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Abstract

The original architects of the representational theory of measurement interpreted their
formalism operationally and explicitly acknowledged that some aspects of their
representations are conventional. We argue that the conventional elements of the
representations afforded by the theory require careful scrutiny as one moves toward a
more metaphysically robust interpretation by showing that there is a sense in which the very
number system one uses to represent a physical quantity such as mass or length is
conventional. This result undermines inferences which impute structure from the numerical
representational structure to the quantity it is used to represent.

1 Introduction
The representational theory of measurement (RTM) characterizes the conditions
under which qualitative attributes can be represented numerically.1 This is achieved
with representation theorems that demonstrate the existence of a homomorphism
between two types of structure. The domain of the homomorphism is an empirical
relational structure—a structure satisfying an axiomatization of the nature of the
attribute. The codomain is a numerical relational structure—typically a set of
numbers with a set of mathematical relations defined over it.

The interpretation of the empirical relational structures preferred by the original
architects of RTM is expressly operationalist. On their view, an empirical relational
structure is taken to consist of a set of objects that all instantiate the qualitative
attribute in question together with a collection of operationally interpreted relations
defined over the set. The numerical relational structure is typically taken to be the
real numbers with the standard order structure and the standard notion of addition.
The existence of a homomorphism between these two structures establishes a clear
sense in which the relations over the set in the empirical relational structure can be
represented by the order and addition relations obtaining over the real numbers.
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is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
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1 The canonical presentation of the theory can be found in Krantz et al. (2007); Luce et al. (2007);
Suppes et al. (2007).
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There have been a number of recent efforts to reinterpret the formalism of RTM
for the purposes of articulating a realist metaphysics of quantity.2 We are quite
sympathetic to what we take to be one central aspect of this project: reinterpreting
the empirical relational structures of RTM as property spaces provides an apt
characterization of the nature of the quantities arising in physical theories. There is
another aspect of recent realist reinterpretations of RTM, however, which requires
more careful scrutiny. In particular, a number of authors have recently advocated
that in addition to reinterpreting the empirical relational structure, we ought to
strengthen the representation theorems so that they establish the existence of an
isomorphism rather than a homomorphism.

The move from homomorphism to isomorphism amounts to demanding that all of
the structure of the number system in which the representation is sought can be
projected back onto the empirical relational structure. The difficulty with this
requirement is that certain aspects of the representations furnished by RTM are
conventional. The original proponents of RTM were well aware of this, and on their
operationalist interpretation of the formalism the conventionality of the represen-
tations is entirely unproblematic. Our worry is that the conventionality, together
with the demand that the representations take the form of isomorphisms, leads to an
unjustified pattern of inference concerning the nature of the empirical relational
structure.

In order to make this worry explicit, we establish a new form of conventionality in
the representations afforded by RTM. What we show is that there is an important
sense in which the very number system in which one represents quantities like mass
and length turns out to be conventional. More precisely, what we show is that positive
closed extensive structures (PCES) are homomorphically representable in both the
real and the rational numbers. If one conventionally selects the representation in
the reals, and then demands isomorphism, this prejudges substantive questions about the
nature of the qualitative attribute being represented. We argue that such questions can
only be resolved through empirical investigation of the nature of the qualitative
attribute, and hence conventionality together with the requirement of isomorphism can
lead to unjustified inferences concerning the nature of physical quantities.

Our argument proceeds as follows. In section 2, we recall the basic elements of
RTM and its operationalist interpretation. We then discuss how to reinterpret the
formalism in terms of property spaces. In the third section we prove a series of results
concerning the numerical representability of positive closed extensive structures in
both the real and rational numbers. In section 4 we argue that these results
demonstrate an important sense of conventionality in the choice of numerical
structure for a certain class of quantities, and we discuss the impact of this conclusion
for efforts to leverage the results of the representational theory of measurement for
the metaphysics of quantity.

