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Abstract

Conditions are derived for the asymptotic normality of a general class of vector-valued
functionals of stationary Boolean models in the d-dimensional Euclidean space, where a
Lindeberg-type central limit theorem for m-dependent random fields, m ∈ N, is applied.
These functionals can be used to construct joint estimators for the vector of specific
intrinsic volumes of the underlying Boolean model. Extensions to functionals of more
general germ–grain models satisfying some mixing and integrability conditions are also
discussed.
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1. Introduction

Consider a stationary random closed set � ⊂ Rd such that � ∩ K belongs to the convex
ring R with probability 1 for any convex and compact test set K ⊂ Rd . Assume that � can
be (indirectly) observed within a bounded observation window W ⊂ Rd . Suppose that this
indirect observation is made by measuring some ‘local’ geometric features,

Y (x) = f ((� − x) ∩ K), x ∈ W � Ǩ, (1.1)

of � within a small scanning window K ⊂ Rd , where ‘�’ denotes Minkowski difference, Ǩ

is the reflection of K , and f : R → R is some real-valued functional possessing the properties
of a valuation (see, e.g. [13, p. 184]). If f is invariant with respect to translations, then
Y (x) = f (� ∩ (K + x)) holds, where K + x can be interpreted as local neighborhood of the
measurement point x. A natural unbiased estimator for the mean µ = E(Y (x)) of the stationary
random field Y = {Y (x), x ∈ Rd} is the weighted average

µ̂ =
∫

W

Y(x)G(W, x) dx, (1.2)

where G(W, x) is a weighting kernel that integrates to 1 over W and vanishes for those x for
which Y (x) is not observable.
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The question to be answered is, what asymptotic properties does the estimator µ̂ have for an
unboundedly increasing sequence of observation windows Wn ↑ Rd , n ∈ N? It is well known
from the general theory of stationary random fields (see, e.g. Section 1.7 of [8, pp. 35–42])
that the estimator given in (1.2), properly normalized, is asymptotically normally distributed
under the assumption that E(|Y (x)|2+δ) < ∞ for some δ > 0 and if additional Rosenblatt-type
mixing conditions on Y are satisfied. Roughly speaking, these conditions ensure that various
mixing rates of Y expressing the dependence between Y (x) and Y (x + t) decrease in order of
|t |−d−ε, as |t | → ∞ and for some ε > 0. Notice that these assumptions are dictated by the
sectioning technique of Bernstein and the classical Lyapunov-form central limit theorem used
in the proofs.

However, in the context of random fields Y as defined in (1.1) and generated by random
closed sets of the form � = ⋃∞

i=1 (Mi + Xi), where {Xi} is a point process of ‘germs’ and
{Mi} is a sequence of random compact ‘grains’, a mixing condition on {Xi} and an integrability
condition on {Mi} can be used to show the asymptotic normality of the estimator µ̂ given in (1.2).
In particular, if {Xi} is a Poisson process or a ‘Poisson-like’ point process with finite range of
correlation, a Lindeberg-type central limit theorem developed in [4] for so-called m-dependent
random fields, m ∈ N, is applicable.

We emphasize that this technique can be used to prove the asymptotic normality of µ̂ for
any conditionally bounded valuation f . Related results for another general class of functionals
of germ–grain models have been derived in [7]. Furthermore, there exist various results of this
sort for particular functionals f , such as the empirical volume fraction, boundary length, and
convexity number; see, e.g. [1], [5], [9], and the references in [10, pp. 30–43].

The paper is organized as follows. Section 2 contains preliminary results. In Section 2.1,
we recall some basic notions from stochastic geometry, such as random closed sets, germ–
grain models, and, in particular, the Boolean model. Then, in Section 2.2, a quite general
class of functionals of stationary random fields is introduced and an upper bound is derived
for the moments of stationary random fields associated with these functionals. In Section 2.3,
conditions for the mean-square consistency of the mean-value estimator µ̂ are given. Some
examples of valuations are discussed in Section 3. The corresponding random fields can be used
to construct joint estimators for the vector of specific intrinsic volumes of stationary random
sets; see [11] and [14]. In Section 4, we consider a Boolean model � = ⋃∞

i=1 (Mi + Xi) with
convex and compact grains. In particular, we show in Section 4.1 that the covariance function
covY (x) admits an integrable upper bound provided that

E(|Mi ⊕ Ǩ|2) < ∞, (1.3)

where ‘⊕’ denotes Minkowski sum and | · | is the d-dimensional Lebesgue measure. This
bound depends on the distribution of the grains Mi ; the dependence is monotone with respect
to inclusion. Using a truncation technique and the Lindeberg-type central limit theorem for
m-dependent random fields, we show in Sections 4.2 and 4.3 that the weighted average µ̂ of
Y over W is asymptotically normally distributed for any unboundedly increasing sequence of
observation windows Wn ↑ Rd that satisfies certain additional regularity conditions. Using
the well-known Cramér–Wold device, this result can be easily extended to a multidimensional
setting.

Conditions for the asymptotic normality of the estimator µ̂ for more general germ–grain
models are discussed in Section 5. Proceeding as in [7], a central limit theorem for β-mixing
random fields given in [6] is applied, together with an upper bound for the β-mixing coefficient
of random measures associated with the germ–grain models. For this theorem, a stronger
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integrability condition is needed, namely E(D2d(1+δ′)(Mi)) < ∞ for some δ′ > 0, where
D(Mi) = sup{|x|, x ∈ Mi} is the ‘radius’ of the grains. Notice that condition (1.3) is fulfilled
if E(D2d(Mi)) < ∞.

2. Mean-value estimators for stationary random fields

We first recall some basic notions from stochastic geometry that will be used in the paper.
Further details can be found in, e.g. [13] and [15]. In the second part of this section, we consider
a class of unbiased and consistent estimators for the mean value of certain stationary random
fields.

2.1. Germ–grain models

Let d ≥ 2 be an arbitrary, fixed integer. For any two sets B, B ′ ⊂ Rd , let B ⊕ B ′ =
{x + y, x ∈ B, y ∈ B ′} be the Minkowski sum of B and B ′ and write B + x = B ⊕ {x} for the
translation of B by the vector x ∈ Rd . Furthermore, consider the reflection B̌ = {−x, x ∈ B} of
B at the origin and denote the Minkowski difference of B and B ′ by B �B ′ = {x : B̌ ′ +x ⊆ B}.

Let B(Rd) be the σ -algebra of Borel sets in Rd and let B0(Rd) ⊂ B(Rd) be the family of
all bounded Borel sets. Furthermore, let F ⊂ B(Rd) denote the family of all closed sets and
K ⊂ F the family of all convex bodies, i.e. convex and compact sets in Rd . For the convex
ring we shall write R. It is the family of all finite unions of sets in K , which are sometimes
also called polyconvex sets. The extended convex ring S is the family of Borel sets B ∈ B(Rd)

such that B ∩K ∈ R holds for any convex body K ∈ K . A random closed set (RACS) � in Rd

is an (A, σF )-measurable mapping from some probability space (�, A, P) into F equipped
with the σ -algebra σF , which is generated by the events {F ∈ F , F ∩ K = ∅}, K ∈ F , with
K compact.

