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Abstract
Here we report on a simple-to-implement and cost-effective approach for laser pulse contrast enhancement, based on
the χ(3) nonlinear self-focusing effect. An intentionally induced and gently controlled self-focusing in a thin glass
transforms the time-dependent intensity into variation in beam divergence. Followed by a spatial discriminating filter,
only the strongly focused fraction traverses the setup, at the expense of efficiency. A numerical model, accounting for
the pulse and material parameters via a Gaussian ABCD matrix, provides an estimate for the instantaneous beam waist
and transmission efficiency, which enables us to evaluate the resulting contrast enhancement. The estimated contrast
enhancement spans between 0.5 and 2.5 orders of magnitude, in conjunction with approximately 25%–90% estimated
efficiency, depending on the pulse parameters. In a preliminary experiment we demonstrated the effect with 10s-µJ sub
GW regime with approximately 40% efficiency and a contrast improvement of more than or equal to 20 dB.
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1. Introduction

Since the appearance of high-energy short pulse laser
systems based on chirped pulse amplifiers (CPAs)[1], it has
become apparent that certain experiments can be hindered
by pulse parts that are not confined to the peak vicinity.
It is therefore important to define the pulse contrast ratio,
that is, the ratio between the peak intensity and intensities
extended towards the pulse pedestals. As a result, high-
field experiments have made the pulse contrast a property
of vast importance. In that context, the most demanding
experiments are those involving the interaction of intense
light with solids[2,3], as they start to dissociate into plasma.
Typically, solid targets experience coulomb explosion
under intensities of above 1010 and 1013 W/cm2[4] for
nanosecond (ns) pedestals or picosecond (ps) pre-pulses,
respectively[5]. Once the plasma becomes over-critical, that
is, the plasma density scale length increases, interaction
is hindered. Hence, when intensities are of the order of
1017 − 1021 W/cm2, the contrast level must be kept above
approximately 107 −1011.

In recent decades, several techniques have been developed
to clean up pulses, most of which are based on instantaneous
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gating mechanisms obtained by nonlinear (NL) processes.
Amongst these are, for example, the cross-polarized wave
(XPW)[6], second-harmonic generation (SHG)[7], optical
parametric amplification (OPA) and, specifically, optical
parametric chirped pulse amplification (OPCPA)[8,9,10],
plasma mirrors (PMs)[11,12], self-diffraction (SD)[13,14,15],
etc. Methods such as those mentioned above typically clean
up pulses by two to five orders of magnitude, with reported
values of as much as a 70 dB improvement[16]. As with most
NL processes, the above-mentioned cases are associated
with a significant energy penalty, that is, efficiencies ranging
from tens to a few percent.

An exceptional result was introduced in 2020, with an
approach based on a spatial NL plasma lens that was
generated by an auxiliary pump beam[17]. While achieving
contrast enhancement (CE) of two orders of magnitude,
with impressive efficiency of approximately 80%, such a
method entails significant awkwardness, as it necessitates
slaving a secondary laser into the process and accurately
synchronizing it with the main laser.

The approach described in this work is based on a self-
induced single-beam effect, which is achieved by simply
activating the basic Kerr lens (KL) effect[18] using peak
powers significantly beyond the critical peak power for self-
focusing (∼4 MW for a Gaussian beam in glass), given a
thin enough sample (i.e., before the beam collapse occurs
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inside the bulk material[19]) followed by a succeeding spatial
filtration. Since the NL lens constitutes temporal-spatial-
temporal mapping, the latter filtration translates to temporal
cleaning, as elaborated below. Obviously, such a process
occurs in-line, is self-induced and requires no alignment
to achieve the effect. Although some similarities to the
above-mentioned plasma lens exist, the proposed method is
far easier to implement since it is a self-induced process
and does not require any additional optically synchronized
sources or unique materials.

Using the KL in the context of pulse cleaning was investi-
gated in a work published in 1975, in the form of a numerical
model that simulated the KL mechanism inside a laser
oscillator for CE[20]. However, since the model was based
on blocking the center of the beam, it predicted optimal
operation only inside oscillators, whereas for amplifier appli-
cations it is expected to introduce low efficiency. Naturally,
under much higher energies such a process is less attractive.
This drawback can, in the present context, be offset by
certain variations in the model’s scheme, as proposed here.
Interestingly, in recent decades, the spatial beam aspect
affected by the KL was found to enhance certain laser
beam properties. Liu et al.[21] demonstrated spatial cleanup,
namely M2 beam parameter reduction via the KL, induced
by a short pulse in a multi-mode graded-index fiber. Against
most of the CE efforts, intentional reduction of the pulse
contrast via the KL effect was demonstrated in 2019[22] with
the purpose of measuring high pulse contrast with limited
diagnostics. The current study follows an alternative path to
the latter, which with some further modification, can achieve
pulse CE.

