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Abstract
Opinion dynamics is an important and very active area of research that delves into the complex processes through
which individuals form and modify their opinions within a social context. The ability to comprehend and unravel the
mechanisms that drive opinion formation is of great significance for predicting a wide range of social phenomena
such as political polarisation, the diffusion of misinformation, the formation of public consensus and the emergence
of collective behaviours. In this paper, we aim to contribute to that field by introducing a novel mathematical model
that specifically accounts for the influence of social media networks on opinion dynamics. With the rise of platforms
such as Twitter, Facebook, and Instagram and many others, social networks have become significant arenas where
opinions are shared, discussed and potentially altered. To this aim after an analytical construction of our new model
and through incorporation of real-life data from Twitter, we calibrate the model parameters to accurately reflect the
dynamics that unfold in social media, showing in particular the role played by the so-called influencers in driving
individual opinions towards predetermined directions.

1. Introduction
In recent years, kinetic models and specifically Boltzmann equations have emerged as very powerful
tools for describing and analysing the collective behaviours exhibited by systems of interacting agents
[7, 45]. These models have found applications across a diverse range of fields giving a contribution to the
advancement of the knowledge in various disciplines. For example in economics, kinetic models have
been recently used to study the dynamics of market prices and trading outcomes ([14, 17, 19, 30, 46,
51]). Using the tools of kinetic theory in financial markets to study the evolution of prices, it is possible
to predict the emergence of bubbles and crashes [42]. Moreover, Boltzmann-type equations permit to
characterise the details of the economical interactions and to describe the wealth distribution in a society
and the appearance of inequalities [19, 46]. In biology, kinetic models have been extensively used to
study the dynamics of populations and the spread of epidemics (see, e.g., [12, 16, 22, 23, 54]). The
kinetic theory of infectious diseases has been shown to be a powerful mean to describe the spread of a
disease in a homogeneous population and also when spatial differences become a key aspect to accurately
describe a pandemic [9, 12]. These models can be used to predict the effectiveness of vaccination and
quarantine measures in a population [23] and can be efficiently interfaced with data [54]. Boltzmann-
type equations have also been used to study the evolution of cooperation and altruism in social systems
[6, 13] and to analyse the dynamics of genetic mutations ([50]). The application of kinetic models in
social sciences has also a long and successful history [24, 25, 36, 52]; in this context, we also recall the
recent study of information diffusion [34] which can be pursued through these mathematical techniques.
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In engineering, kinetic models have been used to study the dynamics of traffic flow [26, 27], notably
the formation and dissipation of traffic jams and the prediction of the effects of traffic control measures
(see [2, 38, 47]). Crowd behaviours [2, 3, 8, 31] and network communication with emphasis on the
optimisation of communication protocols in wireless networks [29, 49] can be studied as well.

In the above-depicted and wide framework of application of kinetic theory to social and biological
systems, opinion formation, that is, the dynamics of how opinions evolve and spread among individuals
plays a relevant role due to its importance in the society: political polarisation and consensus among
others. To shed light on this complex process, the methods of statistical physics have proven to be highly
effective and efficient tools for studying and analysing such phenomena [4, 5, 29, 49]. In this regard, one
of the key concepts from statistical physics that can be applied to the dynamics of opinion formation
is the notion of emergent behaviour. Emergence refers to the phenomenon where collective properties
and behaviours arise from the interactions and dynamics of individual components. In the context of
opinion formation, emergent behaviour can manifest as opinion clusters, polarisation, consensus, or the
formation of influential opinion leaders.

In this paper, we introduce a new kinetic model through the use of probabilistic and statistical tools
describing the microscopic dynamics of opinion formation and change. We then upscale our model at
the bound of observable quantities, and we provide a quantitative framework for analysing social phe-
nomena and designing interventions that promote constructive dialogue and reduce polarisation. One
key ingredient of our study consists in the description of the role played by individuals with strong
ascendancy on the rest of the population through a detailed analysis of the network to which the popula-
tion belongs and the high number of connections of such few influential individuals. More in detail, our
model describes the evolution of opinions starting from the microscopic bound. Each agent/individual
has associated two real values: its number of followers on a given social media platform where he/she
is used to interact and its opinion. By assuming that the number of followers is not influenced by their
opinion, we first construct an evolutionary model describing the connections among individuals over
a fixed social platform. We successively restrict ourselves to a given social network, namely Twitter,
and we show how the proposed model is well adapted to describe Twitter networks by matching real
data, through a parameter estimation technique, with the equilibrium distribution obtained with this new
contact model.

In the second part, we assume that opinions are continuous variables lying on a bounded interval
[−1, 1] indicating, respectively, total disagreement and total agreement about a given topic, and that the
agents update their opinions after the interaction with others through the social platform. The strength
of such interaction is supposed to depend on the number of followers of each agent and on the distance
between their opinions. We also suppose that there is a certain amount of randomness in the interaction,
modelling external factors which can be hardly controlled such as the possibility to access information
and the knowledge of every single individual. Under these hypotheses, we derive the kinetic equation
that describes the time evolution of the distribution of opinions in presence of social media contacts in
the population, and we finally study its properties using analytical and numerical methods. In the last
part, we show that our kinetic model is able to capture important features of opinion dynamics, such
as the emergence of consensus and polarisation, according to the choice of different interaction kernels
between the agents. Furthermore, to comprise data with opinion dynamics, we use a sentiment analysis
(SA) method to assign a score to textual information (the tweets). We use this method to represent
the agents’ opinions extracting data from Twitter over some specific topic and assigning a score in the
interval [−1, 1]. We mention that SA, also known as Opinion Mining, is a subclass of Natural Language
Process (NLP) methods to analyse textual information; in this context, we refer to [40, 44, 55, 56] for
further details. Finally, to fit the actual trend of the opinion distribution of the agents, we calibrate
the interaction kernels that rule the evolution of the dynamics, using a parameter estimation approach
based on the minimisation of a loss function, between data extracted from Twitter and the result of the
simulation. Our results provide insights into the mechanisms that drive opinion formation and changes
on a social platform.
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The rest of the work is structured as follows. In Section 2, we describe how to model the formation
of a network on social media platforms starting from a microscopic approach and successively upscale
the description at a mesoscopic bound by deriving a kinetic equation for the time evolution of the con-
nections. We show that for different choices of a so-called value function appearing in every single
interaction among individuals, we are able to recover different stationary distributions for the distribution
of contacts, and we explain how to use a given dataset from Twitter in order to select the set of parame-
ters that allows describing the current state of the connections on that specific social network. Section 3
is devoted to the model of opinion formation given the presence of social media contacts. Starting from
the binary interaction between two agents, which takes into account the compromise propensity of the
agents and a certain amount of randomness in the process, we recover the Boltzmann-like equation that
describes the evolution of the density of the joint distribution of opinions and contacts. In Section 4, we
perform some numerical simulations. In the first part, we analyse the qualitative behaviour of our new
model and we illustrate its capabilities in describing different artificial situations. In the second part,
we focus on real data extracted from Twitter, we perform a SA to obtain an opinion distribution and
we reconstruct with our new model the interaction kernel that leads to the opinion distribution derived
from that SA. The last Section 5 is devoted to drawing some conclusions and individuating some future
research axes.

2. An evolutionary model for contacts
This section is dedicated to the construction of a mathematical model describing social contacts on the
web with an emphasis on social platform networks. There exists a vast literature on network modelling,
see for instance [1, 5, 20, 28] and the reference therein where empirical, Bayesian, and non-Bayesian
methods and probability approaches based on Poisson distribution are discussed and employed. Here,
the path followed is different and it sinks its roots in the interplay between the kinetic theory of gases
[15, 45] and the prospect theory of Kahneman and Tversky [41] which was first introduced in the context
of behavioural economic studies to characterise the science of decision in a population. Our aim is to
exploit this theory with the scope of building a model which is able to describe the evolution in time
of the number of contacts on a social media platform through the methods and techniques of kinetic
theory. Let us observe that a similar study has been performed in [22] for characterising the contact
dynamics related to the spread of an epidemic. However, in the context of the virtual contacts, which are
the ones to take place in this study, the results are different as well as the type of equilibrium distributions
characterising the network obtained as shown later. One additional and important point to highlight is
that the results achieved in this section permit us to match the real data taken from a given web platform,
namely Twitter, with high precision.

