑖 = span(e𝑖) for
𝑖 = 1, . . . , 𝑛, for instance, results in theHamming distance, and the corresponding graph
𝐺FH (F𝑛𝑞) is the Hamming graph, which is known to be distance-regular (see e.g. [15]).
On the other hand, the sum-rankmetric, whichwe elaborate on below, results in a graph
that is, in most instances, not distance-regular [5, Proposition 12].

The sum-rank metric is an example of a projective metric.

Definition 4.3 Let 𝑡 be a positive integer and let n = (𝑛1, . . . , 𝑛𝑡 ),m = (𝑚1, . . . , 𝑚𝑡 )
be ordered tuples of positive integers with 𝑚1 ≥ 𝑚2 ≥ · · · ≥ 𝑚𝑡 , and 𝑚𝑖 ≥ 𝑛𝑖 for all
𝑖 ∈ [𝑡]. The sum-rank-metric space is an F𝑞-linear vector space Fn×m𝑞 defined as follows:

Fn×m𝑞 := F𝑛1×𝑚1
𝑞 × · · · × F𝑛𝑡×𝑚𝑡

𝑞 .

The sum-rank of an element 𝑋 = (𝑋1, . . . , 𝑋𝑡 ) ∈ Fn×m𝑞 is srk(𝑋) :=
∑𝑡

𝑖=1 rk(𝑋𝑖), where
rk(𝑋𝑖) denotes the rank of matrix 𝑋𝑖 . The sum-rank distance between 𝑋,𝑌 ∈ Fn×m𝑞 is
srk(𝑋 − 𝑌 ).
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Note that the sum-rankmetric is indeed an instance of the projectivemetric: take the
set Fsrk containing all possible spans of a tuple of matrices, all equal to the zero matrix
except for one which is a rank-one matrix. The sum-rank metric has been studied in
the context of the Eigenvalue Method in [5]. Abiad et al. establish various properties of
the sum-rank-metric graph, which is the graph with vertex set Fn×m𝑞 where two vertices
are adjacent if their sum-rank distance equals 1. Besides, new bounds on the maximum
cardinality of sum-rank-metric codes are derived using the Ratio-type bound. These
new bounds improve on the state of the art bounds for several choices of the parameters.

For specific choices of set F , we want to be able to compare the results of the Eigen-
value Method to state of the art bounds. Depending on the set F , bounds may exist for
the specific metric arising in that case, like for the sum-rank metric. However, a bound
for general codes in the projective metric also exists, namely a Singleton-type bound.

Theorem 4.11 (Singleton-type bound, [46, Theorem 83]) LetC ⊆ F𝑛𝑞 be a code ofminimum
projective F -distance 𝑑. For 𝑡 ∈ {0, . . . , 𝑛} define 𝜇F (𝑡) as the maximum cardinality of a
subset G ⊆ F such that:

• all f𝑖 ∈ G are linearly independent over F𝑞 ,
• all v ∈ ⟨G⟩ have 𝑤F (v) ≤ 𝑡.

Then

|C| ≤ 𝑞𝑛−𝜇F (𝑑−1) ≤ 𝑞𝑛−𝑑+1.

4.3 Phase-rotation metric

Another example of a projective metric is the phase-rotation metric. Note that although
this is an instance of the previous metric, the phase-rotation metric is treated separately
since we go into more depth with this metric.

The phase-rotation metric, which was introduced in [31], is particularly suitable for
decoding in a binary channel where errors are caused by phase inversions (where all
zeros change to ones and all ones change to zeros), and random bit errors (where at
random a zero changes to a one or a one changes to a zero).

Definition 4.4 LetFpr = {𝐹1, . . . , 𝐹𝑛+1} be the set with 𝐹𝑖 = span(e𝑖) for 𝑖 = 1, . . . , 𝑛
and 𝐹𝑛+1 = span(1). The phase-rotation weight 𝑤pr and the phase-rotation distance 𝑑pr are
defined as the projectiveFpr-weight and the projectiveFpr-distance fromDefinition 4.2,
respectively.

Example 4.12 Consider the instance where 𝑛 = 4, 𝑞 = 2. Take x = (0, 0, 0, 0), y =

(1, 0, 0, 1) and z = (1, 1, 0, 1), which are vectors inF4
2. Then the phase-rotation distance

between x and y is 2 since the vectors differ in two coordinates and

x − y = (0, 0, 0, 0) − (1, 0, 0, 1) = (1, 0, 0, 1) = e1 + e4.

The phase-rotation distance between x and z is also 2, even though the vectors differ in
three coordinates, because

x − z = (0, 0, 0, 0) − (1, 1, 0, 1) = (1, 1, 0, 1) = (1, 1, 1, 1) + (0, 0, 1, 0) = 1 + e3.
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Nowwe apply the EigenvalueMethod to the discrete metric space (F𝑛𝑞 , 𝑑pr) with the
phase-rotation distance. Define the phase-rotation distance graph 𝐺pr (F𝑛𝑞) as the graph
with vertex set F𝑛𝑞 where vertices x, y ∈ F𝑛𝑞 are adjacent if 𝑑pr (x, y) = 1. Note that this
is exactly the projective F -distance graph for the specific set F = Fpr. Next we check
the conditions of the EigenvalueMethod. Since the phase-rotation distance graph equals
the projective F -distance graph 𝐺F (F𝑛𝑞) for F = Fpr, condition (C1) and properties
(P1) and (P2) follow immediately.

Corollary 4.13 The geodesic distance in𝐺pr (F𝑛𝑞) coincides with the phase-rotation distance.

Proof Since the phase-rotation distance is a projective distance for the specific set Fpr
of Definition 4.4 and the phase-rotation distance graph𝐺pr (F𝑛𝑞) is defined accordingly,
Lemma 4.8 directly implies that the geodesic distance in 𝐺pr (F𝑛𝑞) coincides with the
phase-rotation distance. ■

Corollary 4.14 The graph 𝐺pr (F𝑛𝑞) is a Cayley graph. Thus 𝐺pr (F𝑛𝑞) is vertex-transitive,
regular, and walk-regular. The degree of𝐺pr (F𝑛𝑞) is 𝑞−1 if 𝑛 = 1 and (𝑞−1) (𝑛+1) if 𝑛 ≥ 2.

Proof The graph properties follow immediately from the properties of the projective
distance graph in Lemma 4.9 and Corollary 4.10. The degree of 𝐺pr (F𝑛𝑞) is exactly the
number of distinct nonzero vectors in∪𝑛+1

𝑖=1 𝐹𝑖 . If 𝑛 = 1, 𝐹1 = 𝐹𝑛+1 and 𝐹1 contains 𝑞−1
nonzero vectors, so the degree is 𝑞− 1. If 𝑛 ≥ 2, all 𝐹𝑖 are disjoint and every 𝐹𝑖 contains
𝑞 − 1 nonzero vectors, so the degree is (𝑞 − 1) (𝑛 + 1). ■

So condition (C1) and properties (P1) and (P2) are met. Next we check property (P3).
Distance-regularity does not follow immediately like the other properties of 𝐺pr (F𝑛𝑞),
but the following result gives a necessary and sufficient condition for distance-regularity
of𝐺pr (F𝑛𝑞).

Proposition The graph 𝐺pr (F𝑛𝑞) is distance-regular if and only if 𝑛 = 1, 𝑛 = 2 or
𝑞 = 2. ■

Proof (⇐) We prove the three cases, 𝑛 = 1, 𝑛 = 2 and 𝑞 = 2, separately. The case
𝑛 = 1 follows immediately: the graph for 𝑛 = 1 is a complete graph on 𝑞 vertices, which
is distance-regular.

When 𝑞 = 2, the phase-rotation distance graph equals the folded cube graph of
dimension 𝑛 + 1, which is a distance-regular graph [15, Section 9.2D].

Consider the case 𝑛 = 2, 𝑞 ≥ 3. The diameter of 𝐺pr (F2
𝑞) then equals 2. Observe

that it suffices to show that for vertices u and vwith 𝑑 (u, v) = 𝑖 the values 𝑏𝑖 (u, v) and
𝑐𝑖 (u, v), the number of neighbors of u at distance 𝑖 + 1, 𝑖 − 1 from v respectively, do not
depend on the choice of u and v for 𝑖 = 0, 1, 2. Since the phase-rotation distance graph
is vertex-transitive, wemay assumewithout loss of generality that v = 0. Since𝐺pr (F2

𝑞)
is 3(𝑞 − 1)-regular, we have 𝑏0 = 3(𝑞 − 1) which does not depend on the choice of u.
Also 𝑐0 = 0, 𝑐1 = 1, and 𝑏2 = 0 by definition. Now consider 𝑏1 (u, v). A vertex u at
distance 1 from v = 0 has the form (𝑎, 0), (0, 𝑎) or (𝑎, 𝑎) with 𝑎 ∈ F∗𝑞 . The neighbors
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of v at distance 2 from (𝑎, 0), (0, 𝑎), (𝑎, 𝑎) with 𝑎 ∈ F∗𝑞 are{
(0, 𝑥), (𝑦, 𝑦) : 𝑥, 𝑦 ∈ F∗𝑞 , 𝑥 ≠ −𝑎, 𝑦 ≠ 𝑎

}
,

{
(𝑥, 0), (𝑦, 𝑦) : 𝑥, 𝑦 ∈ F∗𝑞 , 𝑥 ≠ −𝑎, 𝑦 ≠ 𝑎

}
,{

(0, 𝑥), (𝑦, 0) : 𝑥, 𝑦 ∈ F∗𝑞 , 𝑥, 𝑦 ≠ 𝑎
}
,

respectively. All these three sets contain 2𝑞 − 4 distinct vertices so 𝑏1 = 2𝑞 − 4, which
is independent of the choice of u. Now consider 𝑐2 (u, v). A vertex u at distance 2 from
v = 0 has the form (𝑎, 𝑏) with 𝑎, 𝑏 ∈ F∗𝑞 , 𝑎 ≠ 𝑏. The neighbors of v that are also
neighbors (𝑎, 𝑏) with 𝑎, 𝑏 ∈ F∗𝑞 , 𝑎 ≠ 𝑏 are the vertices

{(0, 𝑏), (𝑎, 0), (𝑎, 𝑎), (𝑏, 𝑏), (0, 𝑏 − 𝑎), (𝑎 − 𝑏, 0)}.

These are six distinct vertices, independent of the choice of 𝑎, 𝑏 ∈ F∗𝑞 such that 𝑎 ≠ 𝑏,
so independent of the choice of u, and hence 𝑐2 = 6. This proves that𝐺pr (F2

𝑞) for 𝑞 ≥ 3
is distance-regular.

