
Canad. J. Math. Vol. 65 (1), 2013 pp. 120–148
http://dx.doi.org/10.4153/CJM-2011-097-0
c©Canadian Mathematical Society 2012

Universal Families of Rational
Tropical Curves

Georges Francois and Simon Hampe

Abstract. We introduce the notion of families of n-marked, smooth, rational tropical curves over

smooth tropical varieties and establish a one-to-one correspondence between (equivalence classes of)

these families and morphisms from smooth tropical varieties into the moduli space of n-marked, ab-

stract, rational, tropical curves Mn.

1 Introduction

The moduli spaces Mn of n-marked abstract rational tropical curves have been well
known for several years. An explicit description of the combinatorial structure of Mn

and its embedding as a tropical fan can be found in [6,14]. However, so far the mod-
uli spaces Mn have only been parameter spaces, i.e., in bijection to the set of tropical
curves. In classical geometry or category theory, moduli spaces also carry a universal
family that induces all possible families via pull-back along a unique morphism into
Mn. This paper finds a tropical counterpart by giving a suitable definition of a family
of tropical curves and proving that the forgetful map ft : Mn+1 →Mn is then indeed
a universal family.

After briefly recalling some known facts in Section 2, we study the construction of
a tropical fibre product in the case where all involved varieties are smooth. We define
the notion of a locally surjective morphism that might be seen as a tropical analogue
of flatness. We conclude that when one of the morphisms is locally surjective, the set-
theoretic fibre product can indeed be considered as a tropical fibre product (Theorem
3.9).

In Section 4 we define families of rational curves. We prove that the forgetful map
of the moduli spaces Mn can be made into such a family by constructing appropriate
markings (Proposition 4.9). Finally, we use the fibre product of the previous section
to see that each morphism into Mn induces a family of curves (Corollary 4.12).

In Section 5 we establish the inverse operation; namely, we prove that each family
of n-marked curves also gives rise to a morphism into Mn. This leads to our main
result, Theorem 5.6, which gives a bijection between equivalence classes of families
of n-marked curves over a smooth variety B and morphisms B→Mn.

In the last section we prove that there is a bijective pseudo-morphism, a piecewise
linear map respecting the balancing condition, between two equivalent families. In
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Universal Families of Rational Tropical Curves 121

the case where the domain of one of the families is a smooth variety, this map is even
an isomorphism (Theorem 6.2).

2 Preliminaries and Notations

In this section we quickly review some results on tropical intersection theory and the
moduli space Mn of n-marked, abstract, rational, tropical curves.

2.1 Tropical Intersection Theory

A weighted polyhedral complex X in a vector space V = R⊗Λ associated with a lat-
tice Λ is a pure-dimensional rational polyhedral complex in V all of whose maximal
cells σ ∈ X are equipped with an integer weight ωX(σ). Each cell σ ∈ X induces
a linear subspace Vσ of V generated by differences of vectors in σ and a sublattice
Λσ := Vσ ∩ Λ of Λ. If τ < σ is a codimension 1 face of σ, then uσ/τ denotes the
(primitive) normal vector of σ relative to τ . A tropical cycle X in V is the equivalence
class modulo refinement of a weighted polyhedral complex X in V that satisfies the
balancing condition for each codimension 1 cell τ ∈ X(dim X−1) :

∑

σ∈X:σ>τ

ωX(σ) · uσ/τ = 0 ∈ V/Vτ .

A tropical variety is a tropical cycle that has only positive weights. A representative X
of a tropical cycle X is called a polyhedral structure of X. If X has a polyhedral struc-
ture X that is a fan, then we call X a fan cycle and X a fan structure of X. The support
|X| of a cycle X is the union of all maximal cells of non-zero weight in a polyhedral
structure of X. A tropical cycle Y is a subcycle of a cycle X if |Y | ⊆ |X|. The additive
group of all d-dimensional subcycles of X is denoted Zd(X), where the sum of two cy-
cles is obtained by taking the union of polyhedral complexes and adding weights for
appropriate polyhedral structures. A cycle X is called irreducible if Zdim X(X) = Z ·X.
The star StarX(p) of the cycle X around the point p is the tropical cycle whose sup-
port consists of vectors v ∈ V such that p + ǫv is in X for small (positive) ǫ and whose
weights are induced by the weights of X. If X,X ′ are polyhedral structures of two cy-
cles X,X ′, then the crossproduct X × X ′ is given by the polyhedral structure X× X ′

with weight function ωX×X ′(σ×σ ′) = ωX(σ) ·ωX ′(σ ′). More details can be found
in [1, Section 2], which covers fan cycles, [1, Section 5], which introduces abstract
cycles (which are more general than cycles in vector spaces), and [11, Sections 1.1
and 1.2], whose notation we follow in this article.

A morphism f : X → Y of tropical cycles is a map from |X| to |Y | that is locally
integer affine linear; that means it is locally the sum of an integer linear function
and a translation by a real vector. One says that f respects the weights if for suitable
polyhedral structures X,Y and for of all maximal cells σ ∈ X, the weights of σ and
f (σ) are equal. The morphism f is an isomorphism if it respects the weights and
has an inverse that is also a morphism. The linear part of the affine linear function
that describes a morphism f : X → Y around a point p in X gives a morphism
λ f ,p : StarX(p)→ StarY ( f (p)) between the stars.
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A rational function on a tropical cycle X is a piecewise integer affine linear func-
tion ϕ : |X| → R; that means there is a polyhedral structure X of X such that for all
σ ∈ X the restriction of ϕ to σ is the sum of an integer linear form ϕσ ∈ Λ∨

σ and a
real constant. The intersection productϕ·X ∈ Zdim X−1(X) is given by the polyhedral
structure ϕ · X := X \ X(dim X) with the weight function

X(dim X−1) −→ Z, τ 7−→
∑

σ∈X:σ>τ

ωX(σ) · ϕσ(vσ/τ )− ϕτ

(
∑

σ∈X:σ>τ

ωX(σ) · vσ/τ

)

,

where the vσ/τ ∈ V are representatives of the normal vectors uσ/τ ([1, Section 3],[11,
Section 1.2]). Note that the support |ϕ·X| is contained in the domain of non-linearity
|ϕ| of ϕ. The pull-back of a rational function ϕ on Y along a morphism f : X → Y is
defined as f ∗ϕ := ϕ ◦ f and is a rational function on X. If C is a subcycle of X, then
the projection formula states that

ϕ · f∗C = f∗ f ∗ϕ ·C,

where f∗ : Zd(X)→ Zd(Y ) denotes the push-forward of cycles discussed in [6, Con-
struction 2.24], [1, Sections 4 and 7], and [11, Section 1.3].

2.2 Matroid Varieties

Matroid varieties B(M) that have been studied in [2,5,13,15] constitute an important
class of tropical varieties. They have a canonical fan structure B(M) that consists of
cones

〈F〉 :=

{ p
∑

i=1

λiVFi
: λ1, . . . , λp−1 ≥ 0, λp ∈ R

}

corresponding to chains F = (∅ ( F1 ( · · · ( Fp−1 ( Fp = E(M)) of flats
of a (loopfree) matroid M having ground set E(M) := [n]. Here VF = −

∑

i∈F ei ,
where e1, . . . , en form the standard basis of Rn and all maximal cones of B(M) have
trivial weight 1. The fan structure B(M) was introduced in [2] and is often called
the fine subdivision. Note that matroid varieties naturally come with a lineality space
containing R · (1, . . . , 1).

A tropical variety X is smooth if it is locally a matroid variety modulo lineality
space B(M)/L (cf. [4, Section 6]). This means that for each point p in X, the star
StarX(p) is isomorphic to a matroid variety modulo lineality space. Crossproducts
and stars of smooth varieties are again smooth varieties. Recall that Ln

1 denotes the
curve in Rn that consists of edges R≤0 · ei , i = 0, 1, . . . , n (all having trivial weight
1), where e1, . . . , en form the standard basis of Rn and e0 = −(e1 + · · · + en). Then
smooth curves are exactly the curves that are locally isomorphic to Ln

1 for some n.

A main property of smooth varieties that will be crucial in the next section is
that they admit an intersection product of cycles having the expected properties ([4,
Theorem 6.4] and [12, Section 3]). Furthermore, if f : X → Y is a morphism of
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smooth varieties, then we can pull back any cycle C ∈ Zdim Y−r(Y ) to obtain a cycle
f ∗(C) ∈ Zdim X−r(X) [4, Definition 8.1]. More concretely, the pull-back is given by

f ∗(C) := π∗
(
Γ f · (X ×C)

)
,

where π : X × Y → X is the projection to X, the graph Γ f ∈ Zdim X(X × Y ) is the
push-forward of X along the morphism x 7→ (x, f (x)), and the intersection product
is computed on the smooth variety X × Y .

In the case where only Y is smooth, we can still pull back each point p in Y along
f [3, Remark 4.11]. The smoothness of Y implies that there is a unique cocycle ϕ ∈
Cdim Y (Y ) such that ϕ ·Y = p; therefore, one can define the pull-back of p as f ∗p :=
f ∗ϕ · X. Cocycles are locally given by sums of products of rational functions; we can
thus use the above formula for rational functions to compute intersection products
of cocycles with tropical cycles [3, Definitions 3.13 and 3.24, Proposition 3.28]. The
ability to pull back points along morphisms with smooth target cycles will be an
essential ingredient to define families of curves in Definition 4.1.