We say that � is stationary if the distribution of the translated RACS � + x is equal to the
distribution of � for any x ∈ Rd . In the following, we consider stationary RACSs � with
realizations from the extended convex ring S, i.e. with � ∩ K ∈ R almost surely for any
K ∈ K . The RACS � is said to be an (independently marked) germ–grain model if it can be
represented in the form

� =
∞⋃
i=1

(Mi + Xi), (2.1)

where the so-called germs Xi form a simple point process X = {Xi} in Rd and the sequence
M = {Mi} of grains Mi is independent of {Xi} and consists of independent copies of a nonempty
compact RACS M0. Notice that the infinite union of RACSs Mi + Xi on the right-hand side
of (2.1) is almost surely closed and different from Rd if the point process X is stationary with
finite intensity λ and if

E(|M0 ⊕ Ǩ|) < ∞ (2.2)

for each K ∈ K . This condition holds, for instance, if E(Dd(M0)) < ∞, where D(B) =
sup{|x|, x ∈ B} denotes the radius (or norm) of a Borel set B ∈ B(Rd) and |x| is the length
of the vector x ∈ Rd . Condition (2.2) and the stationarity of X imply that only finitely many
translated grains Mi + Xi have a nonempty intersection (Mi + Xi) ∩ K with any fixed convex
body K ∈ K . In other words, the random variable

N(� ∩ K) = card{i : (Mi + Xi) ∩ K = ∅} (2.3)

is finite with probability 1 for each K ∈ K , where card(B) denotes the cardinality of the set B.
Let gN(�∩K)(s) = E(sN(�∩K)), s ∈ R, be the generating function of N(� ∩ K).
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If the point process {Xi} of germs is a stationary Poisson process, then the stationary RACS
� defined by formula (2.1) is called a Boolean model. For Boolean models, it is not difficult to
show that the random variable N(�∩K) is Poisson distributed with parameter λ E(|M0 ⊕ Ǩ|);
see, e.g. Section 4.1 of [3, p. 201]. Thus, in this case, the generating function gN(�∩K) is
given by

gN(�∩K)(s) = e(s−1)λ E(|M0⊕Ǩ|), s ∈ R.

This means in particular that gN(�∩K)(s) < ∞ for any s ∈ R if (2.2) is satisfied. Furthermore,
a Boolean model � with nonempty polyconvex grains Mi can be represented as the union set
of a Poisson (particle) process M̃ = {M̃i} on R, where M̃i = Mi + Xi ; in other words, we
have � = ⋃∞

i=1 M̃i (see, e.g. [13, Section 4.4, p. 151]).

2.2. Random fields associated with germ–grain models

Let the functional f : R → R be a valuation on the convex ring R. This means that
f (∅) = 0 and that f is measurable and additive, i.e.

f (K1 ∪ K2) = f (K1) + f (K2) − f (K1 ∩ K2)

for any K1, K2 ∈ R. Regarding the value f (K1 ∪ · · · ∪ Kk) for the union of k ≥ 2 sets
K1, . . . , Kk from R, the general inclusion-exclusion formula

f (K1 ∪ · · · ∪ Kk) =
k∑

i=1

(−1)i−1
∑

j1<···<ji

f (Kj1 ∩ · · · ∩ Kji
) (2.4)

easily follows from the additivity of f . Furthermore, we assume that f is conditionally bounded
on K , that is, for any pair K, K ′ ∈ K with K ′ ⊆ K , the inequality

|f (K ′)| ≤ c(K)

holds for some finite bound c(K). For any fixed convex body K ∈ K and for any RACS �,
consider the random field Y = {Y (x), x ∈ Rd} given by

Y (x) = f ((� − x) ∩ K), x ∈ Rd . (2.5)

If � is stationary then the random field Y is stationary, i.e. its finite-dimensional distributions
are invariant with respect to translations. In particular, we have Y (x)

d= Y (o) for any x ∈ Rd ,
where ‘

d=’ denotes equality in distribution and o ∈ Rd is the origin. Throughout this paper, we
assume that the field Y given by (2.5) is of second order, which means that

E(Y 2(x)) < ∞, x ∈ Rd .

This condition implies that the covariance covY (x) = cov(Y (o), Y (x)) is well defined for any
x ∈ Rd . Notice that a sufficient condition for the existence of the second moment of Y can
be provided in terms of the generating function gN(�∩K)(s) of the random variable N(� ∩ K)

defined in (2.3).

Lemma 2.1. Let � be a germ–grain model with M0 ∈ R such that the minimal number of
convex components of M0 is bounded by some constant n0 < ∞. Then

E(|Yp(x)|) ≤ cp(K)gN(�∩K)(2
n0p)

for any p > 0 and x ∈ Rd , where c(K) is an upper bound for |f (K ′)| for all K ′ ∈ K with
K ′ ⊆ K .
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Proof. We prove the assertion only for the special case n0 = 1, i.e. we assume that M0 ∈ K .
For any integer m ≥ 0, we let Im(x) = {N((� − x) ∩ K) = m} and pN(�∩K)(m) = P(Im(o)).
Then, using the properties of valuations, we obtain

E|Yp(x)| =
∞∑

m=1

E

(∣∣∣∣f
( m⋃

i=1

(Mi + Xi − x) ∩ K

)∣∣∣∣
p ∣∣∣∣ Im(x)

)
pN(�∩K)(m)

=
∞∑

m=1

E

(∣∣∣∣
m∑

k=1

(−1)k−1
∑

i1<···<ik

f ((Mi1 + Xi1 − x) ∩ · · ·
∩ (Mik + Xik − x) ∩ K)

∣∣∣∣
p ∣∣∣∣ Im(x)

)
pN(�∩K)(m)

≤
∞∑

m=0

( m∑
k=0

(
m

k

)
c(K)

)p

pN(�∩K)(m)

= cp(K)

∞∑
m=0

2mppN(�∩K)(m)

= cp(K)gN(�∩K)(2
p),

where the inequality is due to the conditional boundedness of f . The proof of the general case
is similar and, therefore, omitted.

2.3. Unbiased and consistent estimation of the mean

Consider an unboundedly increasing sequence {Wn} of bounded Borel sets Wn ⊂ Rd with

lim
n→∞ |Wn| = ∞ and lim

n→∞
|∂Wn ⊕ Br(o)|

|Wn| = 0 for any r > 0. (2.6)

Here, Br(x) = {y ∈ Rd : |y − x| ≤ r} is the closed ball in Rd centered at x ∈ Rd with radius
r > 0, and ∂B is the boundary of a Borel set B. Notice that (2.6) implies

lim
n→∞

|Wn ⊕ Br(o)|
|Wn| = lim

n→∞
|Wn � Br(o)|

|Wn| = 1 for any r > 0. (2.7)

Thus, without loss of generality, we can assume that |Wn�Ǩ| > 0 for each n ≥ 1. Furthermore,
let G : B0(Rd) × Rd → [0, ∞) be some nonnegative function Borel measurable in the second
component such that, for each n ≥ 1,

G(Wn, x) = 0 if x ∈ Rd \ (Wn � Ǩ) and
∫

Wn

G(Wn, x) dx = 1. (2.8)

Now assume that the RACS � is stationary. It then follows from Fubini’s theorem that

µ̂n =
∫

Wn

Y (x)G(Wn, x) dx

is an unbiased estimator for the expectation µ = E(Y (o)), where Y (x) is given by (2.5).
Moreover, the estimation variance var(µ̂n) can be determined as follows.
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Lemma 2.2. For any n ≥ 1,

var(µ̂n) =
∫

Rd

covY (x)RWn(x) dx,

where RWn(x) = ∫
Rd G(Wn, y)G(Wn, x + y) dy.