(⇒) Now we show that 𝑛 = 1, 𝑛 = 2 and 𝑞 = 2 are the only cases where the phase-
rotation distance graph is distance-regular. Let 𝑛 ≥ 3 and 𝑞 ≥ 3. Define 𝑟 := ⌈ 𝑛2 ⌉.
Let

x := (1, . . . , 1︸   ︷︷   ︸
𝑟−1 times

, 𝑎, 0, . . . , 0), y := (1, . . . , 1︸   ︷︷   ︸
𝑟 times

, 0, . . . , 0),

for some fixed 𝑎 ∈ F∗𝑞 , 𝑎 ≠ 1. Note that 𝑑pr (x, 0) = 𝑑pr (y, 0) = 𝑟 .
When 𝑛 is odd, consider 𝑐𝑟 . For x and the zero vector we find

𝑐𝑟 (x, 0) = 𝑝𝑟1,𝑟−1 (x, 0) = 𝑟,

since the only neighbors of x at distance 𝑟−1 from the zero vector are the vectors where
one of the nonzero coordinates of x is replaced with a zero. For y and the zero vector
we find

𝑐𝑟 (y, 0) = 𝑝𝑟1,𝑟−1 (y, 0) ≥ 𝑟 + 1,
since y has 𝑟 neighbors at distance 𝑟 − 1 from the zero vector similarly as x and the zero
vector, but y also has the vector starting with 𝑟 + 1 ones and then 𝑟 − 2 zeros, which is at
distance 𝑟 − 1 from the zero vector, as a neighbor. So the number 𝑐𝑟 for 𝑛 odd depends
on the choice of vertices.

When 𝑛 is even we consider 𝑎𝑟 . For x and the zero vector we get:

𝑎𝑟 (x, 0) = 𝑝𝑟1,𝑟 (x, 0) = (𝑞 − 2)𝑟,

since the only neighbors of x at distance 𝑟 from the zero vector are the vectors where
one of the 𝑟 nonzero coordinates of x is replaced by another nonzero element of F𝑞 . For
y and the zero vector we have

𝑎𝑟 (y, 0) = 𝑝𝑟1,𝑟 (y, 0) ≥ (𝑞 − 2)𝑟 + 1,

since y has (𝑞 − 2)𝑟 neighbors at distance 𝑟 from the zero vector similarly as x and the
zero vector, buty also has the vector startingwith 𝑟+1 ones and then 𝑟−1 zeros, which is
at distance 𝑟 from the zero vector, as neighbor. So the value of 𝑎𝑟 depends on the choice
of vertices for 𝑛 even. Hence𝐺pr (F𝑛𝑞) is not distance-regular when 𝑛 ≥ 3, 𝑞 ≥ 3, which
proves the result. ■
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The latter result shows that property (P3) is met when 𝑛 ≥ 3 and 𝑞 ≥ 3. Moreover,
since the graph 𝐺pr (F𝑛𝑞) has the desired properties (P1) and (P2), both the Inertia-type
bound and the Ratio-type bound can be applied to this graph. To do so, we first need to
determine the adjacency eigenvalues of the phase-rotation distance graph.

Proposition The adjacency eigenvalues of𝐺pr (F𝑛𝑞) for 𝑛 ≥ 2 are

𝜆r =

(
𝑛∑︁
𝑙=1

𝑞1{𝑟𝑙 = 0}
)
+ 𝑞1

{
𝑛∑︁
𝑙=1

𝑟𝑙 ≡ 0 mod 𝑞

}
− 𝑛 − 1

for every tuple r = (𝑟1, . . . , 𝑟𝑛) ∈ [[𝑞 − 1]]𝑛. ■

Note that 1 denotes the indicator function.

Remark 4.17 The latter result does not give the eigenvalues of 𝐺pr (F𝑛𝑞) for 𝑛 = 1.
However, in this case, the phase-rotation distance graph is equivalent to the complete
graph on 𝑞 vertices 𝐾𝑞 . The adjacency eigenvalues of 𝐺pr (F𝑞) are thus 𝑞 − 1 and −1
with respective multiplicities 1 and 𝑞 − 1 (see for instance [19]).

For the proof of Proposition 4.16 we use characters of groups. So we first present
some background on characters and how they can be used to determine the eigenvalues
of a Cayley graph. For more details about the latter, we refer the reader to [41].

Definition 4.5 Let 𝐺 be a group. A function 𝜒 : 𝐺 ↦→ C is a character of 𝐺 if 𝜒 is a
group homomorphism from𝐺 to C\{0} and |𝜒(𝑔) | = 1 for every 𝑔 ∈ 𝐺 .

Example 4.18 The characters of Z/𝑚Z are 𝜒𝑟 (𝑥) := (𝜁𝑚)𝑟 𝑥 for 𝑟 = 0, . . . , 𝑚 − 1,
where 𝜁𝑚 := exp( 2𝜋𝑖

𝑚
) denotes the 𝑚-th root of unity [41].

Example 4.18 gives the characters of cyclic groups. Note that any finite abelian group
𝐺 is isomorphic to a product of cyclic groups, i.e.𝐺 � Z/𝑚1Z × · · · × Z/𝑚𝑙Z. It turns
out that the characters of a Cartesian product of groups are related to the characters of
the individual groups.

Lemma 4.19 Let𝐺, 𝐻 be finite abelian groups with characters 𝜒𝐺,𝑖 , 𝜒𝐻, 𝑗 respectively. The
characters of 𝐺 × 𝐻, the Cartesian product of 𝐺 and 𝐻, are 𝜒𝑖, 𝑗 ((𝑔, ℎ)) := 𝜒𝐺,𝑖 (𝑔) ·
𝜒𝐻, 𝑗 (ℎ).

Proof Let ∗, ∗′ denote the operation in𝐺 , respectively𝐻. Let (𝑔1, ℎ1), (𝑔2, ℎ2) ∈ 𝐺×
𝐻. We want to prove that 𝜒𝑖, 𝑗 ((𝑔1, ℎ1) (∗ × ∗′) (𝑔2, ℎ2)) = 𝜒𝑖, 𝑗 ((𝑔1, 𝑔2))𝜒𝑖, 𝑗 ((𝑔2, ℎ2))
since this is a sufficient condition for 𝜒𝑖, 𝑗 to be a group homomorphism. Observe:

𝜒𝑖, 𝑗 ((𝑔1, ℎ1) (∗×∗′) (𝑔2, ℎ2)) = 𝜒𝑖, 𝑗 ((𝑔1 ∗𝑔2, ℎ1 ∗′ ℎ2)) = 𝜒𝐺,𝑖 (𝑔1 ∗𝑔2)𝜒𝐻, 𝑗 (ℎ1 ∗′ ℎ2)

and

𝜒𝑖, 𝑗 ((𝑔1, 𝑔2))𝜒𝑖, 𝑗 ((𝑔2, ℎ2)) = 𝜒𝐺,𝑖 (𝑔1)𝜒𝐻, 𝑗 (𝑔2)𝜒𝐺,𝑖 (ℎ1)𝜒𝐻, 𝑗 (ℎ2) = 𝜒𝐺,𝑖 (𝑔1∗𝑔2)𝜒𝐻, 𝑗 (ℎ1∗′ℎ2),
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since 𝜒𝐺,𝑖 and 𝜒𝐻, 𝑗 are group homomorphisms of𝐺, 𝐻, respectively. So 𝜒𝑖, 𝑗 is a group
homomorphism of𝐺 × 𝐻. Moreover, for any (𝑔, ℎ) ∈ 𝐺 × 𝐻, we have

|𝜒𝑖, 𝑗 ((𝑔, ℎ)) | = |𝜒𝐺,𝑖 (𝑔) | · |𝜒𝐻, 𝑗 (ℎ) | = 1,

since 𝜒𝐺,𝑖 and 𝜒𝐻, 𝑗 are characters of 𝐺, 𝐻 respectively. Hence 𝜒𝑖, 𝑗 is a character of
𝐺 × 𝐻. ■

With Lemma 4.19 and Example 4.18, the characters of finite abelian groups are now
completely defined. The next result tells us how characters determine the adjacency
eigenvalues of a Cayley graph, which is the final bit of information needed for the proof
of Proposition 4.16.

Lemma 4.20 ([41] ) Let𝐺 be a finite abelian group, let 𝜒𝑖 for be the characters of𝐺 , and let
𝑆 ⊆ 𝐺 be a symmetric set. The adjacency eigenvalues of the Cayley graph over group 𝐺 with
connecting set 𝑆 are given by

𝜆𝑖 =
∑︁
𝑠∈𝑆

𝜒𝑖 (𝑠),

for 𝑖 = 0, . . . , |𝐺 | − 1.

Proof The graph 𝐺pr (F𝑛𝑞) is a Cayley graph over F𝑛𝑞 with connecting set 𝑆 := {𝑐x :
𝑐 ∈ F∗𝑞 , x ∈ {e1, . . . , e𝑛, 1}}. First we determine the characters of F𝑞 . The field F𝑞
seen as a group is isomorphic to (Z/𝑝Z)𝑘 for some prime 𝑝 such that 𝑞 = 𝑝𝑘 . Since
the characters of Z/𝑝Z are known to be 𝜒𝑟 (𝑥) = (𝜁𝑝)𝑟 𝑥 for 𝑟 = 0, . . . , 𝑝 − 1 where
𝜁𝑝 = exp (2𝜋𝑖/𝑝) (see Example 4.18), Lemma 4.19 tells us that the characters of F𝑞 are

𝜒r (x) =
𝑘∏
𝑗=1

(𝜁𝑝)𝑟 𝑗 𝑥 𝑗 = (𝜁𝑝)
∑𝑘

𝑗=1 𝑟 𝑗 𝑥 𝑗 ,

for r ∈ [[𝑝 − 1]]𝑘 , where x = (𝑥1, . . . , 𝑥𝑘) ∈ (Z/𝑝Z)𝑘 � F𝑞 . The multiplication 𝑟 𝑗𝑥 𝑗
is taken modulo 𝑝; this abuse of notation is used more often in this proof. Now we can
determine the characters of F𝑛𝑞 , again using Lemma 4.19:

𝜒r ((x1, . . . , x𝑛)) =
𝑛∏
𝑙=1

𝜒r𝑙 (x𝑙) =
𝑛∏
𝑙=1

(𝜁𝑝)
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑥𝑙 𝑗 = (𝜁𝑝)
∑𝑛

𝑙=1
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑥𝑙 𝑗 , (4.1)

for r = (r1, . . . , r𝑛) with r𝑙 = (𝑟𝑙1 , . . . , 𝑟𝑙𝑘 ) ∈ [[𝑝 − 1]]𝑘 , 𝑙 = 1, . . . , 𝑛, where x𝑙 ∈
(Z/𝑝Z)𝑘 � F𝑞 , 𝑙 = 1, . . . , 𝑛. By Lemma 4.20 the adjacency eigenvalues of𝐺pr (F𝑛𝑞) are
then

𝜆r =
∑︁
s∈𝑆

𝜒r (s),

for tuples r ∈ ([[𝑝 − 1]]𝑘)𝑛, where every s ∈ 𝑆 is viewed as an element of ( [[𝑝 − 1]]𝑘)𝑛.
Now we simplify this expression. Let s ∈ 𝑆, then s = 𝑐x for some 𝑐 ∈ F∗𝑞

and x ∈ {e1, . . . , e𝑛, 1}. If s is viewed as an element of ( [[𝑝 − 1]]𝑘)𝑛, then s =

(c, 0, . . . , 0), . . . , (0, . . . , 0, c) or (c, . . . , c) for some c ∈ [[𝑝 − 1]]𝑘 , c ≠ 0. So for a
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fixed r ∈ ([[𝑝 − 1]]𝑘)𝑛 we get:

𝜆r =
∑︁

c∈[[𝑝−1]]𝑘 ,c≠0
𝜒r ((c, 0, . . . , 0)) + · · · + 𝜒r ((0, . . . , 0, c)) + 𝜒r ((c, . . . , c)).