2 Property space interpretations of RTM
According to the operational interpretation of RTM, the numerical representation of a
physical quantity is achieved by first enumerating a set of objects A that have the
quantity in question as one of their attributes. In the case of length wemight take A to be a

2 See, for example, Domotor and Batitsky (2008); Heilmann (2015); Wolff (2020).
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set of rigid rods of varying lengths. Such a collection of rods can be compared to one
another and we introduce a comparison relation, denoted by≿, such that, for any a; b 2 A,
a≿ b if and only if (iff) the length of a is greater than that of b. We also define a
concatenation relation, denoted by �, such that, for any a; b 2 A, a � b can enter into the
comparison relation with any c 2 A. Taken together, hA;≿; �i forms the empirical
relational structure.

The operationalist nature of the interpretation stems from the interpretation of ≿
and � as concrete comparison and concatenation procedures. In the case of length, to
compare rods a and b we place them side by side with one end of each aligned with
one another. If at the other end a extends past b then a � b, if b extends past a then
b � a, and if neither rod can be determined to extend past the other then we have
a � b. Concatenation is interpreted as placing the rods end on end. If we compare c
with a placed end on end with b and find that c extends past a � b, then we
have c � a � b.

The sense of numerical representability employed in RTM is then given by the
following definition.

Definition 2.1. An empirical relational structure hA;≿; �i is homomorphically
representable in a numerical relational structure hB; ≥ ;�i iff there exists a function
φ : A ! B such that, 8a; b 2 A:

(i) a≿ b iff φ a� � ≥ φ b� �;
(ii) φ a � b� � � φ a� � � φ b� �.

To generate a representation theorem, we need to articulate a particular empirical
relational structure and a particular numerical relational structure. The numerical
relational structure is typically taken to be hR; ≥ ;�i, or perhaps hR�; ≥ ;�i. The
precise nature of the empirical relational structure is articulated with axioms that
specify the properties of ≿ and �. For quantities such as mass and length, the
following empirical relational structure is employed.

Definition 2.2. (Krantz et al. 2007, Definition 3.1, 73). Let A be a non-empty set,
let ≿ be a binary relation on A, and let � be a closed binary operation on A. An empirical
relational structure hA;≿; �i is a positive closed extensive structure iff, 8a; b; c 2 A, each
of the following are satisfied:

(Connectedness) Either a≿ b or b≿ a.
(Transitivity) If a≿ b and b≿ c, then a≿ c.
(Weak associativity) a � b � c� � � a � b� � � c.
(Monotonicity) a≿ b iff a � c≿ b � c iff c � a≿ c � b.
(Archimedean) There exists a positive integer n such that na≿ b, where na is defined

inductively as 1a � a, n� 1� �a � na � a.
(Positivity) a � b � a.
(Solvability) If a � b, then there exists c 2 A such that a � b � c.

The representation theorem then takes the following form.
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Theorem 2.1. (Krantz et al. 2007, Theorem 3.1, 74, 80–81). Let A be a non-empty set, let
≿ be a binary relation on A, and let � be a closed binary operation on A. Then the following are
equivalent:

(i) hA;≿; �i is a positive closed extensive structure.
(ii) hA;≿; �i is homomorphically representable in hR�; ≥ ;�i.

The operationalist interpretation of the empirical relational structure suited the
purposes of the original architects of the theory, but it is deficient as the basis for a
metaphysics of the quantities that appear in physical theories. To take just one
example, a strict operationalist interpretation requires that there exists an actual rod
of each length that we want to represent numerically. But of course, there are many
possible lengths for which there is no corresponding rod. If one is interested in
leveraging the results of the representational theory of measurement in support of
more metaphysically committal views about the nature of the quantities, we need a
new way to interpret the empirical relational structure.

In the metaphysics literature it has become common to treat quantities as
determinable properties which admit of a collection of determinates as their possible
values. One promising strategy for the reinterpretation of the empirical relational
structure is to understand the underlying set as a property space. That is, we can take
the set A in the empirical relational structure to be the set of all of the possible
determinate values of the quantity, and ≿ and � to be relations between determinate
values of the quantity.