In 2021, an experimental study on the KL effect on CE
demonstrated the use of multiple plates and a succeeding
filter[23]. This study indeed confirmed the validity of the self-
focusing approach for CE. The work presented here proposes
a complementary approach, providing both a numerical
model and a validation with a single-stage NL element.

2. Kerr lens approach

Here, we propose a method that uses the KL to discriminate
between different time-varying pulse intensity levels. In a
simplified description, the technique is aimed to improve
contrast via gently controlled KL excitation in a relatively
thin dielectric, that is, the beam experiences negligible
transverse variations while traversing a short path along
the dielectric. However, it induces angular convergence, as
elaborated below. The method’s principle is of translating
the time-varying pulse intensity profile to corresponding
variations in its spatial dimensions, that is, the beam waist
size, and then consecutively applying spatial filtration. The
latter spatially modifies parts that traverse the filter, which,
in turn, affects its temporal profile.

Figure 1. An Illustration showing the spatial shaping of a Gaussian beam
affected by the temporal intensity change, which in turn modifies the
medium.

It is to be stressed that as a byproduct, the process
potentially involves excitation of the NL phase via self-
phase modulation (SPM), adding some B-integrals as well
as positive second-order dispersion to the pulse phase. This
implies that in the case in which obtaining the shortest
available pulse from the setup is mandatory, some extra
dispersion compensation may be required.

The numerical model’s concept maintains two assump-
tions. Firstly, the KL is induced within a relatively thin
dielectric (‘thin’ refers here to negligible beam diameter
variations while traversing through the dielectric), that is,
the beam only obtains a local angular bend and starts
to converge. Naturally, the physical process involves the
combination of angular change and some diameter change.
The propagation stage where the waist is formatted occurs
outside the sample, (i.e., in air or vacuum). As a byproduct,
there is a lower risk of further NL accumulation or mate-
rial breakdown (air ionization starts at I > 1013 W/cm2).
Secondly, the instantaneous nature of the NL susceptibility
in the dielectric, typically having a sub-femtosecond (fs)
delayed response[24], enables pulses that span around mul-
tiple tens of fs to ps time to experience instantaneous spatial
variations and thereby contrast cleaning regardless of the
preceding pulse parts.

Assuming sufficient pulse intensity is available, the under-
lying mechanism can be described as follows. Initially, low-
intensity pulse parts that are temporally far from the main
peak nearly maintain their spatial properties as they merely
experience any Kerr nonlinearity. As a result, the beam
divergence remains practically unchanged when passing the
dielectric. In contrast, higher-intensity parts, including the
main peak, maintain enough energy to excite the KL, which
in turn modifies the beam’s angular propagation and, conse-
quently, its diameter. The process is to be kept under gentle
control, that is, such that it is far enough from initiating
aggressive focusing and material breakdown. Next, a spatial
filter is applied such as, for example, an iris/hard aperture, to
filter a portion of the Gaussian beam’s exterior, as shown in
Figure 1.

On the downside, one can list the inevitable addition of
the B-integral to the pulse phase, potentially adding some
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temporal phase structure that temporally broadens the inci-
dent pulse by a slight up-chirp. The NL B-integral phase
addition can be readily estimated via[25] B = k0·n2

∫
I(z)dz,

with k0 = 2π/λ0, accumulated along the pulse propaga-
tion axis inside the dielectric. Some compensation to the
B-integral issue can be realized by applying, for example,
controlled pulse shaping techniques[26].

It is again pointed out that the assumed applied power
level does not lead to total beam collapse and optics damage.
Practically, this can be handled by avoiding two distinct
criteria: intensities of I ≥ 1014 W/cm2 and fluences of more
than or equal to 2 J/cm2 for sub ps pulses[27].

As a last remark, it is reasonable to argue that the sug-
gested method has several potential distinct benefits over the
well-known methods due to its ease of implementation, very
low-cost components and not requiring the temporal and
spatial synchronization of the beams.

3. System schematics

The experimental scheme that exploits the temporal-spatial
pulse coupling is presented in Figure 2.

We assume a collimated near-infrared ultrashort pulse with
available peak power significantly beyond the dielectric’s NL
critical power. In the first stage, the beam is focused by a lens
with a (linear) focal length fL. For beam with a divergence
angle θ (before the lens), the 4σ waist (after the lens) is
2w0 ≈ fL · θ , assuming a small angle approximation.