In the next section, through modelling choices discussed here for the network formation, we will
introduce a detailed description of the microscopic binary interactions taking place among individuals
acting on a social network for what concerns the formation of opinions. We will in particular shed light
on the role played by individuals with a large number of connections in driving others’ opinions. In the
sequel, we will often refer to individuals with a number of connections larger than the average to as
the influencers. Let us also observe that the choice we will do successively of giving these individuals
a larger weight in the opinion balance is consistent with the actual current functioning of most social
media platforms: individuals are exposed to content created by popular users more often than the ones
posted by their local connections and more likely influenced by the former. For the moment, and for
the sake of clarity, we restrict ourselves to the sole case of contact dynamics and we will follow the
construction in [25] to derive the master equation of Boltzmann type that describes the evolution of
such quantity.

We consider then a system of agents characterised by the number of their social media followers
which, from now on, we will refer to as c > 0. We assume that our agents are indistinguishable and
that, at time t ≥ 0, they are only characterised by the number of their contacts. The concept of contact
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or connection here has to be intended as the number of individuals following the contents spread over
a given platform by a given second subject. One can then suppose the statistical distribution of con-
tacts/connections of the agents to be fully characterised by the density h(c, t) of contacts, which is such
that, given the sub-domain D ⊆R+, the integral∫

D

h(c, t)dc

represents the number of people having c ∈ D followers at time t > 0. The density function h is assumed
to be normalised to one, so that ∫

R+
h(c, t)dc = 1.

In analogy with the problem of social climbing presented in [25] where agents were aiming to climb
the social ladder to reach high social status, here it is reasonable to assume that the formation of a given
network begins due to the will of all the participants to interact and to be heard by others. The conse-
quence is that each individual, we usually refer to him/her to as an agent in the sequel, likely wants to
increase its number of contacts when he enters the platform by interacting with other agents. We assume
that, for most participants, there exists a given number of social contacts, c̄, such that they considered
themselves satisfied when this number is reached. Moreover, the elementary interaction which takes
place at the microscopic bound will express the tendency of the agents to reach, at least, the number of
followers equals to c̄. In order to describe the evolution of social contact dynamics, we will now take
inspiration from the prospect theory of Kahneman and Tversky [41] and we introduce a value function
�δ modelling this behavioural theory. We also have

c′ = c − �δ(c/c̄)c + ηc (1)

where 0 ≤ δ ≤ 1 is a parameter characterising the intensity of the individual behaviour and η is a random
variable with zero mean and finite standard variation ν. In equation (1), we are then assuming that each
individual tries to increase the number of its followers by getting in touch with friends or by sharing
content that may be of interest to others, voicing strong opinions, or simply using their social status
to capture interest. The result of such dynamics is that the number of followers of each agent can be
modified for two reasons, one quantified by a deterministic value function �δ, which can assume both
negative and positive values, that is, it is possible that with its actions an individual gain or lose connec-
tions. The second reason which may lead to a change in the number of followers is due to the intrinsic
unpredictability of this complex process which is quantified consequently by a random variable η with
zero mean. The value function �δ(s), s ≥ 0, encodes the properties of the theory exposed in [41]: it is a
dimensionless increasing function equal to 0 at the point s = 1 corresponding to the point where most
individuals reach satisfaction in terms of their role in the network and it verifies the conditions:

−�δ(1 − �s) > �δ(1 + �s) (2)

and
d

ds
�δ(s)

∣∣
1+�s

<
d

ds
�δ(s)

∣∣
1−�s

(3)

for 0 < �s ≤ 1. Request (3) implies that the value function is asymmetric, meaning that it is steeper
below the reference point s = 1 than above it. This models the fact that, if two agents start at the same
distance �s from the reference point s = 1, getting closer to s = 1 will be easier for the agent starting
from below the reference point than for the one starting above. It is quite easy for individuals with a low
number of followers to increase the number of their connections by contacting friends and related, while
it is more difficult to decrease the number of followers when a certain status, that is, c > c̄, is reached,
and in general, an individual is not interested in decreasing this number. Setting s = c/c̄ we choose the
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Figure 1. Profiles of the value function (4) for different choices of δ and μ = 0.15. The red dashed lines
represent the bounds (5).

precise form of the value function which reads

�δ(s) = −μ
e(s−δ−1)/δ − 1

(1 − μ)e(s−δ−1)/δ + 1 + μ
. (4)

The above equation respects all the properties detailed above for any value of 0 < δ ≤ 1. It has an inflec-
tion point s̄ < 1, and it is convex in [0, s̄] and concave for s > s̄. This inflection point corresponds to
a certain value ĉ < c̄ below which, in principle, the agents do not expect to increase their number of
followers, while the satisfactory number of followers c = c̄ corresponds to the reference point s = 1.
Moreover, the value function (4), is bounded by the following relation:

− μ

1 − μ
≤ �δ ≤ −μ

e−1/δ − 1

(1 − μ)e−1/δ + 1 + μ
(5)

for 0 ≤ δ ≤ 1. Concerning the role played by the parameter δ, one can notice that the smaller is this
value, the easiest is the possibility to gain some followers when one is below the value c = c̄. We report
in Figure 1 different shapes of the value function, for different choices of δ, where the dashed red lines
represent the bounds (5).

Before concluding this part, we introduce a rescaling factor in equation (1) meaning that we are
interested in studying a process in which the formation of this social network is a consequence of small
upgrading of the number of connections in time. The rescaled equation reads

c′ = c − �ε

δ
(c/c̄)c + ηεc (6)

where now

�ε

δ
(s) = −μ

eε(s−δ−1)/δ − 1

(1 − μ)eε(s−δ−1)/δ + 1 + μ
. (7)

ηε is the same random variable as before but with variance εν2 and ε is a small parameter. The role of
ε in the dynamics will be clarified in the next section.

2.1. The kinetic model for the evolution of social media contacts

We aim now in deriving an evolutionary model for the formation of a network on a social media platform
resorting to the contact law (7) derived previously. To that aim, let us observe that the variation of
the density hε(c, t), also rescaled through the parameter ε, obeys a linear Boltzmann-like equation [45]
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whose weak form corresponds to

d

dt

∫
R+

ϕ(c)hε(c, t)dc = 〈 ∫
R+

χ (c)(ϕ(c∗) − ϕ(c)) hε(c, t)dc
〉
, (8)

for all smooth test functions ϕ(c). These functions are the so-called observable quantities of the underly-
ing random process. For example, taking ϕ(c) = 1 leads equation (8) to an equation for the time evolution
of the number of individuals in the network which can be easily inferred from equation (8) is constant
in time. Instead, the case ϕ(c) = c leads to an evolution equation for the average number of connections
in the network which can be inferred, contrary to the previous case, not to be conserved in time. The
positive function χ (c) measures the frequency of the interactions with c followers and the expectation
〈·〉 takes into account the presence of the random variable ηε. More in detail 〈·〉 gives the expected value
with respect to the random space in which ηε lives. In order to preserve the positivity of the connections
in (1) and in the rescaled equation (6) based on the bounds of the value function (5), we require the
random variable ηε to be uniformly distributed and to take values in

ηε ∈
[
−
∣∣∣∣ e−ε/δ + 1

(1 − μ)e−ε/δ + 1 + μ

∣∣∣∣ ,

∣∣∣∣ e−ε/δ + 1

(1 − μ)e−ε/δ + 1 + μ

∣∣∣∣
]

. (9)

In the sequel, we consider collision kernels in the form [35]

χ (c) = cβα, (10)

for some multiplicative positive constants α > 0 and for exponents β ≥ 0. In order to establish reasonable
values for χ (c), one can observe that, if s > 0, the individual rate of growth ∂�ε

δ
(s)/∂s vanishes as ε → 0

(cfr. [25]). So, to maintain a collective growth different than 0 for all values of the scaling parameter ε,
one suitable choice is to take

α = 1

κε
, (11)

corresponding to a frequency of interaction proportional to 1/ε with instead κ an order 1 constant.
Concerning the second parameter β, we will consider two different situations. The first consists in taking
β > 0 which implies that the frequency of interaction becomes greater if the number of connections
is higher. This situation is encountered in social platforms where the type of exchanges are typically
one to one and consequently one shares contents proportionally to the number of its connections. The
second case we will consider is β = 0 which corresponds to the situation in which interactions are
independent of the number of connections meaning that the activity of each individual is independent
of the other and the content sharing is independent of the size of the relative network. In the case β > 0,
a rational choice would consist in setting β = δ when δ is positive. Choices of β < δ will imply very high
variations of the collective growth of the number of social media connections when c is small compared
to the case with c large. However, it is not reasonable to expect that individuals with few connections
can reach an influential position easily. Conversely, β > δ implies very small variations of collective
growth for small values of c, excluding consequently the opposite situation, that is, the possibility to
increase the number of followers for individuals having few connections. Hence, choosing β = δ is a
good compromise between the two scenarios. With the above-discussed choices, then equation (8) can
be rewritten as:

d

dt

∫
R+

ϕ(c)hε(c, t)dc = 1

εκ

〈 ∫
R+

cδ(ϕ(c∗) − ϕ(c)) hε(c, t)dc
〉
. (12)

