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Abstract

In this paper we develop a collection of results associated to the analysis of the
sequential Monte Carlo (SMC) samplers algorithm, in the context of high-dimensional
independent and identically distributed target probabilities. The SMC samplers algorithm
can be designed to sample from a single probability distribution, using Monte Carlo
to approximate expectations with respect to this law. Given a target density in d

dimensions our results are concerned with d → ∞, while the number of Monte Carlo
samples, N , remains fixed. We deduce an explicit bound on the Monte-Carlo error for
estimates derived using the SMC sampler and the exact asymptotic relative L2-error of the
estimate of the normalising constant associated to the target. We also establish marginal
propagation of chaos properties of the algorithm. These results are deduced when the
cost of the algorithm is O(Nd2).
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1. Introduction

High-dimensional probability distributions are increasingly of interest in a wide variety of
applications. In particular, one is concerned with the estimation of expectations with respect to
such distributions. Due to the high-dimensional nature of the probability laws, such integrations
cannot typically be carried out analytically; thus, practitioners will often resort to Monte Carlo
methods.

An important Monte Carlo methodology is sequential Monte Carlo (SMC) samplers (see [10]
and [18]). This is a technique designed to approximate a sequence of densities defined on a
common state space. The method works by simulating a collection of N ≥ 1 weighted samples
(termed particles) in parallel. These particles are propagated forward in time via Markov chain
Monte Carlo (MCMC), using importance sampling (IS) to correct, via the weights, for the
discrepancy between target distributions and proposals. Due to the weight degeneracy problem
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(see, e.g. [14]), resampling is adopted, sometimes performed when the effective sample size
(ESS) drops below some threshold. Resampling generates samples with replacement from the
current collection of particles using the importance weights, resetting unnormalised weights
to 1 for each sample. The ESS is a number between 1 and N , and indicates, approximately, the
number of useful samples. For SMC samplers, we are typically interested in sampling a single
target density on R

d . However, due to some complexity, a collection of artificial densities are
introduced, starting at some easy to sample distribution and creating a smooth path to the final
target.

Recently (see [2], [4], and [24]) it was shown that some IS methods do not stabilise, in
an appropriate sense, as the dimension of target densities in a particular class grows, unless
N grows exponentially fast with dimension d. In later work (see [3]) it has been established
that the SMC sampler technique for independent and identically distributed (i.i.d.) targets can,
in some scenarios, be stabilised at a cost that is only polynomial in d. It was shown in [3]
that ESS and the Monte Carlo error of fixed dimensional marginals stabilise as d grows, with
a cost of O(Nd2). This corresponds to introducing d artificial densities between an initial
distribution and the one of interest. The case of fixed dimension (d) also has been analyzed
recently (see [25]), while other results associated to the dimension can be found in [15] and [23].

The objective of this paper is to provide a more complete understanding of SMC samplers
in high dimensions, complementing and building upon the results of [3]. A variety of results
are presented, addressing some generic theoretical properties of the algorithms and some issues
which arise from specific classes of applications. As stated above, the results in [3] hold only
for i.i.d. targets and further work is required to investigate more general model structures; in
this paper we focus explicitly only on i.i.d. target distributions.

1.1. Problems addressed

The first issue investigated is the increase in error of estimating fixed dimensional marginals
using SMC samplers relative to i.i.d. sampling. Considering the case when resampling is done
at the very final time step we show that the L2-error increases by a factor of only O(N−1)

uniformly in d . This result helps to establish the uniform in d performance of the algorithm,
coupled with a term that describes the additional loss of accuracy due to the dependence of
the particles (relative to i.i.d. sampling). Resampling at the very final time step is often of
importance in real applications; see, e.g. [11].

The second issue we address is the estimation of ratios of normalising constants approximated
using SMC samplers. This is critical in many disciplines, including Bayesian or classical
statistics, physics, and rare events. In particular, for Bayesian model comparison, Bayes factors
are associated to statistical models in high-dimensional spaces, and these Bayes factors need to
be estimated by numerical techniques such as SMC. The normalising constant in SMC methods
has been well studied; see [7] and [9]. Among the interesting results that have been proved in
the literature is the unbiasedness property. However, to our knowledge, no results have been
proved in the context of asymptotics in dimension d. In this paper we provide an expression for
fixed N of the relative L2-error of the SMC estimate of a ratio of normalising constants. The
algorithm can include resampling, whereby the expression differs. The rate of convergence
is O(N−1) when the computational cost is O(Nd2). The results also allow us to compare
different sequences of densities used within the SMC method.

The third issue we investigate is the asymptotic independence properties of the particles
when we resample, i.e. propagation of chaos (see [9, Chapter 8]). This issue has practical
implications, which we discuss below. It is shown that, between any two resampling times, any
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fixed dimensional marginal distributions, over a fixed block of 1 ≤ q ≤ N particles among the
N particles, are asymptotically independent with the correct marginal. This result is established
as d grows with N fixed, whilst the classical results require N to grow. As in [3] and [25], this
establishes that the ergodicity of the Markov kernels used in the algorithm can provide stability
in high dimensions if the number of artificial densities is scaled appropriately with d.

The paper is structured as follows. In Section 2 we describe the SMC sampler algorithm
together with our mathematical assumptions. In Section 3 we give our main results. In addition,
we introduce a general annealing scheme, coupled with a consideration of stability results for
data-point tempering; see [8]. Section 4 considers the practical implications of our main results
with numerical simulations. We conclude with a summary in Section 5. Most of the proofs of
our results are given in Appendix A.

1.2. Notation

Let (E, E) be a measurable space and P (E) the set of probability measures on it. For μ

a σ -finite measure on (E, E) and f a measurable function, we set μ(f ) = ∫
E

f (x)μ(dx).
For μ ∈ P (E) and P a Markov kernel on (E, E), we use the integration notation P(f )(x) =∫
E

P (x, dy)f (y) and μP(f ) = ∫
E

μ(dx)P (f )(x). In addition,

P n(f )(x) :=
∫

En−1
P(x, dx1)P (x1, dx2) × · · · × P(f )(xn−1).

The total variation difference norm for μ, λ ∈ P (E) is ‖μ − λ‖tv := supA∈E |μ(A) − λ(A)|.
The class of bounded (continuous and bounded) measurable functions f : E → R is written
as Bb(E) (respectively Cb(E)). For f ∈ Bb(E), we write ‖f ‖∞ := supx∈R |f (x)|. We will
denote the L�-norm of random variables as ‖X‖� = E

1/� |X|� with � ≥ 1. For a given vector
(x1, . . . , xp) and 1 ≤ q ≤ s ≤ p, we denote by xq:s the subvector (xq, . . . , xs). For a measure
μ, the N -fold product is written μ⊗N . For any collection of functions (fk)k≥1, fk : E → R,
we write f1 ⊗ · · · ⊗ fk : Ek → R for their tensor product. Throughout, M is used to denote
a constant whose meaning may change, depending upon the context; important dependencies
are written as M(·). In addition, all of our results hold on probability space (�, F , P), with
‘E’ denoting the expectation operator and ‘var’ the variance. Finally, ‘

d−→’ denotes convergence
in distribution.