Focusing the beam in the first stage is needed for initiating
the NL mechanism, especially in the case of fairly low
pulse energies. Furthermore, as shown below, zglass, the glass
distance from the waist, is an additional tuning parameter for
the intensity that is provided by delicately moving the glass
along the beam.

Next, while the beam enters the NL medium, a new
converging beam trajectory is induced by the Kerr effect,
whose focal length can be calculated (assuming Gaussian
intensity shape) by the following equation[28]:

f −1
NL = 8n2d

πw4 P, (1)

Figure 2. System schematic. fL, linear focal length; w0, beam waist after
the lens; zglass, glass distance from beam waist; l, iris-to-glass distance
(movable); 3rd AC, third-order scanning autocorrelator.

where n2 is the NL refractive index, d is the glass thickness,
w is the beam radius and P is the instantaneous laser power.
Moving the glass piece with respect to the beam waist
position (zglass) raises several scenarios that can be roughly
divided into the following categories, depending on the
generated NL focal length fNL:

(1) the NL dielectric is located at zglass = fNL, precisely
compensating the linear lens power, yielding a colli-
mated beam (Figure 3(a));

(2) the NL dielectric is located at zglass < fNL, not compen-
sating the linear lens and leading to a diverging beam
(Figure 3(b));

(3) the NL dielectric is located at zglass > fNL, refocusing
and generating a new (NL) beam waist (Figure 3(c)).

The temporal cleaning method provided in this study is
based on spatial separation, practically achieved via the
presence of an aperture. Looking at the three scenarios
illustrated in Figure 3, it is argued that the highest area
ratio between the peak (dark red) and the noise (light red)
is obtained in case (3), and at the tightest NL focus. The area
ratio is as follows:

A′
peak

A′
noise

=
C2 +2C2 l(N−1)

zglass
+C2 l2(N−1)2

z2
glass

C2 + (l+ zglass
)2 +

+ z2
glass +2lNzglass + l2N2

C2 + (l+ zglass
)2 , (2)

Figure 3. Illustration of the three KL focusing scenarios, obtained by
varying the dielectric location with respect to the beam waist: (a) zglass =
fNL, (b) zglass < fNL and (c) zglass > fNL. fL, linear lens focal length; fNL, NL
lens focal length. The dark red part represents the peak of the pulse where
most of the NL process occurs, whereas the light red part represents lower
powers and noises adjacent to the peak with the weaker effect.

A crucial parameter that is, to our approach, used as a metric for the
contrast change, is the peak-to-noise area ratio at the hard aperture filtration
plane. This metric shall be an estimate to the filtering ratio that finally can
be related to CE.
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Figure 4. Peak-to-noise beam area ratios under various iris-to-glass dis-
tances (l) versus N values of zglass and C, which were set to 6.3 and 10.7 mm,
respectively.

where A = πw2, C = πw2
0/λ and l is the iris distance from

the glass. Here, N is defined as N = 1 − zglass/fNL. Note that
N = 0, N > 0 and N < 0 refer to cases (1), (2) and (3),
respectively. The full calculation is detailed in Appendix A.

As obtained from Figure 4, for a given C (10.7 mm) and
zglass (6.3 mm) (according to the system parameters provided
in Section 4) and various l values, the ratio of A′

peak/A′
noise

has a minimum. When traveling long distances (l of approxi-
mately meters scale), these minima are found around N = 0,
that is, ⇒ fNL = zglass, corresponding to case (1), whereas
if traveling small distances (l of a few millimeters scale),
the minima are found around N < 0, that is, ⇒ fNL < zglass,
which corresponds to case (3). In addition, for shorter iris–
glass distances (l), the area-ratio minima values (the local
dips in Figure 4) further reduce with lower N values, that
is, pointing to a potentially valuable CE trend. By setting
the expressions of the latter cases, one can claim that the
fNL < zglass case is optimal for discriminating between A′

peak
and A′

noise, and therefore the potential for CE is reinforced. It
is therefore that in this work the most appealing approach to
expect CE is under the conditions of case (3), which indeed
was selected.

By inserting the explicit expressions N(zglass) = 1 −
zglass/fNL and fNL(zglass) = B

(
1+ (zglass/C)2)2

, where
B = (

πw4
0

)
/(8n2dP) into Equation (2), the following

expression is obtained (see Appendix B):

A′
peak/A′

noise =
C4l

(
C4l−2B

(
C2 + z2

glass

)(
C2 + zglass

(
l+ zglass

)))
B2
(

C2 + z2
glass

)3(
C2 + (l+ zglass

)2
) +1,

(3)

Figure 5. Two-dimensional plot showing the peak-to-noise area ratio
versus l and zglass. White dashed curve: l = zw0,NL .