2.3 Moduli Spaces

In [6, Section 3] the authors map an n-marked rational curve to the vector whose
entries are pairwise distances of its leaves and use this to give the moduli space Mn

of n-marked, abstract, rational, tropical curves the structure of a tropical fan of di-

mension n − 3 in Qn := R(n
2)/Im(φn), where φn maps x ∈ Rn to (xi + x j)i< j . The

edges of Mn are generated by vectors vI|n := vI (with I ( [n], 1 < |I| < n − 1)
corresponding to abstract curves with exactly one bounded edge of length 1 sepa-
rating the leaves with labels in I from the leaves with labels in the complement of I.
Furthermore, the relative interior of each k-dimensional cone of Mn corresponds to
curves with exactly k bounded edges, whose combinatorial type (i.e., the graph with-
out the metric) is the same. The forgetful map ft0 := ft : Mn+1 → Mn forgetting
the 0-th marked end is the morphism of tropical fan cycles induced by the projection
π : R(n+1

2 ) → R(n
2) [6, Proposition 3.12]. Note that, in order to simplify the notations,

we equip Mn+1 with the markings 0, 1, . . . , n, when we consider the forgetful map.
It was shown in [2, Section 4] and [4, Example 7.2] that Mn is even isomorphic to

a matroid variety modulo lineality space (this was already hinted at in [7,14]; see also
[16, Theorem 5.5.]) and thus admits an intersection product of cycles: if B(Kn−1)
denotes the matroid variety corresponding to the matroid M(Kn−1) associated with
the complete graph Kn−1 on n−1 vertices, then Mn is isomorphic to B(Kn−1)/L, with
L = R · (1, . . . , 1). Note that the ground set of M(Kn−1) is the set of edges of Kn−1,
whereas its flats are exactly the sets of edges of vertex-disjoint unions of complete
subgraphs of Kn−1. Concretely, the isomorphism is the restriction to B(Kn−1)/L of
the isomorphism

f : R(n−1
2 )/L −→ R(n

2)/Im(φn)

(ai, j)i< j 7−→ (bi, j)i< j , with bi, j =

{

0, if n ∈ {i, j},

2 · ai, j , else.
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In this setting the forgetful map is thus induced by the projection π : R(n
2) → R(n−1

2 ).

3 Tropical Fibre Products

The aim of this section is to construct a tropical fibre product in the case where all
involved cycles are smooth and one of the morphisms is locally surjective.

Definition 3.1 A morphism f : X → Y of tropical varieties is called locally surjective

if for every point p in X, the induced linear map

λ f ,p : StarX(p) −→ StarY ( f (p))

is surjective.

Lemma 3.2 Let f : X → Y be a locally surjective morphism. Then the following holds:

• Let X,Y be polyhedral structures of X and Y such that f (τ ) ∈ Y for all τ ∈ X (cf.
[11, Lemma 1.3.4]). For τ ∈ X we have

f (U (τ )) = U ( f (τ )), where U (τ ) :=
⋃

σ∈X:σ>τ

rel int(σ).

In particular, f is an open map, i.e., maps open sets to open sets.
• Let ϕ be a rational function on Y . Then the domain of non-linearity of ϕ ◦ f is equal

to the preimage of the domain of non-linearity of ϕ, i.e.,

|ϕ ◦ f | = f −1(|ϕ|).

Proof The first part obviously follows from the local surjectivity of f . Note that the
set of all possible U (τ ) for all possible polyhedral structures of X forms a topological
basis of the standard euclidean topology on |X|. For the second part it suffices to
prove that ϕ is locally linear at p ∈ Y if and only if ϕ ◦ f is locally linear at some
point q ∈ f −1(p). But this is already clear from the first part.

Lemma 3.3 Let Y be a smooth variety and let f : X → Y be a locally surjective

morphism. Then the support of the intersection-theoretic fibre over each point y in Y

agrees with the set-theoretic fibre, which means that

| f ∗(y)| = f −1{y}.

In order to prove this we need the following lemma.

Lemma 3.4 Let M be a matroid of rank r on the set [m]. Let L := R · (1, . . . , 1).

Then max{x1, . . . , xm}
r−1 · B(M) = L.

Proof We set ϕ := max{x1, . . . , xm} and denote by T(M) the truncation of M, i.e.,

the matroid obtained from M by removing all flats of rank r − 1. Let

F := (∅ = F0 ( F1 · · · ( Fr−2 ( Fr−1 := E(M))
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be a chain of flats with rM(Fi) = i for i ≤ j and rM(Fi) = i + 1 for i ≥ j + 1. Note
that ϕ is linear on the cones of B(M) and satisfies ϕ(VF) = −1 if F = E(M), and 0
otherwise. As

∑

F flat of M with F j(F(F j+1

VF = VF j+1
+ (
∣
∣F flat with F j ( F ( F j+1

∣
∣− 1) ·VF j

,

it follows directly from the definition of intersecting with rational functions that ϕ ·
B(M) = B(T(M)). Now a simple induction proves the claim.

Proof of Lemma 3.3 Let y be a point in Y and let x be a point in X with f (x) = y.
As the intersection-theoretic computations are local, it suffices to show the claim
for the induced morphism λ f ,x on the respective stars; that means we can assume
that f is linear, X is a fan cycle, Y is a matroid variety modulo lineality space, and
y = 0. Let r be the dimension of Y . We choose convex rational functions ϕi such
that y = ϕ1 · · ·ϕr · Y . This can be done by decomposing Y into a cross product of
matroid varieties modulo 1-dimensional lineality spaces (cf. [4, Section 2]) and then
using Lemma 3.4. We show by induction that f ∗ϕi · · · f ∗ϕr ·X is a cycle having only
positive weights and satisfying

| f ∗ϕi · · · f ∗ϕr · X| = f −1(|ϕi · · ·ϕr · Y |),

which implies the claim because f ∗(y) = f ∗ϕ1 · · · f ∗ϕr · X. Since f ∗ϕi−1 is convex
and f ∗ϕi · · · f ∗ϕr · Y has only positive weights, it follows from [11, Lemma 1.2.25]
that

| f ∗ϕi−1 · f ∗ϕi · · · f ∗ϕr · X| = |( f ∗ϕi−1)|| f ∗ϕi ··· f ∗ϕr·X||,

where the right-hand side is the domain of non-linearity of the restriction of the ra-
tional function f ∗ϕi−1 to (the support of) f ∗ϕi · · · f ∗ϕr·X. By induction hypothesis,
this is equal to the domain of non-linearity

|(ϕi−1 ◦ f )| f −1(|ϕi ···ϕr·Y |)|,

which by Lemma 3.2 coincides with

f −1
(
|ϕi−1||ϕi ···ϕr·Y ||

)
= f −1

(
|ϕi−1 · ϕi · · ·ϕr · Y |

)
.

Note that our induction hypothesis (for stars around different points) and the locality
of intersecting with rational functions (cf. [11, Proposition 1.2.12]) ensure that the
restriction of f to f ∗ϕi · · · f ∗ϕr · X satisfies the assumptions of Lemma 3.2.

Remark 3.5 Lemma 3.3 ensures that all set-theoretic fibres of a locally surjective
morphism have the expected dimension. Therefore, local surjectivity might be seen
as a tropical analogue of flatness.

Definition 3.6 Let f : X → Y and f ′ : X ′ → Y be morphisms of smooth varieties.
Assume that f ′ is locally surjective. Recall that the diagonal ∆Y ∈ Zdim Y (Y × Y )
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is just the push-forward of Y along the morphism y 7→ (y, y). Then we define the
tropical fibre product

X ×Y X ′ := ( f × f ′)∗(∆Y ) ∈ Zdim X+dim X ′−dim Y (X × X ′)

to be the pull-back of the diagonal ∆Y along the morphism of smooth varieties f ×
f ′ : X × X ′ → Y × Y . Let πX, πX ′ be the projections from X × X ′ to X and X ′

respectively. As the support of the pull-back satisfies

|( f × f ′)∗(∆Y )| ⊆ ( f × f ′)−1(|∆Y |) = {(x, x ′) ∈ X × X ′ : f (x) = f ′(x ′)},

we obtain the following commutative diagram of tropical morphisms:

X ×Y X ′
πX

−−−−→ X


y πX ′



y f

X ′
f ′

−−−−→ Y

Remark 3.7 We will see later in Theorem 3.9 that the assumption that f ′ is locally
surjective is needed to make sure that X ×Y X ′ is indeed a fibre product. Therefore,
we can only define it for this case.

Proposition 3.8 Using the notations and assumptions of Definition 3.6 we have

π∗
X(p) = {p} × f ′∗( f (p)),

for each point p in X.

Proof In this proof, by abuse of notation, πX, πX ′ , πX×X ′ denote projections from
a product of X,Y,X ′ to the respective cycle. Let ϕ ∈ Cdim X(X) be the (uniquely
defined) cocycle such that ϕ · X = p [3, Corollary 4.9]. By the projection formula
and commutativity of intersection products [3, Proposition 3.28] we have

π∗
X(p) = π∗

Xϕ · (X ×Y X ′) = (πX×X ′)∗Γ f× f ′ · ({p} × X ′ ×∆Y ).

Since we know by [4, Theorem 6.4(9) and Lemma 8.4(1)] that

{p} × X ′ ×∆Y =
(
{p} × X ′ × Y × Y

)
· (X × X ′ ×∆Y )

and Γ f · ({p} × Y ) = {(p, f (p)}, the above is equal to

{p} × (πX ′)∗

((
Γ f ′ × { f (p)}

)
· (X ′ ×∆Y )

)

.