Since 𝜒𝑟𝑙 (0) = 1 for 𝑙 = 1, . . . , 𝑛, this simplifies to

𝜆r =
∑︁

c∈[[𝑝−1]]𝑘 ,c≠0
𝜒r1 (c) + · · · + 𝜒r𝑛 (c) +

𝑛∏
𝑙=1

𝜒r𝑙 (c).

Using the expression for the characters from Equation (4.1) and letting the sum also run
over c = 0 gives:

𝜆r =
∑︁

c∈[[𝑝−1]]𝑘

𝑛∑︁
𝑙=1

(𝜁𝑝)
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 + (𝜁𝑝)
∑𝑛

𝑙=1
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 − 𝑛 − 1. (4.2)

We know that 1 + 𝜁𝑚 + · · · + (𝜁𝑚)𝑚−1 = 0 for any 𝑚-th root of unity 𝜁𝑚 ≠ 1. Since∑𝑘
𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 mod 𝑝 attains every value of {0, . . . , 𝑝 − 1} equally often when r𝑙 ≠ 0 for

c ∈ [[𝑝 − 1]]𝑘 , we get ∑︁
c∈[[𝑝−1]]𝑘

(𝜁𝑝)
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 = 0

for 𝑙 = 1, . . . , 𝑛 if r𝑙 ≠ 0. If r𝑙 = 0, then∑︁
c∈[[𝑝−1]]𝑘

(𝜁𝑝)
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 =
∑︁

c∈[[𝑝−1]]𝑘
1 = 𝑝𝑘 = 𝑞.

Also
∑𝑛

𝑙=1
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 mod 𝑝 attains every value in {0, . . . , 𝑝 − 1} equally often when∑𝑛
𝑙=1 r𝑙 = (∑𝑛

𝑙=1 𝑟𝑙1 , . . . ,
∑𝑛

𝑙=1 𝑟𝑙𝑘 ) . 0 mod 𝑝 for c ∈ [[𝑝 − 1]]𝑘 . So∑︁
c∈[[𝑝−1]]𝑘

(𝜁𝑝)
∑𝑛

𝑙=1
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 = 0

if
∑𝑛

𝑙=1 r𝑙 . 0 mod 𝑝. If
∑𝑛

𝑙=1 r𝑙 ≡ 0 mod 𝑝, then∑︁
c∈[[𝑝−1]]𝑘

(𝜁𝑝)
∑𝑛

𝑙=1
∑𝑘

𝑗=1 𝑟𝑙 𝑗 𝑐 𝑗 =
∑︁

c∈[[𝑝−1]]𝑘
(𝜁𝑝)

∑𝑘
𝑗=1 0·𝑐 𝑗 =

∑︁
c∈[[𝑝−1]]𝑘

1 = 𝑝𝑘 = 𝑞.

Combining these four observations with Equation (4.2) gives the following formula for
the eigenvalues:

𝜆r =

(
𝑛∑︁
𝑙=1

𝑞1{r𝑙 = 0}
)
+ 𝑞1

{
𝑛∑︁
𝑙=1

r𝑙 ≡ 0 mod 𝑝

}
− 𝑛 − 1,

for r = (r1, . . . , r𝑛) ∈ ([[𝑝 − 1]]𝑘)𝑛.
For the last step of this proof, we note that (𝑎1, . . . , 𝑎𝑘) ∈ [[𝑝 − 1]]𝑘 can be related

to 𝑎 ∈ [[𝑞 − 1]] , where 𝑞 = 𝑝𝑘 , by 𝑎 =
∑𝑘

𝑗=1 𝑎 𝑗 𝑝
𝑗−1. Then the conditions r𝑙 = 0 and
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𝑙=1 r𝑙 ≡ 0 mod 𝑝 are equivalent to the conditions 𝑟𝑙 = 0 and

∑𝑛
𝑙=1 𝑟𝑙 ≡ 0 mod 𝑞,

respectively. Using this observation, the eigenvalues of𝐺pr (F𝑛𝑞) for 𝑛 ≥ 2 equal

𝜆r =

(
𝑛∑︁
𝑙=1

𝑞1{𝑟𝑙 = 0}
)
+ 𝑞1

{
𝑛∑︁
𝑙=1

𝑟𝑙 ≡ 0 mod 𝑞

}
− 𝑛 − 1,

for tuples r = (𝑟1, . . . , 𝑟𝑛) ∈ [[𝑞 − 1]]𝑛, which is what we wanted to prove. ■

Now we can derive the distinct eigenvalues of the phase-rotation distance graph for
𝑛 ≥ 2; these distinct eigenvalues follow directly from Proposition 4.16.

Corollary 4.21 The distinct adjacency eigenvalues of 𝐺pr (F𝑛𝑞) for 𝑛 ≥ 2 are
2𝑖 − 𝑛 − 1, for 𝑖 = 1, 3, . . . , 𝑛 − 1, 𝑛 + 1 if 𝑞 = 2, 𝑛 even,
2𝑖 − 𝑛 − 1, for 𝑖 = 0, 2, . . . , 𝑛 − 1, 𝑛 + 1 if 𝑞 = 2, 𝑛 odd,
𝑖𝑞 − 𝑛 − 1, for 𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑛 + 1 if 𝑞 ≥ 3.

The expressions for the (distinct) eigenvalues of the phase-rotation adjacency graph
can be used in the Inertia-type bound and the Ratio-type bound to derive new bounds
on the cardinality of phase-rotation codes. Thenwe compare these newbounds to a state
of the art bound, namely a Singleton-type bound for phase-rotation codes.

Theorem 4.22 (Singleton-type bound, [46]) Let C ⊆ F𝑛𝑞 be a code of minimum phase-
rotation distance 𝑑. Then

|C| ≤
{
𝑞𝑛−𝑑+1 if 𝑑 < 1 + ⌈𝑛 − 𝑛

𝑞
⌉,

1 otherwise.

This bound follows from the Singleton-type bound for the projective metric from
Theorem 4.11 by using the result of [46, Example 81], which states that

𝑤Fpr (𝑡) =
{
𝑡 if 𝑡 < ⌈𝑛 − 𝑛

𝑞
⌉,

𝑛 otherwise,

for the set Fpr as defined in Definition 4.4.
We start by considering the Ratio-type bound on the 𝑘-independence number for

𝑘 = 1, 2, 3, since there are explicit expressions for this bound that are independent of
a choice of polynomial 𝑝 ∈ R𝑘 [𝑥] (see [34, Theorem 3.2], Theorem 3.4, and Theorem
3.5, respectively). First consider the ratio bound on the independence number 𝛼, i.e. the
Ratio-type bound on the 𝑘-independence number 𝛼𝑘 for 𝑘 = 1. Applied to the phase-
rotation distance graph 𝐺pr (F𝑛𝑞), this ratio bound gives the following upper bound on
the independence number 𝛼(𝐺pr (F𝑛𝑞)).

Theorem 4.23 Let 𝑛 ≥ 2. Then

𝛼(𝐺pr (F𝑛𝑞)) ≤
{

2𝑛−1 𝑛−1
𝑛

if 𝑞 = 2, 𝑛 even,
𝑞𝑛−1 if 𝑞 = 2, 𝑛 odd or 𝑞 ≥ 3.

2025/09/15 08:46

https://doi.org/10.4153/S0008414X25101600 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101600


24 A. Abiad, L. Peters, and A. Ravagnani

Proof The largest eigenvalue is 𝜆1 = (𝑛 + 1) (𝑞 − 1) for all 𝑞, 𝑛, while the smallest
eigenvalue is 𝜆𝑞𝑛 = 1− 𝑛 if 𝑞 = 2, 𝑛 even and 𝜆𝑞𝑛 = −𝑛− 1 otherwise. The ratio bound
from [34, Theorem 3.2] is applicable, so for 𝑞 = 2, 𝑛 even we get

𝛼(𝐺pr (F𝑛2 )) ≤ 2𝑛
−(1 − 𝑛)

(𝑛 + 1) − (1 − 𝑛) = 2𝑛−1 𝑛 − 1
𝑛

.

For 𝑞 = 2, 𝑛 odd or 𝑞 ≥ 3, we obtain

𝛼(𝐺pr (F𝑛𝑞)) ≤ 𝑞𝑛
−(−𝑛 − 1)

(𝑛 + 1) (𝑞 − 1) − (−𝑛 − 1) = 𝑞𝑛
𝑛 + 1

𝑞(𝑛 + 1) = 𝑞𝑛−1.

■

Let 𝐴pr
𝑞 (𝑛, 𝑑) denote the maximum cardinality of code in F𝑛𝑞 with minimum phase-

rotation distance 𝑑. The upper bounds from Theorem 4.23 can be translated to upper
bounds on 𝐴pr

𝑞 (𝑛, 𝑑) via Lemma 3.1.

Corollary 4.24 The cardinality of phase-rotation codes in F𝑛𝑞 of minimum distance 2 with
𝑛 ≥ 2 is upper bounded by:

𝐴
pr
𝑞 (𝑛, 2) ≤

{
2𝑛−1 𝑛−1

𝑛
if 𝑞 = 2, 𝑛 even,

𝑞𝑛−1 if 𝑞 = 2, 𝑛 odd or 𝑞 ≥ 3.
(4.3)

Next we compare these upper bounds from Corollary 4.24 to the Singleton-type
upper bound from Theorem 4.22.

Proposition Let 𝑛 ≥ 2. The upper bounds on 𝐴pr
𝑞 (𝑛, 2) in Equation (4.3), which are a

consequence of the ratio bound, are noworse than the upper bound from the Singleton-
type bound of Theorem 4.22. ■

Proof The upper bound from the Singleton-type bound for 𝑑 = 2 is 𝑞𝑛−1 if 2 <

1+ ⌈𝑛− 𝑛
𝑞
⌉. This upper bound applies exactly if 𝑛− 𝑛

𝑞
> 1 ⇔ 𝑛 > 1+ 1

𝑞−1 . If 𝑞 = 2, then
we need 𝑛 > 2, and if 𝑞 ≥ 3, then 𝑛 ≥ 2 suffices to satisfy the condition 𝑛 > 1 + 1

𝑞−1 .
In these cases, we can immediately see that both upper bounds from Equation (4.3) are
at most 𝑞𝑛−1.

In the other case, namely 𝑞 = 2, 𝑛 = 2, the Singleton-type upper bound for 𝑑 = 2 is
1. But in this case our bound gives an upper bound of 22−1 · 2−1

2 = 1. So our bounds of
Equation (4.3) are no worse than than the Singleton-type bound. ■

So the Ratio-type bound on the 𝑘-independence number for 𝑘 = 1 gives a bound on
themaximumcardinality of phase-rotation codes that is at least as good as the Singleton-
type bound. Next we consider the Ratio-type bound on the 2-independence number 𝛼2.
The cases 𝑞 = 2 and 𝑞 ≥ 3 are treated separately since the expression for the distinct
eigenvalues of 𝐺pr (F𝑛𝑞) for these cases is sufficiently different. First consider the case
𝑞 = 2 (and 𝑘 = 2).
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Theorem 4.26 Let 𝑛 ≥ 3. Then

𝛼2 (𝐺pr (F𝑛2 )) ≤


2𝑛 𝑛−2

𝑛(𝑛+4) if 𝑛 ≡ 0 mod 4,
2𝑛 𝑛−3

(𝑛+3) (𝑛−1) if 𝑛 ≡ 1 mod 4,
2𝑛 1

𝑛+2 if 𝑛 ≡ 2 mod 4,
2𝑛 1

𝑛+5 if 𝑛 ≡ 3 mod 4.

