RESEARCH ARTICLE

Ramsey numbers of cycles versus general graphs

John Haslegrave ${ }^{\left(D_{1}\right.}$, Joseph Hyde ${ }^{2}$, Jaehoon Kim 3 and Hong Liu ${ }^{\left(D_{4}\right.}$
${ }^{1}$ Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, UK; E-mail: j.haslegrave@cantab.net.
${ }^{2}$ Mathematics and Statistics, University of Victoria, Victoria, B.C., V8W 2Y2, Canada; E-mail: josephhyde@uvic.ca.
${ }^{3}$ Department of Mathematical Sciences, KAIST, South Korea; E-mail: jaehoon.kim@kaist.ac.kr.
${ }^{4}$ Extremal Combinatorics and Probability Group (ECOPRO), Institute for Basic Science (IBS), Daejeon, South Korea;
E-mail: hongliu@ibs.re.kr.

Received: 8 December 2021; Revised: 5 October 2022; Accepted: 3 November 2022
2020 Mathematics Subject Classification: Primary - 05C55; Secondary - 05C38, 05C48

Abstract

The Ramsey number $R(F, H)$ is the minimum number N such that any N-vertex graph either contains a copy of F or its complement contains H. Burr in 1981 proved a pleasingly general result that, for any graph H, provided n is sufficiently large, a natural lower bound construction gives the correct Ramsey number involving cycles: $R\left(C_{n}, H\right)=(n-1)(\chi(H)-1)+\sigma(H)$, where $\sigma(H)$ is the minimum possible size of a colour class in a $\chi(H)$-colouring of H. Allen, Brightwell and Skokan conjectured that the same should be true already when $n \geq|H| \chi(H)$. We improve this 40 -year-old result of Burr by giving quantitative bounds of the form $n \geq C|H| \log ^{4} \chi(H)$, which is optimal up to the logarithmic factor. In particular, this proves a strengthening of the Allen-Brightwell-Skokan conjecture for all graphs H with large chromatic number.

1. Introduction

For any pair of graphs F and H, Ramsey [26] famously proved in 1930 that there exists a number $R(F, H)$ such that given any graph G on at least $R(F, H)$ vertices either $F \subseteq G$ or $H \subseteq \bar{G}$. Determining $R(F, H)$ exactly for every pair of graphs F, H is a notoriously difficult problem in combinatorics. Indeed, $R\left(K_{n}, K_{n}\right)$ is not even known exactly for $n=5$. However, for some pairs of graphs, particularly when F and/or H are certain sparse graphs, $R(F, H)$ is known. We require some notation. For a graph H, define the chromatic number $\chi(H)$ of H to be the smallest number of colours in a proper colouring of H, that is, a colouring where no two adjacent vertices have the same colour. Further, let $\sigma(H)$ be the minimum possible size of a colour class in a $\chi(H)$-colouring of H.

Building on observations of Erdős [10] and Chvátal and Harary [8], Burr [4] constructed the following lower bound for $R(F, H)$ when F is a connected graph with $|F| \geq \sigma(H)$:

$$
\begin{equation*}
R(F, H) \geq(|F|-1)(\chi(H)-1)+\sigma(H) \tag{1}
\end{equation*}
$$

The construction proving this bound is the graph G on $(|F|-1)(\chi(H)-1)+\sigma(H)-1$ vertices consisting of $\chi(H)-1$ disjoint cliques of size $|F|-1$ and an additional disjoint clique of size $\sigma(H)-1$. Clearly, since F is connected, $F \nsubseteq G$. Since \bar{G} is the complete $\chi(H)$-partite graph with $\chi(H)-1$ vertex sets of size $|F|-1$ and one vertex set of size $\sigma(H)-1$ and the vertex set of size $\sigma(H)-1$ cannot completely contain any colour class of H, we have $H \nsubseteq \bar{G}$. In what follows, we will often say a graph G is H-free to mean $H \nsubseteq G$.

[^0]Although the bound in inequality (1) is very general, for some pairs of graphs it is extremely far from the truth. Indeed, Erdôs [10] proved that $R\left(K_{k}, K_{k}\right) \geq \Omega\left(2^{k / 2}\right)$, whereas inequality (1) only gives the much smaller lower bound of $(k-1)^{2}+1$. For some pairs of graphs, however, the bound in inequality (1) is tight. For graphs F and H satisfying this lower bound $R(F, H)=(\chi(H)-1)(|F|-1)+\sigma(H)$, Burr and Erdős [5] coined the expression ' F is H -good'. The study of so-called Ramsey goodness, after being initiated by Burr and Erdős in 1983 [5], has attracted considerable interest. Prior to Burr's observation [4], already Erdős [10] had proved that the path on n vertices P_{n} was K_{k}-good; Gerenscér and Gyárfás [14] proved that for $n \geq k$ the path P_{n} is P_{k}-good; and Chvátal [7] proved every tree T is K_{k}-good. The result of Chvatal can be in fact viewed as a generalisation of Turán's theorem, which states that the complete balanced ($k-1$)-partite graph on N vertices, the so-called Turán graph, has the maximum number of edges amongst K_{k}-free graphs. Indeed, Turán's theorem is equivalent to the statement ' S_{n} is K_{k}-good', where S_{n} is the n-vertex star with $n-1$ leaves. To see this, let $N=(n-1)(k-1)$ and T be the complement of this Turán graph. Then T is precisely the construction in inequality (1) when $(F, H)=\left(S_{n}, K_{k}\right)$. Moreover, T is the unique graph on $(n-1)(k-1)$ vertices without $S_{n} \subseteq T$ or $K_{k} \subseteq \bar{T}$. Add a vertex to T, and denote the resulting graph by $T+v$. If v neighbours any vertex in T, then $S_{n} \subseteq T+v$. Otherwise, $K_{k} \subseteq \overline{T+v}$. That is, $R\left(S_{n}, K_{k}\right)=(n-1)(k-1)+\sigma\left(K_{k}\right)=(n-1)(k-1)+1$. This connection to Turán's theorem highlights how Ramsey goodness results can generalise other results in graph theory. See [13, 19, 22, 24, 25] and their references for more recent progress in the area of Ramsey goodness, as well as the survey of Conlon, Fox and Sudakov [9, Section 2.5].

In this paper, we are specifically interested in when C_{n}, the n-vertex cycle, is H-good for general graphs H. This study can be traced back to Bondy and Erdős [3], who proved that C_{n} is K_{k}-good whenever $n \geq k^{2}-2$, which led Erdős, Faudree, Rousseau and Schelp [11] to conjecture that C_{n} is K_{k}-good whenever $n \geq k \geq 3$. Keevash, Long and Skokan [17] recently proved a strengthening of this conjecture for large k, showing that $n \geq C \frac{\log k}{\log \log k}$ suffices for some constant $C \geq 1$. For smaller k, Nikiforov [23] proved $n \geq 4 k+2$ is sufficient and several authors have proved the conjecture for certain small values of k (see [6] and its references).

For Ramsey numbers of cycles versus general graphs H, Burr [4], in 1981, proved a satisfying result that C_{n} is H-good when n is sufficiently large as a function of $|H|$. It remains an intriguing open question to determine the threshold of n below which the Ramsey number $R\left(C_{n}, H\right)$ behaves differently from the natural construction of Burr yielding inequality (1). In particular, Allen, Brightwell and Skokan [1] conjectured the following explicit bound.

Conjecture 1.1. For any graph H and $n \geq \chi(H)|H|$, the cycle C_{n} is H-good, that is, $R\left(C_{n}, H\right)=$ $(\chi(H)-1)(n-1)+\sigma(H)$.

Note that we may assume H to be a complete multipartite graph, as every H is a subgraph of some complete $\chi(H)$-partite graph H^{\prime} with $\sigma\left(H^{\prime}\right)=\sigma(H)$, and clearly $R\left(C_{n}, H\right) \leq R\left(C_{n}, H^{\prime}\right)$.

Towards Conjecture 1.1, Pokrovskiy and Sudakov [25] very recently proved an important case when the graph H has a polynomially small chromatic number: $|H| \geq \chi(H)^{23}$. More precisely, they showed that for $n \geq 10^{60} m_{k}$ and $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$ satisfying $m_{i} \geq i^{22}$ for each $i, R\left(C_{n}, K_{m_{1}, \ldots, m_{k}}\right)=$ $(n-1)(k-1)+m_{1}$. Note, however, that it is well known from random graph theory (e.g., [2]) that, for almost all graphs H, the chromatic number is much larger: $\chi(H)=\Theta\left(\frac{|H|}{\log |H|}\right)$.

Our main result below is an almost optimal quantitative version of Burr's result [4]. In particular, this theorem holds for all graphs H. Moreover, as $x>C \log ^{4} x$ for all large x, it proves a strengthening of Conjecture 1.1 for all graphs H with large (constant) chromatic number.

Theorem 1.2. There exists a constant $C>0$ such that for any graph H and any $n \geq C|H| \log ^{4} \chi(H)$ we have that C_{n} is H-good, that is, $R\left(C_{n}, H\right)=(\chi(H)-1)(n-1)+\sigma(H)$.

The bound on n in Theorem 1.2 is best possible up to the logarithmic factor $\log ^{4} \chi(H)$. The following construction shows that the cycle length n has to be at least $(1-o(1))|H|$ in order to be H-good.

Lower bound construction. Fix arbitrary $m, k \in \mathbb{N}$ with $k \geq 2$ and $0<\varepsilon<\frac{1}{4}$. Set $n=(1-\varepsilon) m k$. Consider the complete k-partite graph H on partite set V_{1}, \ldots, V_{k} with $\left|V_{1}\right|=(1-\varepsilon) m k$ and $\left|V_{2}\right|=$ $\cdots=\left|V_{k}\right|=\frac{\varepsilon m k}{k-1}$; so $|H|=m k$ and $\sigma(H)=\frac{\varepsilon m k}{k-1}$. Let G be the N-vertex graph, with $N=k(n-1)$, consisting of k vertex disjoint cliques K_{n-1}. It is easy to see that G is C_{n}-free with H-free complement. Therefore, for these choices of C_{n} and H, we have

$$
R\left(C_{n}, H\right)>k(n-1)>(\chi(H)-1)(n-1)+\sigma(H)
$$

Our proof takes a similar approach to the work of Pokrovskiy and Sudakov [25] and Keevash, Long and Skokan [17]. The bulk of the work is to prove a stability type result showing that C_{n}-free graphs G with H-free complement whose order is around the lower bound in inequality (1) must be structurally close to Burr's construction. The two novel ingredients at the heart of our proof are (i) certain sublinear expansion properties and (ii) an 'adjuster' structure, both of which are inspired by recent work of Liu and Montgomery [21] on cycle embeddings in sublinear expanders. The theory of sublinear expanders has played a pivotal role in the resolutions of several old conjectures; see, for example, [15, 16, 18, 20, 21].

The logarithmic factor in our bound is an artifact of the use of sublinear expansion. Considering the above construction, it is not inconceivable that already when $n \geq(1+o(1))|H|$, the cycle C_{n} is H-good. It would be interesting to at least get rid of the logarithmic factor and obtain a bound linear in $|H|$.

Organisation. The rest of the paper is organised as follows. We give an outline in Section 1. Preliminaries are given in Section 2. The two main ingredients, the sublinear expansion and the adjuster structure (and related lemmas), are given in Sections 3 and 4, respectively. The stability result and the proof of the main theorem are in Section 5.