Now it follows in an analogous way from [4, Theorem 6.4(9) and Lemma 8.4(2)] that
the latter equals

{p} × (πX ′)∗
(
Γ( f ′, f ′) · (X ′ × Y × { f (p)})

)

= {p} × (πX ′)∗
(
Γ f ′ · (X ′ × { f (p)})

)

= {p} × f ′∗( f (p)).
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We are now ready to state the main theorem of this section.

Theorem 3.9 If f : X → Y , f ′ : X ′ → Y are morphisms of smooth tropical varieties

and f ′ is locally surjective, then the support of X ×Y X ′ is

|X ×Y X ′| = {(x, x ′) ∈ X × X ′ : f (x) = f ′(x ′)}.

In particular, X ×Y X ′ satisfies the universal property of fibre products.

Proof Combining Lemma 3.3 and Proposition 3.8 we immediately obtain that the
support of X ×Y X ′ is {(x, x ′) ∈ X × X ′ : f (x) = f ′(x ′)}. For the second part,
let Z be the domain of two tropical morphisms g : Z → X, g ′ : Z → X ′ such that
f ◦ g = f ′ ◦ g ′. Then it is clear that z 7→ G(z) := (g(z), g ′(z)) is the only morphism
from Z to X ×Y X ′ such that πX ◦ G = g and πX ′ ◦ G = g ′.

Remark 3.10 Unfortunately, the tropical fibre product is not uniquely defined by
the “tropical universal property”. Changing the weights of X×Y X ′ in such a way that
it still satisfies the balancing condition produces a non-isomorphic cycle that still
fulfils the “tropical universal property”. This happens because a tropical morphism
whose inverse is again a morphism is not necessarily an isomorphism. Therefore,
one might try to give a slightly stronger definition of a tropical morphism, somehow
respecting the weights, in order to fix this flaw. However, since this is far beyond the
scope of this paper and we do not actually need the universal property, we do not
look further into this.

Remark 3.11 Let X and X ′ be polyhedral structures of X and X ′. For two cells
σ ∈ X and σ ′ ∈ X ′ we define the cell σ×Y σ

′ := {(x, x ′) ∈ σ×σ ′ : f (x) = f ′(x ′)}.
By Theorem 3.9

X×Y X ′ := {σ ×Y σ
′ : σ ∈ X, σ ′ ∈ X ′}

is a polyhedral structure of X ×Y X ′.

We prove in the next propositions that fibre products are tropical varieties (i.e., all
weights are positive) and the projections πX : X ×Y X ′ → X are locally surjective.

Proposition 3.12 All maximal cells of X ×Y X ′ have positive weight. In particular,

X ×Y X ′ is a tropical variety.

Proof Let σ be a maximal cell of X ×Y X ′, where X,X ′ are polyhedral structures
of X,X ′. Let p be a point in the interior of σ. We know by Proposition 3.8 and
Lemma 3.3 that the pull-back π∗

X(πX(p)) of the point πX(p) along the morphism
πX : X ×Y X ′ → X has only positive weights. Set n := dim X + dim X ′ − dim Y . The
locality of the pull-back operation implies that the pull-back of the origin along the
morphism λπX ,p : (ωX×Y X

′(σ) · Rn) → StarX(πX(p)) has only positive weights. As
there are convex rational functions ϕ1, . . . , ϕdim X on the smooth cycle StarX(πX(p))
that cut out the origin and

(λπX ,p)∗(0) = ωX×Y X
′(σ) · (λπX ,p)∗ϕ1 · · · (λπX ,p)∗ϕdim X · R

n,

it follows from [11, Lemma 1.2.25] that the weight ωX×Y X
′(σ) is positive.
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Proposition 3.13 The projection morphism πX : X ×Y X ′ → X is locally surjective.

Proof Let p be a point contained in some cell σ×Y σ
′ and let q ∈ α for some α ≥ σ.

Consider f (q) as an element of StarY ( f (p)). By the local surjectivity of f ′, it has a
preimage v under f ′ in some α ′ ≥ σ ′, so the point (q, v) is in StarX×Y X ′(p) and is
obviously mapped to q by πX .

4 Families of Curves and the Forgetful Map

The aim of this section is to prove that every morphism from a smooth variety X

to Mn gives rise to a family of curves. We start by defining families of curves over
smooth varieties.

Definition 4.1 (Family of curves) Let n ≥ 3 and let B be a smooth tropical variety.

A locally surjective morphism T
g
→ B of tropical varieties is a prefamily of n-marked

tropical curves if it satisfies the following conditions:

(i) For each point b in B the cycle g∗(b) is a smooth rational tropical curve with
exactly n unbounded edges that are called the leaves of g∗(b).

(ii) The linear part of g at any cell τ in (some and thus any polyhedral structure of)
T induces a surjective map λg|τ : Λτ → Λg(τ ) on the corresponding lattices.

A tropical marking on a prefamily T
g
→ B is an open cover {Uθ, θ ∈ Θ} of B

together with a set of integer affine linear maps sθi : Uθ → T, i = 1, . . . , n, such that
the following hold:

(i) For all θ ∈ Θ, i = 1, . . . , n, we have g ◦ sθi = idUθ
.

(ii) For any b ∈ Uθ if l1, . . . , ln denote the leaves of the fibre g∗(b), then for each
i ∈ [n] there exists exactly one j ∈ [n] such that sθj (b) ∈ l◦i , where l◦i denotes
the leaf without its vertex.

(iii) For any θ 6= ζ ∈ Θ and b ∈ Uθ ∩Uζ , the points sθi (b) and s
ζ
i (b) mark the same

leaf of g∗(b). Note that we do not require them to coincide.

A family of n-marked tropical curves is then a prefamily with a marking.

We call two families T
g
→ B,T ′ g ′

→ B equivalent if for any b in B the fibres
g∗(b), g ′∗(b) are isomorphic as n-marked tropical curves.

Example 4.2

• The morphism

π : Ln
1 × R → R, (x1, . . . , xn, y) 7→ y,

together with the trivial marking y 7→ (ei , y), i = 0, 1, . . . , n, is a family of
(n + 1)-marked curves.

• We consider the tropical curves X1 := L2
1 and X2 := (R×{0}) + ({0}×R), where

the latter is a sum of tropical cycles. Let us consider the morphisms

πi : Ln
1 × Xi −→ R, (x1, . . . , xn, y1, y2) 7−→ y2.
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Although π∗
i (p) = Ln

1 ×{p} for all points p in R, πi is not a family of curves; e.g.,

for i ∈ {1, 2} and p = ((0, . . . , 0), (−1, 0)) ∈ Ln
1 × Xi the map

λπi ,p : StarLn
1×Xi

(p) ∼= Ln
1 × R −→ StarR(0) ∼= R

is just the constant zero map. Geometrically, we see that the set-theoretic fibre
π−1

i {0} is 2-dimensional. This illustrates the necessity of the local surjectivity
without which π, π1, π2 would be equivalent families with completely different
domains Ln

1 × R, Ln
1 × X1, L

n
1 × X2 (compare to Section 6).

Remark 4.3 While the first condition in the definition of a prefamily is self-explan-
atory, the second requires some justification. We will see later that for all cells τ in (a
polyhedral structure of) T on which g is not injective, condition (ii) is already implied
(cf. Lemma 5.17). However, we will need condition (ii) on all cells τ , including those
on which g is injective, to show that the locally affine linear map B → Mn induced
by the family T → B is an integer map and thus a tropical morphism (cf. Definition
5.1, Proposition 5.9). It is, in fact, not clear to us whether there exists an example of a
locally surjective morphism with smooth curves as fibres, where this condition is not
fulfilled or whether this condition can actually be dropped.

We now want to show that the forgetful map ft : Mn+1 → Mn is a family of
n-marked curves. Therefore, we prove that it is locally surjective.

Lemma 4.4 For n ≥ 3 and v ∈ Mn+1, the map λft,v is surjective. Hence the forgetful

map is locally surjective.

Proof Let τ be the minimal cell of Mn+1 containing v and let C be the curve corre-
sponding to the point v. Let w ′ be an element of StarMn

(ft(v)). Then w ′ corresponds
to a curve that is obtained from the curve corresponding to ft(v) by resolving some
higher-valent vertices. If we resolve the same vertices in C , we get a curve C ′ corre-
sponding to a point v ′ ∈Mn+1 such that ft(v ′) = w ′. In particular, the combinatorial
type of C ′ corresponds to a cell τ ′ ≥ τ , so v ′ ∈ StarMn+1

(v).

We compute the fibres of the forgetful map in the following proposition.

Proposition 4.5 Let ft : Mn+1 → Mn be the forgetful map. Then for each point p in

Mn, the fibre ft∗(p) is a smooth rational curve having n unbounded edges.

Our proof makes use of the following lemma.

Lemma 4.6 The edge R≥0 · v{0,n} has trivial weight 1 in the fibre ft∗(0).