Reinterpreting the qualitative domain as a property space suggests additional
constraints on the function φ. On an operationalist interpretation, the order on A is
not required to be antisymmetric, since there may be distinct objects a; b such that
both a≿ b and b≿ a. But the determinates of a given quantity are such that no distinct
determinates may be tied with each other with respect to their ordering. So on a
property space interpretation, it is reasonable to require that the order on A be
antisymmetric. We thus characterize a property space by adding antisymmetry to the
list of axioms given in Definition 2.2, resulting in the following definition.

Definition 2.3. A positive closed extensive structure hA;≿; �i is simply ordered iff,
8a; b 2 A, the following is satisfied:

(Antisymmetry) If both a≿ b and b≿ a, then a is (numerically) identical with b.

In combination with the two conditions on homomorphic representability given in
Definition 2.1, the antisymmetry of the order on A implies that φ is injective. Realist
adaptations of RTM often require that the homomorphism φ also be surjective,
thereby replacing the notion of homomorphic representation with that of isomorphic
representation.3 This is captured in the following strengthened notion of numerical
representation.

3 See, for example, Domotor and Batitsky (2008); Wolff (2020). Narens (2002) also employs isomorphic
representation, though is concerned with meaningfulness and not (explicitly) with realism.
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Definition 2.4. An empirical relational structure hA;≿; �i is isomorphically represent-
able in a numerical relational structure hB; ≥ ;�i iff there exists a function φ : A ! B such
that, 8a; b 2 A:

(i) a≿ b iff φ a� � ≥ φ b� �;
(ii) φ a � b� � � φ a� � � φ b� �;
(iii) φ is a bijection.

As Wolff has it, requiring φ to be an isomorphism captures the realist commitment
that “the rich structure of the numerical representation is projected back to the
physical world” (Wolff 2020, 96).

We can now make our worry explicit. Once one moves to requiring isomorphic
representation, some features of the representations which were unproblematic
when the empirical relational structures were interpreted operationally start to look
quite problematic when they are interpreted as property spaces. What we have in
mind in particular are conventional elements of the representation. The original
developers of RTM were explicit that the interpretation of the relations in the
numerical relational structure were conventional. Alternative interpretations of
those relations yield equally good numerical representations. We think there is a
response available to advocates of isomorphic representation in the case of this sense
of conventionality. However, in the next section we show that the number system
itself is conventionally chosen. This raises serious problems for inferences that
involve projecting structure from the numerical relational structure back to the
empirical relational structure.

3 Numerical representability in R and Q

Theorem 2.1 establishes that a relational structure is a positive closed extensive
structure iff it is homomorphically representable in hR�; ≥ ;�i. In this section we
show that the use of the reals as the underlying set in the numerical relational
structure is a conventional choice. Our strategy is to determine a class of empirical
relational structures that are homomorphically representable in hQ�; ≥ ;�i, and
then to explore the constraints that homomorphic representability in hQ�; ≥ ;�i
imposes on an empirical relational structure. To start, we first establish that there
exist PCES that are not homomorphically representable in hQ�; ≥ ;�i.4

Theorem 3.1. Not all positive closed extensive structures are homomorphically
representable in hQ�; ≥ ;�i.

While all PCES are homomorphically representable in hR�; ≥ ;�i, not all PCES
are homomorphically representable in hQ�; ≥ ;�i: being a PCES is not sufficient for
being homomorphically representable in hQ�; ≥ ;�i. The following theorem
demonstrates that any empirical relational structure that is homomorphically
representable in hQ�; ≥ ;�i is also homorphically representable in hR�; ≥ ;�i.

4 The proofs of the theorems in this section are given in the appendix.
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Theorem 3.2. Let A be a non-empty set, let ≿ be a binary relation on A, and let � be a closed
binary operation on A. If hA;≿; �i is homomorphically representable in hQ�; ≥ ;�i then
hA;≿; �i is homomorphically representable in hR�; ≥ ;�i.