2. Outline

Suppose that G has order at least $(\chi(H)-1)(n-1)+\sigma(H)$ but \bar{G} is H-free. With the given condition on n, it is not too hard to find a cycle of length at least n in G; the difficulty lies in obtaining a cycle of the precise desired length n. A natural approach to deal with this is to create a sufficiently large structure which has inbuilt flexibility about the length of cycles it can produce. Pokrovskiy and Sudakov [25] use expansion properties to create some complex gadgets, which can be joined together to produce structures capable of producing paths of a wide range of lengths, up to almost all of their total size. However, the connectivity properties needed to link up these structures require n to be very large compared to $\chi(H)$, and in particular only produce a good bound on n if $|H|$ is at least a large power of $\chi(H)$.

To deal with the missing regime where $|H|$ is bounded by a polynomial in $\chi(H)$, we use an orthogonal approach. Instead of the complex gadgets featured in [25], we borrow ideas from recent work of Liu and Montgomery [21] to use certain sublinear expansion properties (Definition 4.1) to find simpler gadgets which we call adjusters (Definition 3.5). However, these adjusters are less flexible in terms of how much we can vary the length of the final cycle, relative to its total length. We circumvent this potential difficulty by creating a cycle which has enough adjusters to permit slightly more than $|H|$ different lengths, and also has a long adjuster-free section. The complement being H-free means that we may shorten this section until the cycle is close enough to the desired length, and use the flexibility from the adjusters to deliver the final blow.

One of the main technical difficulties in our proof is showing that a suitable expanding subgraph may be found in a graph with H-free complement under our definition of sublinear expansion. Additionally, we need to work directly with the specific graph H, rather than passing to a balanced multipartite graph, and the possibility that the parts of H are very unbalanced creates additional difficulties when one tries to use induction and it is necessary to reduce the number of parts first. We prove this, together with some useful consequences of expansion, in Section 3.

We then leverage these expansion properties to find the adjusters that we need in Section 4 and show how these may be combined together to give a suitable long cycle in a sufficiently well-connected subgraph. As a consequence of sublinear expansion and the fact that we do not need as much flexibility in length adjustment, we require only a very weak connectivity condition.

Finally, in Section 5 we establish a stability result on graphs G which have close to $(\chi(H)-1)(n-1)$ vertices, no copy of C_{n}, no copy of H in the complement and which cannot be reduced to a smaller example by removing a part from H. That is, we show that a small number of vertices may be removed from such a graph G to leave $\chi(H)-1$ reasonably well-connected subgraphs of order close to n, whose complements exclude a complete bipartite graph H^{\prime}; here, our low connectivity requirements will obviate the need for a lower bound on the class sizes of H. The Ramsey goodness of the cycle then follows quickly from this stability result by considering how 2-connected blocks in G are linked.

3. Preliminaries

Our aim is to use induction on the number of partite sets k. We therefore define how we order possible graphs H. For a complete multipartite graph H, we write $H^{\prime} \sqsubset H$ if there exists a graph $H^{\prime \prime}$ such that $H \cong H^{\prime} \vee H^{\prime \prime}$, where \vee denotes graph join, that is, H is obtained by taking disjoint copies of H^{\prime} and $H^{\prime \prime}$ and then adding all edges between $V\left(H^{\prime}\right)$ and $V\left(H^{\prime \prime}\right)$. Informally, H^{\prime} consists of the subgraph induced by a proper subcollection of the parts of H. We will sometimes use $H^{\prime} \sqsubseteq H$ to mean ' $H^{\prime} \sqsubset H$ or $H^{\prime}=H^{\prime}$, that is, H^{\prime} is induced by a (not necessarily proper) subcollection of parts of H. For the main step of the induction, we will require both $H^{\prime} \sqsubset H$ and $\sigma\left(H^{\prime}\right)=\sigma(H)$, but in some intermediate steps, this latter condition is not needed. For a graph H with $\chi(H)=k$, we write $m=m(H)=\frac{|H|}{k}$ for the average part size of H, that is, $|H|=k m$.

For a graph G and vertex set $A \subset V(G)$, we define the external neighbourhood $N_{G}(A)$ to be the set $\{w \in V(G) \backslash A: v w \in E(G)\}$; note that this is disjoint from A. We omit the subscript if the graph is clear from context. The subgraph induced on A will be denoted by $G[A]$. We write $G-A=G[V(G) \backslash A]$ for the subgraph obtained by removing vertices in A. For disjoint subsets $A, B \subset V(G)$, an $A-B$ path is a path between a vertex of A and a vertex of B. For two vertices $u, v \in V(G)$, the graph distance $\operatorname{dist}_{G}(u, v)$ is the length of a shortest $u-v$ path in G.

Logarithms with no specified base are always taken to the base e throughout. For an integer t, we write $[t]$ for the set $\{1,2, \ldots, t\}$.

We will need the following result of Erdős and Szekeres [12].
Theorem 3.1. Any sequence of at least $(r-1)^{2}+1$ integers contains a monotonic subsequence of length r.
We use the following results of Pokrovskiy and Sudakov [25].
Corollary 3.2. For $n \geq 10^{60} m_{k}$ and $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$ satisfying $m_{k} \geq k^{22}$, we have $R\left(C_{n}, K_{m_{1}, \ldots, m_{k}}\right)=(n-1)(k-1)+m_{1}$.

Proof. Apply the aforementioned result [25] for $K_{m_{1}, \ldots, m_{k}}$ with $m_{i} \geq i^{22}$ for each i to $K_{m_{1}^{\prime}, \ldots, m_{k}^{\prime}}$ where $m_{1}^{\prime}=m_{1}$ and $m_{i}^{\prime}=m_{k}$ if $i>1$. For each $i>1$, we have $m_{i}^{\prime}=m_{k} \geq k^{22} \geq i^{22}$, and clearly $m_{1}^{\prime} \geq 1^{22}$. Thus, if G is a C_{n}-free graph on $(n-1)(k-1)+m_{1}$ vertices, then \bar{G} contains a copy of $K_{m_{1}^{\prime}, \ldots, m_{k}^{\prime}}$, which in turn contains $K_{m_{1}, \ldots, m_{k}}$.

Our induction may reduce to the case when H is a complete bipartite graph.
Corollary 3.3 [25, Corollary 3.8]. Let n, m_{1}, m_{2} be integers with $m_{2} \geq m_{1}, m_{2} \geq 8$ and $n \geq 2 \times 10^{49} m_{2}$. Then we have $R\left(C_{n}, K_{m_{1}, m_{2}}\right)=n+m_{1}-1$.

The last one we need is an intermediate result on path embeddings.
Lemma 3.4 [25, Lemma 3.7]. Let n and m be integers with $n \geq 2 \times 10^{49} m$ and $m \geq 8$. Let G be a graph with \bar{G} being $K_{m, m}$-free and $\left|N_{G}(A) \cup A\right| \geq n$ for every $A \subseteq V(G)$ with $|A| \geq m$. Let x and y be two vertices in G such that there exists an $x-y$ path with order at least $8 m$. Then there is an $x-y$ path of order exactly n in G.

Figure 1. An r-adjuster. An example of a route in this r-adjuster is given by the red dashed line.

3.1. Adjusters

In order to construct cycles covering a range of lengths, we will use the following graphs called adjusters. In the following definition, m and k are fixed numbers. When constructing adjusters, the relevant values of m and k will be clear from context.

Definition 3.5. For $r \geq 1$, an r-adjuster consists of r disjoint odd cycles C_{1}, \ldots, C_{r}, with C_{i} having distinguished vertices v_{i}, w_{i} which are almost-antipodal (i.e., dist $_{C_{i}}\left(v_{i}, w_{i}\right)=\left(\left|C_{i}\right|-1\right) / 2$), together with paths P_{1}, \ldots, P_{r}, where the endpoints of P_{i} are w_{i} and v_{i+1} (subscripts taken modulo r), such that the paths are internally disjoint from each other and from the cycles, and $\left|C_{i}\right| \leq 2,000 \log k \log (k m)$. For the special case $r=0$, a 0 -adjuster is simply a cycle.

We refer to the cycles C_{i} as the short cycles of the adjuster. There are also cycles which use all the paths P_{i} and part of each short cycle; we refer to these as the routes of the adjuster. An r-adjuster contains 2^{r} routes, whose lengths are $r+1$ consecutive integers. We define the length of an adjuster to be the length of its longest route.

4. Sublinear expansions

Given a large graph whose complement is H-free, we will pass to a subgraph which is not too large and has sublinear expansion properties, in which we can find an r-adjuster for some suitable r. After removing this r-adjuster, we repeat the process with the remaining graph. We then join many adjusters together to create a very large adjuster with greater flexibility in the length of a route and where this length can exceed n. We will shrink the structure, if necessary, to ensure that the maximum length of a cycle is not much more than n, without impairing this flexibility. We then show this structure contains C_{n}.

In this section, we define the expansion properties we need, and show that any sufficiently large graph whose complement is F-free, for some graph F, contains an expanding subgraph of suitable size.

Definition 4.1. A graph $G(\Delta, \beta, d, k)$-expands into a set $W \subseteq V(G)$ if the following holds.

- $\left|N_{G}(S) \cap W\right| \geq \Delta|S|$, for every $S \subseteq V(G)$ with $|S| \leq \beta d$.
- $\left|N_{G}(S)\right| \geq \frac{|S|}{10 \log k}$, for every $S \subseteq V(G)$ with $\beta d \leq|S| \leq|G| / 2$.

Note that, whenever we say that $G(\Delta, \beta, d, k)$-expands and do not specify the set G expands into, we mean that $G(\Delta, \beta, d, k)$-expands into $W=V(G)$.

Lemma 4.2. Fix a complete k-partite graph H of order $m k$, where $k \geq 2$, then for all $\beta, M, \Delta \geq 1$ with $M \geq 60 \beta \geq 240 \Delta, M \geq 10 \beta \Delta, M \geq 4 k$ and $\beta \geq 10 \log k$, the following holds. Let G be a graph with \bar{G} being H-free and $|G| \geq M m k \log k$. Then there exists a subgraph $H^{\prime} \sqsubseteq H$ induced by some collection
of at least two parts and an induced subgraph $F \subseteq G$ such that the following holds:

- \bar{F} is H^{\prime}-free.
- $M\left|H^{\prime}\right| \log \chi\left(H^{\prime}\right)-m\left(H^{\prime}\right) \leq|F| \leq M\left|H^{\prime}\right| \log \chi\left(H^{\prime}\right)$.
- F is $\left(\Delta, \beta, m\left(H^{\prime}\right), \chi\left(H^{\prime}\right)\right)$-expanding.

Proof. We proceed by induction on k, considering two cases. The base case $k=2$ will be covered by the inductive argument since we argue that we may either (i) construct a suitable subgraph directly for $H^{\prime}=H$, (ii) reduce to some smaller $H^{\prime} \sqsubset H$ with at least two parts or (iii) obtain a contradiction; in the base case only, the first and third possibilities arise. Note that, by removing vertices if necessary, we may assume $|G|=M m k \log k$ for $k \geq 2$. We write $m_{1} \leq \cdots \leq m_{k}$ for the orders of the vertex classes of H.