Proof. We have

var(µ̂n) = E

(∫
Wn

(Y (u) − µ)G(Wn, u) du

∫
Wn

(Y (v) − µ)G(Wn, v) dv

)

=
∫

Wn

∫
Wn

E((Y (o) − µ)(Y (v − u) − µ))G(Wn, u)G(Wn, v) dv du

=
∫

Wn⊕W̌n

covY (x)

∫
Wn∩(Wn−x)

G(Wn, y)G(Wn, x + y) dy dx

=
∫

Rd

covY (x)RWn(x) dx,

where the last equality follows from the fact that Wn ∩ (Wn − x) = ∅ for any x /∈ Wn ⊕ W̌n.

To determine the asymptotic behavior of the estimation variance var(µ̂n), we need some
further conditions on the weighting function G : B0(Rd) × Rd → [0, ∞). Besides (2.8), we
additionally assume that there exist constants c1, c2 < ∞ such that

sup
y∈Wn

G(Wn, y) ≤ c1

|Wn| for any n ≥ 1,

lim
n→∞ |Wn|RWn(x) = c2 for any x ∈ Rd .

(2.9)

Notice that (2.8) and (2.9) hold, for example, if G(Wn, x) = 1(x ∈ Wn � Ǩ)/|Wn � Ǩ| for
any n ≥ 1 and x ∈ Rd , where 1(B) denotes the indicator function of event B. In this case,
from (2.7) we have c1 = 2 and c2 = 1. Furthermore, we assume that the covariance covY (x)

of the stationary random field Y is integrable, i.e. that

∫
Rd

|covY (x)| dx < ∞. (2.10)

Lemma 2.3. Let the conditions (2.6), (2.8), (2.9), and (2.10) be fulfilled. Then

lim
n→∞ |Wn| var(µ̂n) = c2

∫
Rd

covY (x) dx.

Proof. Conditions (2.8) and (2.9) immediately imply that |Wn|RWn(x) ≤ c1 holds for any
x ∈ Rd and n ≥ 1. Thus, using Lemma 2.2 and condition (2.10), the assertion follows from
the Lebesgue dominated convergence theorem.

Since limn→∞ |Wn| = ∞, Lemma 2.3 implies, in particular, that limn→∞ var(µ̂n) = 0,
i.e. that the unbiased estimator µ̂n is also mean-square consistent for µ.
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3. Examples

In this section, we briefly discuss some examples of stationary random fields that belong
to the general class of random fields Y = {Y (x), x ∈ Rd} introduced in (2.5). They can be
used to construct unbiased and mean-square consistent estimators for various morphological
characteristics of stationary RACS. In the sequel, we assume that {Wn} is an arbitrary sequence
of bounded Borel sets that satisfies (2.6), with |Wn| > 0 for any n ≥ 1.

3.1. Volume fraction

Let � be a stationary RACS in Rd with volume fraction p = P(o ∈ �), and let Zd =
{Zd(x), x ∈ Rd} be the random field given by Zd(x) = 1(x ∈ �). Then

p̂n = 1

|Wn|
∫

Wn

Zd(x) dx (3.1)

is an unbiased estimator for p. Since 1(x ∈ �) = 1((� − x) ∩ {o} = ∅) for any x ∈ Rd , it is
easy to see that Zd is of the form considered in (2.5) with K = {o} and the (bounded) valuation
f : R → R given by f (K ′) = 1(K ′ = ∅). Clearly, the random field Zd is of second order. If
� = ⋃∞

i=1(Mi + Xi) is a Boolean model with E(|M0|2) < ∞, then it is well known that the
covariance covZd

(x) of Zd is integrable; see, e.g. the remarks following Corollary 4.2 of [1].
According to Lemma 2.3, the unbiased estimator p̂n is mean-square consistent for p.

3.2. Specific intrinsic volumes

Let � be a stationary RACS such that � ∈ S holds with probability 1. Then, for each
i = 0, . . . , d, the intrinsic volume Vi(� ∩ K) of � ∩ K is well defined for any convex body
K ∈ K , where, for instance, Vd(� ∩ K) = |� ∩ K| is the usual volume, V0(� ∩ K) is the
Euler number of the set � ∩ K , which is defined by the inclusion-exclusion formula (2.4), and
V0(M) = 1(M = ∅), M ∈ K; see also [12].

Assume that E(2Ñ(�∩[0,1]d )) < ∞, where Ñ(B) denotes the minimal number of convex
components of the polyconvex set B ∈ R. Then, for any sequence {Kn} of convex bodies
Kn = nK0, with K0 ∈ K such that |K0| > 0 and o ∈ int(K0), the limits

V i(�) = lim
n→∞

E(Vi(� ∩ Kn))

|Kn| , i = 0, . . . , d,

exist and are called the specific intrinsic volumes of �; see, e.g. [13, Section 5.1, pp. 185–187].
Estimators of several types for some specific intrinsic volumes have been considered in the
literature. Two indirect estimation methods were proposed in [11] and [14], respectively. These
have the advantage that joint estimators can be constructed for the vector (V 0(�), . . . , V d(�))

of all d + 1 specific intrinsic volumes.
The construction principle considered in [11] (see Section 2.3 thereof) is based on Steiner’s

formula and makes use of the index of polyconvex sets. The random field used therein is defined
as follows. For i = 0, . . . , d − 1, let ri > 0 be any positive number and let the random field
Zi = {Zi(x), x ∈ Rd} be given by

Zi(x) =
∑

q∈∂((�−x)∩Bri
(o)), q =0

J ((� − x) ∩ Bri (o), q, o), (3.2)

where the functional

J (K, q, x) = 1(q ∈ K)
(

1 − lim
δ→+0

lim
ε→+0

V0(K ∩ B|x−q|−ε(x) ∩ Bδ(q))
)
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is called the index of K ∈ R at x ∈ Rd . It is not difficult to see that Zi is of the form considered
in (2.5) with K = Bri (o) and the valuation f : R → R given by

f (K ′) =
∑

q∈∂K ′, q =0

J (K ′, q, o).

Here, the functional f is bounded on K , with f (K ′) = 1(o /∈ K ′, K ′ = ∅) for any K ′ ∈ K .
If the covariance covZi

(x) of Zi is integrable for any i = 0, . . . , d, it can be concluded from
Lemma 2.3 that

µ̂n,i = |Wn � Bri (o)|−1
∫

Wn

Zi(x) 1(x ∈ Wn � Bri (o)) dx

is an unbiased estimator for µi = E(Zi(o)) that is mean-square consistent provided that
{Wn} satisfies (2.6). Then, assuming that ri = ri′ for any i = i′, the random vector v̂n =
A−1

r0,...,rd−1
(µ̂n,0, . . . , µ̂n,d−1, p̂n)

�, where p̂n is the empirical volume fraction introduced
in (3.1) and Ar0,...,rd−1 is a regular matrix of Vandermond type (see [11]), provides an unbiased,
mean-square consistent estimator for (V 0(�), . . . , V d(�)).