Obviously, one may seek a case where the smallest
A′

peak/A′
noise ratio as a function of glass–iris distance (l)

as well as an NL medium (glass) position (zglass) can be
obtained. A plot of Equation (3) is shown in Figure 5 via a
2D representation.

In addition, the location of the newly formed waist at
the pulse peak (zw0,NL) can be expressed as follows (further
details in Appendix B):

zw0,NL = zglass − fNL(
1− zglass/fNL

)2 +
(

2C
π fNL

)2 + fNL. (4)

The expression in Equation (4) is represented by the white
dashed curve in Figure 5. It can be seen that the white line is
located exactly on the minimum of A′

peak/A′
noise, proving the

basic estimation provided above that the iris optimal location
is at the NL peak waist location zw0,NL .

Given the latter outcome, the hard aperture iris was
selected to be positioned at the very spot where the KL-
induced waist position occurs: l = zw0,NL .

It is worth noting that in order to apply the model’s
initial assumption for thin glasses, zw0,NL must have a lower
boundary with respect to the glass thickness d. Assuming
up to 10% beam diameter narrowing from the initial value,
running a beam propagation code that tracks the spatial pulse
dynamics[29], the aforementioned requirement is satisfied
under the limit (see Appendix C): zw0,NL > d/2. Thus, this
limit is used in what follows according to the presented
model.

In another aspect, the iris aperture size constitutes a
trade-off between efficiency and CE, since a larger aperture
transmits more energy whereas a smaller aperture increases
CE.

At low intensities, the iris blocks the majority of the
emerging beam as its diameter (and area) is smaller relative
to the pulse beam area at this position. In contrast, near the
intensity peak, the majority of the beam energy is confined
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to the NL waist wNL, and efficiently traverses the iris, that is,
it experiences minimal attenuation.

4. Numerical model

In this section, a numerical model with parameters resem-
bling those of the available laser system was established to
evaluate the expected CE.

Temporal and spatial Gaussian shapes were assumed.
Next, some temporal noise features were artificially added
to the pulse vicinity in order to represent non-ideal con-
trast. The noise levels are specified below. The time profile
included, firstly, a sharp peak of a few hundred fs duration
that is typical for Yb-doped glass amplifiers, accompanied
by a time-exponential coherent pedestal (CP) that is typically
reported to surround the peak vicinity by several 10 ps. While
presented on a power scale, the CP has a linear skirt-like
shape (Figure 6). A lower noise pedestal was also introduced
to represent the longer-term amplified spontaneous emission
(ASE) noise in the amplifiers. This noise level typically
spans multi-hundred ps from both sides of the peak.

In recent decades, studies have pointed out that the CP
is attributed mainly to grating irregularities and scattering
found, for example, on the groove edges[30], as well as imper-
fections in the (whole) stretcher and compressor structures.

Based on reports[31,32] and experience with CPA lasers, the
CP and ASE were chosen in our model to have a level of –25
and –50 dB relative to the pulse peak.

The parameters that were used in the numerical model
are as follows: pulse energy E = 1 mJ, central wavelength
CWL = 1053 nm, divergence angle θ = 2 milli-radian
(mrad) and a time duration of 450 fs full width at half maxi-
mum (FWHM). The numerical temporal pulse shape is pre-
sented on a power scale in Figure 6. In our example case, the

Figure 6. Pulse power versus time. Blue, numerically produced contrast
trace of power versus time, on a normalized power scale. Orange, a
reference 4 MW power level.

power at the pulse’s peak is approximately 0.664 GW after
being adjusted to the chosen energy such that

∫
P(t)dt = E,

where P(t) and E are the power and total pulse energy,
respectively.

In order to determine the appropriate zglass, fNL as a
function of zglass was calculated, based on Equation (1).
The beam waist at the glass position was derived from the
following:

w(z) = w0

√
1+

(
λ · z

π ·w2
0

)2

,

where w0 � θ · fL/2 while P was assumed to be the pulse
peak power.

The resulting NL focal length as a function of zglass is
represented by the blue curve in Figure 7. In order to
visualize the three different cases discussed above, f = zglass

is plotted in Figure 7 (orange curve). According to Figure 7,
zglass has to fall within the range of 0–52 mm in order to
preserve the condition fNL < zglass. The simulation’s input
parameters were fL = 60 mm, d = 1 mm, θ = 2 mrad and
n2 = 2.6×10−20 m2/W (typical to fused silica around 1 µm).