The first case is if there exists a set $S \subset V(G)$ such that $m \leq|S| \leq|G| / 2$ and $\left|N_{G}(S)\right| \leq$ $|S| /(10 \log k)+m \Delta \beta$. Let $T=V(G) \backslash\left(N_{G}(S) \cup S\right)$. Since $M \geq 10 \Delta \beta$, we have that

$$
\begin{aligned}
|T| \geq|G|-\left|N_{G}(S) \cup S\right| & \geq(1-1 /(10 \log k))|G| / 2-m \Delta \beta \\
& =m\left(\frac{M k}{2}(\log k-1 / 10)-\Delta \beta\right) \\
& \geq k m .
\end{aligned}
$$

We distinguish two subcases depending on whether $|S| \geq m k$ or $|S|<m k$.
First, suppose $|S| \geq m k$. We choose $t \in \mathbb{N}$ as large as possible such that $|T| \geq M\left|H_{t}\right| \log t$, where H_{t} is the graph induced by the t smallest parts of H. We then choose $s \in \mathbb{N}$ as large as possible so that $|S| \geq M\left|H_{s, t}\right| \log s$, where $H_{s, t}$ is the graph induced by the s smallest parts of H not contained in H_{t}; observe that $s, t \geq 1$ and $s, t \leq k-1$.

We will quickly be able to resolve our first subcase after proving the following claim.
Claim 4.3. $s+t=k$.
Proof of claim. The claim is trivial for $k=2$ since $s, t \geq 1$. For all $k \geq 3$, we have

$$
|T| \geq|G| / 2-\frac{|G|}{20 \log k}-\frac{|G|}{10 k \log k} \geq M\left|H_{\lceil k / 2\rceil}\right| \log (\lceil k / 2\rceil),
$$

which implies $t \geq\lceil k / 2\rceil$; in particular, this proves the claim when $k=3$.
Assume for a contradiction that $s+t<k$, where $k \geq 4$ is fixed; as $t \geq\lceil k / 2\rceil$, we have $s \leq(k-1) / 2$. Maximalities of s and t ensure that

$$
\begin{equation*}
M\left|H_{s+1, t}\right| \log (s+1)>|S| \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
M\left|H_{t+1}\right| \log (t+1)>|T| . \tag{3}
\end{equation*}
$$

Observe that H_{t+1} and $H_{s+1, t}$ both contain the $(t+1)$ th smallest part of H.
Also, $|S|+|T|=|G|-\left|N_{G}(S)\right|>M m k \log k-\frac{|S|}{10 \log k}-m \Delta \beta$; hence by inequality (2), inequality (3) and the fact that $M \geq 10 \beta \Delta$, we have

$$
\begin{equation*}
\left|H_{t+1}\right| \log (t+1)+\left|H_{s+1, t}\right| \log (s+1) c(k) \geq m k \log k-\frac{m}{10} \tag{4}
\end{equation*}
$$

where $c(k)=\left(1+\frac{1}{10 \log k}\right)$. We want to show that inequality (4) is in fact false, which provides the contradiction we need to prove Claim 4.3. To this end, we may assume $s+t=k-1$. It follows that

$$
\left|H_{t+1}\right|+\left|H_{s+1, t}\right|=m k+m_{t+1} \leq m k+\frac{\left|H_{s+1, t}\right|}{s+1}
$$

recall that m_{t+1} is the size of the $(t+1)$ th smallest part of H. Consequently, the left-hand side of inequality (4) is at most

$$
\begin{equation*}
c(k) \log (s+1)\left|H_{s+1, t}\right|+\log (k-s)\left(m k-\left|H_{s+1, t}\right| \frac{s}{s+1}\right) . \tag{5}
\end{equation*}
$$

Note that $m(s+1) \leq\left|H_{s+1, t}\right| \leq m k$. For fixed s, expression (5) is linear in $\left|H_{s+1, t}\right|$, and consequently, within this range it is maximised either at $\left|H_{s+1, t}\right|=m(s+1)$ or at $\left|H_{s+1, t}\right|=m k$.

We first consider the case $\left|H_{s+1, t}\right|=m(s+1)$ when expression (5) becomes

$$
m(c(k)(s+1) \log (s+1)+(k-s) \log (k-s)) .
$$

This is a convex function of s and so for $1 \leq s \leq(k-1) / 2$ is maximised when $s=1$ or when $s=(k-1) / 2$. When $s=1$, we have

$$
\begin{equation*}
2 c(k) \log 2+(k-1) \log (k-1)<k \log k-0.1 \tag{6}
\end{equation*}
$$

for all $k \geq 4$. When $s=(k-1) / 2$, we likewise have

$$
\begin{equation*}
(1+c(k)) \frac{k+1}{2} \log \left(\frac{k+1}{2}\right)<k \log k-0.1 \tag{7}
\end{equation*}
$$

for all $k \geq 4$.
Finally, we consider the case $\left|H_{s+1, t}\right|=m k$ when expression (5) becomes

$$
m k(\log (s+1) c(k)+\log (k-s) /(s+1))
$$

Suppose $2 \leq s \leq \log (k-s)$. Then $\frac{s}{s+1} \log (k-s) \geq \frac{s^{2}}{s+1} \geq c(k) \log (s+1)+0.1$, and so expression (5) is decreasing in $\left|H_{s+1, t}\right|$ and maximised when $\left|H_{s+1, t}\right|=m(s+1)$. Similarly, if $s=1$ and $k \geq 7$, expression (5) is decreasing. For $s=1$ and $4 \leq k \leq 6$, by direct calculation expression (5) contradicts inequality (4). Thus, we may assume that $s \geq \log (k-s)$. Since $s \leq(k-1) / 2$, we have $s+1 \leq k-s$. Thus,

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(\log (s+1) c(k)+\frac{\log (k-s)}{s+1}\right)=\frac{c(k)(s+1)-\frac{s+1}{k-s}-\log (k-s)}{(s+1)^{2}}>0
$$

and so $\log (s+1) c(k)+\log (k-s) /(s+1)$ is increasing in s for $\log (k-s) \leq s \leq(k-1) / 2$. Hence, within this range $m k(\log (s+1) c(k)+\log (k-s) /(s+1))$ is maximised when $s=(k-1) / 2$, and we obtain

$$
\begin{equation*}
k\left(c(k)+\frac{2}{k+1}\right) \log \left(\frac{k+1}{2}\right)<k \log k-0.1 \tag{8}
\end{equation*}
$$

for all $k \geq 4$. Then inequalities (6), (7) and (8) together show that expression (5) is less than $m k \log k-\frac{m}{10}$, contradicting inequality (4).

Hence, $s+t=k$. Now, either $\overline{G[T]}$ is H_{t}-free or $\overline{G[S]}$ is $H_{s, t}$-free since otherwise disjointness of T and $N_{G}(S) \cup S$ ensures we have a copy of H in $\overline{G[S \cup T]}$. However, since $|S|,|T| \geq m k, \overline{G[T]}$ is not H_{1}-free and $\overline{G[S]}$ is not $H_{1, k-1}$-free. Thus, in the former case we have $2 \leq t \leq k-1$ so we may apply the induction hypothesis to $G[T]$ with k replaced by t and H by H_{t}, and in the latter $2 \leq s \leq k-1$ so we may apply the induction hypothesis to $G[S]$ with k replaced by s and H by $H_{s, t}$. Here, such applications of the induction hypothesis are possible by the definition of s and t.

Secondly, suppose $m \leq|S|<m k$. Note that, since $M \geq 10 \Delta \beta$ and $M \geq 4 k$, in this case

$$
|T| \geq M m k \log k-2 m k-m \Delta \beta \geq M(m k-1) \log (k-1) .
$$

Indeed, $M m k \log \frac{k}{k-1} \geq M m \geq 2 m k+m \Delta \beta$ where we have used $\log (1+x) \geq \frac{x}{1+x}$ with $x=\frac{1}{k-1}$. Thus, $|T| \geq M\left|H_{k-1,1}\right| \log (k-1)$ and $|S| \geq m \geq\left|H_{1}\right|$. Since H_{1} is an independent set of size at most $m, \overline{G[S]}$ contains H_{1}. Thus, $\overline{G[T]}$ must be $H_{k-1,1}$-free, as otherwise $\overline{G[S \cup T]}$ contains H, as before. Since $|T| \geq m k$, it is not $H_{1,1}$-free and so $k-1 \geq 2$. We may therefore apply the induction hypothesis to $G[T]$ with $k-1$ replacing k and $H_{k-1,1}$ replacing H.

The final case is where we have $\left|N_{G}(S) \cup S\right| \geq(1+1 /(10 \log k))|S|+m \Delta \beta$ for every set $S \subseteq V(G)$ with $m \leq|S| \leq|G| / 2$. Consider the largest set $X \subseteq V(G)$ with $|X| \leq 2 m$ such that $\left|N_{G}(X)\right| \leq \Delta|X|$. Since $\beta \geq 4 \Delta$, we have that $\left|N_{G}(X) \cup X\right| \leq(\Delta+1)|X| \leq m \Delta \beta$. Thus, we must have $|X|<m$. Now, consider $F=G-X$. If there is some $Y \subset V(F)$ with $|Y| \leq m$ and $N_{F}(Y)<\Delta|Y|$, then

$$
\left|N_{G}(X \cup Y) \cup(X \cup Y)\right| \leq\left|N_{G}(X) \cup X\right|+\left|N_{F}(Y) \cup Y\right|<(\Delta+1)|X \cup Y|,
$$

contradicting our choice of X.
For $|Y| \geq m$, we have

$$
\left|N_{F}(Y) \cup Y\right| \geq\left|N_{G}(Y) \cup Y\right|-|X| \geq\left(1+\frac{1}{10 \log k}\right)|Y|+m \Delta \beta-m
$$

If $|Y| \leq \beta m$, then utilising $\beta \geq 10 \log k$ we have that $\left|N_{F}(Y) \cup Y\right| \geq|Y|+\Delta|Y|$, whereas if $\beta m \leq$ $|Y| \leq|F| / 2$, then $\left|N_{F}(Y) \cup Y\right| \geq(1+1 / 10 \log k)|Y|$. Thus, F fulfils the requirements of Lemma 4.2 for $H^{\prime}=H$.

These expansion properties give us three abilities we will need to construct adjusters. The first is the ability to link together large sets, while avoiding a smaller set, via a path which is not too long. The main advantage of our stronger definition of expansion (compared to that in [25]) is that the length of path required is much shorter, being only of order $\log k \log |G|$, and the control we have over the size of the expanding subgraph means that we can ensure $\log |G|=O(\log k)$.

Lemma 4.4. Suppose that $G(\Delta, \beta, d, k)$-expands into a set $W \subseteq V(G)$, for $\Delta \geq 2$ and $k \geq 2$. If $A, B, C \subseteq V(G)$ are disjoint sets with $A, B \neq \varnothing$ such that $|C \cap W| \leq(\Delta-2) \min \{|A|,|B|\}$ and $|C| \leq \beta d /(20 \log k)$, then there is an $A-B$ path P in G avoiding C and with $|P| \leq 44 \log k \log |G|$.

Proof. Set $A_{0}=A$ and $A_{i+1}=\left(N\left(A_{i}\right) \cup A_{i}\right) \backslash C$ for each i. Since we have that $\left|A_{i+1}\right| \geq 2\left|A_{i}\right|$ for $\left|A_{i}\right|<\beta d$, and thus $\left|A_{a}\right| \geq \beta d$, where $a=\log _{2}(\beta d)$. For $i \geq a$, we have $\left|N\left(A_{i}\right)\right| \geq \frac{1}{10 \log k}\left|A_{i}\right| \geq 2|C|$, and so $\left|A_{i+1}\right| \geq(1+1 / 20 \log k)\left|A_{i}\right|$. Consequently, $\left|A_{b}\right| \geq|G| / 2$, where $b=a+\log _{1+1 / 20 \log k}(|G| / 2 \beta d)$. Applying $\log (1+x)=-\log \left(1-\frac{x}{1+x}\right) \geq(1+1 / x)^{-1}$ for $x=1 / 20 \log k$ and noting that $1+20 \log k \leq$ $22 \log k$, we get

$$
b \leq a+22 \log k \log |G|-22 \log k \log (2 \beta d) \leq 22 \log k \log |G| .
$$

Since the same argument applies to B, we have that $A_{b} \cap B_{b} \neq \varnothing$, and so there is a path of length at most $2 b \leq 44 \log k \log |G|$ avoiding C, as desired.