The estimator proposed in [14] employs the principal kinematic formula. Here, the con-
struction principle is as follows. For i = 0, . . . , d, introduce the random fields Z̃i = {Z̃i(x),

x ∈ Rd} with Z̃i(x) = V0((�−x)∩Bri (o)). Each Z̃i is of the form (2.5) with f (K ′) = V0(K
′),

K ′ ∈ R, and K = Bri (0), where f is bounded on K with f (K ′) = 1(K ′ = ∅) for all K ′ ∈ K .
For any d + 1 pairwise-different positive radii r0, . . . , rd , define

µ̃n,i =
∫

Wn�Bri
(o)

Z̃i(x)

|Wn � Bri (o)| dx

and

Ãr0,...,rd =

⎛
⎜⎜⎜⎜⎝

rd
0 κd rd−1

0 κd−1 · · · r2
0 κ2 r0κ1 1

rd
1 κd rd−1

1 κd−1 · · · r2
1 κ2 r1κ1 1

...
...

. . .
...

...
...

rd
d κd rd−1

d κd−1 · · · r2
d κ2 rdκ1 1

⎞
⎟⎟⎟⎟⎠ ,

where κi denotes the volume of the unit ball in Ri , i = 1, . . . , d. Then the random vec-
tor ṽn = Ã−1

r0,...,rd
(µ̃n,0, . . . , µ̃n,d)� is an unbiased, mean-square consistent estimator for

(V 0(�), . . . , V d(�)).

4. Asymptotic normality for functionals of Boolean models

Let � = ⋃∞
i=1(Mi + Xi) be a Boolean model with compact and convex typical grain

M0 ∈ K ′ = K \ {∅}. The aim of this section is to prove asymptotic normality with respect
to µ̂n = ∫

Wn
Y (x)G(Wn, x) dx, which is an estimator for the mean value, µ, of the random

field Y introduced in (2.5). We thus assume that the conditions (2.6), (2.8), (2.9), and (2.10)
are fulfilled. More precisely, by replacing (2.10) by a moment condition on M0, we show that√|Wn|(µ̂n − µ)

d−→ N (0, σ 2), n → ∞, (4.1)

where ‘
d−→’ denotes convergence in distribution and N (0, σ 2) is a Gaussian random variable

with mean 0 and variance σ 2 = c2
∫
Rd covY (x) dx.
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We concentrate on the case of the Boolean model for two reasons. First, the integrability of
the covariance covY (x) of random field Y is generally quite tractable in this case; see Lemma 4.1.
Second, we can make use of a central limit theorem for m-dependent random fields, from [4],
without imposing further conditions. A corresponding central limit theorem for more general
germ–grain models is considered in Section 5.

4.1. Integrability of the covariance

The following lemma yields a simple condition sufficient for absolute integrability of the
covariance covY (x), x ∈ Rd .

Lemma 4.1. Assume that E(|M0 ⊕ Ǩ|2) < ∞. Then (2.10) holds.

Proof. For better readability, we use the representation of � as the set-theoretic union of the
generating Poisson particle process M̃ = {M̃i} in K ′ with M̃i = Mi + Xi , and let 
 denote
the intensity measure of M̃ . By Campbell’s theorem for independently marked point processes
on Rd (see, e.g. Section 3 of [13, pp. 66, 93]), the following representation for 
 holds for any
set B ⊆ K with B ∈ σF , where Q denotes the distribution of the typical grain M0:


(B) = λ

∫
K

∫
Rd

1((M0 + y) ∈ B) dy dQ(M0). (4.2)

Now, let K∗
x = KK ∩ KK+x , with KK = {K ′ ∈ K : K ′ ∩ K = ∅} for any set K ∈ K ′, and

let B � B ′ = (B ∪ B ′) \ (B ∩ B ′) be the symmetric difference between any two sets B and B ′.
Considering the event A = {M̃(K∗

x ) > 0} and its complement Ac, where M̃(B) is the number
of particles of M̃ in a set B ⊆ K , we can write

covY (x) = E(Y (o)(Y (x) − µ)) = E(Y (o) 1(A)(Y (x) − µ)) + E(Y (o) 1(Ac)(Y (x) − µ)).

Using arguments similar to those in the proof of Lemma 2.1, upper bounds for the absolute
values of the summands in the above decomposition of covY (x) can be deduced in the following
way. We have

|E(Y (o) 1(A)(Y (x) − µ))| ≤ c2(K) E(2M̃(KK)+M̃(KK+x) 1(A)) + c(K)|µ| E(2M̃(KK) 1(A))

= c2(K) E(2M̃(KK�KK+x)) E(22M̃(K∗
x ) 1(A))

+ c(K)|µ| E(2M̃(KK\K∗
x )) E(2M̃(K∗

x ) 1(A))

≤ 2c2(K) E(2M̃(KK))2 E(4M̃(K∗
x ) 1(A)),

since the random variables 2M̃(KK�KK+x) and 2M̃(KK\K∗
x ) are independent of 4M̃(K∗

x ) 1(A),
where we have employed Lemma 2.1 and the stationarity of M̃ . Now consider the second
summand of the representation of cov(x), and define YB(x) = f (

⋃
{i : M̃i∈B}(M̃i − x) ∩ K)

for any B ⊆ K . From the properties of the valuation f , it follows that Y (o) 1(Ac) =
YKK\K∗

x
(o) 1(Ac) and Y (x) 1(Ac) = YKK+x\K∗

x
(x) 1(Ac), where YKK\K∗

x
(o), YKK+x\K∗

x
(x),

and 1(Ac) are mutually independent. Hence, we have

|E(Y (o) 1(Ac)(Y (x) − µ))| = |E(YKK\K∗
x
(o) 1(Ac)(YKK+x\K∗

x
(x) − µ))|

= |E(Y (o) 1(Ac))| |E(YKK+x\K∗
x
(x) − µ)|

= |E(Y (o) 1(Ac))| |E((YKK+x\K∗
x
(x) − Y (x)) 1(A))|

≤ c(K) E(|Y (o)|) E(2M̃(KK))[E(1(A)) + E(2M̃(K∗
x ) 1(A))],
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where the inequality follows as before. Notice that E(sM̃(KK)) = e(s−1)
(KK) < ∞ for any
s ∈ R, since 
(KK) = λ E(|M0 ⊕ Ǩ|) < ∞ by condition (2.2) and (4.2). Thus, it suffices
to show that E(4M̃(K∗

x ) 1(A)) is integrable with respect to x ∈ Rd . Observe that, since M̃ is
Poisson,

E(4M̃(K∗
x ) 1(A)) = E(4M̃(K∗

x ))−E(1(Ac)) = e3
(K∗
x )(1−e−4
(K∗

x )) ≤ 4e3λE(|M0⊕Ǩ|)
(K∗
x ),

where we have used the estimate 1 − e−s ≤ s for any s ≥ 0 to obtain the latter inequality.
By virtue of Campbell’s formula and Fubini’s formula, we can finally conclude that

∫
Rd


(K∗
x ) dx =

∫
Rd

E

( ∞∑
i=1

1((Mi + Xi) ∩ K = ∅, (Mi + Xi) ∩ (K + x) = ∅)

)
dx

=
∫

Rd

λ E

(∫
Rd

1((M0 + y) ∩ K = ∅, (M0 + y) ∩ (K + x) = ∅) dy

)
dx

= λ E

(∫
Rd

∫
Rd

1(y ∈ (M̌0 ⊕ K)) 1((y − x) ∈ (M̌0 ⊕ K)) dy dx

)
= λ E(|M̌0 ⊕ K|2) = λ E(|M0 ⊕ Ǩ|2) < ∞.