To get some insight into the time evolution of the model above, we use a standard procedure borrowed
from the theory of gases and so we expand in Taylor series ϕ(c′) around ϕ(c) supposing ϕ(c) smooth
enough. We have that

〈c′ − c〉 = −�ε

δ
(c/c̄)c, 〈(c′ − c)2〉 = (

�ε

δ
(c/c̄)

)2
c2 + εν2c2,
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One can also observe that for 0 < δ ≤ 1, it holds that

lim
ε→0

1

ε
�ε

δ

(c

c̄

)
= μ

2δ

(
1 −

(
c̄

c

)δ
)

. (13)

This gives

〈ϕ(c′) − ϕ(c)〉 = ε

(
−ϕ ′(c)

1

ε
�ε

δ
(c/c̄)c + ν2

2
ϕ ′ ′(c)c2

)
+ Rε(c),

where Rε(c) is a remainder of the Taylor expansion such that Rε(c) = o(ε) thanks to equation (13).
Therefore, using for the interaction frequency (11), we get for the evolution of the observable ϕ(c):

d

dt

∫
R+

ϕ(c)hε(c, t)dc =
∫
R+

cδ

κ

(
−ϕ ′(c)

1

ε
�ε

δ
(c/c̄)c + ν2

2
ϕ ′ ′(c)c2

)
hε(c, t)dc + 1

κε
Rε(c, t)

where

Rε(c, t) =
∫
R+

Rε(c)hε(c, t)dc

and by using equation (13), we get the following approximation:

d

dt

∫
R+

ϕ(c)h(c, t)dc =
∫
R+

(
−ϕ ′(c)

μ̃

2δ

(
1 −

(
c̄

c

)δ
)

c1+δ + ν̃2

2
ϕ ′ ′(c)c2+δ

)
h(c, t)dc, (14)

in which we have set μ̃ = μ/κ and ν̃2 = ν2/κ . Under the additional hypothesis that the boundary terms
produced by the integration by parts vanish, that is, a zero flux condition, equation (14) is the weak
form of the following Fokker–Planck equation:

∂h(c, t)

∂t
= μ̃

2δ

∂

∂c

((
1 −

(
c̄

c

)δ
)

c1+δh(c, t)

)
+ ν̃2

2

∂2

∂c2

(
c2+δh(c, t)

)
, (15)

that describes the evolution of the density of contacts c ∈R+ in the limit of the quasi-invariant variations
of followers.

We are now interested in a steady state solution of equation (15). In fact, for the time of dynamics
which we aim to study, that is, the one related to the formation of opinions through social interactions
on online platforms, one can reasonably suppose that the connectivity network is stationary being the
time at which opinions about a given subject are shaped much faster than the changes in the network.
Thus, one can observe that the equilibrium solution of equation (15) is a function solving the first-order
differential equation:

ν̃2

2

d

dc

(
c2+δh(c)

)+ μ̃

2δ

(
1 −

(
c̄

c

)δ
)

c1+δh(c) = 0 (16)

To find a solution to (16), we perform the change of variable ρ(c) = c2+δh(c) and by setting γ = μ̃/ν̃2 =
μ/ν2, one can easily observe that the function ρ(c) solves the following equation:

dρ(c)

dc
= −γ

δ

(
1

c
− c̄δ

c1+δ

)
ρ(c). (17)

The unique solution of (17) is then given by:

h∞(c) = h∞(c̄)

(
c̄

c

)2+δ+γ /δ

exp

{
− γ

δ2

((
c̄

c

)δ

− 1

)}
, (18)

which is known as Amoroso distribution, corresponding to a particular class of the generalised Gamma
distribution.
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We focus now on a particular case, that is, the case in which δ → 0 and consequently β = 0, that is,
the collision kernel is independent on the number of contacts. In this situation, the value function (7)
degenerates to

�ε

0 (s) = −μ
s−ε − 1

(1 − μ)s−ε + 1 + μ
=
(

μ

1 − μ

)
sε − 1

1+μ

1−μ
sε + 1

, (19)

where now the following limit holds true

lim
ε→0

1

ε
�ε

0

(c

c̄

)
= μ/(1 − μ)

1+μ

1−μ
+ 1

ln
(c

c̄

)
= μ

2
ln
(c

c̄

)
,

so that the evolution of the observables, as ε → 0 and in a case of a collision kernel which does not
depend on the number of connections, is well described by the following Fokker–Planck type of equation
in weak form:

d

dt

∫
R+

ϕ(c)h(c, t)dc =
∫
R+

(
−ϕ ′(c)

μ̃

2
ln
(c

c̄

)
c + ν̃2

2
ϕ ′ ′(c)c2

)
h(c, t)dc, (20)

where μ̃ = μ/κ and ν̃2 = ν2/κ . Under again the zero flux hypothesis at the boundary, one gets a strong
form of a Fokker–Planck type of equation:

∂h(c, t)

∂t
= μ̃

2

∂

∂c

(
cln
(c

c̄

)
h(c, t)

)
+ ν̃2

2

∂2

∂c2

(
c2h(c, t)

)
, (21)

which equilibrium state now reads

h∞(c) = 1√
2πσc

exp
{
− (lnc − λ)2

2σ

}
, (22)

where γ = μ̃/ν̃2 and where we denoted σ = 1/γ and λ = lnc̄ − σ . Equation (22) is a log-normal
probability distribution with mean and variance, respectively, given by:

m(h∞) = c̄e−σ/2, Var(h∞) = c̄2(1 − e−σ ).

2.2. Contact distribution on Twitter and fitting

We discuss now the capability of our contact model to describe real networks. To that aim, we first
collected data from Twitter in order to reconstruct a typical ensemble of connections. Successively, we
estimated the parameters appearing in the general equilibrium state derived previously, (18) and (22),
in such a way for our model to be as close as possible to real observable networks. The choice of using
Twitter among other possible online platforms is motivated by the fact that one key characteristic of
Twitter is to be more focused on staying informed and updated with respect, for instance, to Facebook
which mainly aims at making friends. Thus, the first seemed more adapted to the study of opinion
formation and modification with respect to the latter.

At the time we started this research, Twitter allowed academics to retrieve information about its users,
given the IDs or usernames. Thanks to this possibility, the data have been collected through the user IDs
of some of the most followed politicians from around the world, and successively by accessing their net-
work, we retrieved the IDs of a million followers from each of their profiles. We then merged all these
data, ignoring possible repetitions, and extracted one million profiles from such a set. We then gathered
the number of followers of each participant in order to have a statistical representation of the distribu-
tion of connections over the platform. During this operation, we eliminated profiles with zero followers,
assuming them as inactive. In Figure 2, we represent our dataset using a sample of Ns = 400 accounts
from the N = 106 accounts extracted from Twitter. Sizes of the bubbles are proportional to the logarithm
of agents’ contacts, where the information of the edges connection is reconstructed based on the statis-
tical distribution of the connections. The fitting of the contact distribution arising from the data with the

https://doi.org/10.1017/S0956792524000068 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000068


European Journal of Applied Mathematics 9

Figure 2. Representation of the social network using a sample of Ns = 400 accounts from the N = 106

dataset extracted from Twitter. Sizes of the bubbles are proportional to the logarithm of agents’ contacts,
where edges are reconstructed based on the statistical distribution of the connections.

steady state solution (18)–(22) has been obtained by solving a nonlinear least-squares problem, through
the Matlab function lsqcurvefit. The analysis of the best fit has been done using different choices
for the contact distribution, namely log-normal, Amoroso, and Inverse Gamma distributions have been
tested (each one corresponding to different values of the parameter δ appearing in the value function).
In Figure 3 and in Table 1 we show the results of such a study obtained with different fitting functions.
We can conclude that the best fit is obtained in the case in which the steady state distribution of the num-
ber of social media connections is distributed as a log-normal density, meaning that the parameter δ in
Section 2 is equal to 0.