Proof Since 𝑛 ≥ 3, 𝐺pr (F𝑛2 ) has at least three distinct eigenvalues, so Theorem 3.4 is
applicable. The largest eigenvalue which is at most −1 satisfies:

2𝑖 − 𝑛 − 1 ≤ −1 ⇔ 2𝑖 ≤ 𝑛⇔ 𝑖 ≤ 𝑛

2
.

We start with the case where 𝑛 is even, or 𝑛 ≡ 0, 2 mod 4. Since 𝑖 has to be odd for
2𝑖−𝑛−1 to be an eigenvalue when 𝑛 is even, we get 𝑖 = 𝑛

2 if 𝑛 ≡ 2 mod 4 and 𝑖 = 𝑛
2 −1

if 𝑛 ≡ 0 mod 4. If 𝑛 ≡ 2 mod 4, we have 𝜃𝑖 = −1, 𝜃𝑖−1 = 3, 𝜃0 = 𝑛 + 1. Then

𝛼2 (𝐺pr (F𝑛2 )) ≤ 2𝑛
𝑛 + 1 − 3

(𝑛 + 2) (𝑛 − 2) =
2𝑛

𝑛 + 2
.

If 𝑛 ≡ 0 mod 4, we have 𝜃𝑖 = −3, 𝜃𝑖−1 = 1, 𝜃0 = 𝑛 + 1. Then

𝛼2 (𝐺pr (F𝑛2 )) ≤ 2𝑛
𝑛 + 1 − 3
(𝑛 + 4)𝑛 = 2𝑛

𝑛 − 2
𝑛(𝑛 + 4) .

Next we deal with the case where 𝑛 is odd, or 𝑛 ≡ 1, 3 mod 4. Since 𝑖 has to be even
for 2𝑖 − 𝑛 − 1 to be an eigenvalue when 𝑛 is odd, we get 𝑖 = 𝑛−1

2 if 𝑛 ≡ 1 mod 4 and
𝑖 = 𝑛−1

2 − 1 if 𝑛 ≡ 3 mod 4. If 𝑛 ≡ 1 mod 4, we have 𝜃𝑖 = −2, 𝜃𝑖−1 = 2, 𝜃0 = 𝑛 + 1.
Then

𝛼2 (𝐺pr (F𝑛2 )) ≤ 2𝑛
𝑛 + 1 − 4

(𝑛 + 3) (𝑛 − 1) = 2𝑛
𝑛 − 3

(𝑛 + 3) (𝑛 − 1) .

If 𝑛 ≡ 3 mod 4, we have 𝜃𝑖 = −4, 𝜃𝑖−1 = 0, 𝜃0 = 𝑛 + 1. Then

𝛼2 (𝐺pr (F𝑛2 )) ≤ 2𝑛
𝑛 + 1

(𝑛 + 5) (𝑛 + 1) =
2𝑛

𝑛 + 5
.

■

The upper bounds from Theorem 4.26 can be translated to upper bounds on
𝐴
pr
2 (𝑛, 3) via Lemma 3.1.

Corollary 4.27 The maximum cardinality of phase-rotation codes in F𝑛2 of minimum
distance 3 with 𝑛 ≥ 3 is upper bounded by

𝐴
pr
2 (𝑛, 3) ≤


2𝑛 𝑛−2

𝑛(𝑛+4) if 𝑛 ≡ 0 mod 4,
2𝑛 𝑛−3

(𝑛+3) (𝑛−1) if 𝑛 ≡ 1 mod 4,
2𝑛 1

𝑛+2 if 𝑛 ≡ 2 mod 4,
2𝑛 1

𝑛+5 if 𝑛 ≡ 3 mod 4.

(4.4)

Now we compare these upper bounds from Corollary 4.27 to the Singleton-type
upper bound from Theorem 4.22.
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Proposition Let 𝑛 ≥ 3. The upper bounds on 𝐴pr
2 (𝑛, 3) in Equation (4.4), which

resulted from the Ratio-type bound, are no worse than the upper bound from the
Singleton-type bound of Theorem 4.22. ■

Proof The upper bound of the Singleton-type bound for 𝑑 = 3 and 𝑞 = 2 is 2𝑛−2 if
3 < 1 + ⌈𝑛 − 𝑛

2 ⌉ , which is exactly if 𝑛
2 > 2 ⇔ 𝑛 > 4. If this is the case, then we can

compare the bounds and determine when the bounds from Equation (4.4) are smaller
than or equal to 2𝑛−2. For 𝑛 ≡ 0 mod 4 we have:

2𝑛
𝑛 − 2
𝑛(𝑛 + 4) ≤ 2𝑛−2 ⇔ 22 (𝑛 − 2) ≤ 𝑛(𝑛 + 4) ⇔ 𝑛2 ≥ −8,

which trivially holds true. For 𝑛 ≡ 1 mod 4:

2𝑛
𝑛 − 3

(𝑛 + 3) (𝑛 − 1) ≤ 2𝑛−2 ⇔ 22 (𝑛−3) ≤ (𝑛+3) (𝑛−1) ⇔ 𝑛2−2𝑛+9 = (𝑛−1)2+8 ≥ 0.

Also this holds true. For 𝑛 ≡ 2 mod 4:

2𝑛
1

𝑛 + 2
≤ 2𝑛−2 ⇔ 22 ≤ 𝑛 + 2 ⇔ 𝑛 ≥ 2,

which is true by the assumption on 𝑛. Lastly, for 𝑛 ≡ 3 mod 4 we get:

2𝑛
1

𝑛 + 5
≤ 2𝑛−2 ⇔ 22 ≤ 𝑛 + 5 ⇔ 𝑛 ≥ −1,

which also holds by the assumption on 𝑛.
Next we consider the case that 𝑛 = 3, 4. Then the Singleton-type bound gives an

upper bound of 1, while our bounds give values of 23 · 1
8 = 1 and 24 · 2

32 = 1 for 𝑛 = 3, 4
respectively. Hence the upper bounds on 𝐴pr

2 (𝑛, 3) from Equation (4.4) are no worse
than the Singleton-type upper bound from Theorem 4.22. ■

Hence the Ratio-type bound gives upper bounds on the cardinality of phase-rotation
codes that are at least as good as the Singleton-type bound for 𝑘 = 2 and 𝑞 = 2. Next
we consider the case 𝑘 = 2 and 𝑞 ≥ 3.

Theorem 4.29 Let 𝑛 ≥ 2 and 𝑞 ≥ 3. Then

𝛼2 (𝐺pr (F𝑛𝑞)) ≤ 𝑞𝑛−2
𝑛(𝑛 + 1) + ⌊ 𝑛

𝑞
⌋𝑞

(
− 2 − 2𝑛 + 𝑞 + ⌊ 𝑛

𝑞
⌋𝑞

)(
𝑛 − ⌊ 𝑛

𝑞
⌋
) (
𝑛 + 1 − ⌊ 𝑛

𝑞
⌋
) .

Proof The distinct eigenvalues of 𝐺pr (F𝑛𝑞) for 𝑛 ≥ 2 and 𝑞 ≥ 3 are 𝑖𝑞 − 𝑛 − 1 for
𝑖 = 0, 1 . . . , 𝑛−1, 𝑛+1. Since 𝑛 ≥ 2, we have at least 3 distinct eigenvalues, so Theorem
3.4 is applicable. First we determine the largest eigenvalue which is at most −1:

𝑖𝑞 − 𝑛 − 1 ≤ −1 ⇔ 𝑖𝑞 ≤ 𝑛⇔ 𝑖 ≤ 𝑛

𝑞
.
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Taking 𝑖 = ⌊ 𝑛
𝑞
⌋ gives this eigenvalue. Note that 0 ≤ ⌊ 𝑛

𝑞
⌋ ≤ 𝑛

3 ≤ 𝑛 − 1, so 𝑖 = ⌊ 𝑛
𝑞
⌋

indeed gives an eigenvalue. Using the notation of Theorem 3.4, we have

𝜃0 = (𝑛 + 1) (𝑞 − 1), 𝜃𝑖−1 =

(
⌊ 𝑛
𝑞
⌋ + 1

)
𝑞 − 𝑛 − 1, 𝜃𝑖 = ⌊ 𝑛

𝑞
⌋𝑞 − 𝑛 − 1.

Then we obtain the following upper bound for 𝛼2 (𝐺pr (F𝑛𝑞)):

𝑞𝑛
(𝑛 + 1) (𝑞 − 1) +

(
⌊ 𝑛
𝑞
⌋𝑞 − 𝑛 − 1

) (
(⌊ 𝑛

𝑞
⌋ + 1)𝑞 − 𝑛 − 1

)(
(𝑛 + 1) (𝑞 − 1) − (⌊ 𝑛

𝑞
⌋𝑞 − 𝑛 − 1)

) (
(𝑛 + 1) (𝑞 − 1) −

(
(⌊ 𝑛

𝑞
⌋ + 1)𝑞 − 𝑛 − 1

) )
= 𝑞𝑛−2

𝑛(𝑛 + 1) + ⌊ 𝑛
𝑞
⌋𝑞

(
− 2 − 2𝑛 + 𝑞 + ⌊ 𝑛

𝑞
⌋𝑞

)(
𝑛 − ⌊ 𝑛

𝑞
⌋
) (
𝑛 + 1 − ⌊ 𝑛

𝑞
⌋
) .

■

This upper bound from Theorem 4.29 can be translated to an upper bound on
𝐴
pr
𝑞 (𝑛, 3) via Lemma 3.1.

Corollary 4.30 The cardinality of phase-rotation codes of minimum distance 3 with 𝑞 ≥ 3
and 𝑛 ≥ 2 is upper bounded by

𝐴
pr
𝑞 (𝑛, 3) ≤ 𝑞𝑛−2

𝑛(𝑛 + 1) + ⌊ 𝑛
𝑞
⌋𝑞

(
− 2 − 2𝑛 + 𝑞 + ⌊ 𝑛

𝑞
⌋𝑞

)(
𝑛 − ⌊ 𝑛

𝑞
⌋
) (
𝑛 + 1 − ⌊ 𝑛

𝑞
⌋
) . (4.5)

A comparison of this upper bound from Corollary 4.30 with the Singleton-type
bound from Theorem 4.22 gives the following result.