To obtain the optimal beam areas ratio, it is beneficial
to follow the A′

peak/A′
noise curve (l = zw0,NL , zglass) and seek

for a minimum, according to Equation (3) at l = zw0,NL

(Equation (4)). As presented in Figure 8, zglass was chosen
to be 6.3 mm.

Since in real scenarios it is not always possible to work
at extremely short distances, or extremely small apertures, a
slightly larger z can be chosen in order to shift the NL focal
position, or enlarge the NL focal size.

In what follows, calculation of the NL focal length versus
time is provided, where Equation (1) is applied with the
optimal zglass (6.3 mm). It can be inferred from Figure 9
that fNL varies from sub 0.5 mm at the pulse’s peak, which
indicates an extremely intense effect, to approximately 1 m,
when the laser power reduces below Pcr. Farther out, at tens

Figure 7. Kerr focal length as a function of glass distance from the
beam waist position (blue), crossed with the linear f = zglass plot (orange).
The intersection point of the two plots represents the precisely collimated
case.
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Figure 8. Beam area peak-to-noise ratio A′
peak/A′

noise at l = zw0,NL , where
the minimum ratio is obtained at zglass = 6.3 mm.

Figure 9. Kerr focal length as a function of time, based on the numerical
pulse from Figure 6 (blue).

of ps, fNL extends to much larger values, practically implying
a negligible effect.

In order to estimate the spatial filtration effect, the NL
beam waist diameter was calculated as well as the NL-
induced waist position (with respect to the NL dielectric)
according to the Gaussian beam propagation equation[33]:

zw0,NL(t) =
((

w0NL(t)
w0

)2

·
(
|z|− fNL(t)

))
+ fNL(t), (5)

where the NL waist w0NL is obtained by the following:

w0NL(t) = w0√(
1− z

fNL(t)

)2 +
(

z0
fNL(t)

)2
, (6)

and z0 = πw2
0/λ is the Rayleigh length produced by the linear

lens.
The calculated position of the new waist at the peak (t = 0)

was zw0,NL (t = 0) = 0.5 mm for the resulting fNL mentioned
above. It is noted that the waist position turned out to be
slightly larger (fNL∼ 0.48 mm) as a result of the preceding
divergence. To obtain the strongest NL gating discrimination
(for the specific chosen parameters) as explained in the
preceding section, the position of the hard aperture filtering
was set to be zw0,NL (t = 0).

Next, the instantaneous beam radii, obtained at the iris
plane, were calculated using the following equation:

w
(
z = zw0,NL − zw0,NL (t = 0),t

)=

w0NL(t)

√
1+

(
zw0,NL(t)− zw0,NL (t = 0)

z0NL(t)

)2

, (7)

where z was selected to be the distance between the iris plane
(zw0,NL (t = 0)) and the time-dependent NL beam waist, and
z0NL is the NL Rayleigh length induced by that same Kerr
effect.

Following the calculated waists w0NL , a 2D spatial-
temporal Gaussian beam shape was generated. The spatial
part can be described as follows:

I (x,y) = I0,0(t)e

(
−2·

(
x2+y2

)
/w
(

zw0,NL (t=0),t
)2
)
, (8)

where I(t) is the time pulse intensity.
The sum of all time frames at the iris plane is represented

in Figure 10. As can be seen, the final shape resembles a
Gaussian one, albeit with a somewhat sharper center.

In order to simulate the hard aperture spatial effect, a
2D circle with varying radii was (numerically) spatially
multiplied by the 2D beam shape, in different pulse times.
Figure 11 represents this projection on the x-axis at different
times (colorful plots), while the iris itself is represented
by the black rectangle. As can be observed, the spatial
pulse generated at t = 0 (Figure 11 in yellow) practically
completely traverses the aperture, whereas the spatial pulse
preceding the peak by t = –61.6 ps (Figure 11 in purple) or
earlier suffers a considerable blocking.

5. Results

A two-stage computation was carried out in order to produce
the temporal pulse profile following the spatial filtration. The
iris aperture and the pulse beam shape were first spatially
multiplied, and then the beam’s spatial domain was inte-
grated, I(t) = ∫ ∫

I (x,y,t)dxdy, to preserve only temporal
dependence. Displaying the latter with unity normalization
on the power scale provided the temporal contrasts for four
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Figure 10. Sum of the 2D generated Gaussians at the iris plane from the top (a) and side views (b). The dashed curve represents the normalized pulse shape
assuming no NL effect.

Figure 11. Spatial Gaussian pulses after experiencing the NL lens pro-
jected at the iris plane. The colored curves represent spatial pulses at various
times. The (numerical) iris is represented by the black curve.

different aperture sizes. The resultant plots are shown in
Figure 12.

