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Abstract

A generalization of the Pastijn product is introduced so that, on the level of e-varieties and pseudo-
e-varieties, this product and the regular semidirect product by completely simple semigroups 'almost
always' coincide. This is applied to give a model of the bifree objects in every e-variety formed as a
regular semidirect product of a variety of inverse semigroups by a variety of completely simple semigroups
that is not a group variety.

2000 Mathematics subject classification: primary 20M17, 20M07, 20M10.

1. Introduction

Semidirect products appeared in the theory of regular semigroups in the 1970's with
H. E. Scheiblich's model of free inverse semigroups and D. B. McAlister's results on
^-unitary inverse semigroups. While a semidirect product of a regular semigroup by
a group is necessarily regular, this is far from being the case in general when the group
is replaced by a regular semigroup. This 'defect' led to the development of several
variants, each generalizing the semidirect product by groups and producing regular
semigroups from regular ones.

Let us mention here three of them, each of which is defined for any regular semi-
group in the first factor and any completely simple semigroup in the second. The
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restricted regular semidirect product was introduced by Polak and the first author
in [2]. The Pastijn product originates in [17] and was applied by Kadourek [10] to
describe the bifree objects in certain e-varieties of locally inverse semigroups, and so
to provide decompositions of these e-varieties as a Pastijn product of the variety of
semilattices by a variety of completely simple semigroups. Further decomposition re-
sults using the Pastijn product can be found in [11] and [12]. The notion of the regular
semidirect product is due to Jones and Trotter in [9] where, among a great number of
decompositions of certain e-varieties as regular semidirect products, special attention
is paid to those where the second factor is the variety of right zero semigroups. For a
remarkable result in this direction, see [8].

It was noticed by Billhafdt and the second author in [5] that, for any (regular)
semigroup T and completely simple semigroup C, each restricted regular semidirect
product of T by C is isomorphic to a Pastijn product of a (regular) subsemigroup of T
by C, and, conversely, each Pastijn product of T by C is embeddable into a restricted
regular semidirect product of a direct power of T by C. Therefore the restricted
regular semidirect product by a completely simple semigroup and the Pastijn product
coincide on the level of e-varieties and pseudo-e-varieties.

The regular semidirect product by a completely simple semigroup is a more general
construction: for any regular semigroup T and completely simple semigroup C acting
on T, the restricted regular semidirect product of T by C is a subsemigroup of the
regular semidirect product of T by C. On the other hand, the Pastijn product of T by
C is a subsemigroup of a regular Rees matrix semigroup over a semidirect product
of 71 by a maximal subgroup of C where the entries of the sandwich matrix have a
special form. The aim of this paper is to show that the regular semidirect product by
a completely simple semigroup and the generalization of the Pastijn product obtained
by omitting the restriction on the entries of the sandwich matrix—called Pastijn-Rees
product—'almost always' coincide on the level of e-varieties and pseudo-e-varieties
(Section 3). This result allows us to give a model of the bifree objects in any e-variety
which is a regular semidirect product of a variety of inverse semigroups by a variety
of completely simple semigroups that is not a group variety (Section 4).

The results of this paper have been obtained while investigating how far the re-
stricted regular semidirect product and the regular semidirect product of the variety
of semilattices by a variety of completely simple semigroups can be from each other.
The results in this direction are published in [3].

2. Preliminaries

For the basic notions and notation in semigroup theory, the reader is referred to [7].
Let 5 and T be semigroups. If 5 is regular and T is a homomorphic image of a
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regular subsemigroup of 5 then we say that T regularly divides S. We use Reg(S) to
denote the set of all regular elements in S and End 5 the endomorphism monoid of 5.

Let / and A be non-empty sets. Consider a A x / matrix P = (pki) over 5. The
/ x A Rees matrix semigroup over S with sandwich matrix P, denoted M(l, S, A; P),
is the set / x 5 x A endowed with the following multiplication:

(i, s, X)(j ,t,ii) = (i, spkJ t, ix).

It is well known that if 5 is a group then M.(I, S, A; P) is completely simple and,
conversely, each completely simple semigroup is isomorphic to a Rees matrix semi-
group over a group. Therefore we refer to Rees matrix semigroups over groups also
as completely simple semigroups.

Completely simple semigroups are regular but, in general, a Rees matrix semigroup
over a regular semigroup need not be regular. However, the set of regular elements
forms a (regular) subsemigroup. This crucial observation is due to McAlister [15].

RESULT 2.1. Let S be a regular semigroup, I and A be non-empty sets and let
P = (pu) be a A x I matrix over S. Then

(i) an element (i, s, k) e M (/, 5, A; P) is idempotent if and only if s = spkis;
(ii) anelement(i, s, A.) € Ai(I, S, A; P) is regular if and only if V (s) Dp xjSp^i ^

0 for some j 6 / and fi € A;
(iii) the set Reg(M(I, S, A; P)) of regular elements of M(I, S,A;P) forms a

(regular) subsemigroup of M.(l, S, A; P).

The subsemigroup Reg(.M(/, 5, A; P)) is usually denoted UM(I, S,A;P) and
is called the / x A regular Rees matrix semigroup over S with sandwich matrix P.

Regular Rees matrix semigroups over inverse semigroups are of special importance
(see [15, 16]).

RESULT 2.2. Each regular Rees matrix semigroup over an inverse semigroup is
locally inverse.

Result 2.1 (ii) does not provide an inverse of a regular element of M.(I, S, A; P).
Therefore we give an alternative characterization of regularity, and produce inverses,
the proofs of which are routine and omitted.

PROPOSITION 2.3. Let S be a regular semigroup, I and A be non-empty sets and
let P = ipxi) be a A x I matrix over S. Then an element (/, s, A.) € M(I, S, A; P)
is regular if and only if there exists j € / such that spXj ~R-s and fi € A such that
p^sCs, in which case (j, (sp^'sip^s)', /x) 6 V((i, s, A.)) for any (spxj)' 6 V(spXj)
and (Puts)' €
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By a (left) action of T on S we mean an antihomomorphism e: 7" —> End 5, t (-»• e,
such that £i is the identity automorphism provided T is a monoid. For brevity, we
denote as, by 'a (a € S, t € T). If T is a monoid then xa = a for every a e 5. In
particular, if T is a group then s, is an automorphism for every t e T. Note that,
in [9], the condition on S\ is not required, and an action with this additional property
is termed left unitary.