We should remark that the log-normal distribution only has two parameters, while both the Amoroso
and the Inverse Gamma have three parameters, and that the process of fitting is easier when fewer param-
eters have to be identified. Notice also that both the mean and the variance of the steady state depend on
ν, the ratio between the variance of the random percentage of variation of followers, and μ, the maximal
percentage allowed of possible variation of followers per interaction. Referring to (22), the values of the
parameters resulting from the fitting process are λ = 7.165 × 10−1 and σ = 8.882. In the sequel, we will
then use a log-normal distribution to characterise the structure of the network.
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Figure 3. Comparison between the tails of the data distribution and the different possible equilibrium
distributions of the Fokker–Planck models of Section 2.1.

Table 1. Fitting of the contact distribution from Twitter data

Distribution type δ c̄ γ Error
Log-normal distribution 0 40 3.36 · 10−1 2.96 · 10−2

Amoroso distribution 6.56 · 10−3 94 3.93 · 10−1 4.68 · 10−1

Inverse Gamma distribution 1 2.11 · 106 1.00 · 10−4 1.04

3. Kinetic model of opinions and contacts
As done for the process of evolution of the number of social media contacts, we again start from the
microscopic interactions between individuals interacting on a social platform to model the evolution of
the distribution of opinions in time, as done for instance in [49]. However, here we take into account
the possibility that opinions of people having a large number of connections have a larger impact on the
community and that consequently they more easily modify other opinions.

3.1. The binary interaction

We start by associating the opinion of each agent with a variable v ∈ I = [−1, 1]. At the microscopic
scale, we then suppose that binary interactions between individuals obey the following law:

v′ = v + αP(v, v∗, c, c∗)(v∗ − v) + ξD(v, c),

v′∗ = v∗ + αP(v∗, v, c∗, c)(v − v∗) + ξ∗D(v∗, c∗), (23)

where v and v∗ are the agents’ opinions before the interaction, while v′ and v′∗ are their opinions after
interacting. In (23), the function P can be seen as the compromise propensity of the agent. In other
words, as a consequence of the exchange of relative information, the two interacting agents change
their opinions, in a symmetric or more in general non-symmetric way, approaching one the opinion of
the other and vice versa. The function D instead is responsible for diffusion effects, and it models the
unpredictable role played by the environment. It is indeed multiplied by the random variable ξ , with
〈ξ 〉 = 0, and 〈ξ 2〉 = σ 2. Let us observe that in the general case depicted in (23), the post-interaction
opinions depend on the number of connections of both participants to the interaction. We will detail this
dependence later. We remark for the moment that the restriction of the binary interaction to the case in
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which the values assumed by the couple (v′, v′∗) are independent of the number of contacts (c, c∗) can be
considered quite classical and it is discussed for instance in [5].

Let now f (v, c, t) be the density of agents which at time t > 0 are represented by their opinion v and
have connection c. The time evolution of the distribution of opinions/connections f (v, c, t), consequence
of the binary interactions of type (23) among individuals acting on a social platform, is obtained by
resorting to kinetic collision-like models [45, 49]. This reads in weak form as:

d

dt

∫
I×R+

f (v, c, t)ϕ(v, c) dv dc = 1

2

〈 ∫
I2×R

2+

(
ϕ(v′, c′) + ϕ(v′∗, c′∗)

− ϕ(v, c) − ϕ(v∗, c∗)
)
f (v∗, c∗, t)f (v, c, t) dv dv∗ dc dc∗

〉
.

(24)

In (24), the post-interaction opinions v′ and v′∗ are given by (23), while the post-interaction connections
are given by (1). The operator 〈·〉 represents the mathematical expectation with respect to the random
variables ξ and η. Let us observe that here we do not consider an interaction kernel depending on the
number of contacts as done for instance in (8). This choice is driven by the fact that we aim to represent a
specific situation when comparing the model to the experiments, namely the case in which the network
is well described by a log-normal distribution as shown in Section 2.2. However, we stress that the
extension to the case of kernels depending on c is possible even if not discussed in the present work.

The opinion variable v belongs to the bounded domain [−1, 1], so it is important to only consider
interactions that do not produce values outside of such domains. A sufficient condition to preserve the
bounds is given by the following proposition.

Proposition 3.1. The binary interaction (23) preserves the bounds, that is, v′, v′∗ ∈ [−1, 1] if v, v∗ ∈
[−1, 1] and if

0 < P(v, v∗, c, c∗) ≤ 1, 0 < α ≤ 1/2, |ξ | ≤ (1 − γ ∗)d (25)

where

γ ∗ = α min
v,v∗∈[−1,1],

c,c∗>0

P(v, v∗, c, c∗), d = min
v∈[−1,1],

c>0

{
1 − |v|
D(v, c)

, D(v, c) �= 0

}
. (26)

Proof. Let us define γ = αP(v, v∗, c, c∗). We first consider the case in which there is no diffusion, that
is, ξ = 0: we have that

|v′| = |v + γ (v∗ − v)| ≤ (1 − γ )|v| + γ |v∗| ≤ 1,

since |v|, |v∗| ≤ 1 and, under the hypothesis (25), we have that 0 < γ ≤ 1.
Let us now assume that ξ �= 0: we can write, using that |v∗| ≤ 1,

|v′| = |v + γ (v∗ − v) + ξD(v, c)| ≤ (1 − γ )|v| + γ |v∗| + |ξ |D(v, c) ≤ (1 − γ )|v| + γ + |ξ |D(v, c).

So, in order to have |v′| ≤ 1 it is sufficient to require

|ξ | ≤ (1 − γ )(1 − |v|)
D(v, c)

,

with D(v, c) �= 0, for all the possible values of v and c. Thus, defining γ∗ and d as in (25), we get the
result.

3.2. Fokker–Planck asymptotics

In order to model the fact that the formation of the opinions are due to a large number of interactions,
each one producing a small change in the point of view of individuals up to the moment in which the
final opinion is formed, we regularise the dynamics of the Boltzamnn-like equation (24) by relying on a
quasi-invariant scaling. This computation permits us to get some insights on the behaviour of the model
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(24) by retrieving a Fokker–Planck equation for the asymptotic combined evolution of contacts and
opinions. The quasi-invariant scaling is as follows:

α → εα, σ 2 → εσ 2, (27)

for ε � 1, similarly to the relation (6) for the sole contacts dynamics.
We assume that the scaled random variables ηε, ξε, and ξε∗ are independent with zero mean and

bounded moments at least of order n = 3. We also assume that ξε, ξε∗ are identically distributed, and that
the following holds

〈ξε〉 = 〈ξε∗〉 = 0, 〈ξ 2
ε
〉 = 〈ξ 2

ε∗〉 = εσ 2, 〈ξ 3
ε
〉 = 〈ξ 3

ε∗〉 = ε3/2�, (28)

and for ηε we have recalled the following:

〈ηε〉 = 0, 〈η2
ε
〉 = εν2, 〈η3

ε
〉 = ε3/2

κ. (29)

with ρ and κ two assigned constants. To ease the notation, we now rewrite the value function (4)
multiplied by the number of contacts as follows:

c�ε

δ
(c/c̄) = μLε(c), (30)

and the interaction function in (23) as:

E(v, v∗, c, c∗) = P(v, v∗, c, c∗)(v∗ − v).

Using the previous properties of the random quantities ξ , ξ∗, η, the equations (1) for the contacts and
(23) for the opinions we have the following:

〈c′ − c〉 = 〈−μLε(c) + ηεc〉 = −μLε(c),

〈v′ − v〉 = 〈αP(v, v∗, c, c∗)(v∗ − v) + ξD(v, c)〉 = εαE(v, v∗, c, c∗),
(31)

and

〈(c′ − c)2〉 = μ2Lε(c)2 + εν2c2,

〈(v′ − v)2〉 = ε2α2E(v, v∗, c, c∗)2 + εσ 2D2(v, c),

〈(c′ − c)(v′ − v)〉 = −εαμLε(c)E(v, v∗, c, c∗)

(32)

while the third-order terms are

〈(c′ − c)3〉 = −μ3Lε(c)3 + ε3/2
κc3 − 3εμν2Lε(c)c2,

〈(v′ − v)3〉 = ε3α3E(v, v∗, c, c∗)3 + ε3/2�D3(v, c) + 3ε2ασ 2E(v, v∗, c, c∗)D(v, c)2,

〈(c′ − c)2(v′ − v)〉 = εαE(v, v∗, c, c∗)(μ2Lε(c)2 + εν2c2),

〈(c′ − c)(v′ − v)2〉 = −μLε(c)(ε2α2E(v, v∗, c, c∗)
2 + εσ 2D2(v, c)).