2. Framework

We first set up the context within which we will derive our analytical results.

2.1. Algorithm and setup

We consider the scenario where we wish to sample from a target distribution with density
� on Ed (E ⊆ R) with respect to Lebesgue measure, known pointwise up to a normalising
constant. In order to sample from �, we introduce a sequence of ‘bridging’ densities which
start from an easy-to-sample target and evolve toward �. In particular, we will consider the
densities

�n(x) ∝ �(x)φn, x ∈ Ed

for 0 ≤ φ0 < · · · < φn−1 < φn < · · · < φp = 1. Below, we use �n to denote unnormalised
densities associated to �n.
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We can sample from {�n} using an SMC sampler that can be designed to target the sequence
of densities

�̃n(x1:n) = �n(xn)

n−1∏
j=1

�j+1(xj )Kj+1(xj , xj+1)

�j+1(xj+1)

with domain (Rd)n of dimension that increases with n = 1, . . . , p. Let {Kn} be a sequence of
Markov kernels of invariant density {�n} and let ϒ be an (unnormalised) density; assuming
the weights appearing in the statement of the algorithm are well-defined Radon–Nikodým
derivatives, the SMC sampler we will ultimately explore is the one defined in Algorithm 2.1.

Algorithm 2.1. (The SMC samplers algorithm.) We consider multinomial resampling, so
resampled particles are i.i.d. samples from the discrete law determined by the particles just
before resampling and their weights.

(Step 0.) Sample X1
0, . . . , X

N
0 i.i.d. from ϒ and compute the weights, for each particle i ∈

{1, . . . , N},
wi

0:0 = �0(x
i
0)

ϒ(xi
0)

.

Set n = 1 and l = 0.

(Step 1.) If n ≤ p, for each i sample Xi
n | Xi

n−1 = xi
n−1 from Kn(x

i
n−1, ·) (i.e. conditionally

independently) and calculate the weights

wi
l:n = �n(x

i
n−1)

�n−1(x
i
n−1)

wi
l:(n−1).

Calculate the ESS

ESSl:n(N) =
(∑N

i=1 wi
l:n

)2

∑N
i=1(w

i
l:n)2

.

If ESSl:n(N) < a. The value a ∈ [1, N ] is user set, often a = N/2.
Resample particles according to their normalised weights

wi
l:n = wi

l:n∑N
j=1 w

j
l:n

;

set l = n and reinitialise the weights by setting wi
l:n ≡ 1, 1 ≤ i ≤ N ;

let x̌1
n, . . . , x̌N

n now denote the resampled particles and set (x1
n, . . . , xN

n ) = (x̌1
n, . . . , x̌N

n ).
Set n = n + 1.
Return to the start of Step 1.

For simplicity, we will henceforth assume that ϒ ≡ �0. It should be noted that when ϒ is
different from �0, we can modify the sequence of densities to a bridging scheme which moves
from ϒ to �p (an appropriately modified version of our results in this paper are expected to
hold in this scenario). However, in practice, we can make �0 as simple as possible so we do
not consider this possibility; see [25] for more discussion and analysis when the dimension is
fixed. Note that here we consider only the multinomial resampling method.

We will investigate the stability of SMC estimates associated to the method in Algorithm 2.1.
The actual analysis is performed on a modified version ofAlgorithm 2.1, which will not perform

https://doi.org/10.1239/aap/1396360114 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1396360114


Sequential Monte Carlo samplers in high dimensions 283

the dynamic resampling described in Section 2.2. To obtain analytical results we will need to
simplify the structure of the algorithm. In particular, we will consider an i.i.d. target

�(x) =
d∏

j=1

π(xj ), π(xj ) ∝ exp{g(xj )}

with xj ∈ E for some g : E → R. In such a case all bridging densities are also i.i.d.:

�n(x) ∝
d∏

j=1

πn(xj ), πn(xj ) ∝ exp{φng(xj )}.

Thus, in this context we will have

�n(x) = exp

{
φn

d∑
j=1

g(xj )

}
.

It is remarked that this i.i.d. assumption is made for mathematical convenience, as it will
allow for analytical tractability of asymptotic results as d → ∞. This is exactly in agreement
with the i.i.d. setup followed for deriving powerful asymptotic results as d → ∞ in the MCMC
literature (see, e.g. [20] and [22] or the review in [21] and the references therein). Going beyond
the i.i.d. context when investigating d → ∞ in the more established MCMC literature requires
a lot of technicalities for each particular modelling scenario (see, e.g. [1] and [5]) so we will
leave this for future work for our SMC context. Using our result, some reasonable conjectures
can still be made when looking at targets used in practice; see [3] for an extensive discussion
on potential extensions of our results to the non-i.i.d. contexts.

A further assumption that will facilitate the mathematical analysis is to apply (conditionally)
independent kernels along the different coordinates. That is, we will assume that

Kn(x, dx′) =
d∏

j=1

kn(xj , dx′
j ),

where each transition kernel kn(·, ·) preserves πn(x); that is, πnkn = πn. We study the case
where cooling constants φn = φn(d) and p = p(d) are selected as below:

p = d, φn(= φn,d) = φ0 + n(1 − φ0)

d
for 0 ≤ n ≤ d, (2.1)

with 0 ≤ φ0 < 1 given and fixed with respect to d. It is possible, with only notational changes,
to consider (as in [25]) the case when the annealing sequence is derived via a more general
nondecreasing Lipschitz function; see Section 3.2.1. As in [3], it will be convenient to consider
the continuum of invariant densities and kernels on the whole of the time interval [φ0, 1]. So,
we will set

πs(x) ∝ π(x)s = exp{sg(x)}, s ∈ [φ0, 1].
Similarly, ks(x, dx′) with s ∈ (φ0, 1] is the continuous-time version of the kernels kn(x, dx′).
As in [3], the mapping ld (s) = �d(s − φ0)/(1 − φ0)� is used to move between continuous and
discrete time.
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2.2. Conditions

We state the conditions under which we will derive our results. We will require that E ⊂ R

with E being compact. The conditions below correspond to a simplification of the weaker
conditions in [3] under the scenario of the compact state space E that we consider here. We
note that imposing compactness has been done mainly to simplify proofs and keep them to a
reasonable length. The numerical examples later on are executed on unbounded state spaces,
and do not seem to invalidate our conjecture that several of the results in the sequel will also
hold on unbounded spaces under appropriate geometric ergodicity conditions, as was the case
for the stability results as d → ∞ in [3]. We remark that all results of [3] also hold under the
assumptions stated here.