Note that the proof of Lemma 4.1 provides an integrable upper bound h(x) ≡ h(x, M0)

for |covY (x)| that depends on the distribution of the typical grain M0. This dependence
is monotone with respect to set inclusion. That is, if M

(1)
0 ⊆ M

(2)
0 then with probability 1

h(x, M
(1)
0 ) ≤ h(x, M

(2)
0 ) for any x ∈ Rd .

4.2. Truncated germ–grain models

Let the conditions (2.6), (2.8), and (2.9) be fulfilled and assume that E(|M0 ⊕ Ǩ|2) < ∞.
To prove the central limit theorem (4.1), we approximate the random field Y corresponding to
� by random fields Yn that are induced by germ–grain models �n with truncated grains. These
are chosen in the following way. For any n ≥ 1, let An = [−an, an]d for some an > 0 such
that limn→∞ an = ∞. Introduce the auxiliary germ–grain model �n defined by

�n =
∞⋃
i=1

(Mn,i + Xi),

where Mn,i = Mi ∩ An ∈ K for any i, n ∈ N. Accordingly, define the random field
Yn = {Yn(x), x ∈ Rd} by Yn(x) = f ((�n − x) ∩ K), and let µn = E(Yn(o)) and µ̂′

n =∫
Wn

Yn(x)G(Wn, x) dx.

Lemma 4.2. The random fields Y and Yn are of second order. Moreover, Yn(x) converges in
mean square to Y (x) as n → ∞, i.e. limn→∞ E(|Y (x) − Yn(x)|2) = 0 for all x ∈ Rd .

Proof. Due to stationarity, we can assume that x = o. Since gN(�n∩K)(4) ≤ gN(�∩K)(4) <

∞, the random fields Y and Yn are both of second order, by Lemma 2.1. To prove the second
assertion, we let

N|An(� ∩ K) = card{i : (Mi + Xi) ∩ K = ∅, K � (An + Xi)}.
Then, using arguments similar to those in the proof of Lemma 2.1, we have

E(|Y (o) − Yn(o)|2) ≤ 4c2(K) E(22N(�∩K) 1(N|An(� ∩ K) > 0)).
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Since E(22N(�∩K)) = e3λ E(|M0⊕Ǩ|) < ∞, it now suffices to show that

lim
n→∞ P(N|An(� ∩ K) > 0) = 0.

Campbell’s formula and Fubini’s theorem yield

P(N|An(� ∩ K) > 0) ≤ E(N|An(� ∩ K))

= λ E

(∫
Rd

1((M0 + y) ∩ K = ∅, K � (An + y)) dy

)

≤ λ E
∫

Rd

1(y ∈ (M0 ⊕ Ǩ)) 1(y /∈ (An � Ǩ)) dy

≤ λ E
∫

Rd

1(y ∈ (M0 ⊕ Ǩ)) 1(|y| > an − D(K)) dy

for any n large enough that an − D(K) > 0. By the dominated convergence theorem, the
final expression on the right-hand side converges to 0 as n → ∞, since limn→∞ an = ∞ and
E(|M0 ⊕ Ǩ|) < ∞.

Next, we show that the asymptotic variance of the estimator µ̂′
n = ∫

Wn
Yn(x)G(Wn, x) dx

of µn is equal to the asymptotic variance of the estimator µ̂n = ∫
Wn

Y (x)G(Wn, x) dx of the
mean of Y .

Lemma 4.3. The covariance covYn(x) of the stationary random field Yn is integrable and

lim
n→∞ |Wn| var(µ̂′

n) = c2

∫
Rd

covY (x) dx, (4.3)

where the constant c2 > 0 is as defined in (2.9).

Proof. The integrability of covYn(x) immediately follows from Lemma 4.1. By Lemma 2.2,
we have |Wn| var(µ̂′

n) = ∫
Rd covYn(x)|Wn|RWn(x) dx, where limn→∞ |Wn|RWn(x) = c2

by (2.9). As mentioned above, there exists an integrable function h : Rd × K → R+ such
that |covYn(x)| ≤ h(x, M0 ∩ An) ≤ h(x, M0) for any x ∈ Rd and n ∈ N. Together with (2.9),
this implies that |covYn(x)| |Wn|RWn(x) ≤ c1h(x, M0) for all x ∈ Rd . Furthermore, we have
limn→∞ covYn(x) = covY (x), since

|covYn(x) − covY (x)| ≤ |E(Yn(o)Yn(x)) − E(Y (o)Y (x))| + |µ2
n − µ2|

= |E((Yn(o) − Y (o))Yn(x)) + E((Yn(x) − Y (x))Y (o))| + |µ2
n − µ2|

≤ E((Yn(o) − Y (o))2)1/2[E(Y 2
n (o))1/2 + E(Y 2(o))1/2] + |µ2

n − µ2|,
with limn→∞ E((Yn(o)−Y (o))2) = 0 and limn→∞ |µ2

n−µ2| = 0 by Lemma 4.2. Furthermore,
E(Y 2

n (o)) and E(Y 2(o)) are uniformly bounded in n. Consequently, the limit in (4.3) follows
from the dominated convergence theorem.

Let ‖z‖ = max{|zi |, i = 1, . . . , d} for any z = (z1, . . . , zd) ∈ Zd , and let m > 0 be an
arbitrary integer. A family of random variables {Zz, z ∈ Zd} is called an m-dependent random
field if (Zz)z∈U and (Zz)z∈U ′ are independent random vectors for any finite sets U, U ′ ⊂ Zd

with inf{‖z − z′‖, z ∈ U, z′ ∈ U ′} > m. Any stationary random field indexed over Zd that
satisfies an appropriate β-mixing condition is m-dependent; see, e.g. Section 1.3.1 of [2, p. 17].