The next ingredient follows from Lemma 4.4 and allows us to find a short odd cycle while retaining expansion into the rest of the graph.

Lemma 4.5. Suppose G is not bipartite and (Δ, β, d, k)-expands into $W \subseteq V(G)$ for $\Delta \geq 4, k \geq 2$ and $\beta \geq 8 \Delta$. Then G contains an odd cycle C with length at most $88 \log k \log |G|$ such that G also $(\Delta-3, \beta, d, k)$-expands into $W \backslash V(C)$.

Proof. Since G is not bipartite, it contains an odd cycle. Let C be a shortest odd cycle; it follows that if $x, y \in V(C)$, then $\operatorname{dist}_{G}(x, y)=\operatorname{dist}_{C}(x, y)$. Indeed, if not, choosing x, y to violate this condition with minimal distance, the shortest path between x and y is internally disjoint from the cycle, and adding this path to whichever path around the cycle has the appropriate parity gives a shorter odd
cycle. Consequently, $|C|$ is at most twice the diameter of G. Using Lemma 4.4 with $A_{3.4}, B_{3.4}$ being any singletons and $C_{3.4}=\varnothing$ implies the desired bound $|C| \leq 88 \log k \log |G|$.

Now, if C is a triangle then any vertex v can have at most three neighbours on C (trivially). Otherwise, v can have at most two neighbours on C; indeed, if v has at least three neighbours on C, then either v has two neighbours x, y with $\operatorname{dist}_{C}(x, y) \geq 3>\operatorname{dist}_{G}(x, y)$, contradicting the earlier observation, or v has two neighbours x, y which are adjacent, giving a shorter odd cycle $v x y$. Thus, for any set S we have $\left|N_{G}(S) \cap(W \backslash V(C))\right| \geq\left|N_{G}(S) \cap W\right|-3|S|$, and, since $G(\Delta, \beta, d, k)$-expands into W, G also ($\Delta-3, \beta, d, k$)-expands into $W \backslash V(C)$.

Finally, we show that we can construct two large, well-connected disjoint sets centred around any two given vertices.

Lemma 4.6. Suppose G is a graph which (Δ, β, d, k)-expands into $W \subseteq V(G)$, and let x, y be distinct vertices. Then there exist disjoint sets $A, B \subset W \cup\{x, y\}$ of size $\beta d / 2$ such that $x \in A$, and every vertex of A is connected to x by a path in A of length at most $\log _{\Delta}(\beta d / 2)$ and similarly for B and y.
Proof. We iteratively build up sets A_{i}, B_{i} with $\left|A_{i}\right|=\left|B_{i}\right|=\Delta^{i}$ such that any vertex in A_{i} is connected to x by a path in A_{i} of length at most i until i is large enough that $\left|A_{i}\right| \geq \beta d / 2$. We start from $A_{0}=\{x\}, B_{0}=\{y\}$. Given disjoint sets A_{i}, B_{i} with $\left|A_{i}\right|=\left|B_{i}\right|<\beta d / 2$, we aim to choose disjoint sets $A^{\prime} \subset N_{G}\left(A_{i}\right) \cap W$ and $B^{\prime} \subset N_{G}\left(B_{i}\right) \cap W$ of size at least $\Delta\left|A_{i}\right|$. Then we can pick $A_{i+1} \subseteq A_{i} \cup\left(A^{\prime} \backslash B_{i}\right)$ and $B_{i+1} \subseteq B_{i} \cup\left(B^{\prime} \backslash A_{i}\right)$ with the required disjointness, connectivity and size properties.

First, take $A^{\prime \prime}=\left(N\left(A_{i}\right) \cap W\right) \backslash N\left(B_{i}\right)$ and $B^{\prime \prime}=\left(N\left(B_{i}\right) \cap W\right) \backslash N\left(A_{i}\right)$. If either of these, say $A^{\prime \prime}$ has size at least $\Delta\left|A_{i}\right|$, then we may choose $A^{\prime} \subseteq A^{\prime \prime}$ and $B^{\prime} \subseteq N\left(B_{i}\right) \cap W$ both of size $\Delta\left|A_{i}\right|$ (using the expansion property for the latter); by definition of $A^{\prime \prime}$ these sets are disjoint.

Consequently, we may assume $\left|A^{\prime \prime}\right|,\left|B^{\prime \prime}\right|<\Delta\left|A_{i}\right|$. Since $\left|A_{i} \cup B_{i}\right|<\beta d$, the expansion property gives $\left|N\left(A_{i}\right) \cap N\left(B_{i}\right) \cap W\right| \geq 2 \Delta\left|A_{i}\right|-\left|A^{\prime \prime}\right|-\left|B^{\prime \prime}\right|$, and so we can add disjoint subsets of $\left|N\left(A_{i}\right) \cap N\left(B_{i}\right) \cap W\right|$ to $A^{\prime \prime}$ and $B^{\prime \prime}$ to form sets A^{\prime}, B^{\prime} as required.

5. Constructing adjusters

In this section, we prove the following result for some suitable constant C.
Lemma 5.1. There exists a constant $C>0$ satisfying the following. Fix integers m, k with $C \leq m \leq k^{22}$ and $n \geq 8 \times 10^{18} m k \log ^{4} k$. Let H be a complete k-partite graph on $m k$ vertices, $H^{\prime} \sqsubseteq H$ be $(s+1)$-partite for some $1 \leq s \leq k-1$ and m_{2} be the size of the second smallest part of H. Let G be a graph of order at least $s n-n / 10$ with \bar{G} being H^{\prime}-free, and such that any two sets of size at least $m_{2}+4.1 \times 10^{18} \log ^{4} k$ have at least $4.1 \times 10^{18} \log ^{4} k$ disjoint paths between them.

- If $s \geq 2$, then G contains a cycle of length exactly n.
- If $s=1$, then G contains an r-adjuster for some $r \geq 9 m k / 8$ having length between $0.6 n$ and $0.7 n$.

We first show how the expansion properties established in Section 3 can be used to construct adjusters.
Lemma 5.2. Fix $k \geq 2,10^{6} \leq m \leq k^{22}$ and $n \geq 8 \times 10^{5} m k \log ^{2} k$. Let H be a complete ($s+1$)-partite graph of order $m^{\prime}(s+1)$, where $m^{\prime} \in \mathbb{R}, 1 \leq s \leq k-1$ and $|H| \leq m k$. Let G be a graph with \bar{G} being H-free and $|G| \geq s n / 10$. Then G contains an r-adjuster for some $r \geq \frac{m k}{2 \times 10^{4} \log ^{2} k}$, which has between $m k$ and $m k+\left(3 \times 10^{4} \log ^{2}\right) k$ vertices.

Proof. First, note that we may assume, at the cost of replacing the upper bound with $|H| \leq 2 m k$, that every part of H has order at least m^{\prime}. Indeed, we may replace each part of H with order below m^{\prime} with a part of order $\left\lceil m^{\prime}\right\rceil$; this adds at most $s m^{\prime}$ vertices, and the new graph has average part size at most $2 m^{\prime}$. In particular, this means that if $H^{\prime} \sqsubseteq H$ is a-partite of order $a b$, then $b \geq m^{\prime}$ and $a b \leq 2 m^{\prime}(s+1) \leq 2 m k$. Clearly, replacing H with a supergraph preserves the property that \bar{G} is H-free.

Set

$$
M=\left(10^{4} k \log k\right) \times \frac{2 m}{m^{\prime}} \quad \text { and } \quad \beta=M /(200) \geq 100
$$

Then, as $1 \leq s \leq k-1$, we get

$$
|G| \geq 8 \times 10^{4} s m k \log ^{2} k \geq M\left(2 m^{\prime}(s+1)\right) \log (s+1)
$$

Further, note that $M \geq 4(s+1)$ and $\beta \geq 10 \log k$. We use Lemma 4.2 with $(M, \beta, \Delta, m, k)_{3.2}=$ $\left(M, \beta, 10, m^{\prime}, s+1\right)$ to pass to a subgraph G^{\prime}, where $\overline{G^{\prime}}$ is H^{\prime}-free for some $H^{\prime} \sqsubseteq H$ and which $\left(10, \beta, m^{\prime \prime}, s^{\prime}\right)$-expands into $V\left(G^{\prime}\right)$, where $\left|H^{\prime}\right|=s^{\prime} m^{\prime \prime}$ and $\chi\left(H^{\prime}\right)=s^{\prime}$ with $2 \leq s^{\prime} \leq s+1$, such that

$$
\begin{equation*}
M m^{\prime \prime} s^{\prime} \log s^{\prime}-m^{\prime \prime} \leq\left|G^{\prime}\right| \leq M m^{\prime \prime} s^{\prime} \log s^{\prime} \tag{9}
\end{equation*}
$$

In particular, since $m^{\prime \prime} \geq m^{\prime}$, we have that $G^{\prime}\left(10, \beta, m^{\prime}, s^{\prime}\right)$-expands.
As $\overline{G^{\prime}}$ is H^{\prime}-free, G^{\prime} has no independent set of order $\left|H^{\prime}\right|=s^{\prime} m^{\prime \prime}$, and it follows that $\chi\left(G^{\prime}\right) \geq$ $\left|G^{\prime}\right| /\left(s^{\prime} m^{\prime \prime}\right)>2$. Note that as $m \leq k^{22}$, from inequality (9) we have that $\left|G^{\prime}\right| \leq M\left(2 m^{\prime}(s+1)\right) \log k \leq$ $10^{5} m k^{2} \log ^{2} k \leq 10^{5} k^{26}$. Thus, by Lemma 4.5 we may find an odd cycle C_{1} of length at most $88 \log k \log \left|G^{\prime}\right| \leq 10^{4} \log ^{2} k$, such that we retain (7, $\left.\beta, m^{\prime}, s^{\prime}\right)$-expansion into $V\left(G^{\prime}\right) \backslash V\left(C_{1}\right)$. Choosing almost-antipodal points v_{1}, w_{1} on C_{1} (i.e., dist $C_{1}\left(v_{1}, w_{1}\right)=\left(\left|C_{1}\right|-1\right) / 2$), we use Lemma 4.6 to find sets A_{1} and B_{1} of size $\beta m^{\prime} / 2$ with $A_{1} \cap B_{1}=\varnothing, A_{1} \cap V\left(C_{1}\right)=\left\{v_{1}\right\}$ and $B_{1} \cap V\left(C_{1}\right)=\left\{w_{1}\right\}$, with each vertex

Next, we set $X=A_{1} \cup V\left(C_{1}\right) \cup B_{1}$ and $Y=V\left(C_{1}\right)$. Note that, by inequality (9) and that $|X| \leq$ $\beta m^{\prime}+10^{4} \log ^{2} k$, we have $\left|G^{\prime}-X\right| \geq \frac{1}{2} M m^{\prime \prime} s^{\prime} \log s^{\prime}$. We apply Lemma 4.2 with $(M, \beta, \Delta, m, k)_{3.2}=$ $\left(M / 2, \beta, 10, m^{\prime \prime}, s^{\prime}\right)$ again to find a subgraph $G^{\prime \prime}$ with $V\left(G^{\prime \prime}\right) \subset V\left(G^{\prime}\right) \backslash X$ which $\left(10, \beta, m^{\prime \prime \prime}, s^{\prime \prime}\right)$ expands and has order at most $\frac{1}{2} M m^{\prime \prime \prime} s^{\prime \prime} \log s^{\prime \prime}$, for some $2 \leq s^{\prime \prime} \leq s^{\prime}$ and $m^{\prime \prime \prime} \geq m^{\prime}$. Within $G^{\prime \prime}$, we find another similar structure $A_{2} \cup C_{2} \cup B_{2}$, and since $G^{\prime}\left(10, \beta, m^{\prime}, s^{\prime}\right)$-expands we can use Lemma 4.4, with parameters $(\Delta, \beta, d, k, A, B, C, W)_{3.4}=\left(10, \beta, m^{\prime}, s^{\prime}, A_{2}, B_{1}, V\left(C_{1} \cup C_{2}\right), G^{\prime}\right)$ to find a path Q_{1} between A_{2} and B_{1} that avoids $V\left(C_{1} \cup C_{2}\right)$ and is of length at most $5,000 \log ^{2} k$. We may assume Q_{1} is disjoint from $A_{1} \cup B_{2}$ since otherwise we may find a shorter path between (say) A_{1} and A_{2} then relabel appropriately. We then extend Q_{1} by paths within A_{2} to v_{2} and within B_{1} to w_{1} to obtain a $w_{1}-v_{2}$ path P_{1} of length at most $10^{4} \log ^{2} k$.