Proposition Let 𝑛 ≥ 2, 𝑞 ≥ 3 but not 𝑞 = 𝑛 = 3. The upper bound on 𝐴pr
𝑞 (𝑛, 3)

in Equation (4.5), which is a consequence of the Ratio-type bound, is no worse than the
upper bound from the Singleton-type bound of Theorem 4.22. ■

Proof The Singleton-type bound for 𝑑 = 3 is 𝑞𝑛−2 if 3 < 1 + ⌈𝑛 − 𝑛
𝑞
⌉ , which happens

exactly if 𝑛 − 𝑛
𝑞
> 2 ⇔ 𝑛 > 2 + 2

𝑞−1 . If 𝑞 = 3, then we need 𝑛 > 3, and if 𝑞 ≥ 4, then
𝑛 ≥ 3 suffices. In these cases, we prove that the upper bound from Equation (4.5) is at
most 𝑞𝑛−2.

If 𝑛 < 𝑞, then ⌊ 𝑛
𝑞
⌋ = 0 and the upper bound from the Ratio-type bound reduces to

𝐴
pr
𝑞 (𝑛, 3) ≤ 𝑞𝑛−2 𝑛(𝑛 + 1)

𝑛(𝑛 + 1) = 𝑞𝑛−2.

This exactly equals the upper bound from the Singleton-type bound for 𝑑 = 3.
If 𝑞 ≤ 𝑛 < 2𝑞, then ⌊ 𝑛

𝑞
⌋ = 1 and the upper bound from the Ratio-type bound

reduces to

𝐴
pr
𝑞 (𝑛, 3) ≤ 𝑞𝑛−2 𝑛(𝑛 + 1) + 𝑞(−2 − 2𝑛 + 2𝑞)

(𝑛 − 1)𝑛 .

It can be verified withmathematical software that this is less than or equal to 𝑞𝑛−2 when
𝑛 ≥ 2 and 𝑞 ≤ 𝑛 < 2𝑞. So the desired result holds in this case.

2025/09/15 08:46

https://doi.org/10.4153/S0008414X25101600 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101600


28 A. Abiad, L. Peters, and A. Ravagnani

If 2𝑞 ≤ 𝑛 < 3𝑞, then ⌊ 𝑛
𝑞
⌋ = 2 and the upper bound from the Ratio-type bound

reduces to

𝐴
pr
𝑞 (𝑛, 3) ≤ 𝑞𝑛−2 𝑛(𝑛 + 1) + 2𝑞(−2 − 2𝑛 + 3𝑞)

(𝑛 − 2) (𝑛 − 1) .

Mathematical software can show that this is less than or equal to 𝑞𝑛−2 if 𝑛 ≥ 3 and
2𝑞 ≤ 𝑛 < 3𝑞. Since 𝑛 ≥ 2𝑞 and 𝑞 ≥ 3, the condition 2𝑞 ≤ 𝑛 < 3𝑞 is actually sufficient.
So also in this case the desired result is reached.

Lastly, we consider the last case 𝑛 ≥ 3𝑞. We have 𝑞⌊ 𝑛
𝑞
⌋ ≤ 𝑛, so−2−2𝑛+𝑞+𝑞⌊ 𝑛

𝑞
⌋ ≤

−2 − 2𝑛 + 𝑞 + 𝑛 = −2 − 𝑛 + 𝑞 < 0 since 𝑛 ≥ 3𝑞. Also 𝑞⌊ 𝑛
𝑞
⌋ ≥ 𝑞

(
𝑛−(𝑞−1)

𝑞

)
= 𝑛 − 𝑞 + 1

since 𝑛, 𝑞 are integral. Then

⌊ 𝑛
𝑞
⌋𝑞(−2 − 2𝑛 + 𝑞 + ⌊ 𝑛

𝑞
⌋𝑞) ≤ (𝑛 − 𝑞 + 1) (−2 − 𝑛 + 𝑞).

The bound from the Ratio-type bound is thus upper bounded by

𝐴
pr
𝑞 (𝑛, 3) ≤ 𝑞𝑛 𝑛(𝑛 + 1) + (𝑛 − 𝑞 + 1) (−2 − 𝑛 + 𝑞)

(𝑞𝑛 − 𝑛) (𝑞𝑛 + 𝑞 − 𝑛) = 𝑞𝑛
2 + 2𝑛 − 𝑞

𝑛(𝑞𝑛 + 𝑞 − 𝑛) .

This is less than or equal to 𝑞𝑛−2 if and only if

𝑞2 (2 + 2𝑛 − 𝑞) ≤ 𝑛(𝑞𝑛 + 𝑞 − 𝑛),

which can be seen to hold, using mathematical software, for (𝑛, 𝑞) = (9, 3) or 𝑛 ≥ 10
and 3 ≤ 𝑞 ≤ 𝑛

3 . Since 𝑞 ≥ 3, we have 𝑛 ≥ 3𝑞 ≥ 9. If 𝑛 = 9, then 3 ≤ 𝑞 ≤ 𝑛
3 = 3, so

𝑞 = 3 is the only option. If 𝑛 ≥ 10, then the desired inequality holds for 𝑛 ≥ 3𝑞. All in
all, we also get the desired result when 𝑛 ≥ 3𝑞.

Next we consider the cases where the Singleton-type bound equals 1. This happens
if 𝑞 = 3, 𝑛 = 2, 3 or 𝑞 ≥ 4, 𝑛 = 2. If 𝑛 = 2, then the bound from Equation (4.5) reduces
to 1. If 𝑞 = 3 and 𝑛 = 3, then our bound reduces to 3. So 𝑞 = 3, 𝑛 = 3 is the only case in
which the upper bound on 𝐴pr

𝑞 (𝑛, 3) from Equation (4.5) is worse than the upper bound
from the Singleton-type bound of Theorem 4.22. ■

Also for 𝑘 = 2 and 𝑞 ≥ 3 bounds for phase-rotation codes that are almost always at
least as good as the Singleton-type bound can be obtained from the Ratio-type bound.
Now consider the Ratio-type bound on the 3-independence number 𝛼3. Again the cases
𝑞 = 2 and 𝑞 ≥ 3 are treated separately. First the case 𝑞 = 2 (and 𝑘 = 3) is studied.

Theorem 4.32 Let 𝑛 ≥ 5. Then

𝛼3 (𝐺pr (F𝑛2 )) ≤


2𝑛−1 𝑛2−𝑛+4

𝑛2 (𝑛+4) if 𝑛 ≡ 0 mod 4,
2𝑛−1 𝑛−3

(𝑛−1) (𝑛+3) if 𝑛 ≡ 1 mod 4,
2𝑛−1 𝑛−5

(𝑛+2) (𝑛−2) if 𝑛 ≡ 2 mod 4,
2𝑛−1 1

𝑛+1 if 𝑛 ≡ 3 mod 4.

Proof Since 𝑛 ≥ 5, 𝐺pr (F𝑛2 ) has at least four distinct eigenvalues, so Theorem 3.5 is
applicable. First we need to determine Δ = max𝑢∈𝑉 (𝐺pr (F𝑛2 ) ) {(𝐴

3)𝑢𝑢}. Since 𝐺pr (F𝑛2 )
is walk-regular, the diagonal entries of 𝐴3 are all the same, so Δ = (𝐴3)00. Now Δ is
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exactly two times the number of triangles in the graph that vertex 0 is part of. Since
𝑛 ≥ 5, vertex 0 can only be part of triangles where the vertices of the triangle differ in
the same 𝐹𝑖 . However, since 𝑞 = 2 there are no two distinct element in F∗𝑞 , so vertex 0
is not part of any triangles, and Δ = 0.

We start with the case where 𝑛 is even, or 𝑛 ≡ 0, 2 mod 4. Then

𝜃0 = 𝑛 + 1, 𝜃𝑟 = 1 − 𝑛,

and 𝜃𝑠 is the smallest eigenvalue ≥ − 𝜃2
0 +𝜃0 𝜃𝑟−Δ
𝜃0 (𝜃𝑟+1) . Now

𝜃2
0 + 𝜃0𝜃𝑟 − Δ

𝜃0 (𝜃𝑟 + 1) =
(𝑛 + 1)2 + (𝑛 + 1) (1 − 𝑛)

(𝑛 + 1) (2 − 𝑛) =
2

2 − 𝑛 .

So 𝜃𝑠 := 2𝑖 − 𝑛 − 1 is the smallest eigenvalue ≥ 2
𝑛−2 . Then

2𝑖 − 𝑛 − 1 ≥ 2
2 − 𝑛 ⇔ 2𝑖 ≥ 𝑛 + 1 + 2

𝑛 − 2
⇔ 𝑖 ≥ 𝑛 + 1

2
+ 1
𝑛 − 2

.

Since𝑛 ≥ 5, 1
𝑛−2 ≤ 1

3 <
1
2 . Since 𝑖 also has to be integral,we get 𝑖 ≥

𝑛+1
2 + 1

2 = 𝑛
2 +1. Since

𝑖 has to be odd for 2𝑖−𝑛−1 to be an eigenvalue when 𝑛 is even, we get 𝑖 = 𝑛
2 +1 if 𝑛 ≡ 0

mod 4 and 𝑖 = 𝑛
2 +2 if 𝑛 ≡ 2 mod 4. If 𝑛 ≡ 0 mod 4, we have 𝜃𝑠 = 1, 𝜃𝑠+1 = −3. Then

𝛼3 (𝐺pr (F𝑛2 )) ≤ 2𝑛
−(𝑛 + 1) (1 − 3 + 1 − 𝑛) − (−3) (1 − 𝑛)
(𝑛 + 1 − 1) (𝑛 + 1 + 3) (𝑛 + 1 − 1 + 𝑛) = 2𝑛−1 𝑛

2 − 𝑛 + 4
𝑛2 (𝑛 + 4) .

If 𝑛 ≡ 2 mod 4, we have 𝜃𝑠 = 3, 𝜃𝑠+1 = −1. Then

𝛼3 (𝐺pr (F𝑛2 )) ≤ 2𝑛
−(𝑛 + 1) (3 − 1 + 1 − 𝑛) − 3(−1) (1 − 𝑛)
(𝑛 + 1 − 3) (𝑛 + 1 + 1) (𝑛 + 1 − 1 + 𝑛) = 2𝑛−1 𝑛 − 5

(𝑛 + 2) (𝑛 − 2) .

Next we deal with the case where 𝑛 is odd, or 𝑛 ≡ 1, 3 mod 4. Then

𝜃0 = 𝑛 + 1, 𝜃𝑟 = −𝑛 − 1,

and 𝜃𝑠 is the smallest eigenvalue ≥ − 𝜃2
0 +𝜃0 𝜃𝑟−Δ
𝜃0 (𝜃𝑟+1) . Now

𝜃2
0 + 𝜃0𝜃𝑟 − Δ

𝜃0 (𝜃𝑟 + 1) =
(𝑛 + 1)2 + (𝑛 + 1) (−𝑛 − 1)

(𝑛 + 1) (−𝑛) = 0.

So 𝜃𝑠 := 2𝑖 − 𝑛 − 1 is the smallest eigenvalue ≥ 0. Then

2𝑖 − 𝑛 − 1 ≥ 0 ⇔ 2𝑖 ≥ 𝑛 + 1 ⇔ 𝑖 ≥ 𝑛 + 1
2

.

Since 𝑖 has to be even for 2𝑖−𝑛−1 to be an eigenvalue when 𝑛 is odd, we get 𝑖 = 𝑛
2 +1 if

𝑛 ≡ 1 mod 4 and 𝑖 = 𝑛+1
2 if 𝑛 ≡ 3 mod 4. If 𝑛 ≡ 1 mod 4,we have 𝜃𝑠 = 2, 𝜃𝑠+1 = −2.