The following central limit theorem for µ̂′
n is closely related to the Lindeberg-type central

limit theorem for m-dependent random fields presented in Theorem 2 of [4].

https://doi.org/10.1239/aap/1143936141 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936141


Central limit theorems SGSA • 87

Lemma 4.4. Let {mn, n ≥ 1} be an arbitrary sequence of positive integers such that mn → ∞,
and let {Un, n ≥ 1} be a sequence of finite subsets of Zd with limn→∞ card(Un) = ∞. For
each n ≥ 1, let {Zn,z, z ∈ Zd} be an mn-dependent random field with E(Zn,z) = 0 for any
z ∈ Un and E(S∗

n)2 = σ 2
n → σ 2 as n → ∞, where S∗

n = ∑
z∈Un

Zn,z. If there exists a constant
c > 0 such that ∑

z∈Un

E(Z2
n,z) ≤ c (4.4)

for any n ≥ 1, and if

lim
n→∞ m2d

n

∑
z∈Un

E(Z2
n,z 1(|Znz| ≥ εm−2d

n )) = 0 (4.5)

for any ε > 0, then S∗
n

d−→ N (0, σ 2) as n → ∞.

The proof of Lemma 4.4 for σ 2
n = 1 can be found in, e.g. Section 3 of [4] and extended

easily to the case in which limn→∞ σ 2
n = σ 2 < ∞.

Lemma 4.5. If the truncation sequence {an} satisfies

lim
n→∞ an = ∞ and lim

n→∞
a

4d(1+δ)/δ
n

|Wn| = 0 (4.6)

for some δ > 0, then the random variables S′
n = √|Wn|(µ̂′

n −µn) are asymptotically normally
distributed, i.e.

S′
n

d−→ N (0, σ 2) as n → ∞,

where σ 2 = c2
∫
Rd covY (x) dx with c2 as defined in (2.9).

Proof. Let [z, z + e) = [z1, z1 + 1) × · · · × [zd, zd + 1) for z ∈ Zd , and consider the sets
Un = {z ∈ Zd : [z, z + e) ⊆ Wn} and W−

n = ⋃
z∈Un

[z, z + e). Furthermore, decompose S′
n

into S′
n = S∗

n + S̃n, with

S∗
n = √|Wn|

∫
W−

n

(Yn(x) − µn)G(Wn, x) dx,

S̃n = √|Wn|
∫

Wn\W−
n

(Yn(x) − µn)G(Wn, x) dx.

Condition (2.9) and the integrability of covYn(x) imply that

lim
n→∞ E(S̃2

n)

= lim
n→∞

∫
Wn\W−

n

∫
Wn\W−

n

|Wn| E((Yn(x) − µn)(Yn(y) − µn))G(Wn, x)G(Wn, y) dx dy

= lim
n→∞

∫
Rd

covYn(x)|Wn|
( ∫

(Wn\W−
n )∩((Wn\W−

n )−x)

G(Wn, y) G(Wn, x + y) dy

)
dx

≤ lim
n→∞

c2
1|Wn \ W−

n |
|Wn|

∫
Rd

h(x) dx

≤ c lim
n→∞

|∂Wn ⊕ B2
√

d(o)|
|Wn| = 0
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for some constant c > 0, where the last equality follows from (2.6). Hence, the second
component in the decomposition of S′

n converges to 0 in mean square. Using Slutsky’s theorem,
it is sufficient to show that

S∗
n

d−→ N (0, σ 2) as n → ∞.

Hence, we apply Lemma 4.4 to S∗
n = ∑

z∈Un
Zn,z, where

Zn,z =
⎧⎨
⎩

√|Wn|
∫

[z,z+e)

(Yn(x) − µn)G(Wn, x) dx, z ∈ Un,

0, otherwise.
(4.7)

It is not difficult to see that the family of random variables {Zn,z, z ∈ Zd} given in (4.7) forms
an mn-dependent random field for any mn ≥ 2(an +D(K)). By the definition of Zn,z, we have
E(Zn,z) = 0 for any z ∈ Un. Furthermore, we have

lim
n→∞ E((S∗

n)2) = σ 2

by Lemma 4.3 and since, as shown above, E(S̃2
n) → 0. In order to complete the proof, it remains

to show that conditions (4.4) and (4.5) are fulfilled. By using Fubini’s theorem and (2.9), we
obtain

∑
z∈Un

E(Z2
n,z) ≤

∑
z∈Un

c2
1

|Wn|
∫

[z,z+e)

∫
[z,z+e)

|covYn(x − y)| dx dy

≤
∑
z∈Un

c2
1 var(Yn(o))

|Wn|

= c2
1 var(Yn(o))

|W−
n |

|Wn|
≤ c,

for all sufficiently large n and some constant c < ∞, where the uniform bound provided by the
final inequality follows from the facts that var(Yn(o)) ≤ h(o) < ∞ and |W−

n | / |Wn| ≤ 1 for
any n ≥ 1. Thus, (4.4) holds. Because of the stationarity of �n, the random variables

Z̃n,z =
∫

[z,z+e)

|Yn(x) − µn|√|Wn|
dx, z ∈ Un,

are identically distributed. By the inequality in (2.9), we also have |Zn,z| ≤ c1Z̃n,z. This yields
the following estimates for any δ > 0, where Ẑn,o = √|Wn|Z̃n,o:

m2d
n

∑
z∈Un

E(Z2
n,z 1(m2d

n |Zn,z| ≥ ε)) ≤ m2d
n |W−

n |c2
1 E

(
Z̃2

n,o 1
(

Z̃δ
n,o ≥ εδ

cδ
1m

2dδ
n

))

≤ c2+δ
1

εδ
m2d(1+δ)

n |W−
n | E(Z̃2+δ

n,o )

≤ c2+δ
1

εδ

(
m

4d(1+δ)/δ
n

|Wn|
)δ/2 |W−

n |
|Wn| E(Ẑ2+δ

n,o ). (4.8)
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Since mn ≥ 2(an +D(K)), the second factor of the latter expression converges to 0 as n → ∞
if (4.6) holds for some δ > 0. The remaining factors of (4.8) are uniformly bounded in n,
because |W−

n | / |Wn| ≤ 1 and

E(Ẑ2+δ
no )1/(2+δ) ≤ E

((∫
[o,e)

(|Yn(x)| + |µn|) dx

)2+δ)1/(2+δ)

≤ E

(∫
[o,e)

|Yn(x)|2+δ dx

)1/(2+δ)

+ |µn|

≤ c(K)gN(�∩K)(2
2+δ)1/(2+δ) + c(K)gN(�∩K)(2)

< ∞
for any n ≥ 1. Thus, condition (4.5) of Lemma 4.4 is fulfilled.

Notice that condition (4.6) of Lemma 4.5 is satisfied, for example, if the truncation sequence
{an} is given by an = r(Wn)

η, where η < δ/(4(1 + δ)) and r(Wn) denotes the radius of the
largest disc that can be inscribed in Wn.

4.3. Asymptotic normality of mean-value estimators

The asymptotic normality proven in Lemma 4.5 for the mean-value estimator associated with
the truncated germ–grain model implies an equivalent statement for the original functional.

Theorem 4.1. Let conditions (2.6), (2.8), and (2.9) be fulfilled and assume that

E(|M0 ⊕ Ǩ|2) < ∞.

Then √|Wn|(µ̂n − µ)
d−→ N (0, σ 2) as n → ∞,

for σ 2 = c2
∫
Rd covY (x) dx with c2 as defined in (2.9).