Now, we update X to $A_{1} \cup V\left(C_{1} \cup P_{1} \cup C_{2}\right) \cup B_{2}$ (note that the unused parts of $A_{2} \cup B_{1}$ are released) and Y to $V\left(C_{1} \cup P_{1} \cup C_{2}\right)$. As before, we choose $G^{\prime \prime \prime}$ with $V\left(G^{\prime \prime \prime}\right) \subset V\left(G^{\prime}\right) \backslash X$ such that $G^{\prime \prime \prime}\left(10, \beta, m^{(4)}, s^{\prime \prime \prime}\right)$ expands for some $2 \leq s^{\prime \prime \prime} \leq s^{\prime}$ and $m^{(4)} \geq m^{\prime}$ and continue as before, updating X and Y. Observe that we can continue this process as long as $\left|G^{\prime}-X\right| \geq \frac{1}{2} M m^{\prime \prime} s^{\prime} \log s^{\prime}$. Thus, since $\left|G^{\prime}\right| \geq M m^{\prime \prime} s^{\prime} \log s^{\prime}-m^{\prime \prime}$, we can continue whenever $|X| \leq \frac{1}{4} M m^{\prime \prime} s^{\prime} \log s^{\prime}$. Since $m k+\beta m^{\prime} \leq \frac{1}{4} M m^{\prime \prime} s^{\prime} \log s^{\prime}$, we can continue the process until $|Y|>m k$, as $\left|A_{i}\right|,\left|B_{i}\right| \leq \beta m^{\prime} / 2$ for all i. Moreover, at each stage of this process $|Y|$ increases by at most $2 \times 10^{4} \log ^{2} k$. Thus, as soon as $|Y|>m k$ we can stop the process and ensure $|Y| \leq m k+\left(2 \times 10^{4}\right) \log ^{2} k$ at this point. Since $m k+2 \times 10^{4} \log ^{2} k \leq \beta m^{\prime} / 20 \log (s+1) \leq \beta m^{\prime} / 20 \log s^{\prime}$, we can then apply Lemma 4.4 with ($\Delta, \beta, d, k, A, B, C, W)_{3.4}=\left(10, \beta, m^{\prime}, s^{\prime}, A_{1}, B_{r}, Y, G^{\prime}\right)$ to find a path of length at most $10^{4} \log ^{2} k$ connecting the two remaining large sets A_{1}, B_{r} avoiding Y, which closes up the structure into an r-adjuster; since each cycle C_{i} and each path P_{i} built in this whole process has length at most $10^{4} \log ^{2} k$, we have $r \geq \frac{m k}{2 \times 10^{4} \log ^{2} k}$, and the adjuster contains all of Y, giving the required bounds.

We will also need some long cycles to extend the adjusters we construct.
Lemma 5.3. Fix $k \geq 2,10^{6} \leq m \leq k^{22}$ and $n \geq 8 \times 10^{5} m k \log ^{2} k$. Let H be a complete ($s+1$)-partite graph of order $m^{\prime}(s+1)$, where $m^{\prime} \in \mathbb{R}, 1 \leq s \leq k-1$ and $|H| \leq m k$. Let G be a graph with \bar{G} being H-free and $|G| \geq s n / 10$. Then G contains a cycle of length between $n /\left(\left(8 \times 10^{5}\right) \log ^{2} k\right)$ and $n /\left(\left(8 \times 10^{5}\right) \log ^{2} k\right)+2 m k$.

Proof. We proceed as in Lemma 5.2, with the following differences. First, set

$$
M=\frac{n}{10 m^{\prime} \log (s+1)} \geq \frac{n}{10 m^{\prime} \log k} \quad \text { and } \quad \beta=M / 200
$$

Secondly, at each stage rather than finding a cycle with two large sets, each of size $\beta m^{\prime} / 2$, attached we find a single edge with two large sets. This ensures that after each joining step we have a path with two large sets attached. Again, we continue until the total size of the path exceeds $\beta m^{\prime} / 40 \log k$ and then join the two large sets, using Lemma 4.4, to obtain a desired long cycle. If this cycle is longer than our desired upper bound, we truncate it using that \bar{G} is H-free (choose $m k$ vertices that are nonadjacent on the cycle).

In order to complete the proof of Lemma 5.1, we need to be able to join adjusters together while simultaneously retaining most of the flexibility of each adjuster and most of the length. This resembles Lemma 2.19 of [25], but the fact that in our case the length of an adjuster and the number of vertices are only loosely related creates extra difficulties.

Lemma 5.4. Let F_{i} be an r_{i}-adjuster of length ℓ_{i} for $i \in\{1,2\}$, with F_{1} and F_{2} disjoint. Suppose there are $s>16$ vertex-disjoint paths P_{1}, \ldots, P_{s} between F_{1} and F_{2}, each of length at most t. Then for some $i \neq j$ there is an r-adjuster of length ℓ contained in $F_{1} \cup F_{2} \cup P_{i} \cup P_{j}$, where

$$
\left(r_{1}+r_{2}\right)\left(1-4 s^{-1 / 2}\right)-4 \leq r \leq r_{1}+r_{2}
$$

and

$$
\left(\ell_{1}+\ell_{2}\right)\left(1-4 s^{-1 / 2}\right) \leq \ell \leq \ell_{1}+\ell_{2}+2 t
$$

Furthermore, if $r_{2}=0$, then the adjuster obtained contains a section of length $\ell-\ell_{1}$ with no short cycles.
Proof. We may assume each P_{i} is internally disjoint from $F_{1} \cup F_{2}$ since otherwise we can replace it by a shorter path with this property. Write x_{i} for the endpoint of P_{i} in F_{1}, and y_{i} for the endpoint in F_{2}.

We will progressively reduce the number of paths to focus our attention on at least $s^{1 / 2} / 4$ paths which relate to one another in a useful way. First, we give each path P_{i} an ordered pair of labels from $\{+,-\}$ as follows. If x_{i} lies on one of the r_{1} short cycles of F_{1}, choose the first label to be + if it is on the longer section of that cycle (that is, the longer section between the two vertices of that short cycle that have degree 3 in F_{1}) and - if it is on the shorter section. If x_{i} lies on a path between cycles, choose the first label arbitrarily. Choose the second label similarly with respect to y_{i}. Now, we may find a set of at least $s / 4$ paths with identical label pairs. Note that this ensures there are routes C_{1} around F_{1} and C_{2} around F_{2} which cover all the x_{i} and y_{i} for P_{i} in this set of paths, with $\left|C_{i}\right| \in\left[\ell_{i}-r_{i}, \ell_{i}\right]$. In what follows, we consider C_{1} and C_{2} to be oriented in a particular direction around F_{1} and F_{2}, respectively. Renumbering, if necessary, we may assume these paths are $P_{1}, \ldots, P_{[s / 4]}$, and that $x_{1}, \ldots, x_{[s / 4]}$ are in order of their appearance in C_{1}. By the Erdős-Szekeres theorem (Theorem 3.1), there is a subset of at least $t \geq\lceil\sqrt{s / 4}\rceil \geq 2$ paths with endvertices y_{i} either in order of their appearance in C_{2} or in reverse order. Again, by renumbering and reversing C_{2} if necessary we may assume these are P_{1}, \ldots, P_{t} and the y_{i} appear in reverse order.

Let C_{1}^{\prime} be the longest route in F_{1}, and associate each vertex x_{i} for $i \in[t]$ with a vertex x_{i}^{\prime}, chosen as follows. If x_{i} is internal to a shorter side of a short cycle, let x_{i}^{\prime} be the vertex on the longer side which is the same distance from the start vertex of the cycle (consequently, x_{i}^{\prime} is one step further from the end of the cycle than x_{i}). If x_{i} is on one of the paths or is internal to the longer side of a short cycle, set $x_{i}^{\prime}=x_{i}$. Define C_{2}^{\prime} and each y_{i}^{\prime} similarly.

Now, we show that some consecutive pair of paths work. Consider making a new adjuster from F_{1}, F_{2}, P_{i} and P_{i+1} for $i \in[t]$ (we take subscripts modulo t) as follows: Starting from x_{i}, traverse P_{i} to y_{i}, then follow a route around F_{2} to y_{i+1}, including both sections of any short cycle traversed in this route

Figure 2. Creating a new adjuster using paths P_{i} and P_{i+1} with label $(-,+)$. Dashed sections are not part of the new adjuster, which has five fewer short cycles. The red section shows how much length is lost from F_{1} and F_{2}; in the former case, this includes one extra edge since x_{i+1} is on the short side of a cycle.
(apart from any short cycle containing y_{i} or y_{i+1}), traverse P_{i+1} to x_{i+1}, then follow a route around F_{1} to x_{i} similarly. See Figure 2 for an example.

Write S_{1} for the edges of C_{1}^{\prime} between x_{i}^{\prime} and x_{i+1}^{\prime} and S_{2} for the edges of C_{2}^{\prime} between y_{i+1}^{\prime} and y_{i}^{\prime}. The short cycles of the new adjuster are those of the original two adjusters except for any which intersect S_{1} or S_{2}. The longest route through the new adjuster uses all of C_{1}^{\prime} except for at most $\left|S_{1}\right|+1$ edges (the +1 added if $x_{i+1}^{\prime} \neq x_{i+1}$), and all of C_{2}^{\prime} except for at most $\left|S_{2}\right|+1$ edges (the +1 added if $y_{i+1}^{\prime} \neq y_{i+1}$). It also uses all of the two paths P_{i} and P_{i+1}, which contain at least one edge each, so its length is at least $\ell_{1}+\ell_{2}-\left|S_{1}\right|-\left|S_{2}\right|$. Note that the sets $S_{1} \cup S_{2}$ obtained for different choices of $i \in[t]$ are disjoint.