The semidirect product S * T of S by T with respect to this action is defined on the
set 5 x T by the multiplication

(a, t)(b, u) = (a- 'b, tu) (a , b 6 5, t,u e T).

A straightforward calculation shows that 5 * T is a semigroup.
If A, B are non-empty sets then the set of all mappings of A into B is denoted by

BA. Also SA stands for the direct power of 5 to the exponent A, and the product of
the elements / , g in the semigroup SA is denoted by fg.

The wreath product of S by T, denoted by 5 wr 7\ is the semidirect product of ST'
by T with respect to the following action: for every f e ST and t e T, we define
'f e ST> by x('f) = (xt)f (x e T}). Notice that if T has an identity then indeed
'/ = / for every / e 5 r ' . Note that there is a natural embedding of any semidirect
products* TintoSwrT:

v : S * 7 - > - S w r 7 \ (a, t)v = (fa, t) (a e S, t € T),

where

fa:T
l-+S, xfa=

xa (xeT1).

A semidirect or wreath product of regular semigroups need not be regular. However,
a regular version of the semidirect product was introduced in [9] as follows. It was
noticed that if 5 and T are regular, T acts on 5 and at least one of 5 and T is
completely simple then Reg(5 * T) forms a (regular) subsemigroup in 5 * T, and the
regular semidirect product S*r T of S by T was defined to be Reg(S* T). In particular,
Reg(5 wr T) is a regular subsemigroup in S wr T, which we denote by 5 wrr T. Since
v preserves regularity, S *r T embeds into S wrr T. Note that if S or T is a group
then S*r T = S * T and 5 wrr T = 5 wr T. In this paper, we are interested in regular
semidirect products of regular semigroups by completely simple semigroups.

The following result from [4] describes the regular elements of semidirect products
of regular semigroups, and gives inverses.

RESULT 2.4. Let S and T be regular semigroups, and let T act on S. An element
(a, t) e S * T is regular if and only if there exists t1 e V(t) such that "a >c a in S.
If this is the case then (''a', t') € V((a, t))for any a' € V(a).
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A special role will be played in the paper by semidirect products of inverse semi-
groups by groups which are known to be inverse semigroups, and their basic properties
can be found in [14].

Following Hall [7], a class of regular semigroups is termed an existence variety, or
briefly an e-variety if it is closed under the operators P, Sr and H of forming direct
products, regular subsemigroups and homomorphic images, respectively. In particular,
a class of inverse semigroups or of completely simple semigroups constitutes an e-
variety if and only if it is a variety of unary semigroups in the usual sense. Therefore,
for classes of inverse semigroups and of completely simple semigroups, we will use
the term 'variety' rather than 'e-variety'. We introduce notation for the following
e-varieties:

CZ— left zero semigroups, ~R,Z— right zero semigroups,

TIB— rectangular bands, S— semilattices,

Q— groups, X— inverse semigroups,

CS— completely simple semigroups, LZ— locally inverse semigroups.

The finitary analogue of an e-variety is a pseudo-e-variety, which is defined to be a
class of finite regular semigroups closed under forming finite direct products, regular
subsemigroups and homomorphic images.

Let X be a non-empty set. We 'double' it in the following way: consider a set X'
disjoint from X together with a bijection ': X -*• X',x h+ x', and put X = X U X'.
Given a regular semigroup 5, a mapping i?: X -> 5 is called matched if x$, x'ft
are mutual inverses in 5 for all x e X . Let C be a class of regular semigroups.
A bifree object in C on a non-empty set X is defined to be a semigroup S € C together
with a matched mapping t: X -> 5 satisfying the following universal property: for
any semigroup T 6 C and any matched mapping # : X —> T, there exists a unique
homomorphism <p: S -*• T such that up = #. Obviously, such a bifree object is
unique up to isomorphism, if it exists.

It was proved by Yeh [19] that each e-variety of locally inverse semigroups has
a bifree object on any non-empty set. In particular, in a variety of inverse semi-
groups, the bifree objects coincide with the free objects. However, in a variety of
completely simple semigroups, the free object on a set is, up to isomorphism, a proper
subsemigroup in the bifree object on the same set. The reason for the existence of
the bifree objects in e-varieties of locally inverse semigroups is the following crucial
property of locally inverse semigroups. For every locally inverse semigroup 5 and
for every subset U of 5 such that each element of U has an inverse belonging to U,
there exists a least regular subsemigroup in 5 containing U. This subsemigroup is
the least subsemigroup in S containing U and being closed under forming sandwich
elements (the A operation), and it is called the regular subsemigroup in S generated
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by U. An important consequence of this fact is that, for any class C of locally inverse
semigroups, the e-variety generated by C is HSrPC (see [19]).

Given a variety V of inverse semigroups and a non-empty set X, we denote by
FV(X) the model I(X)/pv of the free object in V on X where l(X) is the free
semigroup with involution on X and py is the fully invariant congruence on l(X)
corresponding to V (see [18]). The underlying semigroup of I(X) is the free semigroup
on X, and the unary operation "' is the extension of the bijection ': X -» X' to an
involutory antiautomorphism. For notational convenience, we write ' " ' ' instead
o f " , and suppose that X c FV(X).

A similar description of bifree objects in e-varieties of locally inverse semigroups
was given in [1]. In this generality, the semigroup of terms T(X) is the free binary
semigroup on X, that is, the absolutely free algebra on X in two binary operations •
and A, where the operation • is assumed to be associative. Although we do not need
it explicitly in this paper, we mention for completeness that, for any e-variety V of
locally inverse semigroups and any non-empty set X, the bifree object in V on X can be
obtained as a factor semigroup of T(X) modulo a congruence, called the bi-invariant
congruence, on T(X) corresponding to V.

Now let V be a variety of completely simple semigroups with 1ZB c V, and let X
be a non-empty set. We denote by B FV(X) the Rees matrix model of the bifree object
in V on X obtained as follows (see [10]). Consider C = M(X, Gv, X; P), where P
is an X x X matrix normalized at x0 e X, and such that pyz ^ puv if (y, z) ^ (u, v)
in (X \ {xQ}) x (X \ {*<,}), P = {pyz :y,zeX\ {x0}), G is the free group on X U P
and Gv = G/Nv where the normal subgroup Ny is determined by V. For simplicity,
we suppose that X U P C G y . The matched mapping corresponding to C is X -> C,
x i-»- cx = (x,x,x), x' i-)- c,< = (x',p~*,x-xp~,\,x').