(A1) Stability of {ks}—uniform ergodicity.
There exists a constant θ ∈ (0, 1) and some ς ∈ P (E) such that for each s ∈ (φ0, 1] and
any (x, A) ∈ E × E

ks(x, A) ≥ θς(A).

(A2) Perturbations of {ks}.
There exists an M < ∞ such that for any s, t ∈ (φ0, 1] we have

sup
x∈E

‖ks(x, ·) − kt (x, ·)‖tv ≤ M|s − t |.

In the context of our analysis, we will consider an SMC algorithm that resamples at the
deterministic times t1(d), . . . , tm∗(d)(d) ∈ [φ0, 1] (i.e. resamples after n = ld (tk(d)) steps for
k = 1, 2, . . . , m∗(d)) such that t0(d) = φ0 and

t0(d) < t1(d) < · · · < tm∗(d)(d) < tm∗(d)+1(d) = 1

with ld (tm∗(d)) < d . We will also assume that, as d → ∞, we have m∗(d) → m∗ and
tk(d) → tk for tk ∈ [φ0, 1] for all relevant k. Such deterministic times are meant to mimic
the behaviour of randomised ones (i.e. as for the case of the original Algorithm 2.1 which
involves dynamic resampling at stochastic times) and provide a mathematically more convenient
framework (but still a very challenging one for deriving analytical results) than dynamic
resampling for understanding the impact of resampling on the properties of the algorithm.
Examples of particular specifications of such times, chosen so that they connect with the
randomised ones, can be found in [3] and [12]; the results therein provide an approach for
converting the results for deterministic times to results for randomised times. In particular,
they show that, with a probability converging to 1 as N → ∞, the randomised times essentially
coincide with the particular deterministic ones. We do not consider such results here as we
will focus on other aspects of the algorithm, and point the readers to [3] for more details. For
simplicity, we will henceforth assume that d is large enough so that m∗(d) ≡ m∗.

The analysis considered here makes rather strong assumptions. The strong mixing assump-
tions, which can hold for sampling problems on compact state spaces, may lead the reader
to think that SMC methods would not be needed in such scenarios. However, we argue that
there are problems, to which our analysis extends, where we would use SMC samplers even
if MCMC mixes extremely well (see Section 3.2.2). In addition, the proofs and ideas here
provide a first analysis on which to base proofs with weaker assumptions. We also remark that
the use of weaker assumptions in the stability analysis of SMC methods is quite recent; see for
example [3], [25], and [26].
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2.3. Log-weight-asymptotics

Given setup (2.1), the resampling procedure at the deterministic times t1(d), . . . , tm∗(d) ∈
[φ0, 1], and due to the i.i.d. structure described above, we have the following expression for the
particle weights:

log(wi
ld (tk−1(d)):ld (tk(d))

) = 1

d

d∑
j=1

Ḡi
k,j ,

where Ḡi
k,j = (1 − φ0)

∑ld (tk(d))−1
n=ld (tk−1(d)) g(Xi

n,j ) for 1 ≤ i ≤ N and Xi
n,j is the j th component

of Xi
n. The work in [3] illustrates stability of the normalised weights as d → ∞. Define the

standardised log-weights as

Gi
k,j = (1 − φ0)

ld (tk(d))−1∑
n=ld (tk−1(d))

(g(Xi
n,j ) − Eπtk−1(d)

[g(Xi
n,j )]). (2.2)

Note that the notation Eπtk−1(d)
[g(Xi

n,j )] refers to an expectation under the initial dynamics

Xi
ld (tk−1(d)),j ∼ πtk−1(d); after that, Xi

n,j will evolve according to the Markov transitions kn. We
also use the notation

E
π⊗Nd

tk−1(d)
[·]

when imposing similar initial dynamics, but now independently over all coordinates and
particles; such dynamics differ, of course, from the actual particle dynamics of the SMC
algorithm. In what follows, we use the Poisson equation

g(x) − πu(g) = ĝu(x) − ku(ĝu)(x)

(i.e. ĝu is the solution of the Poisson equation associate to kernel ku with invariant measure πu;
this exists under our assumptions) and in particular the variances

σ 2
s:t = (1 − φ0)

∫ t

s

πu(ĝ
2
u − ku(ĝu)

2) du, φ0 ≤ s < t ≤ 1. (2.3)

The following weak limit can be derived from the proof of Theorem 4.1 of [3].

Remark 2.1. (Log-weight-asymptotics.)
Assume (A1)–(A2) and g ∈ Bb(E). For any N ≥ 1, we have

(
1

d

d∑
j=1

Gi
k,j

)N

i=1

d−→ (Zi)Ni=1,

where the Zis are i.i.d. copies from N(0, σ 2
tk−1:tk ).

The result illustrates that the consideration of O(d) Markov chain steps between resampling
times stabilise the particle standardised log-weights as d → ∞.

3. Main results

We now present the main results of the paper. The emphasis here will be to illustrate that
Monte-Carlo errors for important estimates will be stable as d → ∞, for fixed N .
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3.1. Asymptotic results as d → ∞
The first result of the paper pertains to the Monte-Carlo error from estimates derived via the

SMC method.

3.1.1. L2-error. We will consider mean squared errors and obtain L2-bounds with resampling
carried out also ‘at the end’, that is, we resample also at time t = 1. Recall that in Algorithm 2.1
the X̌-notation is used for resampled particles once they have been resampled. Resampling at
time t = 1 is required when we wish to obtain unweighted samples. We have the following
result, which is proved in Appendix A.2.

Theorem 3.1. Assume (A1)–(A2) and g ∈ Bb(E). Then, for any N ≥ 1, ϕ ∈ Cb(E) we have

lim
d→∞

∥∥∥∥
(

1

N

N∑
i=1

[ϕ(X̌i
d,1) − π(ϕ)]

)∥∥∥∥2

2
≤ varπ [ϕ] 1

N
(1 + M(σ 2

tm∗ :1))

for

M(σ 2
tm∗ :1) = exp{σ 2

tm∗ :1} + M exp{17σ 2
tm∗ :1}

1

N1/6

with M < ∞ independent of N and σ 2
tm∗ :1.

Remark 3.1. Compared to an i.i.d. sampling scenario, the upper bound obtained in Theorem 3.1
contains the extra term varπ [ϕ](1/N)M(σ 2

tm∗ :1). This is due to the dependence of the particles
from resampling.

3.1.2. Normalising constants. The second main result of the paper is the stability of estimat-
ing normalising constants in high dimensions. The quantity of interest here is the ratio of
normalising constants

cd :=
∫
Ed �d(x) dx∫
Ed �0(x) dx

.