From Theorems 2.1 and 3.2, it follows that homomorphic representability of an
empirical relational structure hA;≿; �i in hQ�; ≥ ;�i implies that hA;≿; �i is a PCES.
Then, from Theorem 3.1, it follows that, in addition to the axioms for PCES, some
further constraint delineates those structures that are homomorphically represent-
able in hQ�; ≥ ;�i. This constraint is captured by the following axiom.

Definition 3.1. A positive closed extensive structure is commensurable if it satisfies the
following axiom:

(Commensurability) For every a; b 2 A, there exists c 2 A and positive integers m; n such
that a � mc and b � nc.

A PCES is incommensurable if it does not satisfy commensurability.
Being a commensurable PCES is necessary and sufficient for being homomorphically

representable in hQ�; ≥ ;�i.

Theorem 3.3. Let hA;≿; �i be a positive closed extensive structure. Then the following are
equivalent:

(i) hA;≿; �i is commensurable.
(ii) hA;≿; �i is homomorphically representable in hQ�; ≥ ;�i.

Theorem 3.3 establishes that a representation theorem formulated in terms of
necessary and sufficient conditions for homomorphic representation in hQ�; ≥ ;�i
is available, provided that the represented PCES is stipulated to be commensurable.
Theorem 2.1 establishes that hR�; ≥ ;�i can accommodate homomorphic
representation of any PCES. This might be taken to suggest that hR�; ≥ ;�i is to
be favored for being generally applicable to any PCES, whereas the applicability of
hQ�; ≥ ;�i is limited to those PCES that are commensurable. It should be noted that
this difference in scope of applicability is a result of the fact that hR�; ≥ ;�i
contains hQ�; ≥ ;�i as a substructure, which implies that any homomorphism into
hQ�; ≥ ;�i can be regarded as a homomorphism into hR�; ≥ ;�i. Thus, any
empirical relational structure that is homomorphically representable in hQ�; ≥ ;�i
is also homomorphically representable in hR�; ≥ ;�i.

The situation is different if we require isomorphic representation. Being
isomorphically representable in hR�; ≥ ;�i and being isomorphically representable
in hQ�; ≥ ;�i are mutually exclusive. The general applicability of hR�; ≥ ;�i for
representation of PCES as established by Theorem 2.1 does not survive the move from
homomorphic to isomorphic representation. To demand that a PCES be isomorphi-
cally representable in hR�; ≥ ;�i is effectively to stipulate that the PCES is
incommensurable.

In the context of homomorphic representation, hR�; ≥ ;�i accommodates
representation of both commensurable and incommensurable PCES. But isomorphic
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representation of a PCES in hR�; ≥ ;�i requires that the represented PCES be
incommensurable, as established by the next result.

Theorem 3.4. Let hA;≿; �i be a positive, closed, extensive structure. If hA;≿; �i is
isomorphically representable in hR�; ≥ ;�i, then hA;≿; �i is incommensurable.

Theorem 2.1 establishes that any PCES is homomorphically representable in
hR�; ≥ ;�i, but this is not sufficient to determine whether the PCES is
commensurable or incommensurable. If we demand a PCES to be isomorphically
representable in hR�; ≥ ;�i, then it follows from Theorem 3.4 that we thereby
indirectly demand the PCES to be incommensurable. The following corollary
emphasizes this point.

Corollary 3.4.1. No commensurable PCES is isomorphically representable
in hR�; ≥ ;�i.

Similarly, if we demand a PCES to be isomorphically representable in hQ�; ≥ ;�i,
then we indirectly demand that it is commensurable.

Theorem 3.5. Let hA;≿; �i be a positive, closed, extensive structure. If hA;≿; �i is
isomorphically representable in hQ�; ≥ ;�i, then hA;≿; �i is commensurable.