As usual, for any w e T(X), we denote the element of C corresponding to w by
(h(w), m(w), t(w)). In particular, we have

h{x)—x, m(x)=x, t(x)=x and
h(x')=x', m{x')=p-x

x
x,x-'p-x}x, t{x')=x'.

Given any e-variety [pseudo-e-variety] U and a variety [pseudo-e-variety] V of
completely simple semigroups, the regular semidirect product U *r V of U by V is
defined in [9] to be the e-variety [pseudo-e-variety] generated by the class of all regular
semidirect products T *r C with T eU and C e V.

3. The Pastijn-Rees product and its connection to
the regular semidirect product

In this section we define the notion of a (regular) Pastijn-Rees product of a (regular)
semigroup by a completely simple semigroup, and investigate the relation between
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the regular semidirect products and the regular Pastijn-Rees products of regular semi-
groups by completely simple semigroups. As a consequence, we establish that, in
most cases, these products coincide on the level of e-varieties and pseudo-e-varieties.

Let T be a semigroup and G a group acting on T. Consider a Rees matrix semigroup
C = M.(I, G, A; P). Let Q = (qxi) be a A x / matrix over the semigroup Tl. Define
a multiplication on the set T o C = I x T x G x A as follows:

(i, a, g, k)(j,b, h, n) = (i, a • gqxj • ^b, gpkjh, /x).

This multiplication is associative, and s o T o C a semigroup which is easily seen to
be a subsemigroup of a Rees matrix semigroup over a semidirect product as follows.
The action of G can be naturally extended to an action of T1 by putting «1 = 1 for
every g € G. This defines a semidirect product 71' * G. We can form a A x / matrix
Q x P over Tl * G by putting (Q x P)Xi = {qxt, Pxd for every k e A and i € / .
Then ToC may be identified with a subsemigroup of M(I, Tl * G, A; Q x P) since

(a, gXqij,Pxj)(b, h) = {a- *qkJ • »"b, gPxjh)

in T1 * G. Moreover, T o C is a co-extension of C via the projection (i, a, g, k) \->
(/, g, k). Therefore we term T o C the Pastijn-Rees product of T by C with respect
to the action of G on 7 and the matrix Q. If we need to indicate the action y of G on
T and the matrix Q then we write T oY-Q C. Sometimes, we shall find it convenient
to denote an element of the Rees matrix semigroup C with a single letter instead of a
triple. Therefore, an element (i, a, g,k) e T o C with c = (i, g, k) e C will be also
denoted by (a;c).

REMARK 3.1. The Pastijn-Rees product is a common generalization of the Rees
matrix construction (T o C = Ai(I, T, A; Q) if C is the rectangular band / x A and
each member of Q belongs to T) and the Pastijn product (T o C = T 0 C if each
entry in Q is 1). In particular, it is a generalization of a semidirect product by a group
(T o C = T * C if C is a group and the unique entry in 2 is 1).

It was noticed in [10] that a Pastijn product T O C is independent of the choice
of the Rees matrix representation of the completely simple semigroup C. A similar
assertion holds more generally for Pastijn-Rees products.

PROPOSITION 3.2. Let C = M(I, G, A; P) and D = M(J, H, 0 ; R) be isomor-
phic completely simple semigroups and let T be an arbitrary semigroup. Moreover,
let Q be a A x I matrix over Tl, and suppose that an action y of G on T is given.
Then there exist a 0 x J matrix S over T1 and an action 8 of H on T such that
ToyQ C is isomorphic to T oss D.
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PROOF. Let P = (/>«), Q = (qxd and R = ( r^ ) . It is well known that the
isomorphic Rees matrix semigroups C and D relate to each other in the following
way: there exist bijections <f>: I -*• J ,f: A -> 0 , an isomorphism co: G -*• H and
families of elements M, € H, i e / , and vk e H, X e A, such that pkiu> = v^r^^ui
for every i e / and X e A, and the rule (i, g, A.) i-> (/</>, w, • ga> • vx, A.T/T) determines
an isomorphism of C onto D. Define a 0 x 7 matrix 5 = (saj) over Tl as follows:
for every # e 0 and y e 7, put

s&j = v:'w~'qu where A. = i ? ^ " 1 and i — j <j>~1.

Moreover, define an action 8. of H on T by means of the action y of G on T in the
following manner: for any h e H and a e T, let

It is straightforward to check that the mapping T oY-Q C -»• 7 o i S D defined by

(i, a, g, A.) t-> (/«/>, "i<u"'a, M, • ^a; • DX, k\j/)

is an isomorphism. This completes the proof. •

This assertion allows us to speak, in general, about a Pastijn-Rees product by a
completely simple semigroup.

Now we establish that each Pastijn-Rees product is embeddable into a semidirect
product.

PROPOSITION 3.3. Let T be a semigroup and C a completely simple semigroup
which is not a group. Each Pastijn-Rees product of T by C is embeddable into the
wreath product of T by C, that is, into a semidirect product of a direct power of T
byC.

PROOF. Let T o C be a Pastijn-Rees product of T by C = M(I, G, A; P) with
respect to an action of G on T and a matrix Q = (q^). For any / € / and a e T,
let us define a mapping / , „ : C1 —*• T by l / i a = a and (k, x, K)/,„ = xqKi • xptia
for every (k,x, K) e C. This mapping is well defined since C has no identity. It is
easy to check that i : T o C -*• Twr C(= T° * Q, (i, a,g, k)i = (/,•„; j , g, k) is an

embedding. This completes the proof. •

Parts (i) and (ii) of the following proposition are routine. Part (iii), which says
again that regular elements form a subsemigroup, follows easily from Result 2.1 (iii).