Proof Using the isomorphism f : B(Kn)/L→Mn+1 introduced in Section 2 we have
to compute the fibre over the origin of the projection π : B(Kn)/L→ B(Kn−1)/L that
forgets the coordinates x0,i . Note that we gave Kn and Kn−1 the respective vertex sets
{0, 1, . . . , n− 1} and {1, . . . , n− 1} and that by abuse of notation we denoted both
lineality spaces by L. If π̃ : B(Kn)→ B(Kn−1) is the “naturally lifted” projection, then
[4, Proposition 8.5] states that π∗(0) = (π̃∗(L))/L. This enables us to use Lemma 3.4
to conclude that π̃∗(L) = ϕn−3 · B(Kn), where

ϕ := max{xi, j : 0 < i < j ≤ n− 1}.
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Let G be the flat of M(Kn) corresponding to the complete subgraph with vertex set
{1, . . . , n−1}. It is easy to see thatϕ is linear on the cones ofB(Kn) and thatϕ(VF) =
−1 if F ∈ {G, E(Kn)}, and ϕ(VF) = 0 otherwise. A straightforward induction shows
that the cone associated with

F :=
(
∅ ( F1 ( · · · ( Fn−3−k ( G ( E(Kn)

)
,

where r(Fi) = i, has weight 1 in ϕk · B(Kn). It follows that R≥0 · v{0,n} = f (〈∅ (
G ( E(Kn)〉) has weight 1 in ft∗(0).

Proof of Proposition 4.5 We know from [11, Proposition 2.1.21] that for each p in
Mn there is a smooth, rational, irreducible curve C p that has n unbounded ends and

whose support |C p| is equal to the set-theoretic fibre ft−1{p}. The edges of C0 are
simply R≥0 · v{0,i}, with i ∈ [n]. The local surjectivity of the forgetful map implies
that

|ft∗(p)| = ft−1{p} = |C p|.

Therefore, the irreducibility of C p allows us to conclude that ft∗(p) = λp ·C p for some
integer λp. Since any two points in Mn are rationally equivalent [4, Theorem 9.5]
and the forgetful map is compatible with rational equivalence [4, Remark 9.2], we
conclude that ft∗(p) and ft∗(0) are rationally equivalent and thus λp = λ0. This
completes the proof, as λ0 = 1 by the previous lemma.

As the forgetful map clearly fulfils the second axiom on a prefamily, the following
corollary is a direct consequence of Proposition 4.5 and Lemma 4.4.

Corollary 4.7 The forgetful map ft : Mn+1 →Mn is a prefamily of n-marked tropical

curves.

We now want to define a marking on the forgetful map. To do that we need a basis
of the ambient space Qn of Mn. In [8, Section 2] the authors construct a generating
set in a way that we will shortly describe, and it is easy to see (e.g., by induction on n,
using the forgetful map) that it becomes a basis if we remove an arbitrary element.

For any k ∈ {1, . . . , n}, we set

Vk,n := Vk := {vI ; k /∈ I, |I| = 2}.

For any I0 ⊆ {1, . . . , n} with vI0
∈ Vk, we define

V I0

k,n := V I0

k := Vk \ {vI0
}.

Lemma 4.8 Let vI ∈Mn, I ⊆ [n] and assume that k /∈ I. Then we have

vI =

{∑

J⊆I,v J∈V
I0
k

v J, if I0 * I,

−
∑

J*I,v J∈V
I0
k

v J, otherwise.

Proof It was shown in [8, Lemmas 2.4 and 2.7] that
∑

w∈Vk
w = 0 and that vI =

∑

vS∈Vk,S⊆I vS. This implies the above equation.
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For the following proposition, for each i = 1, . . . , n we fix an arbitrary I0(i) with
vI0(i) ∈ Vi,n and write Wi,n := V I0(i)

i,n for simplicity.

Proposition 4.9 There exists a tropical marking sθi on the forgetful map such that, as

a marked curve, the fibre over each point p in Mn is exactly the curve represented by that

point. In particular, (Mn+1
ft
→Mn, s

θ
i ) is a family of n-marked, rational, tropical curves.

Proof Again, [11, Proposition 2.1.21] tells us that the fibre over each point is exactly
the curve represented by that point (without markings).

The idea of the construction is the following. We define the marking on the basis
curves vI by placing the mark on the i-th leaf with a fixed distance α from the vertex
of the leaf. However, this cannot work globally. Linearity of the map implies that for
some element v J not in the basis, the mark now actually moves towards the vertex
when moving outwards along the ray 〈v J〉. Since the mark has to stay on the relative
interior of the leaf, this means that the map is only feasible on the open subset of
points that have distance less than α from the origin. We then cover Mn by these
subsets for appropriate α and obtain a marking.

For α ∈ N>0 we define

Uα :=

{
∑

vI∈Mn

λIvI ;λI ≥ 0;
∑

λI < α

}

∩ |Mn| .

Clearly {Uα, α ∈ N>0} is a cover of Mn. Now pick any α ∈ N>0, i ∈ {1, . . . , n}. We
define

sαi : Uα −→Mn+1, v 7−→ α · v{0,i} + Ai(v),

where Ai : Qn → Qn+1 is the linear map defined by Ai(vI) = vI|n+1 for all vI ∈ Wi,n.
Note that in this proof the vI represent curves with markings in {1, . . . , n} and thus
live in Qn, whereas the vI|n+1 correspond to curves with markings in {0, 1, . . . , n} and
thus live in Qn+1. We have to show that this indeed defines a map into Mn+1 and that
it is a tropical marking.

We choose any vI ∈ Mn and assume without restriction that i /∈ I, since vI = vIc .
By Lemma 4.8 we have

vI =

{∑

J⊆I,v J∈Wi,n
v J, if I0 * I,

−
∑

J*I,v J∈Wi,n
v J, otherwise,

and similarly in Mn+1:

vI|n+1 =

{∑

J⊆I,v J∈Wi,n+1
v J =

∑

J⊆I,v J∈Wi,n
v J|n+1, if I0 * I,

−
∑

J*I,v J∈Wi,n+1
v J = −

∑

J*I,v J∈Wi,n
v J|n+1 −

∑

j 6=0,i v{0, j}, otherwise

=

{

Ai(vI), if I0 * I,

Ai(vI) + v{0,i}, otherwise (since
∑n

j=1 v{0, j} = 0).
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Summarizing we obtain for λ ∈ [0, α):

sαi (λvI) =

{

αv{0,i} + λvI|n+1, if I0 * I,

(α− λ)v{0,i} + λvI|n+1, otherwise.
.

Now for an arbitrary v =
∑
λIvI ∈ Uα (where we can assume that all the vI with

λI 6= 0 lie in the same maximal cone in Mn) we have

sαi (v) =
∑

λIvI|n+1 +

(

α−
∑

I0⊆I

λI

)

︸ ︷︷ ︸
>0

v{0,i}.

In particular this is a vector in a leaf of the fibre of v that, as a set, can be described as
{
∑
λIvI|n+1 + γv{0,i}, γ ≥ 0}, and for different i this marks a different leaf. Also it is

clear that for different α, α ′ and v ∈ Uα ∩Uα ′ , sαi and sα
′

i mark the same leaf. Hence
the sαi define a tropical marking.

We will now prove that any two markings on the forgetful map only differ by a
permutation on {1, . . . , n}.

Proposition 4.10 For any two families of tropical curves of the form

(
Mn+1

ft0

−→Mn, (sθi )
)
,
(
Mn+1

ft0

−→Mn, (r
ζ
i )
)
,

there exist isomorphisms φ : Mn → Mn and ψ : Mn+1 → Mn+1 such that ft0 ◦ψ =

φ ◦ ft0 and such that for any b in Mn, ψ identifies equally marked leaves of ft∗0 (b) and

ft∗0 (φ(b)) in the two families. Furthermore, φ, ψ are induced by permutations on the

coordinates of R(n
2) and R(n+1

2 ) respectively.

Proof We can assume without restriction that both markings (sθi ), (rθi ) are defined
on the same open subsets Uθ. Since they are tropical markings, if we choose θ such
that 0 ∈ Uθ, we must have for all i that

sθi (0) = λθi v{0,σ1(i)}; rθi (0) = ρθi v{0,σ2(i)}

for some permutations σ1, σ2 ∈ Sn, λ
θ
i , ρ

θ
i > 0. Note that by definition of a marking,

σ1, σ2 are independent of the choice of θ.

We can extend σ1, σ2 to bijections σ̄1, σ̄2 on {0, 1, . . . , n} by setting σ̄1(0) =

σ̄2(0) = 0. These bijections induce automorphisms of R(n+1
2 ) and R(n

2) given by

e{i, j} 7→ e{(σ̄2◦σ̄
−1
1 )(i),σ̄2◦σ̄

−1
1 )( j)},

which map Im(φ) to Im(φ) and thus give rise to automorphisms

ψ : Mn+1 −→Mn+1, φ : Mn −→Mn.
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Since the 0-mark that is discarded by ft0 is not affected by σ1, σ2, we conclude that
ft0 ◦φ = ψ ◦ ft0. We will now prove compatibility with markings for ray vectors vI .

Let vI ∈ Uζ ⊆ |Mn| with i /∈ I and assume φ−1(vI) = v(σ1◦σ
−1
2 )(I) ∈ Uθ ⊆ |Mn|.

Then we have

r
ζ
i (vI) = vI|n+1 + λ · v{0,σ2(i)}

for some λ and

(ψ ◦ sθi ◦ φ
−1)(vI) = (ψ ◦ sθi )(v(σ1◦σ

−1
2 )(I))

= φ(v(σ1◦σ
−1
2 )(I)|n+1 + ρ · v{0,σ1(i)}) for some ρ

= v(σ2◦σ
−1
1 ◦σ1◦σ

−1
2 )(I)|n+1 + ρ · v{0,(σ2◦σ

−1
1 ◦σ1)(i)}

= vI|n+1 + ρ · v{0,σ2(i)},

which lies on the same leaf as r
ζ
i (vI). For an arbitrary vector v =

∑
αIvI , the same

argument can be applied by linearity of φ.