Corollary 3.5.1. No incommensurable PCES is isomorphically representable
in hQ�; ≥ ;�i.

Taken together, the results presented in this section establish a sense in which the
the use of the reals in representations of PCES is conventional. There exist PCES which
are homomorphically representable just as well in the rationals as they are in the
reals. Absent additional argumentation, we don’t see any reason to prefer the
representation in the reals to representation in the rationals. Defaulting to a
representation based on one or the other of the number systems is to make a
conventional choice. This conventionality combines with the move to isomorphic
representation in a perhaps unexpected manner. If we naively demand that our
conventional homomorphic representation in the reals can be extended to an
isomorphic representation, we indirectly demand that the PCES exhibits incommen-
surability. If instead we conventionally start from the homomorphic representation
in the rationals, and then demand isomorphism, we indirectly demand that the PCES
exhibits commensurability. But conventional representational choices aren’t the sort
of thing that can tell us anything at all about the nature of the structure being
represented, and so we think that the motivations for making the switch to
isomorphic representation require further elaboration.

4 Conclusion
The results of the last section are not intended to undermine metaphysical readings of
the representational theory of measurement. Rather, they provide reason to revisit
what the commitments of the realist about quantities are supposed to be. In recent
discussions, realism has become bound up with the demand for isomorphic
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representation. We propose that realism about quantities need not be coupled with
this demand. One can be a realist by taking a particular property space to capture the
real structure of a physical quantity. That a quantity understood in this way can be
represented in some number system isomorphically is an additional commitment that
goes beyond realism.

A Proofs of theorems
Proof of Theorem 3.1. An example of a PCES that is not homomorphically representable
in hQ�; ≥ ;�i is as follows: Let A � R�, let ≿ be ≥ (the usual non-strict order on
R�), and let � be � (the usual addition operation on R�).5 Showing that hA;≿; �i
satisfies Definition 2.2 is straightforward. Suppose for contradiction that hA;≿; �i is
homomorphically representable in hQ�; ≥ ;�i. Then there exists a function
φ : A ! Q� satisfying the two conditions given in Definition 2.1. Since A � R�, A is
uncountable and, since Q� is countable, we have that Aj j > Q�

�
�

�
�. It follows that

φ : A ! Q� is not injective, and thus there exist a; b 2 A such that a≠ b and
φ a� � � φ b� �. Since ≥ is a total order on R�, we have that, for every x; y 2 R�, x≠ y
iff either x > y or y > x (where > is the strict total order associated with ≥ ). There
thus exist a; b 2 A such that either a � b or b � a and φ a� � � φ b� �. Suppose without
loss of generality that a � b. From φ a� � � φ b� � we have φ b� � ≥ φ a� � and thus, by
Condition (i) from Definition 2.1, b≿ a, a contradiction. □

Proof of Theorem 3.2. Suppose that A is a non-empty set, ≿ is a binary relation on A,
� is a closed binary operation on A, and that hA;≿; �i is homomorphically
representable in hQ�; ≥ ;�i. Then there exists a function φ : A ! Q� satisfying the
two conditions given in Definition 2.1. Since hQ�; ≥ ;�i is a substructure of
hR�; ≥ ;�i we can define the function ψ : A ! R� as ψ a� � :� φ a� � for every a 2 A,
and we have that ψ satisfies the two conditions given in Definition 2.1. □

Proof of Theorem 3.3. Let hA;≿; �i be a PCES. Suppose that hA;≿; �i is
commensurable. Let a; b 2 A. By (Commensurability), 9c 2 A and m; n 2 Z� such
that a � mc and b � nc. Thus

na � n mc� � by Lemma B:6

� nm� �c by Lemma B:2

� mn� �c
� m nc� � by Lemma B:2

� mb by Lemma B:6

Let F a;b� � be the set of all fractions m=n such that na � mb. F a;b� � is non-empty, and if
m=n;m0=n0 2 F a;b� � we have that

na � mb; n0a � m0b

n0 na� � � n0 mb� �; n m0b� � � n n0a� � by Lemma B:6

5 Thanks to Neil Dewar for discussion of this counterexample.
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n0n� �a � n0m� �b; nm0� �b � nn0� �a by Lemma B:2