PROPOSITION 3.4. Let T o C — T oyQ C be a Pastijn-Rees product of a regular
semigroup T by C = Ai(I', G, A; P). Then
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(i) an element (i, a, g,X) e ToC is idempotent if and only if g = p ^ 1 and

a = a-
(ii) an element (i,a,g,k)eToC is regular if and only if there exists j e / such

that a • gqkj IZa and there exists \x e A such thatp>"qllia C a; if this is the case, then
(j, >»>-\(a • Wairiq^ay), p^g~lp-}, fi) 6 V((i, a, g, k)) for any (a • *qkj)' e
V(a • V,) and C^a)' g V^q^a);

(iii) the set Reg( ToC) of regular elements of To Cforms a (regular) subsemigroup
in ToC.

The regular subsemigroup Reg(7o C) in To C will be called a regular Pastijn-Rees
product ofTbyC and denoted by T or C or T oy

r-
Q C.

For later use, we record the following important observation, which follows easily
from Result 2.2.

PROPOSITION 3.5. A regular Pastijn-Rees product of an inverse semigroup by a
completely simple semigroup is a locally inverse semigroup.

The following consequence of Propositions 3.3 and 3.4 (iii) can be easily deduced.

COROLLARY 3.6. Let T be a regular semigroup and C a completely simple semi-
group which is not a group. Each regular Pastijn-Rees product of T by C is embed-
dable into the regular wreath product of T by C, that is, into a regular semidirect
product of a direct power of T by C.

Now we find an analogous result for Pastijn-Rees products by groups.

PROPOSITION 3.7. Let T be a regular semigroup and G a group. Each regular
Pastijn-Rees product of T by G is embeddable into the direct square of a (regular)
semidirect product of T by G.

PROOF. If 5 is a regular semigroup and u e S1 then one can define a multipli-
cation ou on the set S by a ou b = aub. It is routine to see that Su = (S;ou)
is a semigroup called a variant of 5 (see [13]). It follows by Proposition 2.3 that
Reg(Su) = {a € S : auHaCua}, and Reg(5u) is a (regular) subsemigroup of Su.
Let Toy

r- ° G be a regular Pastijn-Rees product of T by G where G is regarded trivially
as a Rees matrix semigroup over itself (which suffices by Proposition 3.2). Let 5 be
the semidirect product of T by G defined by the action y. It is easy to see by the
definition of the Pastijn-Rees product that T oyQ G = Su with u = (q, 1) where q
is the unique element of Q. Therefore, in order to prove the statement, it suffices to
verify that Reg(5u) is embeddable into the direct square of 5. Let us define a map-
ping </>: Reg(5u) ->• 5 x 5 by a<p = (au, ua) which is clearly a homomorphism. If
a, b e Reg(Su) and a<p = b<p then auTZa£ua,bulZb£ub and au = bu, ua = ub,
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which immediately implies that a = b. Therefore <j> is injective, and the proof is
complete. •

The main purpose of this section is to find a relation in the opposite direction, that
is, to obtain each regular semidirect product from an appropriate regular Pastijn-Rees
product.

For semidirect products by groups, this relation is obvious (see Remark 3.1). Now
we consider the general case.

PROPOSITION 3.8. Let T be a regular semigroup and C a completely simple semi-
group. Each regular semidirect product ofTbyC regularly divides a regular Pastijn-
Rees product To or D where To is a regular subsemigroup of T and D is a subdirect
product of C and a left zero semigroup.

PROOF. Assume that C acts on T, and let T *r C be defined by this action. We
construct a regular subsemigroup W in a direct product of a left zero semigroup L
and a regular Pastijn-Rees product To o

yQ D where D is a subdirect product of C
and a left zero semigroup, such that T *r C is a homomorphic image of W. The
statement of the proposition follows if we observe that L x (To o

y/Q D) is isomorphic
to To o

y
r'& (L x D), where, if D = M(J, G, A; P), we choose the Rees matrix

representation M(L x J, G, A; P) for the direct product L x D with pxaj) = Pkj
and cjxuj) = qki for any A e A and (l,j) € L x J.

Suppose that C = M(I, G, A; P) where P = (pu) is normalized at 0 e IDA. The
rough idea of the construction is the following. The action of G will be the restriction
of the action of C to G where G is identified with Go = {(0, g, 0) € C : g e G],
and To will be the greatest subsemigroup in T on which G acts by automorphisms.
The completely simple semigroup D is obtained from Cby 'substituting' / by the set
of all pairs of mutually inverse elements of T *r C. The aim of this 'blowing up' is to
ensure that all pairs of mutually inverse elements of the subsemigroup

cT*rC= {(bt, c)eT*rC:b,ce C, t e T]

of T *r C possess inverse images in To oy-Q D of the form described in Proposition 3.4.
Finally, we need to form the direct product L x (To o

YiQ D), where L will actually
be the left zero semigroup on the set T, in order that all pairs of mutually inverse
elements of T *r C have inverse images in L x (TQ oY

r-
Q D).

Now we present the construction precisely. Let To = ( 0 1 0 )7 ' . Since To is the
image of T under the endomorphism corresponding to (0, 1, 0), it is clearly a regular
subsemigroup of T. Moreover (0, 1,0), the identity element of Go, acts identically
on To. Therefore the elements of Go act by automorphisms on To. Thus we can
define an action y of the group G on To by putting *a = (0«0)a for every g e G and
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a e To. Later on, we shall use both actions—the action of C on T involved in the
definition of T *r C and the action of G on To defined now by means of the former
action—simultaneously.

For brevity, denote T *r C by S. We need the following notation. If s = (t, c) e S
where t € T and c = (/, g,k) e C then we denote t by ts, c by cs, i by sR and k by sL.
Consider

S = {(s, s') 6 SxS.s' e V(s)},

and define D = M(S, G, A; P) where P = (p\-s) is the following A x 5 matrix over
G: for any X e A and s e S with s = (s, s'), put pkS = pki, where i = sR. Clearly,
D is a subdirect product of C and the left zero semigroup on the set S.

For any s = (s, s') 6 S, we have

(ts, cs)(ts,, cs,)(ts, cs) = (ts, cs) and (ts,, cs.){t,, cs)(ts,, <v) = (k , c,-)

in S. These two equalities are equivalent to the following: cs* e V(cs) in C and the
equalities

(1) ts • c-ts, • c-c% = ts and ts, •<•%•<••%, = ts,

are valid in T. In particular, these equalities imply that Clts- e V(c'c'/S). Conversely,
Result 2.4 ensures that if s = (ts, cs) and e is an idempotent with e 1Zcs and % >c ts

then s' = CV, d), where c/ e V(cs) with d Ceandt' e V(ts), is an inverse of s.
Let us define r-s = ts • c%< for every s = (s, s') and qks = (01>Vi for every A. € A

and I e 5 . Obviously, qx; e To, and so (2 = (^j) is a A x 5 matrix over To. Thus we
have defined the regular Pastijn-Rees product T0or D = To o^Q D.