In addition, in order to complete the performance esti-
mation, the whole process’s efficiency was calculated by
extracting the ratio of the transmitted energy to the incident
energy, using the following integration:

η =
∫

Pclippeddt∫
Pindt

, (9)

where the integral limits in the current work were taken to
within the pulse FWHM.

The aforementioned integration was carried out using a
variety of aperture radii, considered in ascending order,
from largest to smallest, associated with highest-to-lowest
transmission, respectively.

For aperture diameters of 70, 34, 10.6 and 4.8 µm,
the obtained CE factors were 5, 10, 20 and 25 dB, with
corresponding efficiencies of 90%, 74%, 44% and 23%
(within the FWHM pulse range) (Figure 12). Considering
different energy integration criteria, for example, 10% power
drop yields somewhat different efficiencies, 82%, 64%, 36%
and 19%, for the same iris diameters, respectively. Of course,
as the application demands, various energy integration
criteria can be set.

It is, however, stressed that the peak vicinity has a pro-
nounced effect on the experiment, and thus a longer time
consideration can be of a lesser value.

It is worth mentioning that according to the simulation
results, it can be concluded that a need for small apertures
may be impractical. A simple way around this obstacle is
applying a magnification (e.g., an imaging stage), allowing
the use of larger apertures in a real experiment.

Next, an experimental setup was set in order to validate
the applicability of the above model. A full description of
the experimental system can be found in Section 3.

The laser setup parameters are as follows: a Yb fiber
CPA with a center wavelength of λ = 1.03 µm, pulse
duration of approximately 450 fs (FWHM), a 4σ divergence
angle of θ = 2.3 mrad at the output of the CPA’s com-
pressor and controlled pulse energies of up to several tens
of µJ.

A baseline reference contrast was set as the raw unfiltered
CPA pulses, which is needed to be compared with respect
to pulses that experienced the NL effect, as proposed in
the model. For evaluating the results, a third-order scan-
ning autocorrelator (AC) was used (Ultrafast-Innovations
‘Tundra’) with optical hardware dedicated to the 1 µm
vicinity[34].

According to the experimental results that are plotted in
Figure 13, the original laser pulses yielded contrast values
of around 104 with respect to the noise level, when observed
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Figure 12. Contrast traces before (blue) and after the KL effect and hard aperture filter, for 70 (orange), 34 (green), 10.6 (yellow) and 4.8 µm (purple)
aperture diameters, applied upon the numeric Gaussian input beam. Inset: same plots in the time scale of a few ps surrounding the peak, provided for a more
detailed observation.

Figure 13. Measured pulse contrast before (blue) and after the KL effect
and the clipping aperture (orange).

±100 ps farther away from the peak, which is very typical for
Yb fiber CPA laser systems. Further details of the scheme
are provided in the following text. The linear lens’s focal
length fL was selected to be 100 mm and the NL dielectric
piece was 0.25 inch of uncoated fused silica. The output
pulse measured after the KL and a 400 µm iris aperture
is represented by the orange curve in Figure 13, where the
laser input energy E = 10.5 µJ, glass location zglass= 3 mm
and iris location l = 7 mm. As shown, the pulse contrast
was increased by nearly two orders of magnitude to approx-
imately 10−6, while the measured efficiency (estimated via
average power) was 40% using uncoated glass (an additional
8% efficiency can be excepted).

As for the NL phase induced by the setup, the given param-
eters yield approximately 1 radian, which hardly disrupts the
time pulse shape and therefore its contrast as well.

It should be noted that in the experiment, lower pulse
energies and therefore thicker glasses were applied, with
reference to the model’s example. It is to be stressed out
that at this early stage of the study, the model refers to a
simplified mechanism in which intra-glass beam variations
were negligible. In a succeeding work, a more mature model
shall cover more complexities, including the processes
accumulated within the glass. Such progress shall enable
one to validate the experiment more accurately. In addition,
an energy upgrade of the scheme shall enable one to operate
with thinner glasses and meet cases more overlapping with
the numerical model.