We first consider the SMC sampler in Algorithm 2.1 without the resampling step. Define

γ N
d (1) = 1

N

N∑
i=1

wi
0:d ≡ 1

N

N∑
i=1

exp

{
1

d

d∑
j=1

Ḡi
j

}
, γd(1) = E

[
exp

{
1

d

d∑
j=1

Ḡ1
j

}]
,

where Ḡi
j = (1 − φ0)

∑d−1
n=0 g(Xi

n,j ). By [9, Proposition 7.4.1], we have E[γ N
d (1)] =

γd(1) ≡ cd . Now, consider the relative L2-error

V2(γ
N
d (1)) = E

[(
γ N
d (1)

cd

− 1

)2]
.

We then have the following result, which is proved in Appendix A.3.

Theorem 3.2. Assume (A1)–(A2) and g ∈ Bb(E). Then, for any N ≥ 1,

lim
d→∞ V2(γ

N
d (1)) = 1

N
exp{σ 2

φ0:1 − 1}.
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The result establishes a O(N−1) rate of convergence at a computational cost of O(Nd2).
The information in the limit is in terms of the expression σ 2

φ0:1. As in [3], this is a critical
quantity, which helps to measure the rate of convergence of the algorithm.

We now consider the SMC sampler in Algorithm 2.1 with resampling at the deterministic
times {tk(d)} as described in Section 2.2. We make the definitions

γ N
d,k(1) = 1

N

N∑
i=1

exp

{
1

d

d∑
j=1

Ḡi
k,j

}
, γd,k(1) = E

π⊗Nd
tk−1(d)

[
exp

{
1

d

d∑
j=1

Ḡ1
k,j

}]
,

where k ∈ {1, . . . , m∗ +1} and Ḡi
k,j is as defined in Section 2.3. As in the nonresampling case,

we again have the unbiasedness property for the estimate of cd

E

[m∗+1∏
k=1

γ N
d,k(1)

]
=

m∗+1∏
k=1

γd,k(1) ≡ cd .

We have the following result, which is proved in Appendix A.3.

Theorem 3.3. Assume (A1)–(A2) and g ∈ Bb(E). Then, for any N ≥ 1,

lim
d→∞ V2

(m∗+1∏
k=1

γd,k(1)

)

= exp{−σ 2
φ0:1}

m∗+1∏
k=1

[
1

N
exp{2σ 2

tk−1:tk } +
(

1 − 1

N

)
exp{σ 2

tk−1:tk }
]

− 1.

Remark 3.2. The estimation of normalising constants without resampling as in Theorem 3.2 is
usually not feasible, as the asymptotic variance in the theorem can be extremely large. However,
making an analytical comparison to Theorem 3.2 the limiting expression here depends upon
the incremental variance expressions. On writing the limit in the form

m∗+1∏
k=1

[
1 + 1

N
{exp{σ 2

tk−1:tk } − 1}
]

− 1,

if N > (m∗ +1)(exp{σ 2}−1), with σ 2 = maxk σ 2
tk−1:tk , then using the inequality ex ≤ 1+2x,

x ≤ 1, we have

lim
d→∞ V2

(m∗+1∏
k=1

γd,k(1)

)
≤ 2(m∗ + 1)(eσ 2 − 1)

N
.

Contrasting this bound with the limit in the case without resampling in Theorem 3.2, it involves
one term that increases linearly with the number of resampling times and an exponential term
that decreases with the number of resampling times as the σ 2-terms are calculated over smaller
time intervals. Following the proof inAppendixA, the stated limit in Theorem 3.3 is determined
by the behaviour of

E
π⊗Nd

tk−1(d)
[γ N

d,k(1)2/γd,k(1)2]
between resampling times. In effect, the ergodicity of the system takes over, and breaks up the
error in estimation of the ratio of normalising constants to different tours between resampling
times (see Proposition 3.1).
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To provide some intuition for Theorem 3.3, we give the following result. It is associated to
the asymptotic independence, between resampling times, of the log-weights

∑d
j=1(1/d)Gi

k,j

in (2.2). The proof is in Appendix A.3.

Proposition 3.1. Assume (A1)–(A2) and that g ∈ Bb(E). Then, for any N ≥ 1, i ∈
{1, . . . , N}, c1:k ∈ R, and k ∈ {1, . . . , m∗ + 1}, we have

lim
d→∞ E

[
exp

{ k∑
l=1

cl

1

d

d∑
j=1

Gi
l,j

}]
=

k∏
l=1

E[exp{clZ
l}],

where Zl ∼ N(0, σ 2
tl−1:tl ) independently over 1 ≤ l ≤ k.

3.1.3. Propagation of chaos. Finally, we deduce a rather classical result in the analysis of
particle systems: propagation of chaos, which, in the standard setting with fixed dimension d,
refers to the asymptotic independence of any fixed block of q out of N particles as N grows.
Consider the following scenario, with the SMC sampler with resampling at times {tk(d)}. Let
s(d) be a sequence such that s(d) ∈ (tk−1(d), tk(d)) for some 1 ≤ k ≤ m∗ + 1, with limit
s ∈ (tk−1(d), tk(d)). Denote by

P
(q,N)

s(d),j

the marginal law of any of the q particles out of N at time s(d) and in dimension j ∈ {1, . . . , d}.
By construction, particles are considered at a time when they are not resampled. We have the
following propagation-of-chaos result, the proof of which is in Appendix A.4.

Proposition 3.2. Assume (A1)–(A2) and that g ∈ Bb(E). Then, for any fixed j ∈ {1, . . . , d}
and any 1 ≤ k ≤ m∗ + 1, a sequence s(d) ∈ (tk−1(d), tk(d)) with s(d) → s, and any N ≥ 1
with 1 ≤ q ≤ N fixed, we have

lim
d→∞ ‖P

(q,N)

s(d),j − π
⊗q
s ‖tv = 0.

The result establishes the asymptotic independence of the marginals of the particles, between
any two resampling times, as d grows. This is in contrast to the standard scenario, where the
particles only become independent as N grows. Critically, the MCMC steps provide the effect
that the marginal particle distributions converge to the target π

⊗q
s . Thus, Proposition 3.2

establishes that it is essentially the ergodicity of the system which helps to drive the stability
properties of the algorithm. It should be noted that if we consider the particles just after
resampling, we cannot obtain an asymptotic independence in d. Here, as in classical results
for particles methods, we have to rely on increasing N .