We now apply our theory to assign a family of n-marked curves to each morphism
from a smooth cycle to Mn. Let us first introduce some notation.

Notation 4.11 Let X be a smooth variety and let f : X →Mn be a morphism. Then
we denote by X f the fibre product

X f := X ×Mn
Mn+1 ∈ Zdim X+1(X ×Mn+1).

We conclude in the following corollary that the projection πX : X f → X is a family
of n-marked curves.

Corollary 4.12 For each morphism of smooth varieties X
f
→ Mn, we obtain a family

of n-marked rational curves as

(X f πX→ X, tαi ),

where tαi : f −1(Uα) → X f , x 7→ (x, sαi ◦ f (x)) and sαi is the marking on the universal

family from Proposition 4.9.

Proof The cycle X f is a tropical variety by Proposition 3.12, and πX is locally surjec-
tive by Proposition 3.13. Each fibre π∗

X(p) = {p} × ft∗( f (p)) is a smooth rational
curve with n leaves by Propositions 3.8 and 4.5. It is obvious that πX satisfies the
second prefamily axiom and that tαi is indeed a marking.

Example 4.13 We finish the section by introducing an alternative way of construct-
ing the moduli spaces Mn. Let us briefly recall the notion of tropical modifications
introduced in [10, Section 3.3] and used in this construction. The modification of a
cycle X in V along the rational function ϕ on X is the cycle

Γϕ,X := max{π∗
Xϕ, y} · X × R,
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where πX : X×R → X is the projection to X and y is the coordinate describing R. In
other words, the modification is the graph of ϕ made balanced by adding cells in the
direction (0,−1) ∈ V × R. If Y = ϕ · X, one says, by slight abuse of notation, that
Γϕ,X is the modification of X along Y .

We prove in the following proposition that Mn+2 is the modification of the fibre
product Mn+1 ×Mn

Mn+1 along the codimension 1 subcycle ∆Mn+1
. This leads to an

alternative procedure of constructing Mn that is of course very similar to construc-
tion of the classical moduli spaces M0,n in [9, Section 1.4].

Our proof uses the fact that Mn is isomorphic to B(Kn−1)/L and the connection
between tropical modifications and the matroid-theoretic concepts of deletions and
contractions. If S is the set of flats of a matroid M and e ∈ E(M), then the set of flats
of the deletion M \ e is {F \ {e} : F ∈ S}, whereas the set of flats of the contraction
M/e is {F : F ∪ {e} ∈ S}. In the case that e is not a coloop, the matroid variety
B(M) is the modification of B(M \ e) along B(M/e) (cf. [12, Proposition 2.24] or
[4, Proposition 3.10]).

Proposition 4.14 Let πMn+1
: Mft

n+1 → Mn+1 be the family of n-marked curves in-

duced by the forgetful map ft : Mn+1 → Mn. Then the modification of Mft
n+1 along its

codimension 1 subcycle ∆Mn+1
is the moduli space of (n + 2)-marked abstract rational

curves Mn+2.

Proof Let Kn+1 be the complete graph on the vertex set {0, 1, . . . , n}. It suffices to
prove that Mft

n+1 is isomorphic to B(M(Kn+1)\(0, n))/L and that ∆Mn+1
is isomorphic

to B(M(Kn+1)/(0, n))/L, where L = R·(1, . . . , 1) and (0, n) denotes the edge between
0 and n. We consider the injective linear map

f : R(n+1
2 )−1 −→ R(n

2) × R(n
2)

(xi, j)0≤i< j≤n : (i, j) 6=(0,n) 7−→
(

(xi, j)0≤i< j≤n−1, (xi, j)1≤i< j≤n

)
.

Let π0, πn : R(n
2) → R(n−1

2 ) be the projections that forget all coordinates x0,i and xi,n

respectively; in other words, they describe the forgetful maps ft0, ftn. Let

π(0,n) : R(n+1
2 ) −→ R(n+1

2 )−1

be the projection that forgets the coordinate x0,n. With these notations we obviously
have f ◦ π(0,n) = (πn, π0). Thus we obtain

f∗ B
(

M(Kn+1

)
\ (0, n)) = f∗π(0,n)∗ B(Kn+1) = (πn, π0)∗ B(Kn+1).

Therefore, we can conclude that

∣
∣ f∗ B

(
M(Kn+1) \ (0, n)

) ∣
∣ =

{
(x, y) ∈ B(Kn)× B(Kn) : π0(x) = πn(y)

}
.

Here the first complete graph Kn has vertex set {0, 1, . . . , n− 1}, whereas the second
has vertex set {1, . . . , n}. As all occurring weights are 1, it follows by Theorem 3.9
that f∗ B(M(Kn+1)\(0, n))/L is isomorphic toMft

n+1. In order to prove the second part
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we notice that B(M(Kn+1)/(0, n))/L and ∆Mn+1
are both matroid varieties modulo

lineality spaces and have the same dimension. Therefore, it suffices to show that
for every flat of M(Kn+1)/(0, n), f (VF) is in the diagonal of B(Kn) × B(Kn) after

identifying the coordinates x0,i of the first R(n
2) with the coordinates xi,n of the second

to obtain the same set of coordinates in both factors. If F is a flat of M(Kn+1)/(0, n),
then F ∪ {(0, n)} is a flat in Kn+1, but this implies that (0, i) ∈ F if and only if
(i, n) ∈ F. Hence f (VF) lies in the diagonal.

5 The Fibre Morphism

We now want to construct a morphism into Mn for a given family T
g
→ B (we will

omit the marking to make the notation more concise). It is actually already clear
what this map should look like: It should map each b in B to the point in Mn that
represents the fibre over b. For the pull-back family X f defined above this gives us
back the map f . For an arbitrary family however, it is not even clear that it is a
morphism. In fact, we will only show that it is a so-called pseudo-morphism and then
use the fact that B is smooth to deduce that it is a morphism.

Definition 5.1 (The fibre morphism) For a family T
g
→ B we define a map

dg : B −→ R(n
2) : b 7−→

(
distk,l

(
g∗(b)

))

k<l
,

where the length of the path from leaf k to leaf l on the fibre is determined in the
following way: The length of a bounded edge E = conv{p, q} is defined to be the
positive real number α such that q = p + α · v, where v is the primitive lattice vector
generating that edge.

We define ϕg := qn ◦dg : B→Mn, where qn : R(n
2) → R(n

2)/Im(φn) is the quotient
map and φn maps x ∈ Rn to (xi + x j)i< j .

As mentioned above, we will not be able to prove directly that ϕg is a morphism.
But we can show that, in addition to being piecewise linear, it respects the balancing
equations of B. Let us make this precise.

Definition 5.2 (Pseudo-morphism) A map f : X → Y of tropical cycles is called a
pseudo-morphism if there is a polyhedral structure X of X such that:

(i) f|τ is integer affine linear for each τ ∈ X

(ii) f respects the balancing equations of X, i.e., for each τ ∈ X(dim X−1) if f̄ denotes
the induced piecewise affine linear map on StarX(τ ) (cf. [11, Section 1.2.3]), we
have ∑

σ>τ

ωX(σ) f̄ (uσ/τ ) = 0 ∈ V/V f (τ ).

As for a morphism, we denote by λ f |τ the linear part of f on τ .

Remark 5.3 We can reformulate the second condition as follows. If we choose a
vσ ∈ σ for each σ > τ and p0, . . . , pd ∈ τ a basis of Vτ such that vσ − p0 = uσ/τ
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and
∑

σ>τ ωX(σ)(vσ − p0) =
∑d

i=1 αi(pi − p0) with α1, . . . , αd ∈ R, then

∑

σ>τ

ωX(σ)
(

f (vσ)− f (p0)
)
=

d∑

i=1

αi

(
f (pi)− f (p0)

)
.

Note that it suffices to check this condition for a single choice of vσ, p0, . . . , pd, since
any other choice would only differ by elements from Vτ , on which f is affine linear.
It is also clear that f satisfies the above properties on any refinement of X if and only
if it does so for X.

Proposition 5.4 Let X be a smooth tropical variety, let Y be any tropical cycle, and let

f : X → Y be a pseudo-morphism. Then f is a morphism.

Proof It will be sufficient to prove that each piecewise linear pseudo-morphism
f : B(M)→ Y from a matroid variety to a fan cycle is a linear map, because being a
morphism is a local property, and we can lift any pseudo-morphism B(M)/L → Y

to a pseudo-morphism B(M)→ Y . By deleting parallel elements we can assume that
one element subsets of the ground set E(M) are flats of M. It is easy to see that f must
be a pseudo-morphism with respect to the fan structure B(M). Now we show by in-
duction on the rank of the flats that for all flats F we have f (VF) =

∑

i∈F f (V{i}). As
the vectors V{i} are linearly independent, this implies that f is linear. Let F be a flat
of rank r. We choose a chain of flats of the form

F =
(
∅ ( F1 ( · · · ( Fr−2 ( F ( Fr+1 ( · · · ( Fr(M) = E(M)

)
,

with r(Fi) = i. The fact that f is a pseudo-morphism translates the balancing condi-
tion around the facet F in B(M) into

∑

Fr−2(G(F flat

f (VG) = f (VF) +
(
|{G : Fr−2 ( G ( F flat }| − 1

)
· f (VFr−2

).