6. Conclusions

To conclude, a cost-effective concept for CE based on the
KL is proposed. Its attractiveness is based mainly on its
simplicity and small number of components, basically an NL
glass piece followed by a hard aperture. By correctly placing
the components in accordance with specific pulse parame-
ters, the effect can be enhanced. An underlying theoretical
and numerical description was provided and expressed via
formulas and numerical support. The method is based on
the temporal dependence of the NL effect. This dependence
is transformed into a spatial one, which is manifested back
to provide a cleaner time profile. While a new spatial beam
waist is created at the time-peak of the pulse (under certain
conditions of z < fNL), the weaker and noisy parts, farther
from it, hardly induce any spatial changes. Therefore, while
the peak traverses the aperture almost entirely, the noisy
(weaker) part experiences strong losses, resulting in an
overall CE. The current numerical model works as follows: it
translated the instantaneous pulse’s intensity into 2D spatial
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beam distribution variations, followed by 2D multiplication
by a hard clip circular aperture. Finally, data is returned
to the time domain by spatial integration. In comparison
to other CE techniques (e.g., OPA, XPW), one can realize
the attractiveness of the proposed approach, considering the
overall combination of CE degree, efficiency and low cost.
The model predicts typical efficiencies that vary between,
for example, 90% for 5 dB CE and 23% for 25 dB CE.
In addition, we conducted an experiment that confirmed
the numerical result, and demonstrated two orders of mag-
nitude CE at the expense of 40% efficiency. As a final
remark, it is further stressed that the technique is simple
to implement, not requiring beam synchronization or exotic
materials. Therefore laser labs can be considered to benefit
from a CE upgrade with good efficiency, that is, to operate
high-energy CPA systems with better performance. Further
planned studies are underway: one aims at expanding the
numerical model to cover thick glasses while the other aims
at empirically testing the model under higher energies and
different glass thicknesses.

Appendix A. Beam area calculation for pulse peak ver-
sus noise for the three cases

A calculation for the beam area, assuming the formation of
an NL lens in the glass with a focal length fNL, at the pulse’s
peak is presented below.

A Gaussian beam can be described by a complex parame-
ter q, which contains information both of the beam radius w
and wave-front radius of curvature R[35]:

1
q

= −i
λ

πw2 + 1
R

.

As can be seen in Figure 14, q is taken to be at the linear
lens focal plane fL; hence, R ⇒ ∞ and w = w0:

⇒ q = i
πw2

0

λ
= iC.

It is now possible to apply the ABCD matrix technique
for evaluating the pulse peak spatial propagation in the NL

Figure 14. Diagram description of the system precisely at the pulse peak
time point, when a nonlinear lens with a focal length fNL is produced. fL,
linear focal length (converging lens); zglass, glass distance from beam waist
(w0); l, distance from the glass where the area ratio is evaluated (also, this
is the iris aperture location).

process:

(
Apeak Bpeak

Cpeak Dpeak

)
=
(

1 l
0 1

)
·
(

1 0
−1/fNL 1

)
·
(

1 zglass

0 1

)
,

that is

(
Apeak Bpeak

Cpeak Dpeak

)
=
(

1− l/fNL zglass + l− zglassl/fNL

−1/fNL 1− zglass/fNL

)
.

Let us define a variable, N = 1 − zglass/fNL [⇒ 1/fNL =
(1−N)/zglass], according to which negative N values express
zglass > fNL (case (3) in Section 3), and vice versa. Further
developing the latter yields the following:

(
Apeak Bpeak

Cpeak Dpeak

)
=
(

1+ l(N−1)

zglass
zglass + lN

N−1
zglass

N

)
,

q′
peak = Apeakq+Bpeak

Cpeakq+Dpeak
,

where q′ represent the Gaussian beam at the iris location, as
can be observed in Figure 14. By definition

1
q′

peak
= −i

λ

πw′2
peak

+ 1
R′

peak
,

the following can be inferred:

⇒ Apeak = − λ

Im
(

1/q′
peak

),

where A′
peak = πw′

peak
2,

1
q′

peak
= Cpeakq+Dpeak

Apeakq+Bpeak
.

Comparing only the imaginary parts:

Im
(

1
q′

peak

)
= Im

(
Cpeakq+Dpeak
Apeakq+Bpeak

)
=

= Im
(

CpeakiC+Dpeak
ApeakiC+Bpeak

)
=

= Im
(
(CpeakiC+Dpeak)(−ApeakiC+Bpeak)
(ApeakiC+Bpeak)(−ApeakiC+Bpeak)

)

= Im
(

CpeakApeakC2−iCDpeakApeak

A2
peakC2+B2

peak

)
+

Im
(

iCCpeakBpeak+DpeakBpeak

A2
peakC2+B2

peak

)
=

= C
CpeakBpeak−DpeakApeak

A2
peakC2+B2

peak
,
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Figure 15. System diagram describing the low pulse intensities and noise,
where one assumes no generation of a nonlinear lens fNL in the glass. fL,
linear focal length; zglass, glass distance from beam waist (w0); l, distance
from the glass where the areas ratio was evaluated (also this is the aperture
position).

therefore,

A′
peak = − λ

C

A2
peakC2+B2

peak
CpeakBpeak−DpeakApeak

=

− λ
C

(
1+ l(N−1)

zglass

)2
C2+(zglass+lN)

2

(
N−1
zglass

)
(zglass+lN)−N

(
1+ l(N−1)

zglass

) ⇒

A′
peak = λC +2λC l(N−1)

zglass
+λC l2(N−1)2

z2
glass

+

+ λ
C z2

glass +2lN λ
C zglass + λ

C l2N2.