3.2. Other sequences of densities

We now discuss some issues associated with the selection of the sequence of chosen bridging
densities {�n}.
3.2.1. Annealing sequence. Recall that we use the equidistant annealing sequence φn in (2.1).
We could also consider a general differentiable increasing Lipschitz function φ(s), s ∈ [0, 1]
with φ(0) = φ0 ≥ 0, φ(1) = 1, and use the construction φn,d = φ(n/d); then the asymptotic
result in Remark 2.1 (and then the main results in Section 3), generalised to the choice of φn,d

considered here, would involve the variances

σ
2,φ
s:t =

∫ t

s

πφ(u)(ĝ
2
φ(u) − kφ(u)(ĝφ(u))

2)

[
dφ(u)

du

]
dφ(u), 0 ≤ s < t ≤ 1, (3.1)

https://doi.org/10.1239/aap/1396360114 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1396360114


Sequential Monte Carlo samplers in high dimensions 289

in place of σ 2
s:t in (2.3). Our proofs in this paper are given in terms of the annealing sequence

(2.1), corresponding to a linear choice of φ(·), but it is straightforward to modify them to the
above scenario.

This point is illuminated by our main results. For example, Theorem 3.2 helps to compare
various annealing schemes for estimating normalising constants, via the limiting quantity (3.1).
That is, if we are concerned only with variance, we would prefer an annealing scheme φ(s)

giving a lower (exp{σ 2,φ
0:1 } − 1)/N , equivalently a lower σ

2,φ
0:1 . In practice, however, one has

to numerically approximate σ
2,φ
0:1 , which lessens the practical impact of this result. Similar

considerations apply for the result in Theorem 3.3.

3.2.2. Data point tempering. An interesting sequence of densities introduced in [8] arises in
the scenario when � is associated with a batch data set y1, . . . , yL. The idea is to construct the
sequence of densities so that arriving data points are added sequentially to the target as the time
parameter of the algorithm increases. More concretely, we will assume here that the target �

corresponds to the posterior distribution for the quantity of interest x:

�(x) = p(x | y1, y2, . . . , yL)

∝ p(x)p(y1 | x)p(y2 | y1, x) · · · p(yL | y1:(L−1), x)

∝ exp

{ L∑
l=0

d∑
j=1

g(l)(y1:l , xj )

}
, xj ∈ E,

so that in the final expression we again impose a simplified context when all factors in the
specification of � have an isomeric product structure over the xj s, via the consideration of the
functionals g(l) = g(l)(y1:l , xj ); we use the convention that y1:0 = ∅. In this scenario one
could then adopt a sequence of densities of the form

�(l)(x) ∝ exp

{ l∑
k=0

d∑
j=1

g(k)(y1:k, xj )

}
, 0 ≤ l ≤ L.

Clearly, for d → ∞, we cannot stabilise the associated SMC algorithm (Algorithm 2.1) as ap-
plied on the sequence of targets �(0), �(1), . . . , �(L) as �(l+1)/�(l) explodes for increasing d.
To stabilise the algorithm as d grows we can insert �d/L� annealing steps between consecutive
data points, thus forming the densities

�(l)
n (x) ∝ exp

{
φ

(
n

�d/L�
) d∑

j=1

g(l)(y1:l , xj )

}
× �(l−1)(x)

for l ∈ {1, . . . , L} and n ∈ {1, . . . , �d/L�}, where φ(s) is as in Section 3.2.1 with φ0 = 0.
Then we can adopt Markov kernels K

(l)
n , 0 ≤ l ≤ L, of product form with each component

kernel k
(l)
n having invariant measure

π(l)
n (x) ∝ exp

{
φ

(
n

�d/L�
)

g(l)(y1:l , x) +
l−1∑
k=0

g(k)(y1:k, x)

}
, x ∈ E.

The continuous-index versions π
(l)
s and k

(l)
s are defined accordingly.
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With a small abuse of notation, we now consider the application of Algorithm 2.1 upon the
sequence of targets �

(l)
n defined above, with particles moved according to the kernels K

(l)
n .

We consider the scenario where there is no resampling and denote here by ESS(0,d)(N) the
effective sample size after all data points have been incorporated in the sampler. Throughout,
the data are taken as fixed. We have the following result, which is a small generalisation of
Theorem 3.1 of [3] and follows directly from its proof; it illustrates stability of ESS(0,d)(N) as
d → ∞. (For simplicity we write g(l)(x) instead of g(l)(y1:l , x).)

Proposition 3.3. Assume conditions (A1)–(A2) for kernels k
(l)
s , l ∈ {1, . . . , L}. Suppose that,

for each l ∈ {1, . . . , L}, we have g(l) ∈ Bb(E). Then, for any fixed N > 1 and n ≥ 1,
ESS(0,d)(n, N) converges in distribution to

(
∑N

i=1 eZi
)2∑N

i=1 e2Zi
,

where Zi ∼ N(0, σ 2) are i.i.d. with

σ 2 =
L∑

l=1

∫ 1

0
π

(l)
φ(u)((ĝ

(l)
φ(u))

2 − k
(l)
φ(u)(ĝ

(l)
φ(u))

2)

[
dφ(u)

du

]
dφ(u),

where ĝ
(l)
s is the solution to the Poisson equation g(l)(x) − π

(l)
s (g(l)) = ĝ

(l)
s (x) − k

(l)
s (ĝ

(l)
s )(x).

In particular,

lim
d→∞ E[ESS(0,d)(N)] = E

[
(
∑N

i=1 eZi
)2∑N

i=1 e2Zi

]
.

As for the case with annealing densities, there is a direct extension to the case where we
resample. In addition, we can easily extend the results in Section 3 in the data-point tempering
case examined here. In connection to filtering, this is a class of densities that falls into the
scenario of a state-space model with a deterministic dynamic on the hidden state (i.e. only the
initial state is stochastic and propagated deterministically; see, e.g. [6]). This is a scenario
where we would want to use SMC methods, even if MCMC techniques work very well; this is
due to the fact that the problem is sequential by its nature—see [16] for real examples in such
a context.

4. Numerical simulations

We now present two numerical examples, to illustrate the practical implications of our
theoretical results. It is noted that the state space E is not compact here, yet the impact of our
results can still be observed.

4.1. Comparison of annealing schemes

We consider a target distribution comprised of d i.i.d. N(0, 1) coordinates. The bridging
densities are, in this case,

πφ(s)(x) ∝ exp
{− 1

2φ(s)x2}. (4.1)

Two annealing schemes are considered:

φ(s) = φ0 + (1 − φ0)s;

ν(s) = φ0eϑ − 1

eϑ − 1
+

(
1 − φ0

eϑ − 1

)
eϑs. (4.2)
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These are graphically displayed in Figure 1 (a), with ϑ = 5.
The purpose of investigating the two annealing schemes is as follows. In practical applica-

tions of SMC samplers, we have observed that algorithms with slow initial annealing schemes
can often out-perform those with faster ones (see Figure 1(a)). Thus, we expect scheme ν(s) to
perform better than φ(s) with respect to the expression for the asymptotic variance (3.1), and,
hence, deliver a lower relative L2-error for the estimation of the normalising constant in high
dimensions. To obtain some analytically computable proxies for the asymptotic variances (3.1)
we use the variances that we would obtain when ks(x, dx′) ≡ πs(dx′), that is, we substitute
πφ(u)(g

2) − πφ(u)(g)2 for πφ(u)(ĝ
2
φ(u) − kφ(u)(ĝφ(u))

2) in (3.1). In this scenario it is simple to
show that, under the choice (4.1), we have

σ
2,φ
φ0:1 = 1

2

∫ 1

φ0

[
1

φ(u)

dφ(u)

du

]2

du.