Now, we claim that for some pair P_{i}, P_{i+1} the adjuster constructed has the required properties. Note that, since each path P_{i} has length at most t, the upper bound on length is satisfied for all adjusters constructed in this way, so it suffices to prove the lower bounds on ℓ and r. Suppose not, then for each i either more than $\left(r_{1}+r_{2}\right) 4 s^{-1 / 2}+4$ short cycles are lost, or $\left|S_{1}\right|+\left|S_{2}\right|>4 s^{-1 / 2}\left(\ell_{1}+\ell_{2}\right)$. In the former case, this means more than $\left(r_{1}+r_{2}\right) 4 s^{-1 / 2}$ short cycles lie entirely in the section between x_{i} and x_{i+1} or the section between y_{i+1} and y_{i} since only 4 can lie partially in these sections. Since these sections are disjoint, the former case occurs for fewer than $s^{1 / 2} / 4$ choices of i. Similarly, the latter case occurs for fewer than $s^{1 / 2} / 4$ choices of i. Since there are at least $s^{1 / 2} / 2$ choices for i, some choice gives an adjuster with the required properties.

Finally, note that the section of the adjuster obtained consisting of vertices not in F_{1} is contiguous and contributes at least $\ell-\ell_{1}$ to the overall length. If $r_{2}=0$, this section has no short cycles, as required.

We are now ready to prove the main result of this section.

Proof of Lemma 5.1. Let $C=10^{30}$. We will prove both parts of the statement simultaneously by finding an r-adjuster of suitable length for some $r \geq 9 m k / 8$. If $s \geq 2$, this adjuster can be taken to have length slightly larger than n such that one of the routes has length exactly n. However, for $s=1$ this is not possible since G itself could have order less than n. In this case, we show that the length of the adjuster can be made significantly larger than $n / 2$.

We repeatedly apply Lemma 5.2 , with $H_{4.2}=H^{\prime}$ and $G_{4.2}=G-X_{i-1}$, where $X_{0}=\varnothing$ and $X_{i}=V\left(F_{i}^{\prime}\right)$ for $i \geq 1$ is the set of vertices used up from G (see the construction of F_{i}^{\prime}, for each i, below), in order to find $f \leq 4 \times 10^{4} \log ^{2} k$ adjusters F_{i} for $i \in[f]$, such that F_{i} is an r_{i}-adjuster and $r_{\text {total }}:=\sum_{i=1}^{f} r_{i} \geq 2 m k$. Note that, since $k^{22} \geq m \geq C=10^{30}$ and $k \geq 10 \log ^{4} k$ for any $k \geq 2$, each F_{i} satisfies

$$
\begin{equation*}
\left|F_{i}\right| \geq m k \geq m_{2}+4.1 \times 10^{18} \log ^{4} k \tag{10}
\end{equation*}
$$

Also, the total size of all these adjusters (using the fact that every adjuster found has size at most $\left.m k+3 \times 10^{4} \log ^{4} k \leq 1.1 m k\right)$ is at most $5 \times 10^{4} m k \log ^{2} k$.

Set $F_{1}^{\prime}=F_{1}$ and $r_{1}^{\prime}=r_{1}$. After finding each F_{i} (for $i \geq 2$), we merge it with the adjuster F_{i-1}^{\prime} using Lemma 5.4. There are at least $q=4.1 \times 10^{18} \log ^{4} k$ vertex-disjoint paths between the two adjusters, by inequality (10) and the hypothesis, and we may choose these to have length at most $\left|H^{\prime}\right|+s \leq m k+k$ since the fact that \bar{G} is H^{\prime}-free implies that any longer path contains a shortcut. Thus, we obtain a merged adjuster F_{i}^{\prime}, which is an r_{i}^{\prime}-adjuster with

$$
\begin{equation*}
\left(r_{i-1}^{\prime}+r_{i}\right) \geq r_{i}^{\prime} \geq\left(r_{i-1}^{\prime}+r_{i}\right)\left(1-4 q^{-1 / 2}\right)-4, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F_{i}^{\prime}\right| \leq\left|F_{i-1}^{\prime}\right|+\left|F_{i}\right|+2 m k+2 k . \tag{12}
\end{equation*}
$$

It follows from inequality (12) that for each $i \in[f]$,

$$
\left|F_{i}^{\prime}\right| \leq \sum_{j \leq i}\left|F_{j}\right|+(i-1)(2 m k+2 k) \leq\left(5 \times 10^{4}\right) m k \log ^{2} k+\left(4 \times 10^{4}\right) \log ^{2} k(2 m k+2 k) \leq n / 10
$$

and so, setting $X_{i}=V\left(F_{i}^{\prime}\right)$, we have $\left|G-X_{i-1}\right| \geq(s n-n / 10)-n / 10 \geq s n / 10$. Consequently, we can indeed repeatedly apply Lemma 5.2 with $G_{4.2}=G-X_{i-1}$ for all $i \in[f]$.

Using inequality (11), by induction we have $r_{i-1}^{\prime} \leq \sum_{j<i} r_{j}$ for each $i \geq 2$, and so

$$
\begin{equation*}
r_{i}^{\prime} \geq r_{i-1}^{\prime}+r_{i}-4 q^{-1 / 2} r_{\text {total }}-4 \tag{13}
\end{equation*}
$$

Summing inequality (13), we obtain $r_{f}^{\prime} \geq r_{\text {total }}\left(1-\left(\left(16 \times 10^{4}\right) q^{-1 / 2} \log ^{2} k\right)\right)-4 f \geq 3 r_{\text {total }} / 4$.
We repeatedly apply Lemma 5.3 with $H_{4.3}=H^{\prime}$ and $G_{4.3}=G-Y_{j}$, where $Y_{1}=V\left(F_{f}^{\prime}\right)$ and $Y_{j}=$ $Y_{1} \cup V\left(C_{j}^{\prime}\right)$ for $j \geq 2$ is the set of vertices used up from G so far (see the construction of C_{i}^{\prime} below), in order to find $c \leq 1.6 \times 10^{6} \log ^{2} k$ cycles C_{i} each of length at least $n /\left(8 \times 10^{5} \log ^{2} k\right) \geq m_{2}+4.1 \times 10^{18} \log ^{4} k$ (which we regard as 0 -adjusters) satisfying the following bound on their total length:

- if $s \geq 2$ then $3 n / 2 \geq \sum_{i=1}^{c}\left|C_{i}\right| \geq 4 n / 3$, whereas
- if $s=1$, then $3 n / 4 \geq \sum_{i=1}^{c}\left|C_{i}\right| \geq 2 n / 3$.

Set $C_{1}^{\prime}=C_{1}$. After finding each C_{i} (for $i \geq 2$), we merge it with the cycle C_{i-1}^{\prime} using Lemma 5.4. As before, there are at least $q=4.1 \times 10^{18} \log ^{4} k$ vertex-disjoint paths between the two cycles, by the hypothesis, and we may choose these to have length at most $\left|H^{\prime}\right|+s \leq m k+k$. Thus, we obtain a merged cycle C_{i}^{\prime} with

$$
\left(\left|C_{i-1}^{\prime}\right|+\left|C_{i}\right|\right)\left(1-4 q^{-1 / 2}\right) \leq\left|C_{i}^{\prime}\right| \leq\left|C_{i-1}^{\prime}\right|+\left|C_{i}\right|+2 m k+2 k
$$

By induction, and that after each merging of cycles we can truncate the length of the new cycle (just as we did with the paths), we have $\left|C_{i-1}^{\prime}\right| \leq\left(\sum_{j<i}\left|C_{j}\right|\right)+2 m k+2 m$ for each $i \geq 2$, and so

$$
\begin{equation*}
\left|C_{i}^{\prime}\right| \geq\left|C_{i-1}^{\prime}\right|+\left|C_{i}\right|-4 q^{-1 / 2}\left(\left(\sum_{j=1}^{c}\left|C_{j}\right|\right)+2 m k+2 m\right) . \tag{14}
\end{equation*}
$$

Summing inequality (14), we obtain

$$
\left|C_{c}^{\prime}\right| \geq \sum_{j=1}^{c}\left|C_{j}\right|\left(1-\left(6.4 \times 10^{6}\right) q^{-1 / 2} \log ^{2} k\right)-\left(\left(6.4 \times 10^{6}\right) q^{-1 / 2} \log ^{2} k\right)(2 m k+2 m)
$$

hence for $s \geq 2,\left|C_{c}^{\prime}\right| \geq 5 n / 4$ and for $s=1,\left|C_{c}^{\prime}\right| \geq 0.62 n$.
Now, merge C_{c}^{\prime} with F_{f}^{\prime} using Lemma 5.4 to produce our desired r-adjuster. One can see that $r \geq(3 / 4)^{2} r_{\text {total }} \geq 9 m k / 8 \geq(m+1) k$.

Suppose $s \geq 2$. Note that the final use of Lemma 5.4 merges a adjuster of length less than n with a 0 -adjuster of length at least $5 n / 4$, and thus, our r-adjuster of length $\ell>n$ contains a section of length at least $\ell-n$ in which there are no short cycles. Using the fact that \bar{G} is H^{\prime}-free, we can shortcut parts of this section, if necessary, without reducing r, until $0 \leq \ell-n \leq m k+k$. Now, using the fact that it is an r-adjuster for some $r \geq(m+1) k$, we may find a route of length exactly n.

Finally, if $s=1$ the final adjuster similarly has length $\ell \geq 0.6 n$ and contains a section of length $\ell-0.6 n$ with no short cycles. We can shorten this section, if necessary, as before to obtain an r-adjuster of length between $0.6 n$ and $0.7 n$.

6. Stability and exactness

In this section, we prove our main result via the following statement.
Theorem 6.1. There exists a constant $C^{\prime}>0$ such that, for any complete k-partite graph H on $m k$ vertices where $C^{\prime} \leq m \leq k^{22}$ and $n \geq 10^{60} m k \log ^{4} k$, we have that C_{n} is H-good, that is, $R\left(C_{n}, H\right)=(\chi(H)-1)(n-1)+\sigma(H)$.
Proof of Theorem 1.2. Set $k=\chi(H)$ and $m=|H| / k$. By adding edges to H, if necessary, without changing $\sigma(H)$, we may assume it is a complete k-partite graph for $k=\chi(H)$. If $m>k^{22}$, then the same is true of the size of the largest part, and so Corollary 3.2 gives the required bound for some constant $C^{\prime \prime}$ (and in fact the logarithmic term is not needed). If $C^{\prime} \leq m \leq k^{22}$, then Theorem 6.1 gives the required bound with constant 10^{60}. Finally, if $m<C^{\prime}$, then by increasing the size of the largest part we may replace H with a graph H^{\prime} of order at most $C^{\prime}|H|$ and $\sigma\left(H^{\prime}\right)=\sigma(H)$ which satisfies the conditions of Theorem 6.1, giving that C_{n} is H^{\prime}-good (and hence H-good) for $n \geq 10^{60} C^{\prime}|H| \log ^{4} \chi(H)$.

To prove Theorem 6.1, we first establish the following stability result.
Lemma 6.2. There exists a constant $C>0$ satisfying the following. Fix $k \geq 2$ and $C \leq m \leq k^{22}$ and $z \geq 0$ and $n \geq 10^{49} \mathrm{~km} \log ^{4} k$. Let H be a complete k-partite graph with $m k$ vertices, and write $m_{1} \leq \cdots \leq m_{k}$ for the sizes of the parts. Define $\hat{H} \sqsubset H$ to be the graph obtained by removing a part of size m_{2}. Suppose G is a C_{n}-free graph with $|G| \geq(k-1)(n-1)+z$ such that \bar{G} is H-free. Then at least one of the following holds.
(i) There exists $G^{\prime} \subset G$ such that $\overline{G^{\prime}}$ is \hat{H}-free and $\left|G^{\prime}\right| \geq(k-2)(n-1)+z$.
(ii) There exist disjoint sets A_{1}, \ldots, A_{k-1}, with no edges between them, such that for each i we have - $\left|A_{i}\right| \geq 0.95 n$,

- $\overline{G\left[A_{i}\right]}$ is $K_{m_{1}, m_{2}}$-free, and
- within $G\left[A_{i}\right]$, any two disjoint sets of size at least $m_{2}+4.1 \times 10^{18} \log ^{4} k$ have at least $4.1 \times 10^{18} \log ^{4} k$ disjoint paths between them.