(33)

By expanding the smooth function ϕ(x∗, v∗) in Taylor series up to order two, we have

〈ϕ(v′, c′) − ϕ(v, c)〉 =
ε

(
αE(v, v∗, c, c∗)

∂ϕ

∂v
− μ

Lε(c)

ε

∂ϕ

∂c
+ 1

2
σ 2D(v, c)2 ∂2ϕ

∂v2
+ 1

2
ν2c2 ∂2ϕ

∂c2

)

+ ε2

2

(
α2E(v, v∗, c, c∗)2 ∂2ϕ

∂v2
+ μ2 Lε(c)2

ε2

∂2ϕ

∂c2
− μα

Lε(c)

ε
E(v, v∗, c, c∗)

∂2ϕ

∂v∂c

)
+ Rε(v, v∗, c, c∗),

(34)
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where the remainder of the Taylor expansion Rε(v, v∗, c, c∗) is expressed as follows:

Rε(v, v∗, c, c∗) = ε2

6

∂3ϕ

∂c3
(v̂, ĉ)

(
−μ3 Lε(c)3

ε2
+ ε−1/2

κc3 − 3μν2 Lε(c)

ε
c2

)

+ ε2

6

∂3ϕ

∂v3
(v̂, ĉ)

(
εα3E(v, v∗, c, c∗)3 + ε−1/2�D3(v, c) + 3ασ 2E(v, v∗, c, c∗)D(v, c)2

)

+ ε2

2

∂3ϕ

∂v∂c2
(v̂, ĉ)

(
αE(v, v∗, c, c∗)

(
μ2 Lε(c)2

ε
+ ν2c2

))

− ε2

2

∂3ϕ

∂v2∂c
(v̂, ĉ)

(
μ

Lε(c)

ε

(
εα2E(v, v∗, c, c∗)2 + σ 2D2(v, c)

))
,

(35)

for v̂ = θvv′ + (1 − θv)v with θv ∈ [0, 1] and ĉ = θcc′ + (1 − θc)c with θc ∈ [0, 1].
Hence, scaling the time variable τ = εt and using the expansion (34) in (24), the solution fε satisfies

the weak relation:
d

dτ

∫
I×R+

fε(v, c, τ )ϕ(v, c) dv dc =
∫

I×R+

(
E [fε](v, c, τ )

∂ϕ

∂v
− μ

ε
�ε

δ
(c/c̄)c

∂ϕ

∂c

+1

2
σ 2D2(v, c)

∂2ϕ

∂v2
+ 1

2
ν2c2 ∂2ϕ

∂c2

)
fε(v, c, τ ) dv dc + Rε(ϕ),

(36)

where we introduced the following notation for the non-local operator:

E [fε](v, c, τ ) = α

∫
I×R+

E(v, v∗, c, c∗)fε(v∗, c∗, τ ) dv∗ dc∗,

and where the scaled reminder is

Rε(ϕ) = ε

2

∫
I2×R

2+

(
α2E(v, v∗, c, c∗)2 ∂2ϕ

∂v2
+ μ2 Lε(c)2

ε2

∂2ϕ

∂c2

−μα
Lε(c)

ε
E(v, v∗, c, c∗)

∂2ϕ

∂v∂c

)
fε(v, c, τ )fε(v∗, c∗, τ ) dv dv∗ dc dc∗

+ 1

ε

∫
I2×R

2+
Rε(v, v∗, c, c∗)fε(v, c, τ )fε(v∗, c∗, τ ) dv dv∗ dc dc∗.

(37)

For ε → 0 we recall that from (30) and (35), we have the following:

Lε(c) → 0, Lε(c)/ε → �δ(c), Rε(v, v∗, c, c∗)/ε → 0,

where

�δ(c) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ

2δ

(
1 −

(c

c̄

)−δ
)

c, 0 < δ ≤ 1

μ

2
ln
(c

c̄

)
c, δ → 0.

(38)

Hence, in the limit ε → 0, the reminder (37) vanishes and the equation (36) collapses to the weak form
of the following equation:

∂f

∂τ
= −∂(E [f ](v, c, τ )f )

∂v
+ ∂(�δ(c)f )

∂c
+ 1

2
σ 2 ∂2(D2(v, c)f )

∂v2
+ 1

2
ν2 ∂2(c2f )

∂c2
. (39)

Equation (39) is the model we will use in the sequel to describe the time evolution of opinion formation
over a social network. In particular, in the final part of Section 4 focusing on a specific platform, namely
Twitter, we will fit the parameter in our model with experimental data with the scope of describing a
realistic phenomenon.
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3.3. On the steady state solution for the opinion distribution

In the general case, the steady state of equation (39) is not known. However, it is possible to compute
an explicit formula for the asymptotic solution under some particular assumptions. Let us assume that
D(v, c) = 1 − v2 and P(v, v∗, c, c∗) = 1 so that

E [f ](v, c, τ ) = α

(∫
I×R+

v∗f (v∗, c∗, τ ) dv∗ dc∗ − v

)
= α(mv(τ ) − v) .

In this situation, one can look to solutions of type f (v, c, t) = g(v, t)h(c, t) leading to asymptotic of the
form f∞(v, c) = g∞(v)h∞(c), where h∞ is the asymptotic state of the social contact distribution derived
in Section 2. Under the above hypothesis, the Fokker–Planck equation (39) can be rewritten as:

∂g

∂τ
h + ∂h

∂τ
g = −α

∂((mv(τ ) − v)g)

∂v
h + μ

2

∂
(
cln
(

c
c̄

)
h
)

∂c
g

+1

2
σ 2 ∂2((1 − v2)2g)

∂v2
h + 1

2
ν2 ∂2(c2h)

∂c2
g,

(40)

leading to(
∂g

∂τ
+ α

∂((mv(τ ) − v)g)

∂v
− 1

2
σ 2 ∂2((1 − v2)2g)

∂v2

)
h

+
(

∂h

∂τ
− μ

2

∂
(
cln
(

c
c̄

)
h
)

∂c
− 1

2
ν2 ∂2(c2h)

∂c2

)
g = 0. (41)

Non-trivial solution for equation (41) are retrieved for
∂g

∂τ
= −α

∂((mv(τ ) − v)g)

∂v
+ 1

2
σ 2 ∂2((1 − v2)2g)

∂v2
(42)

and
∂h

∂τ
= μ

2

∂
(
cln
(

c
c̄

)
h
)

∂c
+ 1

2
ν2 ∂2(c2h)

∂c2
. (43)

Thus stationary solutions for (39) are of the form f∞(v, c) = g∞(v)h∞(c) as claimed before, where for
(43) we obtain the log-normal distribution (22), while in order to compute the stationary solution to
(42), one has to solve

d((1 − v2)2g∞)

dv
= 2α

σ 2
((m̄v − v)g∞), m̄v =

∫
I×R+

v∗g∞(v∗) dv∗. (44)

The solution to (44) is given by:

g∞(v) = K∞(1 + v)−2+αm̄v/2σ 2
(1 − v)−2−αm̄v/2σ 2exp

{
−α(1 − m̄vv)

σ 2(1 − v2)

}
,

where K∞ is a normalisation constant, such that the total mass of g∞ is equal to 1. Figure 4 shows
the comparison between the analytical profile of g∞(v) obtained in the case α = 0.1, σ 2 = 0.1 and α =
0.25, σ 2 = 0.05, c̄ = 1, μ = 0.1, ν2 = 0.0125 and the numerical simulations of equation (24) through a
Monte Carlo method which details are outlined in the Appendix A. In the simulation, we choose the
scaling parameter ε = 0.01 in order to retrieve the Fokker–Planck asymptotic from the Boltzmann-type
equation (24).

4. Numerical experiments
In order to get insights about the qualitative behaviour of our new model and to validate it, we per-
form in the sequel different numerical simulations using a Monte Carlo-like approach for approximating
the Boltzmann equation (24) in the Fokker–Planck regime (39). The details of the numerical scheme
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Figure 4. Profiles of the steady state solution g∞(v) and its numerical approximation in the case of
σ 2/α = 1 (left) and σ 2/α = 0.2 (right), both with scaling parameter ε = 0.01.

employed are given in the Appendix A. We will always assume, if not otherwise stated, that in the rest
of the section, the interaction kernel P can be expressed as:

P(v, v∗, c, c∗) = H(v, v∗, c, c∗)K(c, c∗) (45)

for various choices of functions H and K. Moreover, based on the experimental finding of Section 2.2, we
will restrict ourselves to the case δ → 0 in (38) which corresponds to the situation in which a log-normal
distribution of connections describes the network at equilibrium.