Figure 1(b) now plots the analytically available variancesσ
2,φ
φ0:1 andσ

2,ν
φ0:1 (dashed line) againstφ0.

The graph indeed provides some evidence that the scheme ν(s) should give better results. This
is particularly evident when φ0 is small; this is unsurprising since we initialise from �φ0 ,
and, hence, if φ0 is closer to 1 we expect a constant increase in the annealing parameter to be
preferable to a slow initial evolution.

We ran SMC samplers with both annealing schemes with N = 104 particles and different
dimension values d ∈ {10, 25, 50}. The choice φ0 = 1/d is used for both annealing schemes.
We used a Markov kernel ks(x, dx′) corresponding to a random-walk Metropolis with proposal
y = x + N(0, 1/25φ0). Thus the proposal variance is 1

25 times the variance of the starting
distribution of the bridge N(0, 1/φ0). This is a choice that gave good acceptance probabilities
over all d bridging steps of the sampler. Multinomial resampling was used when the effective
sample size dropped below N/2. We made 50 independent runs of the algorithm, and calculated
the corresponding realisations of the log ratio

m∗(d)+1∑
k=2

log

(
γ N
d,k(1)

γ N
d,k−1(1)

) /
log

(
γd,k(1)

γd,k−1(1)

)
(4.3)
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Figure 1: (a) Plot of the annealing parameters φ(s) and ν(s) (dashed line), defined in (4.2), against time
when φ0 = 0.01 and ϑ = 5. (b) Plot of σ

2,φ
φ0:1 and σ

2,ν
φ0:1 (dashed line) against φ0 for the case of exact

sampling with ks(x, dx′) ≡ πs(dx′) and the scenario (4.1).
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Table 1: The empirical variances (over 50 independent runs for the SMC sampler) of the log ratio (4.3)
using the annealing φ(s) over the corresponding variances for the annealing sequence ν(s).

Dimension d 10 25 50

Ratio of variances (for φ(s) over ν(s)) 2.32 3.47 7.05

(note that now the resampling times and their number are random) and their sample variance.
This experiment was carried out for choices of dimension d ∈ {10, 25, 50} and for both
annealing schemes φ(s) and ν(s). The ratios of the obtained variances for the annealing
sequence φ(s) over ν(s) are shown in Table 1. The results confirm our theoretical findings
above for the superiority of ν(s) over φ(s) based on the analytical expression for the asymptotic
variance even for moderate d .

4.2. Bayesian linear model

We now consider the implications of the main results in the context of a Bayesian linear
regression model (see [13] for a book-length introduction as well as a wealth of practical
applications). This is a statistical model that associates an L-vector of responses, say Y , to an
L × d-matrix, X, of explanatory variables for some L ≥ 1, d ≥ 1. In particular,

Y = Xβ + ε,

where β is a d-vector of unknown regression coefficients and ε ∼ NL(0, 1L), with 1L the
L × L identity matrix. A prior density on β is taken as Nd(0, 1d) which yields a posterior
density found to be the d-dimensional Gaussian Nd((1d + X�X)−1X�Y , (1d + X�X)−1),
where X� denotes transpose. This is the target distribution for our SMC sampler.

The objective is to investigate the bound in Theorem 3.1 and the implications of Propo-
sition 3.2. Note that the target distribution is not of product structure here. The data-point
tempering method (see Section 3.2.2) is also compared with annealing. We consider the case
d = 50, L = 50 with N = 103; the data are all simulated. The annealing scheme ν in
(4.2) is adopted as well as the data-point tempering method with �10d/L� steps between
the L data-point arrivals. Particles are propagated along the bridging densities via Markov
kernels corresponding to random-walk Metropolis within Gibbs: the proposal for a univariate
coordinate x conditionally on the rest is y = x+N(0, 1

16 ). Dynamic resampling according to the
ESS is employed (threshold N/2) as well as resampling at the last time step (see Theorem 3.1).
For the annealing scheme, the number of SMC steps is scaled as a multiple of d. By this increase
in the number of time steps we aim to illustrate the propagation of chaos (Proposition 3.2).
We fixed d = 50 for computational cost considerations, but the SMC algorithms will easily
stabilise for much larger d .

Each SMC method is repeated 100 times. We calculate the mean square error for the
estimation of E[β1 | Y ] (analytically available here) over the 100 replications and we compare
with the corresponding error under i.i.d. sampling of the posterior of β1; the results are reported
in Table 2. In the table we can observe the increase in mean square error of the (annealed)
SMC algorithm relative to i.i.d. simulation. The increase here is not substantial, as indicated
by Theorem 3.1, although one may need to take d very large (and have an i.i.d. target) before
the bound in Theorem 3.1 is realised. As the number of time steps increases, we can observe
an improvement. This is due to an increase in the diversity of the population, which improves
the SMC estimate even when resampling at the end. For the data-point tempering method (the
CPU time is roughly comparable with the case of 10d time steps of the annealed SMC), the
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Table 2: The mean square error when estimating E[β1 | Y ] for the (annealed) SMC sampler over 100
repeatitions relative to i.i.d. sampling. 1000 particles are run and we resample at the final time step. The

error is calculated for different choices of the number of time steps for the SMC sampler.

Time steps d 5d 10d

Relative error 4.75 4.47 3.9

corresponding value of the relative mean square error is 7.5, which is slightly worse than the
annealing scheme. In general, it is difficult to draw a definite conclusion on which scheme may
be better.

5. Summary

In this paper we have considered the stability of SMC methods in high dimensions. In
particular, we considered the L2-error of marginal estimates, the L2-relative error of the
normalising constants, and the propagation of chaos properties. The main focus has been
illustrating stability of estimates in high dimension d for a fixed number of particles N . Some
directions for future work are as follows.

Firstly, in the context of normalising constants, one direction is the consideration of rare-
events problems, e.g. as described in [7]. Following [7], it is possible to obtain computational
complexity results for some rare events problems. Relevant to the material in this paper, we
can pose some rare-events problems in terms of the dimensionality (that is, the event of interest
becomes less likely as the dimension grows). Our results would, in many cases, not apply to
this scenario and an extension to this case is important.

