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CHARACTERISTIC POLYNOMIALS OF GRAPH COVERINGS

RONGQUAN FENG, J IN H O KWAK AND JAEUN L E E

In this note, a formula for the characteristic polynomial of any (regular or irregular)
graph covering is described.

Let G be a finite simple graph with vertex set V(G) = {vi, u 2 . . . , vm}. The adjacency
matrix A(G) = (<!„•) is the m x m matrix with a^ = 1 if vt and Vj are adjacent and a{j = 0
otherwise. The characteristic polynomial of G', denoted by $(G;A), is the characteristic
polynomial det(A/ - A(G)) of A{G).

A^overing projection (or simply covering) from a graph G to another G is a surjection
p : V[G) -» V(G) such that p \N^ : N(v) -»• N(v) is a bijection for all vertices v e V(G)
and v £ p~l(v), where N(v), the neighbourhood of v, is the set of vertices adjacent to v.
Sometimes, a graph G is also called a covering of G with the projection p : G —>• G, and
it is n-fold if p is n-to-one.

Every edge of a graph G gives rise to a pair of oppositely directed edges. By e~l = vu,
we mean the reverse directed edge to a directed edge e — uv.k directed edge is also called
an arc and the set of arcs of the graph G is denoted by D(G). Let Sn be the symmetric
group on fi = {1 ,2 , . . . , n} . A voltage assignment <j> of G is a function </> : D(G) ->• Sn

with the property that ^(e"1) = ^(e)"1 for each e 6 D(G). The derived graph G* from a
voltage assignment <j> is denned as V{G<t>) = V(G) x fi, and (u,i) and (v,j) are adjacent
if uv G D(G) and j = i^uv\ The first coordinate projection p^ : G0 -»• G is an n-fold
covering. Let Cl(G;n) denote the set of all voltage assignments <f> : D(G) ->• Sn of G.
Gross and Tucker [2] showed that every n-fold covering G of a graph G can be derived
from a voltage assignment in G^Gin) .

Characteristic polynomials of some graph coverings have already been computed.
Chae, Kwak and Lee [1] have done it for double coverings of a graph. The characteristic
polynomial of a graph covering when its voltages lie in an Abelian group or in a dihedral
group was computed by Kwak and others [3, 4]. Mizuno and Sato [5] gave a formula
for the characteristic polynomial of a regular covering. In this note, a formula for the
characteristic polynomial of any (regular or irregular) graph covering is described, as an
extension of all of the previous works.
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Let G denote the digraph obtained from G by replacing each edge of G with a
pair of oppositely directed edges and let <f> e Cl{G,n). For each 7 e Sn, let G(0,7)
denote the spanning subgraph of the digraph G whose directed edge set is </>~1(7). Let
V(G) = {vi,v2, • • • ,vm} again. We define an order relation < on V{G4') as follows: for
(vi, s), (VJ, t) € V(G*), (v{, s) ^ (VJ, t) if and only if either s < t or s = t and i ^ j . Let
P(j) denote the nxn permutation matrix associated with 7 e Sn, that is, its (s,t)-entry
P(-y)st = 1 if s7 = t and P(j)3t = 0 otherwise. The tensor product A® B of the matrices
A and B is considered as the matrix B having the element bst replaced by the matrix
Abst. Kwak and Lee ([3]) expressed the adjacency matrix A{G()') of a graph covering G*
as

(1)

Let F be a finite group. A representation p of a group F over the complex field C is
a group homomorphism from F to the general linear group GL(r, C) of invertible r x r
matrices over C. The number r is called the degree of the representation p (see [6]).
Suppose that F ^ Sn is a permutation group on Q. It is clear that P : T —>• GL(r,C)
defined by 7 -> F(7), where P(j) is the permutation matrix associated with 7 e F
corresponding to the action of F on fi, is a representation of F. It is called the permutation
representation. Let p\ — 1, p?,..., pi be the irreducible representations of F and let /* be

the degree of pi for each 1 < i ^ t, where /1 = 1 and £] ff = |F|. It is well-known [6] that

the permutation representation P can be decomposed as the direct sum of irreducible
representations. In other words, there exists an invertible matrix M such that

(2)

for any 7 € F, where m* ^ 0 is the multiplicity of the irreducible representation pi in the
1

permutation representation P and £) rriifi = n. Notice that m\ is the number of orbits

under the action of the group F on Cl. So mi ^ 1.

Now let 4> e Cl{G,n) and F = (4>{e) \ e € D(G)), the subgroup generated by the
1

voltages <p(e). Noting that J^ mifi = n> fr°m equations (1) and (2) we have
t=i

(7m <8> M)-1 (A/mn - A(G*j) (7ra ® M) = 0 |"(A7m/j - £ A(G*W,7)) ® pt(7)) O J m 1 .

Since £1(7) = 1 for any 7 G F and A(G) — 53 A(G^ty)), we get

k;A) = $(G;A) m i fI
j=2
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Summarising our discussions, we have the following theorem.

MAIN THEOREM. Let G be a graph with m vertices, 4> G C1(G,n) a voltage as-
signment on G and F = {(j>[e) \ e e D(G)). Let px = I,p2,---,pe be the irreducible
representations ofT and let f{ be the degree of pt for each 1 ^ i < £ with / i = 1. Then
the characteristic polynomial of the n-fold covering G* of G derived from the voltage
assignment cf> is

; A) =
i=2

7 6 r

where m-i is the multiplicity of pi in the permutation representation P of F.

Since mi ^ 1, it gives that for every covering graph G* of the graph G, the charac-
teristic polynomial $(G; A) is a divisor of the characteristic polynomial $(G*; A), in [1,
Corollary 1]. When F is a regular subgroup of Sn, the permutation representation P of F
is equivalent to the (right) regular representation and the covering G* is a regular cov-
ering of G. In this case, each multiplicity m* is equal to fi, the degree of the irreducible
representation p{. Therefore, Mizuno and Sato's [5, Theorem 2] can be derived from the
main theorem. Furthermore, When F is Abelian or F is the dihedral group of order 2n,
the same results as in [3] and in [4] can also be deduced.

We close this note by giving a computational example which could not be done by
using any formula that was known before. Let G be any graph, <$> € C'(G,4) a voltage
assignment on G and F = (<£(e) | e 6 D(G)) — S4. Note that the symmetric group 54
can be generated by (12) and (1234). Then, the permutation representation P of 54 can
be decomposed by P = p\ ®P2, where p\ = \, the trivial representation, and p2 is defined
on the generators of F by

P2{{\2)) =
0
1

0

1

0
0

0
0
1

and p2((1234)) =
- 1 0 0

0 0 - 1
0 1 0

Therefore, the characteristic polynomial of the 4-fold covering G* of G derived from the
voltage assignment 0 is

; A) = $(G; A) det [ \I3\v[G)\ ~ 2^ MG(fa)) ® toil)) •(3)

For example, for the diamond graph G which is the complete graph K4 minus an edge,
one can see that

l ) ( A 2 - A - 4 ) .
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Consider a voltage assignment <j> which is defined as in Figure 1.

(12)

Figure 1: An 54-voltage assignment <p on the diamond graph

From equation (3), one can get the characteristic polynomial of the graph G* as

*; A) = $(G; A)A2(A10 - 12A8 + 2A7 + 51A6 - 22A5 - 87A4 + 66A3 + 39A2 - 54A + 12).
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