Proof. Let C be a constant given in Lemma 5.1. Suppose not. Start with $A=V(G)$ and $S=\varnothing$. If there exists a set X of order at most $4.1 \times 10^{18} \log ^{4} k$ such that removing X from $G[A]$ increases the number of components of $G[A]$ of order at least m_{2}, remove X from A and add it to S. Do this for k iterations or until no such set exists. At the end of the process, we have $|S| \leq 4.1 \times 10^{18} k \log ^{4} k$.

Note that any set B of order at least m_{2} satisfies $|B \cup N(B)| \geq n$, else $G[V(G) \backslash(B \cup N(B))]$ satisfies (i). In particular, if $B \subset A$ with $|B| \geq m_{2}$, then

$$
\left|B \cup N_{G[A]}(B)\right| \geq|B \cup N(B)|-|S| \geq n-4.1 \times 10^{18} k \log ^{4} k \geq|H| .
$$

It follows that the total size of all components of $G[A]$ of size less than m_{2} is less than m_{2}, since otherwise there is a union of some of these components of size between m_{2} and $2 m_{2}$, contradicting the fact that sets of this size expand well. It also follows that any other component has order at least $n-4.1 \times 10^{18} k \log ^{4} k$; let these components of $G[A]$ be $A_{1}, \ldots A_{t}$, where $t \geq 1$ and

$$
\begin{equation*}
\sum_{i \in[t]}\left|A_{i}\right| \geq|A|-m_{2} \geq|G|-|S|-m_{2} \geq(k-1) n-k-4.1 \times 10^{18} k \log ^{4} k-m_{2} \tag{15}
\end{equation*}
$$

We must have $t \leq k-1$ since otherwise \bar{G} contains a copy of H obtained by choosing a suitable number of vertices from A_{1}, \ldots, A_{k}.

In particular, we added vertices to S fewer than k times, and so the process described above stopped because no more removals were possible. This will give the required connectivity properties. Indeed, if B_{1}, B_{2} are disjoint sets in A_{i} of size at least $m_{2}+4.1 \times 10^{18} \log ^{4} k$, then no set X of order $4.1 \times 10^{18} \log ^{4} k$ separates $B_{1} \backslash X$ from $B_{2} \backslash X$ within $G\left[A_{i}\right]$ (since both these sets have size at least m_{2} and by the construction of A). Thus, by Menger's theorem there are at least $4.1 \times 10^{18} \log ^{4} k$ disjoint paths between them in $G\left[A_{i}\right]$.

For each $i \leq t$, we define $k-t+1$ subgraphs $H_{i}^{(1)} \sqsubset \cdots \sqsubset H_{i}^{(k-t+1)} \sqsubset H$ as follows. Set $H_{i}^{(1)}$ to be an independent set of m_{k+1-i} vertices, and for $2 \leq j \leq k-t+1$ set $H_{i}^{(j)}=K_{m_{k+1-i}, m_{k-t}, m_{k-t-1}, \ldots, m_{k-t-j+2}}$, that is, $H_{i}^{(j)}$ is a complete j-partite subgraph consisting of the i th largest class of H together with $j-1$ of the $k-t$ smallest classes taken in decreasing order.

For each $i \leq t$, let $s_{i} \geq 1$ be the largest value such that $\overline{G\left[A_{i}\right]}$ contains $H_{i}^{\left(s_{i}\right)}$. Suppose that $\sum_{i \in[t]} s_{i} \geq k$, and consider the graph induced in \bar{G} by the vertices of a copy of $H_{i}^{\left(s_{i}\right)}$ in $\overline{G\left[A_{i}\right]}$ for each i. Taking the largest class from each copy creates a copy of $K_{m_{k}, \ldots, m_{k-t+1}}$, and the other classes give a complete $(k-t)$-partite graph with j th largest part having size at least $m_{k-t+1-j}$ for each $j \in[k-t]$, which contains $K_{m_{k-t}, \ldots, m_{1}}$. Thus, $\bar{G} \supset H$, a contradiction.

Consequently, we have $\sum_{i \in[t]} s_{i} \leq k-1$, and in particular $s_{i} \leq k-t$ for each i. By definition of s_{i}, $\overline{G\left[A_{i}\right]}$ is $H_{i}^{\left(s_{i}+1\right)}$-free for each i. If $s_{i}>1$, we have $\left|A_{i}\right|<s_{i} n-n / 10$, since otherwise Lemma 5.1, taking $H_{4.1}^{\prime}=H_{i}^{\left(s_{i}+1\right)}$, gives a copy of C_{n} inside $G\left[A_{i}\right]$. Contrariwise, if $s_{i}=1$ we have $\left|A_{i}\right|<n+m_{k-t}$ by Corollary 3.3. In either case, for each $i \in[t]$ we have $\left|A_{i}\right|<s_{i} n+m_{k-t}$. Note that $(t-1) m_{k-t} \leq|H|=m k$. Thus, if for any i we have $s_{i}>1$, then

$$
\sum_{j \in[t]}\left|A_{j}\right|<s_{i} n-n / 10+\sum_{\substack{j \in[t] \\ j \neq i}}\left(s_{i} n+m_{k-t}\right) \leq(k-1) n-n / 10+(t-1) m_{k-t},
$$

contradicting inequality (15). We may therefore assume each $s_{i}=1$. Similarly, if $\sum_{i \in[t]} s_{i}<k-1$, and so $t<k-1$, we obtain a contradiction to inequality (15). Thus, $t=k-1$, and each of A_{1}, \ldots, A_{k-1} has size at least $n-4.1 \times 10^{18} k \log ^{4} k \geq 0.95 n$. If for some i we have $K_{m_{1}, m_{2}} \subset \overline{G\left[A_{i}\right]}$, then taking the copy of $K_{m_{1}, m_{2}}$ together with m_{k} vertices from each other part gives a copy of $K_{m_{k}, \ldots, m_{k}, m_{2}, m_{1}}$ (with k parts in total) in \bar{G}, and so $\bar{G} \supset H$, a contradiction. Together with the connectivity properties heretofore established, this completes the proof.

Figure 3. A long $x_{1}-x_{2}$ path using the extra edge $z_{1} z_{2}$ (shown in bold and highlighted if colour is available). Dashed lines indicate parts of the adjuster not in the relevant route.

We now proceed from the stability result above to exactness. We need the following result which says that when the complement is $K_{m_{1}, m_{2}}$-free we can do much better than Lemma 5.4.
Lemma 6.3. Let F_{i} be an r_{i}-adjuster of length ℓ_{i} for $i \in\{1,2\}$, with F_{1} and F_{2} disjoint, and suppose $\overline{G\left[V\left(F_{i}\right)\right]}$ is $K_{m_{1}, m_{2}}$-free for each i, where $m_{2} \geq m_{1}$. Suppose further that there are two vertex-disjoint paths P_{1}, P_{2} between F_{1} and F_{2}, each of length at most t. Then there is an r-adjuster of length ℓ all of whose vertices are contained in $F_{1} \cup F_{2} \cup P_{1} \cup P_{2}$, where $r \geq r_{1}+r_{2}-2\left(m_{1}+m_{2}\right)$ and $\ell_{1}+\ell_{2}-2\left(m_{1}+m_{2}\right) \leq \ell \leq \ell_{1}+\ell_{2}+2 t$. Furthermore, if $r_{2}=0$, then the adjuster contains a section of length at least $\ell-\ell_{1}$ with no short cycles.

Proof. Let P_{i} have ends x_{i} in F_{1} and y_{i} in F_{2}. We claim that there is a path Q_{1} of length at least $\ell_{1}-m_{1}-m_{2}-1$ in F_{1} between x_{1} and x_{2}. To see this, first note that, unless x_{1} and x_{2} are on opposite sides of the same short cycle, there is a route in F_{1} which includes both x_{1} and x_{2} and has length at least $\ell_{1}-2$. If x_{1} and x_{2} are at distance at most m_{2} in this route, then by taking the whole route except for a path of length at most m_{2} between the two vertices, we are done. If not, then the m_{1} vertices immediately before x_{1} on the route do not include x_{2}, and the m_{2} vertices immediately before x_{2} do not include x_{1}. There is an edge $z_{1} z_{2}$ between these two sets of vertices in $G\left[V\left(F_{1}\right)\right]$, since $\overline{G\left[V\left(F_{1}\right)\right]}$ is $K_{m_{1}, m_{2}}$-free, and so there is a path which starts at x_{1}, goes around the route to z_{2}, via the extra edge to z_{1} and then around the route in the opposite direction to x_{2}. This path misses out at most $m_{1}+m_{2}-1$ vertices from the route so has at least the required length. See Figure 3. Finally, if x_{1} and x_{2} are on opposite sides of the same short cycle, there is a path around the adjuster from x_{1} to x_{2} using the vertices on that short cycle after x_{1} and before x_{2} and the longer side of every other short cycle. Similarly, there is another path which uses the vertices on that short cycle after x_{2} and before x_{1}. At least one of these uses at least half of every short cycle, so has length at least ℓ_{1}.

Now, taking this path together with a corresponding path for F_{2} and the two paths P_{1}, P_{2} between them gives a cycle C of length between $\ell_{1}+\ell_{2}-2\left(m_{1}+m_{2}\right)$ and $\ell_{1}+\ell_{2}+2 t$. We extend this to an adjuster by including all short cycles from F_{1} and F_{2} such that one of the routes round that short cycle is entirely contained in C. Since all but at most $m_{1}+m_{2}$ edges of a route of F_{i} are included in the cycle, this means at most $2\left(m_{1}+m_{2}\right)$ short cycles of F_{1} or F_{2} are not included, giving $r \geq r_{1}+r_{2}-2\left(m_{1}+m_{2}\right)$. Finally, note that the section of the adjuster obtained consisting of vertices not in F_{1} is contiguous, and contributes at least $\ell-\ell_{1}$ to the overall length. If $r_{2}=0$, this section has no short cycles, as required.

This enables us to effectively deal with the case where two of the A_{i} (or, more precisely, the expanding subgraphs within them) are connected by two disjoint paths.
Proof of Theorem 6.1. It suffices to prove, via induction on k, the conclusion for $2 C \frac{k-1}{k} \leq m \leq k^{22}$, where C is at least the constants in Lemma 5.1 and Lemma 6.2. Since we have $C \leq 2 C \frac{k-1}{k} \leq 2 C$, we can then take $C^{\prime}=2 C$ to conclude.