Let T be the left zero semigroup on the set T. Consider the following subset of the
direct product T x (TQ or D):

W = {[x, 0, b, g, k)]efx (To or D) : for s = (s, s'), i = sR,

H = s'L and a = x • «•*•%, the relations b = "••^'•"la,

b CJq^b hold in T and s >n (a; i, g, k) in 5}.

Notice that, by Result 2.4, (a; i, g, k) belongs, indeed, to 5 because

(2) (i.p«'.ria = w.% >c a.

We intend to verify that W is a regular subsemigroup of T x (To or D) and 5 is a
homomorphic image of W.

First we verify that W is a subsemigroup. Let [x, (s, b, g, k)] and [y, (u, d, h, £)]
be arbitrary elements of W. Then we have s = (s, s'), i = sR, /x = s'L, a = x • iO-0)b,
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(«, «'), k = uR

By definition,

where / = ft •

(3)

and

K. Auinger and M. B. Szendrei [12]

= a

^b and s >tt (a;i,g,k), and, moreover, we also have u =

L,c = y ikx0)d, d = W-'i'-'V, dC^q^d and u >TC (c; it, h, £).

, ft, g, A.)][y, («, </, A, f)] = [x, ( 5 , / ,

. Put e = x • ( l l 0 y . Then

= a

(o,i,oy _y _
since ^ ' • " i * -ft = w.jtf.Mfc. w*;l

1.»i>tti.o>j, = (O,P; / .K^ .(.M.0)ft) _ (o,P;/.M)a = b. S i n c e £

is a right congruence, the relation bC^q^b implies / Cfq^f. To prove the

relation s >TC (e; /, gpi t / i , ^ ) , it suffices to show that (a; /, g, A.) >n (e; i, gpkkh, ^) .

Result 2.4 implies by (2) that (a; i, g, A.) has an inverse in 5 of the form

where a' € V(a). Now we see that

(a; i, g, Wf'-'ri'V-J.pJ ;}, n)(e; i, gp»h,

= (a • <••"-"''"'a'; i, p~J, /x)(a

= (a • ( l » > ( a ' a ) • (/*x)rfi •

= (a • <'*

by (3)

by (2)

Hence (e; j , gpit/t, ^) <TC (a; i, g, k) which was to be verified. Thus we have shown
that W is a subsemigroup.

Now we prove that W is regular. Let [x, (s, b, g, X)] 6 Was before. Define u! =
(a; i, g, X), and let u be the inverse ((i-p»'g~lp*'-'l)a';j, Px/g~lP^n A4-) °f «' considered
above. Put u = («, «')• Moreover, let d = p»rXb'b(!'«qli-sby), where ft' = ^ ' • ' V ,
which is obviously an inverse of b, and (''•"q^b)' € VC^'q^b). Let us also define
c = W-1>oi/ and y = cc/ for some c/ e V(c). By assumption, we have
Furthermore, we see that

(4) ft. ^ w =
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Hence Proposition 3.4(ii) ensures that (u, d, p^g~lp^], M) is an inverse of (s, b, g, A.)
in T0orD. Therefore it remains to check that [y, (u, d, p^g~lp^}, M)1 e W. Itisclear
by the definition of c and y that y • V-^d = cdc = c and <W-*V: = ^'•1W'''0)d =
(010)d = d. By (4) it follows that b'b >c b • sq^b'b = bb'b = bCb'b, whence
b'bC^b'b. This implies that «"*("* qxid) = fys • ^dC^d, and so pJqxildCd
holds. Finally, by definition, we have

c = ^ ^ = « - ' - < » m - ' ' ~ '

which implies c = <W«'1p;.'-'Va)c = <W «"''* •"Va) • u'p"Mc. Hence we see that

= CJ-pJg~lp«-ll)a';j, Py/g~lp~j, M)(a; /, g, k)(c;j, p^g~lp~J, M)

and so (c;j, p ^ V / V , ' . M) ^ ^ w follows. Thus [y, (M, d, p^g~lp~!, n)] e W is
proved and W is, indeed, regular.

Now we define a mapping <t>: W -> 5 by [x, (5, i , g, A.)]<t> = (a; i, g, X), where
i = sR and a = x • (i-h0)b. We have seen after the definition of W that (a; i, g, A.) € 5.
We intend to show that <I> is a surjective homomorphism. Let

[x,(s,b, g,}.)],[y, (u,d,h,$)] e W

as before. When proving that W is a subsemigroup, we have seen that

[x, (5, b, g, k)\\y, (fi, rf, h, f)] = [x, (5 , / ,

where/ = i • *qxi • ̂ d and, by (3), e = x • u'l0)f = a • <'-«-i>rfi • «•«•«<*•";'•% Thus,
by the definition of 0 ,

, (5, d, h, f ) ] ) * = (a • ('*«rfi • ('•«-«<W-")c; /, gPkkh, f ) .

On the other hand, we have

[*, (5, b, g, A.)]* • [y, («, d, h, f )]4> = (a; i, g, X)(c; t , h,

= (a • (t«-«c; i,
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Therefore, in order to show that <t> is a homomorphism, it suffices to verify that
c = r-u-

 (t^*'-'))c. Since u >n (c;k, h, £), we have (c;k, h, £) = ux — (tu, cu)(tx, cx)

for some x e S, whence c = tu • c"tx follows. Since u' e V(u), (1) implies that
tu • c"tU' • c"Cjtu = tu. Here cucu> = (k, p~J, rj) since uR = k and u'L = rj. This implies

that n • (k^-n)tu = tu, and so r-u •
 (k^^tu • c% = tu • '%. However, c = tu • c"tx,

and since (k, p^, rj)cu = cu, we also have <k-P«-% • c% = (k^-"\tu • c%) = ^^ ' • "V.