4.1. Qualitative behaviour

We start by discussing some qualitative behaviours of the model presented through the use of numerical
simulations. We first consider a bounded confidence model, in which the propensity to consensus is
influenced by the number of connections. Furthermore, in the second test, we consider a confidence
bound depending also on the number of contacts, where we compare homogeneous with heterogeneous
cases. In a final test, we study a case in which a part of the population acting on a social network is
composed of almost inflexible individuals.

4.1.1. Test 1: Bounded confidence model
In this first test, we build up a bounded confidence model [21, 39] by performing the following choices:

H(v, v∗, c, c∗) = χ{|v−v∗|<�}(v∗), K(c, c∗) = c2
∗

c2 + c2
∗
, (46)

where χ (·) is the indicator function and � is a positive constant. The diffusion part is weighted by
D(v, c, c∗) = 1 − v2. In the chosen setting, the interactions take place only if two individuals have
sufficiently close opinions. Moreover, we give a higher relevance, in driving the opinions process, to
the agents having more connections, that is, the influencers. Instead, individuals with few followers
are less likely to be able to change the point of view of the other participants while prone to change
their own opinion. In order to stress the importance of the presence of contacts and their relevance in
modifying the evolution of the joint density f (v, c, t), we start from two different initial data: in the first
simulation, the initial data is given by:

f0(v, c) = 1

2
h∞(c),

meaning that the opinion is uniformly distributed in the interval I = [−1, 1], and the contacts are at
the equilibrium (22) with parameters λ = 5 and σ = 1.56 · 10−2. In Figure 5, the initial data is shown
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Figure 5. Test 1, σ 2/α = 0.005. The pictures show the time evolution of the distribution function f (v, c, t)
for t = 0, 4, 8, 12, 16, 20 for a homogeneous distribution of the number of connections with respect to
opinions. After the emergence of two clusters, the agents reach consensus at the final time.

in the first image, followed by the images of the resulting density f (v, c, t) for different times, namely
t = 4, 8, 12, 16, 20. We sample Ns = 105 agents to simulate model (24), with scaling parameter ε = 0.01.
In Figure 5, we clearly see the segmentation of the opinion which is due to the presence of a bounded
confidence interaction with � = 0.55, but over time the two clusters merge again, the consensus is
reached and we notice the formation of a single cluster in v = 0.

In the second simulation, we suppose that contacts are still at the equilibrium (22) with the same
parameters λ and σ as in the previous simulation, but the opinions are now distributed so that agents
with a low number of connections have an opinion closer to −1, while agents with a higher number of
contacts have an opinion closer to +1. In Figure 6, the initial data is shown in the first image, followed by
the images of the resulting density f (v, c, t) for t = 4, 8, 12, 16, 20. We see the emergence of two clusters,
but the symmetry of the previous case is lost: agents with a lower number of contacts are influenced by
agents with a higher bound of contacts and behave like followers, whereas agents with a higher bound
of contacts are less influenced by lower-contact agents. We stress that the dynamics observed in these
two cases are different from the standard dynamics obtained with a bounded confidence opinion model
where connections do not play a role. In fact, in this case, the steady state solution is represented by a
bimodal distribution similar to the one obtained in Figure 6 for t = 8.

4.1.2. Test 2: Heterogeneous confidence bound
In this second test, we modify the previous experimental setting introducing confidence bound � ≡
�(c, c∗) in (46) as a function of the contact numbers of the interacting agents. We assume that the
confidence bound is above the threshold 1/2 if the number of contacts of the interacting agent is larger,
that is, c∗ > c, on the other hand, for a lower number of contacts c∗ < c the confidence bound becomes
lower than 1/2. To model this behaviour, we consider the following function:

�(c, c∗) = c∗
c + c∗

. (47)
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Figure 6. Test 1, σ 2/α = 0.005. The pictures show the time evolution of the distribution function f (v, c, t)
for t = 0, 4, 8, 12, 16, 20 in the case of a non-homogeneous distribution of the number of connections
with respect to opinions. After the emergence of two clusters, the agents reach consensus at the final
time in the positive opinion region.

We assume as initial datum f 0(v, c) the uniform distribution on [−1, 1] × [0, 1]. Simulations of the opin-
ion dynamics (24) is performed using Ns = 105 agents and scaling parameter ε = 0.01. The evolution of
social contacts (1), which initially is not at the stationary state, is performed with parameters μ = 10−1

and ν2 = 0.0125.
We compare the case with heterogeneous confidence bound as in (47), with the case with homoge-

neous confidence bound equal to �(c, c∗) = 1/2. In Figure 7, we report the resulting densities f (v, c, t)
for t = 2 on the left, t = 4 in the centre, and t = 8 on the right, where the rows are relative to the homo-
geneous and to the heterogeneous case, respectively, for top row and bottom row. In the top row, we
observe the emergence of two clusters one centred around −0.5 and the second one centred around
0.5, independent of the number of contacts. The bottom row reports the case with heterogeneous bound
�(c, c∗), where we observe that agents with a high level of connections tend to maintain their opinions in
time due to the lower values of �(c, c∗), instead agents with lower connections reach consensus around
the central opinion v = 0, since �(c, c∗) is larger.

4.1.3. Test 3: Sznajd-type dynamics
We start now with a distribution of opinions given by the sum of two Gaussian distributions centred
at different locations in [−1, 1] mimicking a clustering of opinion with respect to a given subject. The
initial condition is

f0(v, c) = K0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
30

exp{−(v + 3
4
)2/(2σ 2

1 )}, if 100 ≤ c ≤ 130

1
30

exp{−(v − 3
4
)2/(2σ 2

2 )}, if 170 ≤ c ≤ 200

0 otherwise,
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Figure 7. Test 2, σ 2/α = 0.005. The pictures show the distribution f (v, c, t) for t = 4 (left), t = 6 (centre),
and t = 8 (right). Top row: constant bound of contacts (�(c, c∗) = 0.5)), two main clusters emerge at
any bound of contacts. Bottom row: heterogeneous confidence bound (�(c, c∗) = in (47)), consensus
is reached for agents with a low number of contacts, whereas for higher bound of contacts two main
clusters emerge.

with K0 positive constant such that f0(v, c) has total mass equal to 1. The interaction kernels are such
that

H(v, v∗, c, c∗) = (1 − v2), K(c, c∗) = c2
∗

(c + c∗)2
,

and with a diffusion term proportional to D(v, c, c∗) = 1 − v2. The interaction function is chosen accord-
ing to an approximation of Sznajd dynamics [48, 49] in such a way that individuals may interact with
everyone on the social network, while alignment towards a given opinion is more frequent for people
having weak opinions and less probable for individuals having strong believes (positive or negative). The
role played by the number of connections in the function K(c,∗ ) is similar to the previous cases even
if now its impact is more important: agents with a higher number of social media contacts tend to only
slightly modify their opinion over time, while the ones with a low number of contacts are more influ-
enced and tend to align their opinion with one of the most popular persons. The simulation uses Ns = 105

agents in the time interval [0, T] = [0, 6]. Figure 8 shows the initial condition on the left and the result-
ing density f (v, c, t) for t = 3 and t = 6, respectively, on the centre and the right, using σ 2

1 = σ 2
2 = 0.005

and a scaling parameter ε = 0.01. For the evolution of the social contact dynamics (1), we account for
the following parameters μ = 10−2 and ν = 3.54 · 10−2. We observe that agents with a lower number of
contacts are strongly influenced by agents with a higher number of contacts and behave like followers,
whereas agents with higher bound of contacts are mildly influenced by lower-contact agents. The result
of such dynamics is that individuals with a negative opinion at the beginning are driven towards a posi-
tive one over time, while people with a large number of contacts only slightly move towards the centre
without really modifying their believes.
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Figure 8. Test 2, σ 2/α = 0.005. The pictures show the time evolution of the distribution function f (v, c, t)
for t = 0 (left), t = 3 (centre), and t = 6 (right). Agents with lower bound of connections are strongly
influenced by agents with a large number of connections.

4.2. Quantitative analysis

In this last part, we use our model to quantitatively represent the opinion dynamics for what concerns
some extrapolated real data taken from Twitter. To that aim, we start by describing the way in which the
data are pre-processed through a so-called SA with the scope of obtaining a set of information that can
be effectively used in comparison with the model outcomes.