Then

𝛼3 (𝐺pr (F𝑛2 )) ≤ 2𝑛
−(𝑛 + 1) (2 − 2 − 𝑛 − 1) − 2(−2) (−𝑛 − 1)

(𝑛 + 1 − 2) (𝑛 + 1 + 2) (𝑛 + 1 + 𝑛 + 1) = 2𝑛−1 𝑛 − 3
(𝑛 − 1) (𝑛 + 3) .

If 𝑛 ≡ 3 mod 4, we have 𝜃𝑠 = 0, 𝜃𝑠+1 = −4. Then

𝛼3 (𝐺pr (F𝑛2 )) ≤ 2𝑛
−(𝑛 + 1) (0 − 4 − 𝑛 − 1) − 0(−4) (−𝑛 − 1)

(𝑛 + 1) (𝑛 + 1 + 4) (𝑛 + 1 + 𝑛 + 1) =
2𝑛−1

𝑛 + 1
.
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■

The upper bounds from Theorem 4.32 can be translated to upper bounds on
𝐴
pr
2 (𝑛, 4) via Lemma 3.1.

Corollary 4.33 The maximum cardinality of phase-rotation codes in F𝑛2 of minimum
distance 4 with 𝑛 ≥ 5 is upper bounded by

𝐴
pr
2 (𝑛, 4) ≤


2𝑛−1 𝑛2−𝑛+4

𝑛2 (𝑛+4) if 𝑛 ≡ 0 mod 4,
2𝑛−1 𝑛−3

(𝑛−1) (𝑛+3) if 𝑛 ≡ 1 mod 4,
2𝑛−1 𝑛−5

(𝑛+2) (𝑛−2) if 𝑛 ≡ 2 mod 4,
2𝑛−1 1

𝑛+1 if 𝑛 ≡ 3 mod 4.

(4.6)

A comparison of these upper bounds from Corollary 4.33 to the Singleton-type
bound from Theorem 4.22 follows next.

Proposition Let 𝑛 ≥ 5. The upper bounds on 𝐴pr
2 (𝑛, 4) in Equation (4.6), which are a

result of the Ratio-type bound, are no worse than the upper bound from the Singleton-
type bound of Theorem 4.22. ■

Proof The upper bound of the Singleton-type bound for 𝑑 = 4 and 𝑞 = 2 is 2𝑛−3 if
4 < 1 + ⌈𝑛 − 𝑛

2 ⌉ , which is exactly if 𝑛
2 > 3 ⇔ 𝑛 > 6. In this case we compare the

bounds and see when the bounds from Equation (4.6) are smaller than or equal to 2𝑛−3.
For 𝑛 ≡ 0 mod 4 we have:

2𝑛−1 𝑛
2 − 𝑛 + 4
𝑛2 (𝑛 + 4) ≤ 2𝑛−3 ⇔ 22 (𝑛2 − 𝑛 + 4) ≤ 𝑛2 (𝑛 + 4) ⇔ 𝑛3 + 4𝑛 ≥ 16,

which is true since 𝑛 ≥ 5. For 𝑛 ≡ 1 mod 4:

2𝑛−1 𝑛 − 3
(𝑛 − 1) (𝑛 + 3) ≤ 2𝑛−3 ⇔ 22 (𝑛−3) ≤ (𝑛−1) (𝑛+3) ⇔ 𝑛2−2𝑛+9 = (𝑛−1)2+8 ≥ 0.

Also this is true. For 𝑛 ≡ 2 mod 4:

2𝑛−1 𝑛 − 5
(𝑛 + 2) (𝑛 − 2) ≤ 2𝑛−3 ⇔ 22 (𝑛−5) ≤ (𝑛−2) (𝑛+2) ⇔ 𝑛2−4𝑛+16 = (𝑛−2)2+12 ≥ 0,

which is true. Lastly, for 𝑛 ≡ 3 mod 4 we get:

2𝑛−1 1
𝑛 + 1

≤ 2𝑛−3 ⇔ 22 ≤ 𝑛 + 1 ⇔ 𝑛 ≥ 3,

which is true by assumption on 𝑛.
In the cases that the Singleton-type bound equals 1, which is if 𝑛 = 5, 6, the bounds

from Equation (4.6) give values of 24 · 2
32 = 1 and 25 · 1

32 = 1 for 𝑛 = 5, 6 respec-
tively. Hence the upper bounds on 𝐴pr

2 (𝑛, 4) from Equation (4.6) are no worse than the
Singleton-type upper bound from Theorem 4.22. ■

2025/09/15 08:46

https://doi.org/10.4153/S0008414X25101600 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101600


The Eigenvalue Method in Coding Theory 31

So the Ratio-type bound gives upper bounds on the size of phase-rotation codes that
perform noworse than the Singleton-type bound for 𝑘 = 3 and 𝑞 = 2. Nowwe consider
the Ratio-type bound for 𝑘 = 3 and 𝑞 ≥ 3.

Theorem 4.35 Let 𝑛 ≥ 3 and 𝑞 ≥ 3. Then

𝛼3 (𝐺pr (F𝑛𝑞)) ≤ 𝑞𝑛
𝑛(𝑛 + 2𝑞 − 1) + 𝑞⌈ 𝑛−1

𝑞
⌉
(
− 2𝑛 − 𝑞 + 𝑞⌈ 𝑛−1

𝑞
⌉
)

𝑞3
(
𝑛 + ⌊ 1−𝑛

𝑞
⌋
) (
𝑛 + 1 + ⌊ 1−𝑛

𝑞
⌋
) .

Proof The eigenvalues of 𝐺pr (F𝑛𝑞) for 𝑛 ≥ 3 and 𝑞 ≥ 3 are 𝑖𝑞 − 𝑛 − 1 for
𝑖 = 0, 1, . . . , 𝑛 − 1, 𝑛 + 1. Since 𝑛 ≥ 3, there are at least four distinct eigenval-
ues. Since 𝐺pr (F𝑛𝑞) is regular, Theorem 3.5 is applicable. First we need to determine
Δ = max𝑢∈𝑉 (𝐺pr (F𝑛𝑞 ) ) {(𝐴3)𝑢𝑢}. Similarly to the previous proof, Δ = (𝐴3)00, which
equals two times the number of triangles that vertex 0 is part of. Again since 𝑛 ≥ 3,
vertex 0 is only part of triangles where the vertices of the triangle differ in the same 𝐹𝑖 .
Then 0 is part of (𝑛+1)

(𝑞−1
2

)
triangles since there are 𝑛+1 𝐹𝑖 ’s and

(𝑞−1
2

)
ways to choose

two different elements in F∗𝑞 . So Δ = 2(𝑛 + 1)
(𝑞−1

2
)
= (𝑛 + 1) (𝑞 − 1) (𝑞 − 2). Using the

notation of Theorem 3.5 we have

𝜃0 = (𝑛 + 1) (𝑞 − 1), 𝜃𝑟 = −𝑛 − 1,

and 𝜃𝑠 is the smallest eigenvalue ≥ − 𝜃2
0 +𝜃0 𝜃𝑟−Δ
𝜃0 (𝜃𝑟+1) . Now

𝜃2
0 + 𝜃0𝜃𝑟 − Δ

𝜃0 (𝜃𝑟 + 1) =
(𝑛 + 1)2 (𝑞 − 1)2 + (𝑛 + 1) (𝑞 − 1) (−𝑛 − 1) − (𝑛 + 1) (𝑞 − 1) (𝑞 − 2)

(𝑛 + 1) (𝑞 − 1) · −𝑛 = 2−𝑞.

So 𝜃𝑠 := 𝑖𝑞 − 𝑛 − 1 is the smallest eigenvalue ≥ 𝑞 − 2. Then

𝑖𝑞 − 𝑛 − 1 ≥ 𝑞 − 2 ⇔ (𝑖 − 1)𝑞 ≥ 𝑛 − 1 ⇔ 𝑖 ≥ 1 + 𝑛 − 1
𝑞

.

Since 𝑖 has to be equal to one of the integers 0, 1, . . . , 𝑛 − 1, 𝑛 + 1, take 𝑖 = 1 + ⌈ 𝑛−1
𝑞
⌉ ,

which is a positive integer and at most 𝑛 − 1. Then

𝜃𝑠 = (1 + ⌈ 𝑛−1
𝑞
⌉)𝑞 − 𝑛 − 1, 𝜃𝑠+1 = ⌈ 𝑛−1

𝑞
⌉𝑞 − 𝑛 − 1.

Now we obtain the following upper bound for 𝛼3 (𝐺pr (F𝑛𝑞)):

𝑞𝑛

(
(𝑛 + 1) (𝑞 − 1) (𝑞 − 2) − (𝑛 + 1) (𝑞 − 1) ((1 + ⌈ 𝑛−1

𝑞 ⌉)𝑞 − 𝑛 − 1 + ⌈ 𝑛−1
𝑞 ⌉𝑞 − 𝑛 − 1 − 𝑛 − 1)

((𝑛 + 1) (𝑞 − 1) − ((1 + ⌈ 𝑛−1
𝑞 ⌉)𝑞 − 𝑛 − 1)) ((𝑛 + 1) (𝑞 − 1) − (⌈ 𝑛−1

𝑞 ⌉𝑞 − 𝑛 − 1)) ((𝑛 + 1) (𝑞 − 1) + 𝑛 + 1)

−
((1 + ⌈ 𝑛−1

𝑞 ⌉)𝑞 − 𝑛 − 1) (⌈ 𝑛−1
𝑞 ⌉𝑞 − 𝑛 − 1) (−𝑛 − 1)

((𝑛 + 1) (𝑞 − 1) − ((1 + ⌈ 𝑛−1
𝑞 ⌉)𝑞 − 𝑛 − 1)) ((𝑛 + 1) (𝑞 − 1) − (⌈ 𝑛−1

𝑞 ⌉𝑞 − 𝑛 − 1)) ((𝑛 + 1) (𝑞 − 1) + 𝑛 + 1)

)

𝑞𝑛
𝑛(𝑛 + 2𝑞 − 1) + 𝑞⌈ 𝑛−1

𝑞 ⌉
(
− 2𝑛 − 𝑞 + 𝑞⌈ 𝑛−1

𝑞 ⌉
)

𝑞3 (
𝑛 + ⌊ 1−𝑛

𝑞 ⌋
) (
𝑛 + 1 + ⌊ 1−𝑛

𝑞 ⌋
)

■
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The upper bound fromTheorem 4.35 can be translated to upper bounds on 𝐴pr
𝑞 (𝑛, 4)

via Lemma 3.1.

Corollary 4.36 The maximum cardinality of phase-rotation codes in F𝑛𝑞 of minimum
distance 4 with 𝑛 ≥ 3 and 𝑞 ≥ 3 is upper bounded by

𝐴
pr
𝑞 (𝑛, 4) ≤ 𝑞𝑛

𝑛(𝑛 + 2𝑞 − 1) + 𝑞⌈ 𝑛−1
𝑞
⌉
(
− 2𝑛 − 𝑞 + 𝑞⌈ 𝑛−1

𝑞
⌉
)

𝑞3
(
𝑛 + ⌊ 1−𝑛

𝑞
⌋
) (
𝑛 + 1 + ⌊ 1−𝑛

𝑞
⌋
) . (4.7)

We compare this upper bound from Corollary 4.36 with the Singleton-type upper
bound from Theorem 4.22.