Thus ri • (tp»»-^c = c holds, and <I> is, indeed, a homomorphism.
Finally, we show that <I> is surjective. Let s = (a; i, g, A.) e S. Since it is regular,

by Result 2.4 there is an idempotent (i,p~j, /J.) € C such that ('iP>" iM)a >c a and
an inverse of s of the form s' = ((J'Pk>lg~'Pu''IJ')a'\j,p^g~xp~], fi), w h e r e ; e / and

a' e V(a). Put s = (s, s'), b = (0-P~J^h and x = r-s. Then, by the definition of r-s, we

see that

x • ('••'•°>fc = r-s • v-ri-rta = a • ^X<J^'s-'p-J^a') • (i-P'J^a = a • «•"* "Xa'a) = a.

Hence it follows that

Thus [JC, (s, b, g, X)] e W and [x, (s, b, g, A.)]4> = (a; i, g, k). This completes the
proof of the proposition. •

If U is any e-variety [pseudo-e-variety] and V is a variety [pseudo-e-variety] of
completely simple semigroups, then we define the regular Pastijn-Rees product U or V
of U by V to be the e-variety [pseudo-e-variety] generated by the class of all regular
Pastijn-Rees products T or C where T eli and C e V.

Combining Proposition 3.7, Remark 3.1 and Corollary 3.6, Proposition 3.8, respec-
tively, we obtain the following result.

THEOREM 3.9. Let IA be any e-variety [pseudo-e-variety], and let V be either a
variety [pseudo-e-variety] of groups or of completely simple semigroups with CZ C V.
Then we have U *r V = U or V.

Notice that if V £ Q and CZ £ V then the equality U *r V = U or V does not
hold in general. For example, Q *r UZ = CS, see [9], but Q or UZ = Q v HZ.
For, it is easy to check that, for any Pastijn-Rees product of a group G by a right
zero semigroup A, we have G or A = G o A, and the mapping G « A -> G x A,
(g, k) i-> (gq\, k) is an isomorphism into the direct product of G and A.

By applying the main result in [4], we can deduce the following result which
handles the case not covered by Theorem 3.9.

THEOREM 3.10. Let IA be any e-variety [pseudo-e-variety], and let V be a variety
[pseudo-e-variety] of right groups such that V £ Q. Then we have U *r V = V =
U <>r V if U £1ZZ andU *rV = U or (CZ v V) otherwise.
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PROOF. Suppose first that U c HZ. Then U *r V = U v V = V by [4, Proposi-
tion 5.1]. By Corollary 3.6, we have U or V c U *r V. Since the inclusion V £UorV
is clear, the equalities U *rV = V =U orV follow.

Now assume that U £ TIZ. Theorem 3.9 implies that U *r {CZ v V ) = W o r

(CZ v V). By [4, Proposition 5.2 and Theorem 5.1], we see that U *r {CZ v V) =
{U*rV)*rCZ = (U*rV)vCZ. However, [9, Lemma 4.2] ensures that CZ c l/*rV,
and so (U *r V) V CZ = U *r V, which completes the proof. D

4. Bifree objects in e-varieties which are regular semidirect products of inverse
semigroup varieties by completely simple semigroup varieties

Given a variety U of inverse semigroups and a variety V of completely simple
semigroups with WB c V, the main result Theorem 3.9 of the previous section allows
us to construct a model of any bifree object in the e-variety U *r V by making use of
the Pastijn-Rees product construction. Similarly to the models of the bifree objects
found in [10], these models have a graphical interpretation which makes them more
transparent than the models presented in [9, Section 8].

It is known from [9] that, for any inverse semigroup T and completely simple
semigroup C, every regular semidirect product of T by C is locally inverse. By
Proposition 3.5, each regular Pastijn-Rees product of T by C is also locally inverse.
Therefore W * r V , W o r V c £ I provided U c I and V c CS.

In case T is an inverse semigroup, Proposition 3.4(ii) can be strengthened as
follows.

PROPOSITION 4.1. Let T o C = T oye C be a Pastijn-Rees product of an inverse
semigroup T by a completely simple semigroup C = M(I, G, A; P). Two elements
(i, a, g, k) and (j, b, h, ix) are mutually inverse in To C if and only ifh = p^/g~lp~l,
a = a- KquqJ) = "Aq^q^a and b = tiqj • ' « ' V • 'v « - ' P ^ - » .

PROOF. Suppose first that (/', b, h, /x) e V((i, a, g, k)). Then an easy calculation
gives h — p^/g~lp~j and, by Proposition 3.4 (ii), a • gqxj Ti-a and p":qliiaCa. The
relation a - ^ y T ^ a i m p l i e s a - ^ ^ ^ ^ a " 1 = aa~x whencea = aa~la = a-g{^

a~xa = a • Kq^q^)- Similarly, we obtain from p»'qlliaCa that p"i(q~lqfli)a = a.
Moreover, a straightforward calculation shows that

(5) a = a- gqkj .*»b- '"q^a and

( 6 ) b = b • P>J g Puiqlli • Px> g a • Pk>qkj b.

F r o m ( 5 ) , w e d e d u c e t h a t Pk> g a = p* s a • PiJqxj • b •P)jg p"iqlli • p " * a, a n d s o
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Taking into account (6), this implies that

The if part follows from the given conditions and the last statement in Proposi-
tion 3.4 (ii) if we observe that

I V MĴ I J ^* \ T/X' / I ^ ~ I Till til* ^ U ; I
\ ' / \ ^ **' /

-1 _ | -1 -1 _ i -I -1 -1 _ |

The proof is complete. •

The next lemma provides a formula for the sandwich operation in a regular Pastijn-
Rees product of an inverse semigroup by a completely simple semigroup.

LEMMA 4.2. LetTorC = ToY
r
Q Cbea regular Pastijn-Rees product of an inverse

semigroup T by a completely simple semigroup C = A/((/, G, A;P) . Then, for any
elements (i, a, g, X), (j, b, h, fi) € T or C, we have

~x(i, a, g, X) A(j,b, h, n) = (i, aa J

PROOF. For brevity, put t = aa~l • p*q~} • p^h'\b~xb), u = (i, a, g, A.), v =
(j, b, h, n) and w = (i, t, p~j, /x). We check that w belongs to the sandwich set of v
and«. First we notice that t — es~xf wheree = aa~\s = p»'gM, and / = p^h'\b~xb).