4.2.1. Twitter sentiment analysis
SA (or opinion mining) is a subfield of NLP which works as a text classification tool that analyses text data
and extracts its intent, meaning if the underlying sentiment is positive, negative, or neutral. It is widely
used for commercial purposes in order to monitor brand and product sentiment in customer feedback and
understand customer needs. SA methods can be divided into two main categories: statistical methods
based on machine learning algorithms and knowledge-based methods. Knowledge-based SA approaches
rely on a list of words called sentiment lexicon labelled as positive or negative, but they typically do
not include sentiment-bearing lexical items as acronyms, emoticons or slang terms (which are widely
used in social media texts). Moreover, they do not account for differences in the sentiment intensity of
words. Since many applications would benefit from determining not only the binary polarity but also
the strength of the sentiment, some sentiment intensity lexicons have been implemented in the past that
associate a sentiment valence to the words and help measuring the intensity expressed in the sentences.
This sentiment valence translates into a value called polarity which ranges between −1 and 1 which is
very well adapted to be employed in synergy with our model. One of the main problems of the natural
language classifiers is that manually creating and validating a comprehensive sentiment lexicon is time-
intensive, so typically some machine learning approaches are incorporated to improve efficiency. These
approaches come also with some drawbacks since they require intensive training data which are usually
hard to acquire, they rely heavily on the vastness of the training set, they remain expensive in terms of
CPU use, and they often make use of ‘black boxes’ not easily interpretable and, therefore, not easily
modifiable or generalisable.

In our analysis, we use VADER (Valence Aware Dictionary for sEntiment Reasoning), presented by
C.J. Hutto and E. Gilbert in [40] in 2014. It uses a combination of qualitative and quantitative methods
to build a list of lexical features that allow to perform SA. This engine is specially constructed to give
reliable results on social media texts and does not require a training dataset, since it is developed on
a valence-based human-curated lexicon. VADER’s lexicon incorporates pre-existing well-established
word banks and several lexical features typical of social media, such as emoticons, acronyms, initialisms,
and commonly used slang terms that are sentiment-related. These features were rated on a scale from −4
‘extremely negative’ to +4 ‘extremely positive’ (normalised to [−1; + 1] in Python) using a ‘wisdom-
of-the-crowd’ approach, meaning that the ratings were given starting from the collection of answers
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of a series of independent human raters. VADER’s developers then used a deep qualitative analysis
resulting in isolating five generalised heuristics based on grammatical and syntactic cues to determine
the sentiment intensity of short sentences. In the next sections 4.2.2 and 4.2.3, we use VADER to perform
SA on two different datasets of actual tweets.

4.2.2. Test 4: Trump re-admission on Twitter
For this simulation, we used the Application Programming Interfaces (API) of Twitter to obtain the
content of a certain number of tweets on a given topic. More specifically, we used the words ‘Donald
Trump’ and some related hashtags to select tweets written (in English) some days after the re-admittance
of Donald Trump on Twitter on the 20 November 2022, after an almost two-year-long ban from the
platform. We then employed VADER to analyse the texts of the tweets and we obtained a rating between
−1 and 1 for each tweet, which we considered to be the agents’ opinions on the subject. To outline the
polarised situation we remove tweets, which have scored exactly ‘0’ through VADER analysis.

To perform the model calibration, we introduce a class of interacting functions, where we make
explicit the dependency with respect to a new set of parameters θ ∈ � ⊆R

4
+ as follows:

P(v, v∗, c, c∗; θ ) = H(v, v∗, c, c∗; θ )K(c, c∗; θ ), (48a)

with

H(v, v∗, c, c∗; θ ) = χ (|v − v∗| < �(c, c∗; θ )), (48b)

where

�(c, c∗; θ ) = θ1

(
log(1 + c∗)

log(1 + c∗) + log(1 + c)

)θ2

, (48c)

and

K(c, c∗; θ ) =
(

log(1 + c∗)

log(1 + c∗) + log(1 + c)

)θ3

, (48d)

while the diffusion is weighted by:

D(v, c; θ ) = θ4

√
1 − |v|2. (48e)

The initial data is well prepared, assuming that the distribution of connections is at the station-
ary state (22) with parameters estimated in 1, and the joint distribution of opinions and contacts is
such that

f0(v, c) =
⎧⎨
⎩

h∞(c)
2

, if 50 < c ≤ 7500

h∞(c)
0.2

√
2π

e− 1
2(

v+0.5
0.2 )

2

, if c > 7500.

Finally, we identify the distribution obtained from the data with ĝ(v, t), while g(v, t) is the one obtained
simulating the virtual dynamics of particles. Then, we search the optimal value of the parameters
(θ1, θ2, θ3, θ4) ∈ �, where � = [0.5, 1.5] × [0.2, 0.7] × [1.5, 2.5] × [8, 11], by minimising the �1 dis-
tance at final time T = {20} of the marginal distribution of the simulated opinions g(v, T) and the one
reconstructed from data ĝ(v, T).

The minimisation is performed using patternsearch() routine in matlab with initial guess
θ (0) = (1.1, 0.4, 2.0, 10) and reaching convergence after k = 60 iterations, where the estimated param-
eter is θ (k) = (0.6313, 0.2047, 2.3125;9.7510). Here, we minimise the discrepancy measure as the �1

distance between the marginal distribution g(·, T|θ (k)) and the marginal distribution reconstructed from
data ĝ(·, T), the final value is D1(g(·, T|θ (k)), ĝ(·, T)) = 6.376 × 10−2. The minimisation procedure is
further detailed in the Appendix.

In Figure 9, we depict the comparison between our results and the data: on the left, we have the
marginal of the opinions at time t = 20 and the data, while on the right we have f (v, c, t) (represented as
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Figure 9. Test 4: marginal distribution of opinions at the final time (left) and the comparison between
the reconstructed density of opinions and contacts and the real dataset.

log(f (v, c, t) + 0.025)) compared with the actual data extracted from Twitter (represented by the orange
dots). We can claim that the model is capable of fitting the results obtained from a SA with good
accuracy.

4.2.3. Test 5: Climate change trends on Twitter
For this last simulation, we used the information coming from a pre-existing dataset ([43]) containing
the IDs of tweets discussing the climate change. Such data were collected from Twitter’s API between 21
September 2017 and 17 May 2019, using as track parameters some keywords related to the subject, such
as ‘climate change’, ‘global warming’ and hashtags like ‘#climatechangeisreal’, ‘#climatechangeisfalse’
or ‘#globalwarminghoax’. We used VADER to perform the SA on the tweets collected on 13, 14, 15,
16 and 18 August 2018, and we remove from the dataset tweets with SA score exactly equal to “0”, to
reconstruct the data trend starting from a fictitious initial distribution of the opinions.

Similarly to the previous test 4.2.2, we consider the interaction functions reported in (48), and with
well-prepared initial data, where we assume that the marginal distribution of the contacts is at the
stationary state (22), and that the joint initial density of opinions and contacts is given by:

f0(v, c) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h∞(c)
154

√
2π

(
55

√
2π + 200e− 1

2(
v+0.35

0.15 )
2 + 28e− 1

2(
v−0.25

0.5 )
2
)

, if c < 40

h∞(c)
6
√

2π

(
250e− 1

2(
v+0.8
0.004 )

2 + 20e− 1
2(

v+0.3
0.2 )

2 + 5e− 1
2(

v−0.3
0.2 )

2
)

, if 40 ≤ c ≤ 400,

5h∞(c)√
2π

e− 1
2(

v−0.4
0.2 )

2

, if c > 400.

We assume that the data are referred to the following numerical time tm = {1, 2, 3, 4, 11} and we denote
by ĝ(v, t) the empirical marginal distribution of the opinions obtained from Twitter, meaning that ĝ(v, t1)
refers to 13 August, ĝ(v, t2) refers to 14 August and so on.

Hence, to obtain the optimal value of the parameters (θ1, θ2, θ3, θ4) ∈ � in the admissible space:

� = [0.5, 1] × [0.1, 1.5] × [0.01, 2] × [0, 0.05].

we use the fmincon() matlab routine to minimise the discrepancy between data-reconstructed
and simulated marginal distribution of opinions computing the sum over tm, m = 1, . . . , 5, of the
1−Wasserstein distances W 1

1 (g(·, tm|θ ), ĝ(·, tm)) as follows:

D1(g( · |θ ), ĝ(·)) = 1

M

M∑
m=1

W 1
1 (g(·, ti|θ ), ĝ(·, ti)), M = 5.
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Figure 10. Test 5: comparison between the marginal distribution of the opinions reconstructed using
the presented model and the data at each time step t ∈ {1, 2, 3, 4, 11} corresponding to data relative to
the 13, 14, 15, 16, and 18 August 2018.