� mn0� �b; � n0n� �a:
Thus, n0n� �a � mn0� �b and nm0� �b � n0n� �a, so that mn0� �b � nm0� �b. By Lemma B.7, it
follows that mn0 � nm0. So, given any a; b� � 2 A × A, the fractions in F a;b� � are all
equivalent, so that F a;b� � determines a unique positive rational number. Now, choose
an arbitrary e 2 A, and define the function φ : A ! Q� as follows: φ a� � � m=n, where
na � me. We now show that φ satisfies both conditions stated in Definition 2.1.

Condition (ii): φ a � b� � � φ a� � � φ b� �. Let a; b 2 A, and let φ a� � � ma=na and
φ b� � � mb=nb. Then naa � mae and nbb � mbe. Define n :� nanb, m :� manb,
m0 :� mbna. Then φ a� � � ma=na � m=n and φ b� � � mb=nb � m0=n, so that na � me
and nb � m0e. Then, by Lemma B.3, na � nb � me � m0e, and, by Lemmas B.4 and B.1,
n a � b� � � m� m0� �e. Thus φ a � b� � � m� m0� �=n � φ a� � � φ b� �.

Condition (i): a≿ b iff φ a� � ≥ φ b� �. Let a; b 2 A with a≿ b. In the case where a � b,
let φ a� � � m=n. φ a� � � m=n iff na � me, and a � b iff na � nb (by Lemma B.7). Thus,
(a � b and φ a� � � m=n) iff nb � me iff φ b� � � m=n. In the case where a � b, by
(Solvability) 9c 2 A such that a � b � c. Conversely, if a � b � c, then since b � c � b—
by (Positivity)—we have, by Lemma B.5, that a � b. Thus, a � b iff 9c 2 A such that
a � b � c. By the previous case, a � b � c iff φ a� � � φ b � c� � � φ b� � � φ c� �, by
Condition (ii). Since φ c� � is positive, φ a� � � φ b� � � φ c� � iff φ a� � > φ b� �.

Next, suppose that hA;≿; �i is homomorphically representable in hQ�; ≥;�i. Let
a; b 2 A. We will show that 9c 2 A and 9m; n 2 Z� such that a � nc and b � mc. The
case where a � b is trivial, so let a � b. Let N a; b� � be the greatest integer such that
a � N a; b� �b—the (Archimedean) axiom ensures the existence of N a; b� �. Then, by
(Solvability), 9c0 2 A such that a � N a; b� �b � c0, and b≿ c0. If c0 � b, then
a � N a; b� � � 1	 
b and then n � N a; b� � � 1, m � 1, c � b gives the desired result.
So let b � c0. Then 9c1 2 A such that b � N b; c0� �c0 � c1, and c0 ≿ c1. If c1 � c0, then
b � N b; c0� � � 1	 
c0 and then n � N a; b� � N b; c0� � � 1	 
, m � N b; c0� � � 1, c � c0 gives
the desired result. Letting c0 � c1, we may continue in this fashion:

a � N a; b� �b � c0;
b � N b; c0� �c0 � c1;
c0 � N c0; c1� �c1 � c2;

..

.

cn � N cn; cn�1
� �

cn�1 � cn�2;

..

.