Now the induction hypothesis for the flats G, Fr−2 implies that, as required, f (VF) =
∑

i∈F f (V{i}).

Proposition 5.5 For any family T
g
→ B, the mapϕg : B→Mn is a pseudo-morphism.

Before we give a proof of this proposition we use it to prove our main theorem.

Theorem 5.6 For any smooth variety B, we have a bijection
{

Families (T
g
→B,rθi )

of n-marked tropical curves
modulo equivalence

}

1:1
←→

{
Morphisms

f : B→Mn

}

(T
g
→ B, rθi ) 7−→ ϕg

(
B f πB→ B,

(
id× (sαi ◦ f )

))
←− [ f ,

where ϕg : B → Mn is the morphism constructed in Definition 5.1, B f is the tropical

subvariety of B ×Mn+1 introduced in Definition 4.11, πB : B f → B is the projection

to B, and sαi , i = 1, . . . , n is the tropical marking of the forgetful map described in

Proposition 4.9.

https://doi.org/10.4153/CJM-2011-097-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-097-0


Universal Families of Rational Tropical Curves 137

Proof We have already shown in Corollary 4.12 and Proposition 5.5 that these maps
are well defined. It is obvious that they are inverse to each other.

Corollary 5.7 The tropical variety Mn is a fine moduli space for the contravariant

functor F from the category of smooth tropical varieties into the category of sets, defined

by

F : Obj((SmoothTrop)) −→ Obj((Sets))

B 7−→

{
Families (T

g
→B,rθi )

of n-marked tropical curves
modulo equivalence

}

Mor((SmoothTrop)) −→ Mor((Sets))

(B
f
→ B ′) 7−→ f ∗,

where

f ∗ : {T ′ → B ′} −→ {T → B}

(T ′ → B ′) 7−→ (Bϕg ′◦ f → B)

is the pull-back of families induced by composing f with the fibre morphism and con-

structing the corresponding family.

The rest of this section is dedicated to proving Proposition 5.5. For all the fol-
lowing proofs, we will assume that T and B are polyhedral structures of T and B

satisfying B = {g(σ), σ ∈ T}. This is possible by [11, Lemma 1.3.4].

Lemma 5.8 Fibres over the relative interior of a cell τ in B have the same combinato-

rial type. More precisely, for each τ ∈ B, b ∈ τ , b ′ ∈ rel intτ , there exists a piecewise

linear, continuous and surjective map

tb ′,b : g∗(b ′) −→ g∗(b)

for which the following holds:

(i) If b, b ′ ∈ rel int(τ ), tb ′,b is a homeomorphism.

(ii) If li(b), li(b ′) denote the i-th leafs of the respective fibre, then

tb ′,b(li(b ′)) = li(b).

(iii) On each edge e of g∗(b ′), tb ′,b is affine linear and e is either mapped bijectively onto

an edge with the same primitive direction vector or to a single vertex. In particular,

vertices are mapped to vertices.

(iv) If e1, e2 are two different edges of g∗(b ′), then

|tb ′,b(e1) ∩ tb ′,b(e2)| ≤ 1.

(v) For each σ ∈ T such that g(σ) = τ , we have

tb ′,b

(
|g∗(b ′)| ∩ σ

)
⊆ σ.
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Proof Let σ ∈ T such that g(σ) = τ and denote by Cb := |g∗(b)| ∩ σ,Cb ′ :=
|g∗(b ′)| ∩ σ. Similarly, if bλ := b + λ(b ′ − b), λ ∈ [0, 1], we denote by Cbλ its fibre in
σ.

If dimσ = dim τ , then f|σ is injective and Cb,Cb ′ are single points.
If dimσ = dim τ + 1, then Cb ′ must be a line segment and Cb is either a parallel

line segment or a point. Furthermore, Cb is unbounded, if and only if Cb ′ is un-
bounded (in the sense that it intersects ∂σ in only one point). Indeed, assume Cb ′ to
be unbounded. Then Cb ′ = {x + α · v;α ≥ 0} for some x and v in Rn. Now let p, q
be distinct points in Cb. Then

σ ∋ (1− λ)p + λ(q + αv) for all λ ∈ [0, 1], α ≥ 0

=
(

(1− λ)p + λq
)

+ αλv ∈ Cbλ

due to convexity of σ. Hence Cbλ is unbounded for all λ > 0, and since g is a con-
tinuous map, Cb must be unbounded as well. The other implication can be proven
analogously.

This gives us a canonical affine linear map tσb ′,b : Cb ′ → Cb on each cell σ such
that g(σ) = τ . We can obviously glue these together to a piecewise affine linear map
tb ′,b : g∗(b ′)→ g∗(b) (we will shorten this to t here for simplicity).

If b ∈ rel int(τ ) as well, we see that g−1
|σ (rel int(τ )) ⊆ rel int(σ) for any σ on which

g is not injective, so Cb, Cb ′ are both line segments and t becomes a homeomorphism.
Obviously t is affine linear on each edge of g∗(b ′). Hence, if t|e is not injective for
some edge e, it must be constant. Since t|σ preserves edge directions, so does t|e.
Furthermore, if any vertex v were to be mapped onto the interior of an edge e ′ of
g∗(b), then all edges adjacent to v would have to be mapped to e as well. But two
different edges at v have linearly independent direction vectors, so they must live in
different cells of T. Hence their images can only intersect in at most one point.

Finally we see that a leaf can obviously only be mapped to a leaf with the same
direction vector. Affine linearity of sθi implies that they must be marked by the same
map si .

Proposition 5.9 The map dg of Definition 5.1 is integer affine linear on each τ ∈ B.

Proof We first show that dg is affine linear on each cell. Since τ ∈ B is closed and
convex, it suffices to show that dg is affine linear on any line segment conv{b, b ′} ⊆ τ ,
where b ∈ τ and b ′ ∈ rel int(τ ).

Let σ ∈ T such that g(σ) = τ and dimσ = dim τ + 1 and both fibres Cb,Cb ′ are
bounded (see the proof of Lemma 5.8, obviously only these fibres are relevant for the
distance map dg). Then the map dσg : conv{b, b ′} → R that assigns to bλ := b+λ(b ′−

b) ∈ conv{b, b} the length of its fibre in σ, is affine linear, since g−1
|σ (conv{b, b ′}) is

a polyhedron.
Denote by Gbλ(k, l) the set of all cells in T of dimension (dim τ + 1) such that

g−1
|σ (bλ) is contained in the path from k to l in the curve g∗(bλ). Then we have

distk,l(g∗(bλ)) =
∑

σ∈Gbλ
(k,l)

dσg (bλ).
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Since we know that dσg is affine linear, it suffices to show that Gbλ(k, l) = Gbρ(k, l) for
all λ, ρ ∈ [0, 1], which immediately follows from the fact that the map tλ,ρ identifies
equally marked leaves and hence edges lying on the same path.

It remains to show that dg is an integer map. We want to show that for b, b ′ ∈ τ
such that b− b ′ ∈ Λτ , we have dg(b ′)− dg(b) ∈ Z(n

2). Choose σ such that the fibre of
b ′ in σ is a bounded line segment. It is easy to see that we must have two endpoints
p, q of both fibres lying in the same face σ ′ < σ, and hence in the same hypersurface
of Vσ , which is defined by an integral equation

h(x) = α; h ∈ Λ
∨
σ , α ∈ R.

By surjectivity of λ̄g|σ : Λσ → Λτ , we have Λσ
∼= Λτ×〈v〉Z for some primitive integral

vector v (which generates kerλg|σ).
Under this isomorphism we write the coordinates of p, q, and h as

p = (p1, . . . , pk, pv),

q = (q1, . . . , qk, qv),

h(x1, . . . , xk, xv) = h1x1 + · · · + hkxk + hvxv,

where pi − qi ∈ Z for i = 1, . . . , k, h j ∈ Z for all j and hv 6= 0 (since otherwise
λg would not be injective on the corresponding hypersurface). Now the identity
h(p − q) = 0 transforms into

0 =

k∑

i=1

(qi − pi)hi + (qv − pv)hv

=

k∑

i=1

(b ′ − b)ihi

︸ ︷︷ ︸

∈Z

+(qv − pv) hv
︸︷︷︸

∈Z

.

Hence, qv − pv ∈ Q and q− p ∈ Λσ ⊗Z Q .
So there exists a minimal k ∈ N such that k · (q− p) ∈ Λσ . In particular, k · (q− p)

is primitive. Assume k > 1. Then λ̄g(k · (q − p)) = k · (b ′ − b). By surjectivity
of λ̄g , there exists an a ∈ Λσ ′ such that λ̄g(a) = b ′ − b. (Note that we cannot use
Lemma 5.17 here since λ|σ ′ is injective.) This implies that λ̄g(k · a) = λ̄g(k · (q− p)).

Since λ̄g is injective on Λσ ′ , we must have k ·a = k · (q− p), which is a contradiction,
since the latter is primitive. Hence k = 1 and q− p ∈ Λσ .

Finally we obtain

Λσ ∋ (q ′ − p ′)− (q− p) =
(

dσg (b ′)− dσg (b)
)
· v.

Hence, since v is primitive, dσg (b ′) − dσg (b) ∈ Z, and the same holds for dg(b ′) −
dg(b).