Secondly, for normalising constants we have considered only the relative L2-error. It would
be of interest to consider higher-order errors for example. In addition, by studying the normal-
ising constant, we have considered only one particular important functional that changes with
d. More generally, we can ask the following. When we can perform estimation with direct
Monte Carlo, with a cost which is less than exponential in d, is it also possible to do this with
SMC methods?

Thirdly, one important research direction would be to investigate the relevance of results in
high dimensions in the context of SMC methods used in filtering (e.g. particle filtering). This
appears to be the main interest in the literature and it may be that there is no SMC algorithm
which will always perform well in high dimensions for every model. One potentially important
algorithm in this direction can be found in [19].

Finally, we could considerably weaken the hypotheses made in this paper; as noted earlier,
the use of weaker conditions in the stability analysis of SMC methods is rather recent. Given
the work of [26] and the number of exponential moments that we need to treat, it seems that
multiplicative drift conditions (see [17]) could be adopted.

Appendix A. Proofs

A.1. Preliminary results

We summarise in Lemmas A.1 and A.2 below some results required in the proofs obtained
in [3] or implied directly from results in that paper. Recall the definition of Gi

k,j from (2.2).
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Lemma A.1. (G-asymptotics.) Assume (A1)–(A2) and g ∈ Bb(E).

(i) Under the starting distribution X1:N
ld (tk−1(d)),1:d ∼ π⊗Nd

tk−1(d) we have, as d → ∞,

Gi
k,j√
d

d−→ N(0, σ 2
tk−1:tk ),

1

d

d∑
j=1

Gi
k,j

d−→ N(0, σ 2
tk−1:tk ).

(ii) We have |E
X̌i

ld (tk−1(d)),j
[Gi

k,j ]| ≤ M , and, for any p ≥ 2,

E
X̌i

ld (tk−1(d)),j
|Gi

k,j |p ≤ Md(p/2)∨1.

(iii) Under either π⊗Nd
tk−1(d) as in (i) or the actual particle distribution we have, as d → ∞,

E

[
exp

{
c

d

d∑
j=1

Gi
k,j

}]
→ E[exp{cN(0, σ 2

tk−1:tk )}] ≡ exp

{
1

2
c2σ 2

tk−1:tk

}
.

(iv) We have, as d → ∞,

1

d

d∑
j=1

E
X̌i

ld (tk−1(d)),j
[Gi

k,j ] → 0, in L1,

1

d2

d∑
j=1

E
X̌i

ld (tk−1(d)),j
[(Gi

k,j − E
X̌i

ld (tk−1(d)),j
[Gi

k,j ])2] → σ 2
tk−1:tk , in L1.

Proof. (i) Both weak limits follow from the proof of Theorem 3.2 of [3]. Notice that a
minor difference is that, instead of the fixed times φ0 and 1 considered in Theorem 3.2
of [3], we now sum terms between the varying time instances tk−1(d) and tk(d). However,
the proof for this case follows trivially from the proof for the fixed times due to the limits
tk−1(d) → tk−1 and tk(d) → tk .

(ii) All these results follow directly from Theorem A.1 of [3].

(iii) This follows from the central limit theorems in parts (i) and (ii) and the uniform integra-
bility result obtained in Lemma A.6.

(iv) The first result corresponds to [3, Proposition C.4]. The second result is shown in the
proof of Theorem 4.1 of [3].

Lemma A.2. (Convergence of marginal laws.) Assume (A1)–(A2) and g ∈ Bb(E). Then we
have the following.

(i) For a sequence of times s(d) ∈ (φ0, 1), with tk−1(d) < s(d) and s(d) → s ∈ (tk−1, 1),
and the collection of time steps u(d) = (ld(tk−1(d))+1) : ld (s(d)), we have, as d → ∞,

‖ku(d)(X̌
i
ld (tk−1(d)),1) − πtk−1(d)ku(d)‖tv → 0, in L1,

‖πtk−1(d)ku(d) − πs(d)‖tv → 0.
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(ii) For a sequence of times s(d) ∈ (φ0, 1), with tk−1(d) < s(d) and s(d) → s ∈ (tk−1, 1),
and the collection of time steps u(d) = ld (tk−1(d)) : ld (s(d)), we have

(w1:N
u(d), X1:N

ld (s(d)),1)
d−→

(
eZ1:N∑N
l=1 eZl

, Y 1:N
)

,

where {Zi}Ni=1 are i.i.d. copies from N(0, σ 2
tk−1:s) and, independently, {Y i}Ni=1 are i.i.d.

copies from πs .

Proof. (i) The first result follows by the proof of Proposition C.4 of [3]; the second result
from Proposition A.1 of [3].

(ii) The weak convergence of the weights is analytically illustrated in the proof of Theo-
rem 4.1 of [3]. The weak convergence of the positions of the Markov chain is proven in
Proposition A.1 of [3]. The independence between the Z1:N and Y 1:N limiting variables
follows trivially from the fact that any single coordinate has a vanishing effect on the
weights as d → ∞.

A.2. L2-Error

Proof of Theorem 3.1. We begin by noting that, due to the exchangeability of the particles,

E

[(
1

N

N∑
i=1

[ϕ(X̌i
d,1) − π(ϕ)]

)2]
= 1

N
E[{ϕ(X̌1

d,1)}2] + N − 1

N
E[ϕ(X̌1

d,1)ϕ(X̌2
d,1)], (A.1)

where we have set ϕ(x) = ϕ(x) − π(ϕ). Starting with the first term on the right-hand side of
(A.1), and averaging over the noise introduced by resampling, we have

1

N
E[{ϕ(X̌1

d,1)}2] = 1

N

N∑
i=1

E[wi
u(d){ϕ(Xi

d,1)}2],

where we have set u(d) = ld (tm∗(d)) : d . Recall that wi
u(d) denote the normalised weights. By

the asymptotic independence result in Lemma A.2(ii), we have

lim
d→∞

1

N

N∑
i=1

E[wi
u(d){ϕ(Xi

d,1)}2] = 1

N
E

[ N∑
i=1

eZi∑N
l=1 eZl

{ϕ(Y i)}2
]

= varπ [ϕ]
N

,

where {Zi}Ni=1 are i.i.d. from N(0, σ 2
tm∗ :1), and, independently, Y 1, . . . , YN are i.i.d. from π .