Proposition Let 𝑛 ≥ 3, 𝑞 ≥ 3 but not (𝑛, 𝑞) = (4, 3) or (𝑛, 𝑞) = (4, 4). The upper
bound on 𝐴pr

𝑞 (𝑛, 4) in Equation (4.7), which is obtained from the Ratio-type bound, is
no worse than the upper bound from the Singleton-type bound of Theorem 4.22. ■

Proof The upper bound from the Singleton-type bound for 𝑑 = 4 is 𝑞𝑛−4+1 = 𝑞𝑛−3

if 4 < 1 + ⌈𝑛 − 𝑛
𝑞
⌉. This is exactly when 𝑛 − 𝑛

𝑞
> 3 ⇔ 𝑛 > 3 + 3

𝑞−1 . If 𝑞 = 3, 4, then
we need 𝑛 ≥ 5, and if 𝑞 ≥ 5, then 𝑛 ≥ 4 suffices. We consider these cases first. Define
𝑚 := ⌈ 𝑛−1

𝑞
⌉. Then𝑚 − 1 < 𝑛−1

𝑞
≤ 𝑚 by definition of𝑚. Since ⌊ 1−𝑛

𝑞
⌋ = −⌈ 𝑛−1

𝑞
⌉ = −𝑚,

the upper bound from Equation (4.7) becomes:

𝑞𝑛
𝑛(𝑛 + 2𝑞 − 1) + 𝑞𝑚(−2𝑛 − 𝑞 + 𝑞𝑚)

𝑞3 (𝑛 − 𝑚) (𝑛 + 1 − 𝑚) .

The latter is less than or equal to the Singleton-type upper bound if

𝑛(𝑛 + 2𝑞 − 1) + 𝑞𝑚(−2𝑛 − 𝑞 + 𝑞𝑚)
(𝑛 − 𝑚) (𝑛 + 1 − 𝑚) ≤ 1

⇔ 𝑛(𝑛 + 2𝑞 − 1) + 𝑞𝑚(−2𝑛 − 𝑞 + 𝑞𝑚) ≤ (𝑛 − 𝑚) (𝑛 + 1 − 𝑚)

⇔ 2𝑞𝑛 − 𝑛 − 2𝑞𝑚𝑛 − 𝑞2𝑚 + 𝑞2𝑚2 ≤ 𝑛 − 2𝑚𝑛 − 𝑚 + 𝑚2.

Since𝑚, 𝑛, 𝑞 are integral, the latter inequality can be shown to hold, usingmathematical
software, when 𝑛 ≥ 3, 𝑞 ≥ 3, and 𝑚 − 1 < 𝑛−1

𝑞
≤ 𝑚. Note that by definition of 𝑚, we

have𝑚 − 1 < 𝑛−1
𝑞

≤ 𝑚. The conditions on 𝑛 and 𝑞 hold by the given assumptions on 𝑛
and 𝑞.

Next we consider the cases 𝑞 = 3, 4, 𝑛 = 3, 4 and 𝑞 ≥ 5, 𝑛 = 3. Now the Singleton-
type bound gives an upper bound of 1. If 𝑛 = 3, the upper bound from Equation (4.7)
reduces to 1. However for 𝑛 = 4, 𝑞 = 3, 4, the upper bound of Equation (4.7) reduces to
𝑞, which is not less than or equal to 1. That finishes the proof. ■

So upper bounds on the size of phase-rotation codes obtained via the Ratio-type
bound almost always perform no worse than the Singleton-type bound for 𝑘 = 3 and
𝑞 ≥ 3.

We have shown theoretically that, for the phase-rotation metric, the Ratio-type
bound performs no worse than the Singleton-type bound in most cases when the min-
imum distance is small, i.e. 𝑑 = 2, 3, 4, and 𝑛 is large enough. Next we provide some
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computational results for larger values of the minimum distance. Consider all graphs
𝐺pr (F𝑛𝑞) with 𝑛 ≥ 2, 𝑞 a prime power and at most 1000 vertices, and consider 𝑘 =

1, . . . , ⌈ 𝑞−1
𝑞
𝑛⌉ − 1. We compare the Inertia-type bound, the Ratio-type bound, and the

Singleton-type bound in these instances. Note that the graph 𝐺pr (F𝑛𝑞) is not explicitly
constructed, but its eigenvalues are calculated using Proposition 4.16. This implies that
a comparison of the upper bounds to the actual value of the 𝑘-independence number
is not possible. For all the considered instances where moreover 𝑑 < 1 + ⌈𝑛 − 𝑛

𝑞
⌉ , the

Ratio-type bound performs noworse than the Singleton-type bound. In some instances,
like 𝑛 = 5, 6, 𝑞 = 3, 𝑘 = 3 and 𝑛 = 9, 𝑞 = 2, 𝑘 = 3, 4, the Ratio-type bound
improves on the Singleton-type upper bound. There are also some improvements with
the Inertia-type bound compared to the Singleton-type. If 𝑛 = 6, 𝑞 = 2, 𝑘 = 1 or
𝑛 = 8, 𝑞 = 2, 𝑘 = 1, 3, the Inertia-type bound performs better than the Singleton-type
bound and the Ratio-type bound.

Inwhat follows,we show somemore results for the Inertia-type bound and theRatio-
type bound. This time the graph𝐺pr (F𝑛𝑞) is explicitly constructed, so the upper bounds
on the 𝑘-independence number can be compared to the true 𝑘-independence number.
The results for

𝑛 = 2, 3, 4, 𝑞 = 2, 3, 4, 5, 𝑘 = 1, . . . , ⌈ 𝑞−1
𝑞
𝑛⌉ − 1,

and 𝑛 = 5, 𝑞 = 2, 3, 𝑘 = 1, . . . , ⌈ 𝑞−1
𝑞
𝑛⌉ − 1

can be seen in Table 3. The columns “Inertia-type” and “Ratio-type” contain the value of
the Inertia-type bound and the value of the Ratio-type bound, respectively, for the given
graph instance. Similarly the column “𝜗(𝐺𝑘)” contains the value of the Lovász theta
number and the column “Singleton-type” contains the value of the Singleton-type upper
bound. Since it is computationally expensive to compute the Lovász theta number, the
value is not computed for every graph instance. In that case, this is indicated by a dash
in the corresponding entry of the table. The column “𝛼𝑘” contains the value of the true
𝑘-independence number of that graph instance. Only the instances where the Inertia-
type bound or the Ratio-type bound performed noworse than the Singleton-type bound
are provided. A value in the columns “Inertia-type” and “Ratio-type” is indicated in bold
when it is lower than the corresponding Singleton-type upper bound.

As expected from the theoretical results, the Ratio-type bound performs well. It per-
forms at least as good as the Singleton-type bound in almost all tested instances, even in
an instance with 𝑘 = 4, whichwas not included in the earlier theoretical analysis.More-
over, the Ratio-type bound improves on the Singleton-type bound in several instances
and is also sharp in many instances. The performance of the Inertia-type bound, on
the other hand, varies widely. In most instances it performs worse than the Ratio-type
bound. However, when 𝑛 = 5, 𝑞 = 2, 𝑘 = 1, 2 the Inertia-type bound performs equally
good and is sharp. Moreover, when 𝑛 = 4, 𝑞 = 2, 𝑘 = 1 the Inertia-type bound out-
performs both the Ratio-type bound and the Singleton-type bound, and is equal to the
𝑘-independence number.

To sum up the results for the phase-rotation metric, we have seen that the spec-
tral bounds improve the Singleton-type bound in several instances. For the Ratio-type
bound it was proven theoretically that in most instances where the minimum distance
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𝑞 𝑛 𝑘 Inertia-type Ratio-type 𝛼𝑘 𝜗(𝐺𝑘) Singleton-type
(Theorem 4.22)

2 2 1 1 1 1 1 1
3 2 1 7 3 3 3 3
4 2 1 6 4 4 4 4
5 2 1 12 5 5 5 5
2 3 1 7 4 4 4 4
2 3 2 1 1 1 1 1
3 3 1 13 9 9 9 9
4 3 1 43 16 16 16 16
4 3 2 19 4 4 4 4
5 3 1 52 25 25 25 25
5 3 2 25 5 5 5 5
2 4 1 5 6 5 6 8
2 4 2 1 1 1 - 1
2 4 3 1 1 1 - 1
3 4 1 40 27 27 27 27
3 4 2 11 6 6 6 9
4 4 1 91 64 64 64 64
4 4 2 61 16 16 - 16
5 4 1 421 125 125 - 125
5 4 2 161 25 25 - 25
5 4 3 41 5 5 - 5
2 5 1 16 16 16 - 16
2 5 2 2 2 2 - 8
2 5 3 1 1 1 - 1
2 5 4 1 1 1 - 1
3 5 1 161 81 81 - 81
3 5 2 53 16 11 - 27
3 5 3 22 6 6 - 9

Table 3: Results of the Inertia-type bound and the Ratio-type bound for the phase-
rotation metric, compared to the Singleton-type bound, the Lovász theta number
𝜗(𝐺𝑘), and the actual 𝑘-independence number 𝛼𝑘 . Improvements of the Inertia-type
bound and the Ratio-type bound compared to the Singleton-type bound are in bold.

is small (and 𝑛 is large enough) the Ratio-type bound is at least as good as the Singleton-
type bound. Some computational results also show improvement for the Ratio-type
bound in several instances. For the Inertia-type bound, computational results show
that there are a few instances where it outperforms the Ratio-type bound and the
Singleton-type bound, while its overall performance varies widely.
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5 Tightness results for other metrics

In this section we apply the EigenvalueMethod to three more metrics; the block metric,
the cyclic 𝑏-burst metric, and the Varshamov metric. While the bounds obtained from
this method do not improve state-of-the-art bounds for any of these metrics, there are
specific instances where the EigenvalueMethod gives tight bounds; see Table 1. In these
instances the Inertia-type bound or the Ratio-type bound equals the 𝑘-independence
number, and thus equals the maximum cardinality of codes of a specific minimum
distance. So the Eigenvalue Method gives an alternative approach for calculating the
maximum cardinality of codes in the block metric, the cyclic 𝑏-burst metric, and the
Varshamov metric.

5.1 Block metric

The block metric was introduced in [29].

Definition 5.1 Let 𝑃 = {𝑝1, . . . , 𝑝𝑚} be a partition of [𝑛]. The block 𝑃-weight of x ∈
F𝑛𝑞 is defined as

𝑤𝑃 (x) := min

{
|𝐼 | : supp(x) ⊆

⋃
𝑖∈𝐼

𝑝𝑖

}
.

The block 𝑃-distance between x, y ∈ F𝑛𝑞 is defined as 𝑑𝑃 (x, y) := 𝑤𝑃 (x − y).