Before we can prove that ϕg is a pseudo-morphism, we need to fix a few notations.
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Notation 5.10

• Let τ ∈ B(dim B−1). Choose p0, p1, . . . , pd ∈ rel int(τ ) such that {pi − p0; i =

1, . . . , d} is a basis of Vτ . Furthermore, for each σ > τ , choose a point vσ ∈
rel int(σ) such that vσ − p0 is a representative of uσ/τ . We can assume that this
is possible, since there always exists vσ ∈ rel int(σ), qσ ∈ Q such that vσ − p0 =

qσ · uσ/τ modulo Vτ . We can then make our choice such that qσ = qσ ′ =: q for all
σ, σ ′ > τ , so

∑

σ>τ

uσ/τ =
1

q

∑

σ>τ

(vσ − p0).

Hence the left-hand side is in Vτ if and only if the right-hand side is.

So we obtain that

∑

σ>τ

(vσ − p0) =

d∑

j=1

α j(p j − p0)

for some α j ∈ R.
• Lemma 5.8 justifies the following definitions. We fix k, l ∈ [n].

– Denote by q1, . . . , qr ∈ T the vertices of the fibre g∗(p0) that lie on the path
from k to l.

– The fibre of p j has the same combinatorial type as g∗(p0), so for j = 1, . . . , d,
denote by q

( j)
i , i = 1, . . . , r the i-th vertex in the fibre of p j .

– Let σ > τ . The preimage of qi under tvσ ,p0
contains a certain number of vertices

lying on the path from k to l, the first and last of which we denote by qσi,k and
qσi,l respectively.

– Let wi , i = 1, . . . , r − 1 be the primitive direction vector of the bounded edge

from qi to qi+1. We define the lengths ei , e
( j)
i , eσi > 0 of the corresponding edges

via:

qi+1 = qi + ei · wi , q
( j)
i+1 = q

( j)
i + e

( j)
i · wi , qσi+1,k = qσi,l + eσi · wi .

– In addition, we fix w0 := −vk,wr := vl, where vk and vl are the primitive
direction vectors of the leaves marked k and l.

– For i = 1, . . . , r, denote by eσi,t , t = 1, . . . , ri,σ the length of the edges on the
path from qσi,k to qσi,l.

• We define

∆
i
k,l :=

∑

σ>τ

(eσi − ei)−

d∑

j=1

α j(e
( j)
i − ei); i = 1, . . . , r − 1,

di
k,l :=

∑

σ>τ

( ri,σ∑

t=1

eσi,t

)

; i = 1, . . . , r.
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g∗(vσ)

g∗(p0)

g∗(p j), j > 0

k

q1

w
0−→

w1

−→

e1

w
2−→

e2

l

w 3

−→

q2

q3

qσ1,k = qσ1,l qσ2,k

eσ1

qσ2,l

e
σ
2,1 qσ3,k = qσ3,l

e σ
2

q
( j)
1 q

( j)
2

e
( j)
1 q

( j)
3e ( j)

2

Figure 1: An illustration of the chosen notation

Summing up over all length differences at each vertex and edge and exchanging
sums gives us the following equation:

δk,l(τ ) :=
∑

σ>τ

(
distk,l(vσ)− distk,l(p0)

)
−

d∑

j=1

α j

(
distk,l(p j)− distk,l(p0)

)

=

r−1∑

i=1

(di
k,l + ∆

i
k,l) + dr

k,l.

(5.1)

Remark 5.11 To prove that ϕg is a pseudo-morphism, we need to show that
(δk,l)k<l ∈ Im(φn), i.e., it is 0 in Mn. The idea for the proof is the following. A cell
ρ that maps non-injectively onto some τ ∈ B (and thus carries edges of the fibres
of the pi) is a codimension one cell in T. We will show that the vertices of the fibres
in the surrounding maximal cells can be used to express the balancing condition of
ρ (Lemma 5.13). However, dim ρ = dim τ + 1, so we have an additional generator
wi of Vρ (that generates the kernel of g|ρ). We will then show that the quantities ∆i

k,l

and di
k,l defined above can be expressed in terms of the coordinates of the balancing

equation in this element wi (Lemma 5.16). These expressions will then yield δk,l as
an alternating sum where everything except the wi-coefficients of the vertices at the
leaves k and l cancels out.
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Lemma 5.12 Let ρ ∈ T be a cell such that g(ρ) = τ and g|ρ is not injective. Then

there is a bijection

Π : {ρ ′ > ρ} → {σ > τ}; ρ ′ 7→ g(ρ ′).

Proof For surjectivity of Π, let σ > τ . Choose elements p ∈ rel int(τ ), q ∈
rel int(σ). By Lemma 5.8, t−1

q,p (g∗(p) ∩ ρ) is a line segment. Let ρ ′ be any cell con-
taining an infinite subset of this. In particular, g(ρ ′) = σ. Then we can use the last
statement of Lemma 5.8 to see that we must have ρ ′ > ρ.

For injectivity, assume that g(ρ ′1) = g(ρ ′2) = σ > τ for two distinct ρ ′i > ρ. Then
tq,p(|g∗(q)| ∩ ρ ′i ) = |g∗(p)| ∩ ρ for i = 1, 2, which is a contradiction to the fourth
statement of Lemma 5.8.

Lemma 5.13 Let ρ ∈ T be a cell such that qi ∈ ρ and ker g|Vρ
= 〈wi〉; i.e., ρ contains

(part of) the i-th edge. Then for any ρ ′ > ρ we have uρ ′/ρ = qσi,l − qi .

Similarly, if ker g|Vρ
= 〈wi−1〉, then uρ ′/ρ = qσi,k − qi .

Proof We only consider the first case, since the second case is exactly analogous. By
Lemma 5.12, there is a bijection

Π : {ρ ′ > ρ} → {σ > τ}; ρ ′ 7→ g(ρ ′).

Also, since λ̄g is surjective, we have the following isomorphisms:

Λρ ′
∼= Λg(ρ ′) × 〈wi〉 for all ρ ′ > ρ,

Λρ
∼= Λτ × 〈wi〉 ,

and therefore
Λρ ′�Λρ

∼= Λg(ρ ′)�Λτ
.

Since for any σ > τ , tvσ ,p0
(qσi,l) = qi and the map preserves polyhedra, both vertices

are contained in a common polyhedron, which must be a face of ρ ′ := Π−1(σ).
Hence qσi,l − qi is a representative of uσ ′/ρ ′ = (uσ/τ , 0) = (vσ − p0, 0) using the
isomorphism above.

Corollary 5.14 For each k 6= l ∈ [n], each i = 1, . . . , r, there exist ξi(k, l), χi(k, l) ∈
R such that

d∑

j=1

α j(q
( j)
i − qi) =

∑

σ>τ

(qσi,l − qi) + ξi(k, l) · wi ,(5.2)

d∑

j=1

α j(q
( j)
i − qi) =

∑

σ>τ

(qσi,k − qi) + χi(k, l) · wi−1.(5.3)
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Proof As in Lemma 5.13, choose ρ ∈ T such that qi ∈ ρ and ker g|Vρ
= 〈wi〉. Then

we know that ∑

σ>τ

(qσi,l − qi) ∈ Vρ.

Furthermore, by Lemma 5.8, qi , q
(1)
i , . . . , q(d)

i are all contained in a common face of
ρ, hence

d∑

j=1

α j(q
( j)
i − qi) ∈ Vρ

as well. Since both sums map to the same element

∑

σ>τ

(vσ − p0) =

d∑

j=1

α j(p j − p0)

under g, they can only differ by an element from ker g|Vρ ′
= 〈wi〉, which implies the

first equation. The second equation follows analogously.

Remark 5.15 Since w0 = vk is the same for all l, it is clear from the equations them-
selves that χ1(k, l) = χ1(k) actually only depends on k. Similarly, ξr only depends on
l and if we reverse the path direction, we find that

χ1(k) = χ1(k, l) = −ξr(l, k).

Lemma 5.16 For each k 6= l ∈ [n] we have

∆
i
k,l = ξi − χi+1 for all i = 1, . . . , r − 1,

di
k,l = χi − ξi for all i = 1, . . . , r.

Proof If we subtract equation (5.2) from (5.3) for i + 1, we obtain

d∑

j=1

α j

(
(q

( j)
i+1 − q

( j)
i )− (qi+1 − qi)

︸ ︷︷ ︸

=(e
( j)
i −ei )·wi

)
=

∑

σ>τ

(
(qσi+1,k − qσi,l)− (qi+1 − qi)
︸ ︷︷ ︸

=(eσi −ei )·wi

)
+ (χi+1 − ξi) · wi .