Obviously, e,f e E(T). Therefore

t • riq^t = es^fses^f = e2s~1fss~lf = es^ss^f2 = es~lf = t.

This implies by Proposition 3.4(i) that w is an idempotent. Now let us choose an
inverse u' of u. By Proposition 4.1, we have

where k e I and K e A such that

(7) a = a • \qnq;l) = "''(q'1 qKi)a.

Then a straightforward calculation shows that uu'w = w: equality of the components
in C is obvious; for the component in T of the left hand side, we see by (7) that

a • V • *q^a~l • "-'q'1 • p''qKit

= a • V * • ^ a " 1 • 'Xq-1 • p''qKi • aa~x • riqj • p«""(b^b)

= aa^aa'1 • p*q~J • p>'\b~xb) = t.
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Therefore we obtain that w <n u. Routine checking similarly gives w <c v. Finally,
we can check that vwu = vu. Again it is enough to show the equality of the
components in T. On the left hand side, we have

b • V • ^'(aa-1) • hq~J • b~lb • *9M, • *"to

V,

which is just the component in T of the right hand side. The proof is complete. •

Now let U be a variety of inverse semigroups and V a variety of completely simple
semigroups with TIB c V. Let X be a non-empty set. Consider the bifree object
C = BFV(X) presented in Section 2. Now let Q be an X x X matrix such that
qyz ^ quv provided (y, z) ^ (M, V) in X x X, and put Q = {qyz : y, z € X). Suppose
also that X D Q = 0. Define A = Gy x (X U Q), and let us 'double' it in the usual
way. Put A — AU A~\ where A"1 is disjoint from A and a bijection "' : A -> A"1,
a h-> a~l is fixed. Consider the free object FU(A) = I(A)/pu, and, for brevity,
denote it by T.

The group Gv acts on A by \g,l) = (hg,i), h e Gv, (g,l) e A, and this
action can be extended to an action of Gv on T in the usual way. Now we define
&nX xX matrix QA = ((qA)yz) over T by (qA)yz = (1, qyz) ((>>, z) € X x X).
The action of Gv on T and the sandwich matrix QA define a Pastijn-Rees product
T o C (= FU(A) o BFV(X)) and a regular Pastijn-Rees product T or C. Consider
the following elements in T o C: for any x e X, let

x = (rxpu\ cx) and x' = (rx,pu; cx,),

where

r, = (l,x)(x,qxx0(x,qxx.y
i(l,xy1(p-i

x,qx,x)-
i(p-,l,qxlx)(l,x),

r*' = o>;*» ?« ' )" ' (P;>" 1 .^ )" 1 (P;>" 1 P; ] . «.'*)"'.
We now check by applying Proposition 4.1 that x' € V(x). The equality

rxpu = rxpu • *((1, qXX')Pu((l, qxx')Pu)~l)

holds, since idempotents commute in an inverse semigroup. Similarly, we can see that

rxpu = ^ '(((1, qX'x)Pu)~\l, qX'X)f>u)rxpu-

Finally, we have, by the definitions and routine cancellation in an inverse semigroup,

" " ' ( ( 1 , 9 « ' ) P w ) - ' • p " ' x ' \ r x P u T X • p ' * " c ~ > p : ' < ( U q 1

This verifies, by Proposition 4.1, that x' e V(x). Hence x, x' € T or C for every
x eX.
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THEOREM 4.3. Let U be a variety of inverse semigroups and V a variety of com-
pletely simple semigroups with 1ZB C V. For any non-empty set X, consider the
regular Pastijn-Rees product FU(A) or BFV(X) defined above. Then the regular
subsemigroup in Fli(A)or B FV(X) generated by the set {x,xr : x € X) is the bifree
object in U or V on the set X.

PROOF. We shall use the notation introduced before the theorem. Since x and
x' are inverses of each other in the locally inverse semigroup T or C, the regular
subsemigroup W generated by {x,x' : x e X] is well defined, and the mapping
X -*• TorC,x t-* x,x' i-> x' (x e X) is matched. By definition, the e-variety Uor V
is generated by the class C of all regular Pastijn-Rees products U or D where U e U
and D e V. It is routine to see that C is closed under forming direct products. Thus,
by [9, Lemma 7.2], it suffices to prove that each matched mapping into a member of
C can be extended to a homomorphism of W.

Consider a member U or D e C, where D = M(I, H, A; R) and the regular
Pastijn-Rees product is defined by means of an action of H on U and a A x /
sandwich matrix 5 = (ski) over U. Furthermore, let X -> U or D, y (->• (uy;dy)
(y e X) be a matched mapping where dy = (iy, hy, ky). By Proposition 4.1, we have

(8) «« = «i-%/u,)'

(9) «* = r:HsK,i,sK.i.) • «*,
/ 1 / w *•»"' —1 r r 1 h~l —1 rf1 h7lr7] —1

(10) ux. = *VSKMI • x 'v ' ux • - v - v « . , J t

in U. In particular, the mapping X —• D, y i-> dy (y e X) is matched, and therefore
it can be uniquely extended to a homomorphism \/r: C —> D.

Due to Proposition 3.2, we can assume without loss of generality that the Rees
matrix representation M(I, H, A; R) of D is chosen in the way that R is normalized
at (ijco< ^*o)- I" t m s c a s e > t n e r e e x i s t s a group homomorphism y : Gy -*• H such that
PyzY = r>.,it (y, ze X) and (y, g, z)^ = (iy, gy, Xz) for every (y, g, z) e C.

Now let us define a mapping A —> U in the following manner:

(g, x) (->• gyux, (g, qyz) h-> gYsk)iz (g € G v , x e X, qyz e Q).