(1)

This process can be iterated for cn as long as cn�1 � cn�2. If we arrive at a step for
which cn�2 � cn�1, we will have that cn � N cn; cn�1

� �� 1
� �

cn�1 and thus that
a � N a; b� �b � N c0; c1� �c1 � N c2; c3� �c3 � � � � � N cn; cn�1

� �� 1
� �

cn�1, from which it fol-
lows that a � N a; cn�1

� �� 1
� �

cn�1 and that b � N b; cn�1

� �� 1
� �

cn�1. So, if there
exists n0 such that cn0�2 � cn0�1, then n � N a; cn0�1

� �� 1, m � N b; cn0�1
� �� 1,

c � cn0�1 gives the desired result. We show below that there exists n0 such that
cn0�2 � cn0�1. By the supposition, there exists a function φ : A ! Q� that satisfies
Conditions (i) and (ii) from Definition 2.1. Thus, by the series of expressions in (1), we
have that
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φ a� � � N a; b� �φ b� � � φ c0� �;
φ b� � � N b; c0� �φ c0� � � φ c1� �;

..

.

φ cn� � � N cn; cn�1

� �
φ cn�1

� �� φ cn�2

� �
;

..

.

(2)

It follows that

φ a� �
φ�b� � N a; b� � � φ c0� �

φ b� � ;
φ b� �
φ c0� � � N b; c0� � � φ c1� �

φ c0� � ;
..
.

φ cn� �
φ cn�1

� � � N cn; cn�1

� �� φ cn�2
� �

φ cn�1

� � ;

..

.

(3)

Notice that the second term of the right-hand side of each equation in series (3) is the
reciprocal of the left-hand side of the subsequent equation. Thus, φ a� �=φ b� � may be
represented by the following continued fraction:

N a; b� � � 1

N b; c0� � � 1

N c0; c1� � � 1
N c1; c2� � � � � �

(4)

A continued fraction is infinite iff its numerical value is irrational, and
φ a� �=φ b� � 2 Q� since φ a� �; φ b� � 2 Q�. The continued fraction (4) is therefore finite,
and thus series (2) terminates at φ cn0� �, for some integer n0. Thus, series (1) terminates
with cn0 , which implies that cn0�2 � cn0�1. □

Proof of Theorem 3.4. Let hA;≿; �i be a PCES and let φ : A ! R� be a function
satisfying Conditions (i), (ii), and (iii) from Definition 2.4. By Condition (iii),
8x 2 R�9!a 2 A such that φ a� � � x. Let a; e 2 A be such that φ a� � � ���

2
p

and φ e� � � 1.
Suppose for a contradiction that 9c 2 A and 9m; n 2 Z� such that a � mc and e � nc.
Then na � me, so that, by Condition (i), φ na� � � φ me� � and thus, by Condition (ii),
φ a� � � m=n

� �
φ e� � � m=n

� �
1� � � m=n. It follows that

���
2

p � m=n where m; n 2 Z�,
a contradiction. □

Proof of Theorem 3.5. Let hA;≿; �i be a PCES and let φ : A ! Q� be a function
satisfying Conditions (i), (ii), and (iii) from Definition 2.4. Let a; b 2 A, and let
ma; na;mb; nb 2 Z� be such that φ a� � � ma=na and φ b� � � mb=nb. Then
φ a� � � φ b� � � manb � namb� �=nanb � φ a � b� �. By Condition (iii), 8x 2 Q�9!a 2 A
such that φ a� � � x. Let c 2 A be such that φ c� � � 1=nanb. Then φ a� � � manbφ c� � and
φ b� � � mbnaφ c� �. Thus, by Condition (ii), φ a� � � φ manbc� � and φ b� � � φ mbnac� �. By
Condition (i), it follows that a � manbc and b � mbnac. □
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B Lemmas
Let a; b; c; d 2 A, and let m; n be positive integers.

Lemma B.1. ma � na � m� n� �a.

Lemma B.2. n ma� � � nm� �a.

Lemma B.3. If a � b and c � d, then a � c � b � d.

Lemma B.4. m a � b� � � ma � mb.

Lemma B.5. Suppose that b � c. Then a � b iff a � c.

Lemma B.6. For any positive integer n, a � b iff na � nb.

Lemma B.7. Suppose that a � b. Then na � mb iff n > m.
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