Factoring out wi we obtain 0 = ∆i
k,l − ξi + χi+1. For the second equation let i ∈

{1, . . . , r} be arbitrary. Since g∗(p0) is a smooth curve, it is locally at qi isomorphic
to L

val(qi )
1 . Denote by z1, . . . , zs the direction vectors of the outgoing edges, without

loss of generality z1 = −wi−1, zs = wi . Now each edge E in the preimage of qi under
tvσ ,p0

induces a partition of the set {1, . . . , s} = IE ·∪Ic
E such that x, y ∈ {1, . . . , s} are

contained in the same set if and only if the path from zx to zy does not pass through
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E (i.e., we separate the zi “on one side of E” from the others). It is easy to see that,
due to the balancing condition of the curve, the direction vector of E must be

wE = ±
∑

x∈IE

zx = ∓
∑

y∈Ic
E

zy ,

depending on the choice of orientation. One can, for example, see this by induction
on the number of edges. Now assume E lies on the path from k to l; i.e., in t−1

vσ ,p0
(qi)

it lies on the path from qσi,k to qσi,l. Choose IE such that 1 /∈ IE ∋ s, i.e., wE points
towards l. Denote by Eσ1 , . . . , E

σ
ri,σ

the sequence of edges from qσi,k to qσi,l. Subtracting

qσi,k
wE1 = z3 + z4 +
z5 qσi,l

wE2 =

z4 + z5

z1
k

z2

z3

z4

z5
l

qi

∼= L
val qi

1
g∗(p0) “locally at qi”

g∗(vσ) “locally at t−1
vσ ,p0

(qi)”

z1
k

z2

z3

z4

z5
l

Figure 2: The direction vector of an edge is determined by the zi lying “behind” it.

equation (5.2) from (5.3) for the same i, we obtain

0 =

∑

σ>τ

(qσi,l − qσi,k) + ξi · wi − χi · wi−1

=

∑

σ>τ

( ri,σ∑

t=1

eσi,t · wEt

)

+ ξi · zs + χi · z1

=zs ·

(
∑

σ>τ

( r∑

t=1

eσi,t

))

+
∑

σ>τ

(
r∑

t=1

eσi,t

(
∑

x∈IEt \{s}

zx

))

︸ ︷︷ ︸

:=R, contains neither z1 nor zs

+ξi · zs + χi · z1

=zs · (di
k,l + ξi)− χi

(
∑

x 6=1

zx

)

+ R.

Since z1 does no longer appear in this equation and {zx, x 6= 1} is linearly indepen-
dent by smoothness, the coefficient of zs must be 0: 0 = di

k,l + ξi − χi .
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Proof of Proposition 5.5 By equation (5.1) and Lemma 5.16 we have

δk,l(τ ) =

r−1∑

i=1

(di
k,l + ∆

i
k,l) + dr

k,l = χ1(k, l)− ξr(k, l)

5.15
= χ1(k, l) + χ1(l, k)

5.15
= χ1(k) + χ1(l).

Hence,
(
δk,l(τ )

)

k<l
= φn

(
(χ1(r))r=1,...,n

)
.

Before concluding this section we want to see that the second condition in our
definition of prefamilies is really only necessary for cells on which g is not injective
(cf. Remark 4.3). Therefore, we first notice that the proofs of Lemmas 5.8 and 5.12
do not use the second prefamily axiom.

Lemma 5.17 Let B be a smooth variety and let g : T → B be a locally surjective

morphism of tropical varieties all of whose fibres are smooth rational curves with n un-

bounded edges. Let τ ∈ T be a cell on which g is not injective. Then λg|τ : Λτ → Λg(τ )

is surjective. Moreover, all maximal cells in T have trivial weight 1.

Proof We assume without loss of generality that B is connected. As this implies that
B is irreducible (cf. [4, Lemma 2.4]) the bijection of Lemma 5.12 implies that there
is an integer λ such that ωT(σ) = λ · ωB(g(σ)) for all maximal cells in σ ∈ T. We
thus need to show that λ = 1 and that g(vσ/τ ) = vg(σ)/g(τ ) if g is not injective on τ ,
i.e., g maps normal vectors to normal vectors. It is clear that g(vσ/τ ) is a multiple of
vg(σ)/g(τ ); as B is a matroid variety, it follows that g(vσ/τ ) = λτ · vg(σ)/g(τ ) for some
λτ ∈ Z>0 that does not depend on σ. Let ϕ1 . . . , ϕdim(B) be rational functions with
ϕ1 · · ·ϕdim(B) ·B = {0} (cf. Proof of Lemma 3.3). Comparing the weight formulas for
intersection products of ωϕ1···ϕdim(B)·B({0}) and ωg∗ϕ1···g∗ϕdim(B)·T(τ ) for an edge τ ∈ T,
we see that λ = 1 and λβ = 1 for all cells β ≥ τ .

6 Equivalence of Families

In the classical case, two families T
g
→ B,T ′ g ′

→ B are equivalent if there is an iso-
morphism ψ : T → T ′ that commutes with the morphisms and markings. Such an
isomorphism hence automatically induces isomorphisms between the fibres g∗(p)
and g ′∗(p) of a point p in B.

Recall that we call two families equivalent if their fibres over each point agree. We
would like to show the existence of such an isomorphism ψ : T → T ′ for any two
equivalent families. In fact, requiring ψ to identify the fibres already uniquely fixes
the map ψ, so for any two equivalent families of n-marked tropical curves we obtain
a bijective map T → T ′ that commutes with g, g ′ and the markings by identifying
the fibres over each point p (which are isomorphic by definition). We would like to
see if this map is in fact a morphism. Again, we will only be able to show that it
is a pseudo-morphism, and since in general we cannot assume T to be smooth, we
cannot give a stronger statement.
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Definition 6.1 Let T
g
→ B,T ′ g ′

→ B be two equivalent families of n-marked tropical
curves. Now for each point p in B there is a unique isomorphism of tropical curves

ψp : g∗(p)→ g ′∗(p)

(i.e., it identifies equally marked leaves and is linear of slope 1 on each edge). We
define a map ψ : T → T ′, t 7→ ψg(t)(t).

Theorem 6.2 The map ψ is a bijective pseudo-morphism whose inverse is also a

pseudo-morphism. In particular, if T or T ′ is smooth, ψ is an isomorphism.

Proof Since the construction of ψ is symmetric, it is clear that the inverse of ψ is a
pseudo-morphism if ψ itself is one. Also, by Proposition 5.4, it is an isomorphism if
any of T or T ′ is smooth.

First, we prove that ψ is piecewise integer affine linear. Let τ ∈ T and choose
t ∈ τ , t ′ ∈ rel int(τ ). Again, it suffices to show that ψ is affine linear on the line
segment conv{t, t ′}.

By Lemma 5.8, t and t ′ lie on edges of the corresponding fibres that have the same
direction vector w. Select vertices p, p ′ of these edges such that t = p + α · w, t ′ =
p ′ + α ′ · w for α, α ′ ≥ 0.

Denote by q := ψ(p), q ′ := ψ(p ′) and let ξ be the direction vector of the corre-
sponding edge in T ′. Hence

ψ(t) = ψ(p + α · w) = q + α · ξ

ψ(t ′) = ψ(p ′ + α ′ · w) = q ′ + α ′ · ξ

and using the fact that any convex combination of p and p ′ must by Lemma 5.8 again
be a vertex, it follows that

ψ(t + γ(t ′ − t)) = ψ
(

(p + γ(p ′ − p)) + w · (α + γ(α ′ − α))
)

= (q + γ(q ′ − q)) + ξ · (α + γ(α ′ − α))

= ψ(t) + γ(ψ(t ′)− ψ(t))

for any γ ∈ [0, 1]. Hence ψ is affine linear. Using the fact that it has slope 1 on each
edge of a fibre and that g ′ ◦ ψ = g, it is easy to see that it respects the lattice.

It remains to see that ψ is a pseudo-morphism, so let τ be a codimension one cell
of T. We distinguish two cases:

• g|τ is injective: Then g(τ ) is a maximal cell of B, so the adjacent maximal cells
σ > τ are also mapped to g(τ ). So if we take a point p ∈ rel int(τ ), the normal
vectors vσ/τ − p correspond to normal vectors of the edges of the fibre g∗(g(p))
adjacent to p (after proper refinement). Since the fibre is smooth, these add up to 0
and by definition of ψ, so do their images ψ(vσ/τ )− ψ(p).
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• g|τ is not injective: Hence the fibre in τ over a generic point p0 ∈ g(τ ) is contained
in the m-th edge on the path from some leaf k to some leaf l (it does not really mat-
ter which one). Choose p0, . . . , pd, vσ in g(τ ) and its adjacent cells g(σ), σ > τ as
defined in Notation 5.10. We now use the shorthand notation q0, q j , qσ for the m-th
vertex point of the fibres of p0, p j and vσ . Now Lemma 5.13 tells us that qσ − q0 is
actually a normal vector of σ with respect to τ and that its balancing equation reads

∑

σ>τ

(qσ − q0) =

d∑

j=1

α j(q j − q0)− ξT
m(k, l) · wm.

Now the image of q0 under ψ is by definition the m-th vertex of the fibre g ′∗(p0), so
we also get

∑

σ>τ

(
ψ(qσ)− ψ(q0)

)
=

d∑

j=1

α j

(
ψ(q j)− ψ(q0)

)
− ξT ′

m (k, l) · ψ(wm).

Hence, to prove that ψ is a pseudo-morphism, it remains to show that ξT ′

m (k, l) =

ξT
m(k, l).

By the proof of Proposition 5.5, we know that

δk,l(τ ) = φn

(
(χT

1 (k))k=1,...,n

)
= φn((χT ′

1 (k))k=1,...,n).

Since the left side is independent of the choice of family by definition (it is defined
only in terms of lengths of fibres) and Φn is injective, we must have χT

1 (k) = χT ′

1 (k)
for any k. Using the fact that di

k,l and ∆i
k,l are also independent of the choice of family

and applying Lemma 5.16 inductively, we finally see that

χT
i (k, l) = χT ′

i (k, l) and ξT
i (k, l) = ξT ′

i (k, l)

for any possible i, k, l.
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