Proof. Under the above assumptions, Lemma 4.5 guarantees that S′
n

d−→ N (0, σ 2) as
n → ∞, provided that the truncation sequence {an} satisfies the imposed conditions. Moreover,
by settingSn = √|Wn| (µ̂n−µ), we see that the sequence of random variablesSn−S′

n converges
to 0 in mean square as n → ∞ for any truncation sequence {an} with limn→∞ an = ∞.
This assertion follows directly from Lemmas 2.3, 4.2, and 4.3 together with the fact that
E((Y (o) − µ)(Yn(x) − µn)) ≤ h(x) for h(x) ∈ L1(Rd), as derived in the proof of Lemma 4.1.
An application of Slutsky’s theorem completes the proof.

By using arguments similar to those in the one-dimensional setting, we can easily extend
Theorem 4.1 to the multivariate case. For this, choose sets Ki ∈ K , valuations fi : R → R,
and random fields Yi = {fi((� − x) ∩ Ki), x ∈ Rd} for i = 1, . . . , k, which are defined on
the basis of the same stationary RACS �. In addition, let Gi(Wn, ·), i = 1, . . . , k, be weight
functions satisfying the conditions

Gi(Wn, x) = 0 if x ∈ Rd \ (Wn � Ǩi),

∫
Wn

Gi(Wn, x) dx = 1, (4.9)

sup
y∈Wn

Gi(Wn, y) ≤ c1

|Wn| for all n ≥ 1, lim
n→∞ |Wn|RWn(ij)(x) = ci,j for all x ∈ Rd ,

(4.10)
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where c1, ci,j < ∞ are some constants and

RWn(ij)(x) =
∫

Rd

Gi(Wn, y)Gj (Wn, x + y) dy.

For each i = 1, . . . , k, define µi = E(Yi(o)) and µ̂n,i = ∫
Wn

Yi(x) Gi(Wn, x) dx. Then, as in
Lemma 2.2, we see that the cross-covariances cov(µ̂n,i , µ̂n,j ) are given by

cov(µ̂n,i , µ̂n,j ) =
∫

Rd

cov(Yi(o), Yj (x)) RWn(ij)(x) dx.

As in Lemmas 2.3 and 4.1, the limits

σi,j = lim
n→∞ |Wn| cov(µ̂n,i , µ̂n,j )

exist and are given by

σi,j = ci,j

∫
Rd

cov(Yi(o), Yj (x)) dx (4.11)

for any i, j = 1, . . . , k, provided that E(|M0 ⊕ Ǩi |2) < ∞. We are now in a position to
formulate a multidimensional analogue of Theorem 4.1.

Theorem 4.2. Let the conditions (2.6), (4.9), and (4.10) be fulfilled and assume that

E(|M0 ⊕ Ǩi |2) < ∞ for each i = 1, . . . , k.

Then ⎛
⎜⎝

√|Wn|(µ̂n,1 − µ1)
...√|Wn|(µ̂n,k − µk)

⎞
⎟⎠ d−→ Nk(o, �), n → ∞,

where Nk(o, �) is a k-dimensional Gaussian random vector with zero vector mean and
covariance matrix � = (σi,j ) whose entries are defined by (4.11).

Proof. By the well-known Cramér–Wold device, the assertion is true if and only if, for all
t ∈ Rk \ {o},

√|Wn|
k∑

i=1

ti (µ̂n,i − µi) = √|Wn|
∫

Wn

k∑
i=1

ti (Yi(x) − µi)Gi(Wn, x) dx
d−→ N (0, σ 2),

where σ 2 = t�� t . The above convergence can be proven analogously to Theorem 4.1.

5. Asymptotic normality for β-mixing random measures

In the previous section, we considered germ–grain models driven by a Poisson point process.
Now we show how the above results can be extended to a more general setting in which we do
not assume that the point process {Xi} of germs is necessarily Poisson, but rather that it satisfies
some mixing condition.

Let us begin by recalling some basic notions from mixing; see, e.g. [2] for further details.
Consider the probability space (�, A, P) and let A1, A2 ⊂ A be two σ -subalgebras of A. The
β-mixing coefficient (also called the absolute regularity coefficient) of A1 and A2 is defined by

β(A1, A2) = 1

2
sup

∑
k

∑


|P(Ak ∩ B) − P(Ak)P(B)|,
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where the supremum is taken over all pairs of finite partitions {Ak} and {B} of � with Ak ∈ A1
for all k and B ∈ A2 for all . Furthermore, for any pair of bounded Borel sets C1, C2 ∈
B0(Rd), let ρ(C1, C2) = inf{|x1 − x2| : x1 ∈ C1, x2 ∈ C2} denote the distance between C1
and C2. For any s > 0, the β-mixing rate βX(s) of a point process X = {Xi} in Rd is defined
by

βX(s) = sup{β(σ(NX(C1)), σ (NX(C2))) : C1, C2 ∈ B0(R
d), ρ(C1, C2) ≥ s},

where σ(NX(C)) is the σ -algebra generated by NX(C) = card{i : Xi ∈ C}.
Let � be a germ–grain model of the form (2.1) for some stationary point process X =

{Xi} and convex grains, and let the random field Y = {Y (x), x ∈ Rd} be given by (2.5).
If X is a Poisson process then βX(s) = 0 for all s > 0, and Theorem 4.1 implies that√|Wn|(µ̂n − µ) converges weakly to a Gaussian random variable if E(|M0 ⊕ Ǩ|2) < ∞.
Using similar arguments, we can even consider a slightly more general case, in which βX(s) = 0
for all s greater than or equal to some s0 > 0, which holds, for example, if X is a Matérn cluster
process; see, e.g. [15, p. 159] for a definition. Then, the assertions of Lemmas 4.2 and 4.3
hold if gN(�∩K)(4) < ∞ and if there exists an integrable function h : Rd → R+ such that
|covYn(x)| ≤ h(x) for any x ∈ Rd and n ≥ n0, where n0 ≥ 0 is some integer. Moreover,
Theorem 4.1 remains valid, with the range of dependency, mn ≥ 2(an + D(K)), in the proof
of Lemma 4.5 replaced by m′

n ≥ 2(an + D(K)) + s0.
In the remaining part of this section, we briefly discuss a different technique of proving that

the normal convergence (4.1) holds. (Notice that this technique has been used in [7] for another
general class of functionals of germ–grain models.) Let {Zz, z ∈ Zd} be a stationary random
field and let {Un, n ≥ 1} be a sequence of finite subsets of Zd with limn→∞ card(Un) = ∞.
Assuming that there exist functions b∗

Z and b∗∗
Z on [0, ∞) such that

β(σ(Zz, |z| < p + 1), σ (Zz, |z| ≥ p + q)) ≤
{

b∗
Z(q), q > p = 0,

pd−1 b∗∗
Z (q), p ≥ q ≥ 1,

the following central limit theorem for absolutely regular random fields holds; see Theorem 6.1
of [6].

Lemma 5.1. Let {Zz, z ∈ Zd} satisfy the following conditions:

E(Z0) = 0, E(|Z0|2+δ) < ∞ for some δ > 0,∑
q≥1

qd−1(b∗
Z(q))δ/(2+δ) < ∞, lim

q→∞ q2d−1b∗∗
Z (q) = 0. (5.1)

Then card(Un)
−1/2Sn

d−→ N (0, σ 2), where Sn = ∑
z∈Un

Zz and σ 2 = ∑
z∈Zd E(Z0Zz) is

absolutely convergent.