This mapping can be uniquely extended to an inverse semigroup homomorphism

<j>: T - > • [ / . In particular, we have (1 , qyz)(f> = syyii for every y,z e X, and (gt)4> =
gyt<j> for every g € Gv and t € T. By means of these properties, it is straightforward

to see that the mapping <f> x \jr : T or C ->• U or D, (/; c)(<p x f) = (up; CT//) is a
homomorphism. In particular, we have

x(4> xf) = (ux •\skxii,s-[,)u;' •r:'k(.s£iMsK,l,)ux;dx)

= (uxu~xux;dx) = (,ux;dx)
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by (8) and (9), and

by (10), that is, <f> x r/r extends the matched mapping X -»• U or D we started with.
This completes the proof. •

The bifree object obtained in this proposition has a transparent graphical interpre-
tation. Consider the directed graph X with set of vertices Gy and set of edges A. For
any edge (g, I) e A, its initial vertex is g and its terminal vertex is gt provided I eX
and is gpuv provided I = quv e Q. We term I the label of the edge (g, I). When
'doubling' A, it is convenient to choose A~l in a special form. First let us 'double' Q
in the following way: put Q = Q U Q~\ where Q'1 is a disjoint copy of Q together
with a fixed bijection " ' : Q -*• Q~l, qyz h-> q~*. Let A'1 = (a"1 : a e A], where

a_1 = ((£*,*- ' ) if a = ( s , j e ) e G v x X ;

l^Pyz. 9;/) if a = (S, 9yz) e Gv x G-

Notice that, for each edge a e A, the edge a~l can be interpreted as the reverse of a,
since the initial vertex of a~x is just the terminal vertex of a, the terminal vertex of
a~l is just the initial vertex of a, and the label of a~l is the inverse of the label of a.
Finally, observe that X can be obtained from the Cayley graph of Gy by adding loop
edges to it at each vertex with labels qyz where y or z is JC0.

As it was mentioned above, the elements of T are pu -classes of words over the
alphabet A. Observe that the words rx and rx< chosen to represent the first components
of x and x', respectively, label paths on the graph X from 1 to the respective Gy-
components m(x) and m(x') (see Section 2).

The regular subsemigroup W in T or C generated by {x,x' : x e X) can be
obtained recursively with respect to the complexity of the terms in T(X). This leads
to the following definition. As usual, for any w e T(X), we denote the element of C
corresponding to w by (h(w), m(w), t(w)).

Now we define an element co(w) of I(A) for any term w e T(X) as follows: for
x € X, let co(x) = rx and co(x') = rx>. Moreover, if co{u) and o>(u) are defined for
some u, v e T(X), then let

o{uv) = co(u)(m(u), qmm) • "•«"/"<">^<y(u) and

co(u A v) = (o(u)co(uy\p-lMu), qmh(u)y
l • p''^m(v)"(a>(vylaj(v)).

It is easy to see by induction that, for every w e T(X), the word co(w) e I(A) is a
path on X from 1 to m(w). For any term 10 e T(X), let us define

wi = (h(w), a)(w)pu, m(w), t(w)) e T © C.
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In particular, we have xi = x and x'l = x' for any x e X. An induction on
the complexity of terms shows that i is a (•, A)-homomorphism. For, it is clear by
definition that ui • vi = (uv)i, and Lemma 4.2 implies that MIAUI = ( H A V)I. Denote
the image of ( by Rx(U, V). Since Rx(U, V) is just the regular subsemigroup of
Tor C generated by [x, x' : x e X], Theorem 4.3 implies that, in this way, we have a
model of the bifree object in U or V on X.

THEOREM 4.4. Let U be a variety of inverse semigroups and V a variety of com-
pletely simple semigroups with 1ZB c V. For any non-empty set X, the subsemigroup

RxW, V) = [(h{w), a>{w)pu, m(w), t(w)) : w g T(X))

of FU(A) or BFV(X) together with the matched mapping X -> RX(U, V), y H>
(h(y), a)(y)pu, m(y), t(y)) (y e X) is a bifree object in U orV on the set X.

Combining Theorem 4.4 with Theorem 3.9 and Theorem 3.10, we deduce the
following corollary.

COROLLARY 4.5. Let U be a variety of inverse semigroups and V a variety of
completely simple semigroups. Let X be a non-empty set.

(i) If TIB C V then the semigroup Rx(U, V) is a bifree object in U *r V on the
setX.

(ii) If 14 is non-trivial and V is a variety of right groups such that V £ Q then the
semigroup Rx(U, £Z V V) is a bifree object in U *rV on the set X.

The arguments of this section apply with slight modifications to Pastijn products.
Thus, if U is a variety of inverse semigroups and V a variety of completely simple
semigroups with TZB C V then we obtain a model of a bifree object in the Pastijn
product U O V of U by V, which coincides with the restricted regular semidirect
product U *„ V of U by V, in the following way. For any w e T(X), define x ( w )
to be the word in A obtained from co(w) by deleting all factors (g, q) with labels
q € Q. Notice that x(w) does not label a path any more. Instead of X, we can
work with the subgraph of the Cayley graph of Gy consisting of the edges with labels
in X. In particular, x(x) = ( l .* ) ( l . •* )" ' ( ! . *)—which can be clearly changed for
X(x) = (1, x)—and x(x>) = (P7XIX~1' * ) ' • ^ n u s w e obtain the following result.

THEOREM 4.6. Let U be a variety of inverse semigroups and V a variety of com-
pletely simple semigroups with 1ZB C V. For any non-empty set X, the subsemigroup

Px(K, V) = {(h(w), x(w)pu. m(w), t(w)) : w g T(X)}

is a regular subsemigroup of the Pastijn product FlA(A) Q BFV(X), and Px(U, V)
together with the matched mapping X —> P*(W, V), y *->• (h(y), x(y)Pu, w(y
(y € X) is the bifree object in U *rr V = U Q V on the set X.
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This construction was introduced in [10] in the special case of U being the variety S

of semilattices to give models of bifree objects in the e-varieties of locally inverse

semigroups generated by Mafcev products S o V.

Finally, let us note that Theorems 4.4 and 4.6 have the following consequence.

Given a (regular) Rees matrix semigroup 5 — (R.)M(I, U * G, A; P) over a semidi-

rect product of an inverse semigroup by a group, we can associate to it a completely

simple semigroup Sncs as follows: Sites = -M(I, G, A; /")> where the (k, i) entry

of P' is the component from G of the (X, i) entry of P.

COROLLARY 4.7. Let U be a variety of inverse semigroups and V a variety of

completely simple semigroups with TZB c V.

(i) The e-variety U * r V = 1A or V is generated by the class of all regular Rees

matrix semigroups S = 71A4(I, U * G, A; P), where U € U and Sncs £ V.

(ii) The e-variety U *rr V = U Q V is generated by the class of all Rees matrix

semigroups S = M(I, U * G, A; P), where U eU, Sncs € V and the entries of P

are in the group of units of Ux * G.
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