The chosen method reaches convergence after k = 11 iterations with initial guess
θ (0) = (0.75, 1.25, 0.65, 0.03) and the estimated values of the parameters are θ (k) =
(0.7432, 1.0735, 0.9295, 0.0306), resulting in a discrepancy of value D1(g( · |θ ), ĝ(·)) = 4.893 × 10−1.
We outline that the choice of a good initial guess, in this case, is of paramount importance.

In Figure 10, we depict the evolution of the marginal distribution of opinions compared to the data,
while Figure 11 shows the initial and terminal density of opinions and contacts. Again we can claim that
we are able to follow the main trend of the opinion during the time even if compared to the previous
situation of Test 4 in which the fitting was only about a given, supposed steady, state, here the differences
are quite large in some time frameworks.

5. Conclusions
In this work, we have proposed a new model for opinion formation and evolution in presence of social
media connections. Starting from a set of microscopic interactions characterising the behaviour of indi-
viduals acting on a social media platform, we first constructed a model for the network formation and
then we tested the validity of our hypothesis through a comparison with a real dataset extrapolated
from Twitter. A fitting procedure permitted to recover the best set of parameters, which employed in
our model is able to describe a network of people exchanging ideas and information over the net. In
the second part, we concentrated on the relationship between opinion and connections, and through a
Boltzmann-like approach we recovered an equation which can describe opinion dynamics over a social
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Figure 11. Test 5: initial (left) and final (right) joint density of opinions and contacts (the images show
log(f (v, c, t) + 0.025)).

network. Through a grazing limit procedure, we then obtained a Fokker–Planck asymptotic limit equa-
tion from which the main features of the model can be more clearly understood. In the third part, we
first performed some numerical simulations with the scope of showing some of the qualitative features
of this new model and finally thanks to SA tools which permitted us to obtain realistic distributions of
opinions on a certain topic from a given social media platform, we have shown that our model is indeed
able to describe such dynamics. The results have been obtained thanks to a Wasserstein minimisation
method which permitted to estimating the best set of parameters of a given interaction kernel in the
alignment opinion term. Possible future developments consist in improving the data-driven aspects of
the model here presented by, for instance, replacing the parameter-dependent interaction kernel with
its full reconstruction, that is, without assuming the a priori knowledge of its mathematical expression.
The second direction that is worth to be explored regards the improvement of the model by assuming
additional dependence on the opinion from the knowledge/education of the individuals.
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Appendix A: Particle-based kernel calibration
In this section, we report the numerical procedure used in Section 4, in particular for the calibration
problem of the kernel parameters (48), introduced in sections 4.2.2 and 4.2.3. To this end, we aim at
minimising the discrepancy between the opinion density obtained from numerical simulation and the
score obtained from the SA performed over data extracted from Twitter.

Thus, we formulate the calibration of the kernel as a constrained optimisation problem, which in the
continuous form writes

min
θ∈�

1

M

M∑
m=1

Dp(g(v, tm|θ ), ĝm(θ )) (49)

s.t. F (f ) = 0, f 0(v, c) = f (v, c, 0),

g(v, t|θ ) =
∫
R+

f (v, c, t) dc, (50)

where F (f ) = 0 is a shorten notation for the Fokker–Planck equation (39), g(v, t|θ ) represents the
marginal opinion distribution of f (v, c, t), ĝm(v) represents the known distribution of opinions at time
{tm}M

m=1, and Dp is a discrepancy measure, such as p−Wasserstein distance, or the �p distance, with p ≥ 1.
In what follows we propose, as a numerical approximation of this minimisation procedure, a particle
scheme based on two steps outlined in what follows.

Asymptotic particle-based scheme

To simulate the evolution of the Fokker–Planck equation (39), we rely on an asymptotic stochastic par-
ticle method to solve the kinetic dynamics (24) in the quasi-invariant regime (27). Then, we introduce
the following discretisation:

f n+1 =
(

1 − �t

ε

)
f n + �t

ε
Qθ ,+

ε
(f n, f n), (51)

where the gain operator Qθ ,+ encodes the gain of particles in position (v, c) at time t after interactions
(6) and (23) have occurred. The particle scheme for the simulation of (51) is reported in Algorithm 1,
where we set ε = �t for simplicity. We refer to [45] for details on this class of methods. Hence, this

https://doi.org/10.1017/S0956792524000068 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000068


26 G. Albi et al.

Algorithm 1 Asymptotic particle-based algorithm (Nanbu-like algorithm)
Fix 0 < ε = �t < 1 and Ns.
Sample

{
v0

i , c0
i

}Ns

i=1
from the initial distribution f0(v, c)

for n = 0 : Nt − 1 do
Set Nc = round(N/2),
Select Nc random pairs (i, i∗) uniformly, without repetition among all possible pairs
for i = 1:Nc do.

Sample ξ n
i , ξ n

i∗ from a normal distribution N (0, 1) and compute
vn+1

i = vn
i + εαP(vn

i , vn
i∗, cn

i , cn
i∗|θ ) + √

εσD(vn
i , cn

i |θ )ξ n
i

vn+1
i∗ = vn

i∗ + εαP(vn
i∗, vn

i , cn
i∗, cn

i |θ ) + √
εσD(vn

i∗, cn
i∗|θ )ξ n

i∗
Sample ηn

ε,i from a uniform random distribution s.t. 〈ηn
ε,i〉 = 0, 〈(ηn

ε,i)
2〉 = εν2,

with values in the bound (9).
Compute

cn+1
i = cn

i −�ε
δ
(cn

i /c̄)cn
i + ηn

ε,ic
n
i .

end for
end for

simulation scheme produces a sequence of data
{
(vn

i , cn
i )
}Ns

i=1
∼ f (v, c, tn|θ ) for n = 0, . . . , Nt, that we can

use in the next calibration procedure.

Minimisation of particle-based discrepancy

To minimise the discrepancy between the densities, we rely directly on the information provided by the
particles. Hence, from the particle simulation of (51) we retrieve Vn(θ ) = {

vn
i

}Ns

i=1
∼ g(v, tn|θ ) for n =

1, . . . , Nt, whereas we recover the target particles sampling from the real-data distributions Ns particles
V̂m = {

v̂m
i

}Ns

i=1
∼ ĝm(v). Hence, we obtain the parameter θ ∗ as the minimiser of the following problem:

θ ∗ ∈ arg min
θ∈�

1

M

M∑
m=1

Dp(gNs
m (θ ), ĝNs

m ), (52)

constrained to the evolution of the particle scheme (51). Notice that the discrepancy Dp is evaluated for
the empirical densities gNs

m (θ ), ĝNs
m relative to the samples Vm(θ ), V̂m.

In order to perform the minimisation of (52), we need to produce solutions in the admissible parame-
ter space �. Here, we rely on Matlab routines for constrained minimisation such as fmincon, based on
interior point method, and patternsearch, as a gradient-free optimisation method. Indeed the fluctu-
ations of the particle method are reflected in the discrepancy measure. Thus, to reduce the stochasticity
induced by the particle simulation, at each iteration of the optimisation procedure, we have fixed the
random-seed generator in Algorithm 1.

Remark 1. Computing the discrepancy measure in (52) can be challenging, for example, in the afore-
mentioned case of p-Wasserstein distance. However, in our case, we can exploit the one-dimensional
framework of the opinion space, hence computing equivalently

Dp(gNs
m (θ ), ĝNs

m ) ≡ W p
p (gNs

m (θ ), ĝNs
m ) = 1

Ns

Ns∑
i=1

|vm
π (i)(θ ) − v̂m

π ′(i)|p, (53)

where π and π ′ are two permutation of the indices 1, . . . , Ns such that vm
π (1) ≤ vm

π (2) ≤ . . . ≤ vm
π (Ns) and

v̂m

π
′
(1)

≤ v̂m

π
′
(2)

≤ . . . ≤ v̂m

π
′
(Ns)

. When �p-distance is considered the discrepancy measure simply writes as
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follows:

Dp(gNs
m (θ ), ĝNs

m ) ≡
∫

[−1,1]

|gNs
m (v|θ ) − ĝNs

m (v)|p dv, (54)

where gNs
m (θ ), ĝNs

m have to be appropriately reconstructed from the samples Vm(θ ) and V̂m.

Remark 2. We remark that the optimisation problem (52) is in general a high-dimensional non-convex
problem requiring efficient optimisation methods, see for example [11, 33, 53]. Different approaches are
also advisable, reformulating the calibration into a function approximation framework can give more
generalisable results for the kernel inference, see for example [10, 18, 32, 37].
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