In addition, a computation of the beam area farther from
the pulse vicinity (noise) is shown below, assuming no NL
lensing occurs within the glass (Figure 15):

(
Anoise Bnoise

Cnoise Dnoise

)
=
(

1 l
0 1

)
·
(

1 zglass

0 1

)
=
(

1 l+ zglass

0 1

)
.

Therefore, since q = iC, as mentioned above:

q′
noise = Anoiseq+Bnoise

Cnoiseq+Dnoise
= iC + l+ zglass,

A′
noise = πw′2

noise = −λ · Im−1 (1/q′
noise

)=
= −λ · Im−1 (1/

(
iC + l+ zglass

))= λ
C

(
C2 + (l+ zglass

)2
)
,

resulting in the following:

A′
peak

A′
noise

=
C2 +2C2 l(N−1)

zglass
+C2 l2(N−1)2

z2
glass

C2 + (l+ zglass
)2 +

z2
glass +2lNzglass + l2N2

C2 + (l+ zglass
)2 . (10)

Appendix B. Beam area calculation for pulse peak ver-
sus noise as a function of the glass and iris positions

Here an optimal iris position (l) and glass position (zglass)
are calculated, according to the peak-to-noise beam areas
ratio (the expressions were obtained in Appendix A). Insert-
ing N = 1 − fNL/zglass to A′

peak/A′
noise from Equation (10),

Appendix A, results in the following:

A′
peak

A′
noise

=
C2l2

f 2
NL

− 2C2l
fNL

+C2+l2
(

1− zglass
fNL

)2

C2+(l+zglass)
2 +

2lz
(

1− zglass
fNL

)
+z2

glass

C2+(l+zglass)
2 .

In addition, fNL depends on z, according to the next
equation:

1
fNL

= 8n2d
πw4 P ⇒

fNL = π
8n2dP

⎛
⎝w0

√
1+

(
λzglass

πw2
0

)2
⎞
⎠

4

=

= πw4
0

8n2dP

(
1+ ( zglass

C

)2
)2 = B

(
1+ ( zglass

C

)2
)2

,

where B = πw4
0

8n2dP :

⇒ A′
peak/A′

noise

(
zglass,l

)=
C4l

(
C4l−2B

(
C2 + z2

glass

)(
C2 + zglass

(
l+ zglass

)))
B2
(

C2 + z2
glass

)3(
C2 + (l+ zglass

)2
) +1.

(11)

Moreover, the location of the new waist is as follows:

zw0,NL = (
zglass − fNL

)(w0NL

w0

)2

+ fNL,

where

w0NL = w0√√√√(1−zglass/fNL)
2+
(

2w2
0

λfNL

)2

⇒ zw0,NL = zglass−fNL

(1−zglass/fNL)
2+
(

2C
π fNL

)2 + fNL.

The optimal iris position was obtained based on the
schematic shown in Figure 5, Section 3. The value zw0,NL

results in the minimal area ratio obtained in Equation (11).
By inserting l = zw0,NL into Equation (11) one can obtain the
optimal zglass by finding the minimal area ratio. This can be
done either by plotting it as a function of zglass (Figure 8), or
by taking its derivative expression and setting to 0.

Appendix C. Beam waist propagation inside the glass
In order to determine the shortest limit for zw0,NL where

thin glass approximation is valid, a beam propagation
method simulation[29] was used. The parameters that were
considered were consistent with the numerical simulation
parameters presented in Section 4.
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Figure 16. Beam propagation simulation showing spatial pulse variations.
Starting from the bottom: beam convergence is observed after leaving the
linear lens. A ‘linear’ waist is seen where the narrowest diameter is obtained
(approximately the upper two-thirds of the figure). The nonlinear dielectric
is represented by a cyan line. Major convergence occurs after leaving the
nonlinear sample in air. The nonlinear waist is seen as the narrowest beam
near the end (top).

As obtained from Figure 16, the beam diameter drops by
90% in the case where the glass thickness (d) is double
the new formatted NL waist (zw0,NL): d = 2 mm and
zw0,NL = 1 mm.
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