Fix a partition 𝑃 = {𝑝1, . . . , 𝑝𝑚} of [𝑛]. Applying the Eigenvalue Method to the
discrete metric space (F𝑛𝑞 , 𝑑𝑃) gives the block 𝑃-distance graph𝐺𝑃 (F𝑛𝑞). This graph sat-
isfies condition (C1) and properties (P1) and (P2). Moreover, property (P3) holds since
𝐺𝑃 (F𝑛𝑞) is not distance-regular in general. So both the Inertia-type bound and the
Ratio-type bound, and their respective linear programs, can be applied to this graph.

The bounds obtained via theEigenvalueMethod canbe compared to a Singleton-type
bound: for a code C ⊆ F𝑛𝑞 of minimum block 𝑃-distance 𝑑 it holds that

|C| ≤ 𝑞
∑𝑚

𝑗=𝑑 𝑝 𝑗 , (5.1)

where w.l.o.g. |𝑝1 | ≥ · · · ≥ |𝑝𝑚 |. This bound can easily be derived from the Singleton-
type bound for the combinatorial metric, which can be found in [13], since the block
metric is an example of a combinatorial metric. Now we test the performance of the
following instances:

𝑃 =
{
{1, 2}, {3}

}
,
{
{1, 2}, {3, 4}

}
,
{
{1, 2, 3}, {4, 5}

}
, 𝑞 = 2, 3, 4, 𝑘 = 1, . . . , 𝑚−1,

and 𝑃 =
{
{1, 2}, {3, 4}, {5, 6}

}
,
{
{1, 2, 3}, {4, 5}, {6}

}
, 𝑞 = 2, 3, 𝑘 = 1, . . . , 𝑚−1.

The results can be seen in Table 4. The columns “Inertia-type”, “Ratio-type”, and
“Singleton-type” give the value of the Inertia-type bound, the Ratio-type bound and
the Singleton-type bound, respectively, for the given instance. The columns “𝛼𝑘” and
“𝜗(𝐺𝑘)” contain the value of the 𝑘-independence number and the value of the Lovász
theta number, respectively. For some instances the Lovász theta number could not
be calculated in reasonable time, which is indicated by a dash in the table. Since the
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Singleton-type bound always performs at least as good as the bounds obtained using
the Eigenvalue Method, only the instances where either the Inertia-type bound or the
Ratio-type bound attains the 𝑘-independence number are displayed in the table.

𝑃 𝑞 𝑘 Inertia-type Ratio-type 𝛼𝑘 𝜗(𝐺𝑘) Singleton-type
(Equation (5.1)){

{1, 2}, {3}
}

2 1 5 2 2 2 2{
{1, 2}, {3, 4}

}
2 1 7 4 4 4 4{

{1, 2}, {3, 4}
}

3 1 17 9 9 9 9{
{1, 2}, {3, 4}

}
4 1 31 16 16 16 16{

{1, 2}, {3, 4}, {5, 6}
}

2 1 27 16 16 16 16{
{1, 2}, {3, 4}, {5, 6}

}
2 2 10 4 4 4 4{

{1, 2}, {3, 4}, {5, 6}
}

3 1 217 81 81 - 81{
{1, 2}, {3, 4}, {5, 6}

}
3 2 25 9 9 - 9

Table 4: Results of the Inertia-type bound and the Ratio-type for the block metric, com-
pared to the Singleton-type bound, the Lovász theta number 𝜗(𝐺𝑘), and the actual
𝑘-independence number 𝛼𝑘 .

We see that the Ratio-type bound equals the 𝑘-independence number is some specific
instances, while the Inertia-type bound is strictly larger in all tested instances. Notably,
most instances where the Ratio-type bound is tight are of the form |𝑝1 | = · · · = |𝑝𝑚 |.

5.2 Cyclic 𝑏-burst metric

The cyclic 𝑏-burst metric was introduced in [14].

Definition 5.2 Let 2 ≤ 𝑏 ≤ 𝑛 − 1. Define 𝐴𝑖 := {𝑖 + 𝑗 : 𝑗 = 1, . . . , 𝑏} for 𝑖 =

0, . . . , 𝑛 − 1, where the addition is done modulo 𝑛 and 0 mod 𝑛 is denoted as 𝑛. Let
A := {𝐴0, . . . , 𝐴𝑛−1}. The cyclic 𝑏-burst weight of x ∈ F𝑛𝑞 is defined as

𝑤𝑏 (x) := min

{
|𝐼 | : supp(x) ⊆

⋃
𝑖∈𝐼

𝐴𝑖

}
.

The cyclic 𝑏-burst distance between x, y ∈ F𝑛𝑞 is defined as 𝑑𝑏 (x, y) := 𝑤𝑏 (x − y).

Example 5.1 To illustrate the set A from Definition 5.2, consider 𝑛 = 5 and 𝑏 = 3.
Then

𝐴0 = {1, 2, 3}, 𝐴1 = {2, 3, 4}, 𝐴2 = {3, 4, 5}, 𝐴3 = {4, 5, 1}, 𝐴4 = {5, 1, 2}.

Fix 2 ≤ 𝑏 ≤ 𝑛 − 1. Applying the Eigenvalue Method to the discrete metric space
(F𝑛𝑞 , 𝑑𝑏) gives the cyclic 𝑏-burst distance graph 𝐺𝑏 (F𝑛𝑞). This graph satisfies condition
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(C1) and properties (P1) and (P2). Moreover, 𝐺𝑏 (F𝑛𝑞) is not distance-regular in gen-
eral, so property (P3) holds. This means both the Inertia-type bound and the Ratio-type
bound, and their respective linear programs, can be applied to this graph.

The bounds obtained via theEigenvalueMethod canbe compared to a Singleton-type
bound: for a code C ⊆ F𝑛𝑞 of minimum cyclic 𝑏-burst distance 𝑑 it holds that

|C| ≤ 𝑞𝑛−𝑏 (𝑑−1) . (5.2)

This bound can be derived from the Singleton-type bound for the combinatorial metric
in [13], since the cyclic 𝑏-burst metric is an example of a combinatorial metric. This
bound is also known as the extended Reiger bound (see [55]). We test the performance
of the spectral bounds in the following instances:

𝑛 = 3, 4, 5, 𝑞 = 2, 3, 𝑏 = 2, . . . , 𝑛 − 1, 𝑘 = 1, . . . ⌈ 𝑛
𝑏
⌉ − 1,

and 𝑛 = 3, 4, 𝑞 = 5, 𝑏 = 2, 𝑘 = 1.

The results can be seen in Table 5. The columns “Inertia-type”, “Ratio-type”, and
“Singleton-type” give the value of the Inertia-type bound, the Ratio-type bound and
the Singleton-type bound, respectively, for the given instance. The columns “𝛼𝑘” and
“𝜗(𝐺𝑘)” contain the value of the 𝑘-independence number and the value of the Lovász
theta number, respectively. Since the Singleton-type bound always performs at least as
good as the bounds obtained using the Eigenvalue Method, only the instances where
either the Inertia-type bound or the Ratio-type bound attains the 𝑘-independence
number are displayed in the table.

𝑛 𝑞 𝑏 𝑘 Inertia-type Ratio-type 𝛼𝑘 𝜗(𝐺𝑘) Singleton-type
(Equation (5.2))

3 2 2 1 5 2 2 2 2
3 3 2 1 15 3 3 3 3
4 2 3 1 9 2 2 2 2
5 2 2 2 6 2 2 2 2
5 2 4 1 17 2 2 2 2

Table 5: Results of the Inertia-type bound and the Ratio-type for the cyclic 𝑏-burst met-
ric, compared to the Singleton-type bound, the Lovász theta number 𝜗(𝐺𝑘), and the
actual 𝑘-independence number 𝛼𝑘 .

Table 5 shows that the Inertia-type bound is not tight in any tested instances, while
the Ratio-type bound is tight in some instances. However, it is not immediately clear
why those instances give a tightness for the Ratio-type bound.

5.3 Varshamov metric

The Varshamov metric, also known as the asymmetric metric, was introduced in [54].
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Definition 5.3 The Varshamov distance between x, y ∈ F𝑛2 is defined as

𝑑Var (x, y) := 1
2 (𝑤H (x − y) + |𝑤H (x) − 𝑤H (y) |) ,

where 𝑤H denotes the Hamming weight.

Another definition of the Varshamov distance between x = (𝑥1, . . . , 𝑥𝑛), y =

(𝑦1, . . . , 𝑦𝑛) ∈ F𝑛2 is given in [45]:

𝑑Var (x, y) := max{𝑁01 (x, y), 𝑁10 (x, y)},

where

𝑁01 (x, y) := |{𝑖 : 𝑥𝑖 = 0, 𝑦𝑖 = 1}| , 𝑁10 (x, y) := |{𝑖 : 𝑥𝑖 = 1, 𝑦𝑖 = 0}| .

In [39, Lemma 2.1] the equivalence of both definitions is proven.
Applying the EigenvalueMethod to the discretemetric space (F𝑛2 , 𝑑Var) gives theVar-

shamov distance graph 𝐺Var (F𝑛2 ). This graph satisfies condition (C1) and property (P3).
However, desired properties (P1) and (P2) do not hold. This means only the Inertia-type
bound can be applied to this graph.

The bound obtained via the Eigenvalue Method can be compared to a Plotkin-type
bound [12] and to a bound due to Varshamov [53]. The latter bound states that for a code
C ⊆ F𝑛2 of minimum Varshamov distance 𝑑 it holds that

|C| ≤ 2𝑛+1

𝑑−1∑
𝑖=0

(⌊𝑛/2⌋
𝑖

)
+

(⌈𝑛/2⌉
𝑖

) . (5.3)

Note that an integer programming bound also exists for codes in the Varshamov metric
(see e.g. [25]). We test some instances of the graph, specifically

𝑛 = 2, . . . , 8, 𝑘 = 1, . . . 𝑛 − 1 except (𝑛, 𝑘) = (8, 7).

The results can be seen in Table 6. The columns “Inertia-type”, “Plotkin-type”, and “Var-
shamov” give the value of the Inertia-type bound, the Plotkin-type bound and the bound
due to Varshamov, respectively, for the given instance. The columns “𝛼𝑘” and “𝜗(𝐺𝑘)”
contain the value of the 𝑘-independence number and the value of the Lovász theta num-
ber, respectively. Since either the Plotkin-type bound or the bound due to Varshamov
always performs at least as good as the Inertia-type bound, only the instances where the
Inertia-type bound attains the 𝑘-independence number are displayed in the table.

We can see in Table 6 that the instances where the Inertia-type bound is tight are
those where 𝑘 is close to 𝑛. In all these instances the 𝑘-independence number equals 2.
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𝑛 𝑘 Inertia-type 𝛼𝑘 𝜗(𝐺𝑘) Plotkin-type [12] Varshamov
(Equation (5.3))

2 1 2 2 2.0 2 2
3 2 2 2 2.0 2 2
4 3 2 2 2.0 2 4
5 3 2 2 2.0 2 5
5 4 2 2 2.0 2 5
6 4 2 2 2.0 2 8
6 5 2 2 2.0 2 8
7 5 2 2 2.0 2 10
7 6 2 2 2.0 2 10

Table 6: Results of the Inertia-type bound for the Varshamov metric, compared to the
Plotkin-type bound, the bound from Varshamov, the Lovász theta number 𝜗(𝐺𝑘), and
the actual 𝑘-independence number 𝛼𝑘 .
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