Suppose it is not true, and take a counterexample, that is, a graph G of order $(k-1)(n-1)+\sigma(H)$ that is C_{n}-free and with H-free complement. We apply Lemma 6.2. If statement (i) applies, then we have a graph $G^{\prime} \subset G$ of order $(k-2)(n-1)+\sigma(H)$, with \hat{H}-free complement. Note that by definition of \hat{H} we have $\sigma(H)=\sigma(\hat{H})$. Also, since $m_{2} \leq \frac{m k}{k-1}$, we have

$$
m(\hat{H}) \geq m \frac{k(k-2)}{(k-1)^{2}} \geq 2 C \frac{k-2}{k-1}
$$

Thus, if $|\hat{H}| \leq(k-1)^{23}$ we have $G^{\prime} \supset C_{n}$ by the induction hypothesis, whereas otherwise we have $G^{\prime} \supset C_{n}$ by Corollary 3.2. Consequently, we must have statement (ii).

Within each set A_{i}, we apply Lemma 4.2 with $G_{3.2}=G\left[A_{i}\right], H_{3.2}=K_{m_{1}, m_{2}}, M_{3.2}=\left|A_{i}\right| /\left(\left(m_{1}+\right.\right.$ $\left.\left.m_{2}\right) \log 2\right)$ and $\beta_{3.2}=M_{3.2} / 100>40$ (note that also $\left.\beta_{3.2} \geq 10 \log k\right)$ to find a $\left(10, M_{3.2} / 100,\left(m_{1}+\right.\right.$ $\left.m_{2}\right) / 2,2$)-expander H_{i} of order at least $\left|A_{i}\right|-\left(m_{1}+m_{2}\right) / 2 \geq\left|A_{i}\right|-m$.

Suppose that H_{i} and H_{j} are linked (in G) by two disjoint paths for some distinct $i, j \in[k-1]$. Recall that $\left|A_{i}\right| \geq 0.95 n$. Applying Lemma 5.1 to $G\left[A_{i}\right]$, we find an r-adjuster F_{i} for $r \geq 9 m k / 8$ with length between $0.6 n$ and $0.7 n$. Similarly, we may find an adjuster in A_{j} of length between $0.6 n$ and $0.7 n$; however, instead of using it as an adjuster we simply take the longest route to find a cycle C_{j} of that length.

Note that the size of the adjuster and cycle ensures that they intersect H_{i} and H_{j}, respectively, in at least $\left|H_{i}\right|+0.6 n-\left|A_{i}\right| \geq 0.5 n$ vertices. Suppose that the disjoint paths between H_{i} and H_{j} have endpoints x_{1} and x_{2} in H_{i} and endpoints y_{1} and y_{2} in H_{j}. By Lemma 4.6, we may find disjoint sets $B_{1} \ni x_{1}$ and $B_{2} \ni x_{2}$ in $V\left(H_{i}\right)$ of size $\left|A_{i}\right| / 200$ such that every vertex in B_{1} is connected to x_{1} by a path and likewise for B_{2} and x_{2}. We may therefore use Lemma 4.4 with $A_{3.4}=V\left(F_{i}\right) \cap V\left(H_{i}\right), B_{3.4}=B_{1} \cup B_{2}, C_{3.4}=\varnothing$ to give a path from $V\left(F_{i}\right)$ to B_{1} or B_{2}, without loss of generality the former. Extend it to a path from $V\left(F_{1}\right)$ to x_{1} using vertices from B_{1}, and remove vertices from this path, if necessary, to obtain a shortest path P_{1}. This ensures that $\left|V\left(P_{1}\right)\right| \leq m_{1}+m_{2}+1$ since $\overline{G\left[A_{i}\right]}$ is $K_{m_{1}, m_{2}}$-free; note also that P_{1} is disjoint from B_{2}. Next, apply Lemma 4.4 with $A_{3.4}=\left(V\left(F_{i}\right) \cap V\left(H_{i}\right)\right) \backslash V\left(P_{1}\right), B_{3.4}=B_{2}, C_{3.4}=V\left(P_{1}\right)$ to give a disjoint $x_{2}-V\left(F_{i}\right)$ path P_{2}. We can similarly find two disjoint paths from y_{1}, y_{2} to F_{j} in H_{j}, and the union of these with the existing paths between H_{i} and H_{j} give two disjoint paths between the adjuster and the cycle. Since \bar{G} is H-free, each of these paths contains a shortest path of length at most $m k+k$. We apply Lemma 6.3 to merge the adjuster and cycle using these shortest paths, obtaining an adjuster with at least $9 m k / 8-2\left(m_{1}+m_{2}\right) \geq m k+k$ short cycles, of total length ℓ between $1.2 n-2\left(m_{1}+m_{2}\right)>1.19 n$ and $1.4 n+2(m k+k)<1.41 n$. Recall that F_{i} has length at most $0.7 n$, so the adjuster obtained from merging F_{i} and C_{j} contains a section of length at least $\ell-0.7 n \geq 0.49 n>\ell-n$ without short cycles (the part corresponding to C_{j}). We may reduce this section until the total length is between n and $n+m k+k$, since \bar{G} is H-free, and then use the reducing power of the adjuster to obtain a cycle of length exactly n.

Thus, we may assume that no pair H_{i}, H_{j} is linked by two disjoint paths. It follows that for some index i there is a vertex v which separates H_{i} from all other H_{j}. Let A be the component of $G-v$ containing $H_{i}-v$, and let $G^{\prime}=G[A \cup\{v\}]$. Note that $\overline{G^{\prime}}$ is $K_{m_{1}+1, m_{2}+1}$-free, since otherwise we may choose m_{k} vertices from $H_{j}-v$ for each $j \neq i$ together with the vertices of a $K_{m_{1}, m_{2}}$ in $\overline{G^{\prime}-v}$ to give a graph containing H in \bar{G}. Recall that statement (i) of Lemma 6.2 does not apply. It follows that any set $B \subset A$ of size m_{2} has $\left|N_{G}(B) \cup B\right| \geq n$, since otherwise $\overline{G-\left(N_{G}(B) \cup B\right)}$ is not \hat{H}-free, implying that \bar{G} is not H-free. Since also $N_{G^{\prime}}(B) \cup B=N_{G}(B) \cup B$, we have $\left|N_{G^{\prime}}(B) \cup B\right| \geq n$. Thus, for any set $B^{\prime} \subset V\left(G^{\prime}\right)$ of order at least $m_{2}+1$, we have $\left|N_{G^{\prime}}\left(B^{\prime}\right) \cup B^{\prime}\right| \geq n$ (since B^{\prime} contains a set of order m_{2} not including $v)$. Now, using Lemma 5.3 with $G_{4.3}=H_{i}$ and $H_{4.3}=K_{m_{2}, m_{2}}$, we may find a cycle of length at least $10 m_{2}$ in H_{i}. Taking x, y to be two consecutive vertices on this cycle, Lemma 3.4 applies to $G_{2.4}=G^{\prime}$ with $m_{2.4}=m_{2}+1$, and we may find a path of order exactly n between x and y, giving a copy of C_{n}.

Acknowledgements. John Haslegrave is supported by the UK Research and Innovation Future Leaders Fellowship MR/S016325/1. Joseph Hyde is supported by the UK Research and Innovation Future Leaders Fellowship MR/S016325/1 and ERC Advanced Grant 101020255. Jaehoon Kim is supported by the POSCO Science Fellowship of POSCO TJ Park Foundation
and by the KAIX Challenge program of KAIST Advanced Institute for Science-X. Hong Liu is supported by the Institute for Basic Science (IBS-R029-C4) and the UK Research and Innovation Future Leaders Fellowship MR/S016325/1. The authors are grateful to the referee for their careful review.

Conflict of Interest. The authors have no conflict of interest to declare.

References

[1] P. Allen, G. Brightwell and J. Skokan, 'Ramsey-goodness-and otherwise', Combinatorica 33 (2013), 125-160.
[2] B. Bollobás, 'The chromatic number of random graphs', Combinatorica $\mathbf{8}$ (1988), 49-55.
[3] A. Bondy and P. Erdős, 'Ramsey numbers for cycles in graphs', J. Combin. Theory Ser. B 14 (1973), 46-54.
[4] S. Burr, 'Ramsey numbers involving graphs with long suspended paths', J. Lond. Math. Soc. 24 (1981), 405-413.
[5] S. Burr and P. Erdős, 'Generalizations of a Ramsey-theoretic result of Chvátal', J. Graph Theory 7 (1983), 39-51.
[6] Y. Chen, T. C. E. Cheng and Y. Zhang, 'The Ramsey numbers $R\left(C_{m}, K_{7}\right)$ and $R\left(C_{7}, K_{8}\right)$ ', European J. Combin. 29 (2008), 1337-1352.
[7] V. Chvátal, ‘Tree-complete graph Ramsey numbers', J. Graph Theory 1 (1977), 93.
[8] V. Chvátal and F. Harary, 'Generalized Ramsey theory for graphs. III. Small off-diagonal numbers', Pacific J. Math. 41 (1972), 335-345.
[9] D. Conlon, J. Fox and B. Sudakov, 'Recent developments in graph Ramsey theory', in Surveys in combinatorics 2015, Lond. Math. Soc. Lecture Note Ser. 424 (Cambridge University Press, Cambridge, 2015), 49-118.
[10] P. Erdős, 'Some remarks on the theory of graphs', Bull. Amer. Math. Soc. 53 (1947), 292-294.
[11] P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp, ‘The size Ramsey number', Period. Math. Hungar. 9 (1978), 145-161.
[12] P. Erdős and G. Szekeres, 'A combinatorial problem in geometry', Compos. Math. 2 (1935), 463-470.
[13] J. Fox, X. He and Y. Wigderson, 'Ramsey goodness of books revisited', Adv. Comb., to appear. arxiv:2109.09205.
[14] L. Gerencsér and A. Gyárfás, 'On Ramsey-type problems', Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167-170.
[15] I. Gil Fernández, J. Kim, Y. Kim and H. Liu, 'Nested cycles with no geometric crossings', Proc. Amer. Math. Soc., to appear. arxiv:2104.04810.
[16] J. Haslegrave, J. Kim and H. Liu, 'Extremal density for sparse minors and subdivisions', Int. Math. Res. Not. IMRN 2022(2022), 15505-15548.
[17] P. Keevash, E. Long and J. Skokan, 'Cycle-complete Ramsey numbers', Int. Math. Res. Not. IMRN 2021 (2021), 277-302.
[18] J. Kim, H. Liu, M. Sharifzadeh and K. Staden, 'Proof of Komlós's conjecture on Hamiltonian subsets', Proc. Lond. Math. Soc. 115 (2017), 974-1013.
[19] Q. Lin and X. Liu, 'Ramsey numbers involving large books', SIAM J. Discrete Math. 35 (2021), 23-34.
[20] H. Liu and R. Montgomery, 'A proof of Mader's conjecture on large clique subdivisions in C_{4}-free graphs', J. Lond. Math. Soc. 95 (2017), 203-222.
[21] H. Liu and R. Montgomery, 'A solution to Erdős and Hajnal's odd cycle problem', J. Amer. Math. Soc., to appear. arxiv:2010.15802.
[22] L. Moreira, 'Ramsey goodness of clique versus paths in random graphs', SIAM J. Discrete Math. 35 (2021), 2210-2222.
[23] V. Nikiforov, ‘The cycle-complete graph Ramsey numbers', Combin. Probab. Comput. 14 (2005), 349-370.
[24] A. Pokrovskiy and B. Sudakov, 'Ramsey goodness of paths', J. Combin. Theory Ser. B 122 (2017), 384-390.
[25] A. Pokrovskiy and B. Sudakov, 'Ramsey goodness of cycles', SIAM J. Discrete Math. 34 (2020), 1884-1908.
[26] F. P. Ramsey, 'On a problem of formal logic', Proc. Lond. Math. Soc. 30 (1930), 264-286.

[^0]: © The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