Now let Wn be the d-dimensional cube [−n, n)d , set WK
n = [−n + D′(K), n − D′(K))d ,

where D′(K) is the smallest integer greater than the norm D(K), and define G(Wn, x) =
1(x ∈ WK

n )/|WK
n | for any x ∈ Rd and all n large enough that |WK

n | > 0. Furthermore, let
� = ⋃∞

i=1(Mi + Xi) be a germ–grain model in which the stationary point process X = {Xi}
has the following mixing property. As in [7], we assume that there exists a nonincreasing
function bX(·) on [1, ∞) such that, for all a, � ≥ 1,

β(σ(NX([−a, a]d)), σ (NX(Rd \ [−a − �, a + �]d))) ≤ bX(�)

(
a

min{a, �}
)d−1

. (5.2)
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Theorem 5.1. Let � be a stationary germ–grain model satisfying (5.2) with non-empty typical
grain M0 ∈ R. If there exist some δ, ε > 0 such that

E(|Y (o)|2+δ) < ∞, E(D2d(δ+1)/δ+ε(M0)) < ∞, (5.3)

and ∞∑
n=1

nd−1bX(n)δ/(2+δ) < ∞, (5.4)

then √|Wn|
∫

Wn

(Y (x) − µ)G(Wn, x) dx
d−→ N (0, σ 2), n → ∞,

where σ 2 = ∫
Rd covY (x) dx.

The proof of Theorem 5.1 is similar to that of Theorem 6.2 of [7]. Hence, we merely sketch
the main steps. We consider the set function η : B0(Rd) → R with

η(B) =
∫

B

(Y (x) − µ) dx, B ∈ B0(R
d),

and show that |WK
n |−1/2η(WK

n )
d−→ N (0, σ 2) as n → ∞, using Lemma 5.1. That is, the latter

expression can be written as

|WK
n |−1/2η(WK

n ) = card(Un)
−1/2

∑
z∈Un

Zz, Un = {z ∈ Zd : [z, z + e) ⊆ WK
n },

for the stationary random field Z = {Zz, z ∈ Zd} with Zz = ∫
[z,z+e)

(Y (x) − µ) dx. Then

we have E(Z0) = 0 and E(|Z0|2+δ) ≤ E(|Y (0) − µ|2+δ), where the latter bound is finite by
assumption (5.3), and, finally,

σ 2 =
∑
z∈Zd

E(Z0Zz) =
∑
z∈Zd

∫
[o,e)

∫
[z,z+e)

covY (x − y) dx dy =
∫

Rd

covY (x) dx.

To check the conditions in (5.1), let ση(B) be the σ -algebra generated by {η(B ′), B ′ ⊆ B, B ′ ∈
B0(Rd)}. For any p, q ∈ N, there exist a, � ≥ 0 satisfying

β(σ(Zz, |z| < p + 1), σ (Zz, |z| ≥ p + q)) ≤ β(ση([−a, a)d), ση(R
d \ [−a − �, a + �)d)).

The right-hand side of the last estimate can be bounded by the β-mixing coefficient of the
underlying point process X and certain moments of D(M0). This can be seen by following the
proofs of Lemmas 5.1 and 5.2 of [7], whence

β(ση([−a, a)d), ση(R
d \ [−a − �, a + �)d))

≤ β

(
σ

(
NX

([
−a − �

4
, a + �

4

)d))
, σ

(
NX

(
Rd \

[
−a − 3�

4
, a + 3�

4

)d)))

+ λ d2d+1
((

� + 4a

�

)d+1

+
(

� + 12a

�

)d+1)

× E

(
Dd(M0 ⊕ Ǩ) 1

(
D(M0 ⊕ Ǩ) >

�

4

))

≤
(

a

min{a, �}
)d−1(

c1(d)bX

(
�

2

)
+ c2(d) E

(
Dd(M0 ⊕ Ǩ) 1

(
D(M0 ⊕ Ǩ) >

�

4

)))
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for some finite constants c1(d) and c2(d), employing assumption (5.2) and the fact that
E(Dd(M0 ⊕ Ǩ)) < ∞. In the proofs of the above-mentioned lemmas, let

�B =
⋃

Xi∈B

(Mi + Xi)

denote the germ–grain model restricted to germs within B ∈ B(Rd), define

YB(x) = f ((�B − x) ∩ K),

and let ηB(B ′) = ∫
B ′ YB(x) dx for any B ′ ∈ B0(Rd). Next, define

bη(�) = c1(d)bX( 1
2�) + c2(d) E(Dd(M0 ⊕ Ǩ) 1(D(M0 ⊕ Ǩ) > 1

4�))

and let b∗
Z(�) = bη(�) and b∗∗

Z (�) = bη(�)/�d−1. Hence, the proof of Theorem 5.1 is
completed by noting that (5.3) and (5.4) imply

lim
�→∞ �db∗∗

Z (�)

≤ c1(d) lim
�→∞ E(D(M0 ⊕ Ǩ) 1(D(M0 ⊕ Ǩ) > �)) lim

�→∞ �d−1b
δ/(2+δ)
X ( 1

2�)

+ 4dc2(d) lim
�→∞ E(D2d(M0 ⊕ Ǩ) 1(D(M0 ⊕ Ǩ) > 1

4�)) = 0,

and that there exists some �0 such that∑
�≥�0

�d−1(b∗
Z(�))δ/(2+δ)

≤ 2d−1c
δ/(2+δ)
1 (d)

∑
�≥1

�d−1(bX(�))δ/(2+δ)

+ 4d−1c
δ/(2+δ)
2 (d)

∑
�≥1

�d−1 E(Dd(M0 ⊕ Ǩ) 1(D(M0 ⊕ Ǩ) > �))δ/(2+δ)

≤ c̃1(d) + c̃2(d) E(D2d(δ+1)/δ+ε(M0 ⊕ Ǩ))
∑
�≥1

�−(1+ε′) < ∞,

with

c̃1(d) = 2d−1c
δ/(2+δ)
1 (d)

∑
�≥1

�d−1(bX(�))δ/(2+δ) < ∞,

c̃2(d) = 4d−1c
δ/(2+δ)
2 (d) < ∞.

For the Boolean model � = ⋃∞
i=1(Mi + Xi), with M0 ∈ R \ {∅} such that the minimal

number of convex components of M0 is bounded by some finite constant, the conditions of
Theorem 5.1 are fulfilled if E(D2d(δ+1)/δ+ε(M0)) < ∞ holds for some δ, ε > 0. Notice that
this integrability condition is stronger than the assumption E(|M0 ⊕Ǩ|2) made in Theorems 4.1
and 4.2. Further examples of point processes X satisfying conditions (5.2) and (5.4) can
be found in [7]. We also remark that in the special case Y = Zr considered in (3.2) with
arbitrary X and M0 ∈ K ′, the integrability condition E(N(2+δ)d(� ∩ B1(o))) < ∞ implies
that E(|Y (x)|2+δ) < ∞ for δ > 0, provided that there is almost surely no boundary point of �

where more than d germs overlap; see Section 4 of [11].
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