We now look at the second term on the right-hand side of (A.1). Averaging over the resampling
index and invoking again the asymptotic independence result of Lemma A.2(ii), we have

E[ϕ(X̌1
d,1)ϕ(X̌2

d,1)] =
N∑

i=1

E[ϕ2(Xi
d,1)(w

i
u(d))

2] +
∑
i �=l

E[ϕ(Xi
d,1)ϕ(Xl

d,1)w
i
u(d)w

l
u(d)]

→ π(ϕ2)E

[ N∑
i=1

e2Zi

(
∑N

l=1 eZl
)2

]
+ 0

≡ Nπ(ϕ2)E

[
e2Z1

(
∑N

l=1 eZl
)2

]
(A.2)
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for random variables {Zi}Ni=1 as defined above (in the last calculation we took advantage of ex-
changeability). We have the decomposition (writing σ 2 ≡ σ 2

tm∗−1:1 for notational convenience)

e2Z1

(
∑N

l=1 eZl
)2

= 1

N2

e2Z1

eσ 2 + e−σ 2 e2Z1

(
∑N

l=1 eZl
)2

(
eσ 2 −

(∑N
l=1 eZl

N

)2)
.

We concentrate on the second term. Using Hölder’s inequality, we have

E

[∣∣∣∣ e2Z1

(
∑N

l=1 eZl
)2

(
eσ 2 −

(∑N
l=1 eZl

N

)2)∣∣∣∣
]

≤ E
2/3

[
e3Z1

(
∑N

l=1 eZl
)3

]
E

1/3
[∣∣∣∣eσ 2 −

(∑N
l=1 eZl

N

)2∣∣∣∣3]
.

Setting Z(1) := min1≤i≤N Zi we get (also using Cauchy–Schwarz)

E

[
e3Z1

(
∑N

l=1 eZl
)3

]
≤ 1

N3 E[e3Z1−3Z(1) ] ≤ 1

N3 E
1/2[e6Z1 ]E1/2[e−6Z(1) ].

By standard results on order statistics the probability density function (PDF) of Z(1) is upper
bounded by N times the PDF of N(0, σ 2). So, we have

E[e−6Z(1) ] ≤ Ne18σ 2
.

By adding and subtracting eσ 2
in the summand and multiplying the square, we can use

Minkowski and the Marcinkiewicz–Zygmund inequality to obtain

E
1/3

[∣∣∣∣eσ 2 −
(∑N

l=1 eZl

N

)2∣∣∣∣3]
≤ Me6σ 2

N1/2

for some M < ∞ that does not depend upon N or σ 2. Putting together the above arguments,
we have shown that the right-hand part of the right-hand side of (A.2), when d → ∞, is
upper-bounded by the quantity varπ (ϕ)((1/N)eσ 2 + Me17σ 2

(1/N7/6)) which completes the
proof.

A.3. Normalising constants

Proof of Theorem 3.2. By the expression of the normalised variance (and the fact that the
different particles are i.i.d.), we can recentre to rewrite

V2(γd(1)) = E

[(
γ N

d (1)

γ d(1)
− 1

)2]

with

γ N
d (1) = 1

N

N∑
i=1

exp

{
1

d

d∑
j=1

Gi
j

}
, γ d(1) = E

[
exp

{
1

d

d∑
j=1

G1
j

}]
,

where we have now set

Gi
j = (1 − φ0)

d−1∑
n=0

(g(Xi
n,j ) − E[g(Xi

n,j )]) (A.3)
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and i ∈ {1, . . . , N}, j ∈ {1, . . . , d}. We have

E

[(
γ N

d (1)

γ d(1)
− 1

)2]
= 1 − 2

γ d(1)
E[γ N

d (1)] + 1

γ d(1)2 E[γ N
d (1)2]

≡ −1 + 1

γ d(1)2 E[γ N
d (1)2], (A.4)

where we have used the unbiasedness property (i.e. E[γ N
d (1)] = γ d(1)) of the normalising

constant; see, e.g. [9]. We define Zi
d = (1/d)

∑d
j=1 Gi

j for Gi
j defined in (A.3) and 1 ≤ i ≤ N .

Thus, due to the Zi
ds being i.i.d., we have

E[γ N
d (1)2] = 1

N
E[e2Z1

d ] +
(

1 − 1

N

)
E

2[eZ1
d ].

By Lemma A.1(iii), applied when tk−1(d) ≡ φ0 and tk(d) ≡ 1,

E[e2Z1
d ] → exp{2σ 2

φ0:1}, E[eZ1
d ] → exp

{ 1
2σ 2

φ0:1
}
.

Using these limits in (A.4), and also recalling that γ d(1) ≡ E[eZ1
d ], gives the required result.

Proof of Theorem 3.3. Denote

γ N
d,k(1) = 1

N

N∑
i=1

exp

{
1

d

d∑
j=1

Gi
k,j

}
, γ d,k(1) = E

π⊗Nd
tk−1(d)

[
exp

{
1

d

d∑
j=1

G1
k,j

}]
, (A.5)

for the standardised Gi
k,j in (2.2). We look at the relative L2-error

V2

(m∗+1∏
k=1

γd,k(1)

)
= E

[(m∗+1∏
k=1

γ N
d,k(1)

γ d,k(1)
− 1

)2]
.

Using the unbiased property of normalising constants (see, e.g. [9]), we have

E

[(m∗+1∏
k=1

γ N
d,k(1)

γ d,k(1)
− 1

)2]
= E

[m∗+1∏
k=1

γ N
d,k(1)2

γ d,k(1)2

]
− 1.

For notational convenience, we set:

�k,d := γ N
d,k(1)2

γ d,k(1)2 , δk,d := E
π⊗Nd

tk−1(d)

[
γ N

d,k(1)2

γ d,k(1)2

]
,

�1:k,d =
k∏

q=1

�q,d, δ1:k,d =
k∏

q=1

δq,d .

Following the definitions of γ N
d,k(1) and γ d,k(1) in (A.5), and exploiting independence among

particles under π⊗Nd
tk−1(d), we have

E
π⊗Nd

tk−1(d)

[
γ N

d,k(1)2

γ d,k(1)2

]
=

1
N

E[exp{ 2
d

∑d
j=1 G1

k,j }] + (1 − 1
N

)E2[exp{ 1
d

∑d
j=1 G1

k,j }]
E2[exp{ 1

d

∑d
j=1 G1

k,j }]

→ exp{−σ 2
tk−1:tk }

[
exp{2σ 2

tk−1:tk }
1

N
+

(
1 − 1

N

)
exp{σ 2

tk−1:tk }
]
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with the limit obtained from Lemma A.1(iii). Therefore,

δ1:(m∗+1),d → exp{−σ 2
φ0:1}

m∗+1∏
k=1

[
1

N
exp{2σ 2

tk−1:tk } +
(

1 − 1

N

)
exp{σ 2

tk−1:tk }
]
.

Thus, it suffices to show that the following difference goes to 0 as d → ∞:

Ad := |E[�1:(m∗+1),d ] − δ1:(m∗+1),d |.
Now, note that simple calculations give

Ad =
∣∣∣∣
m∗+1∑
k=1

E[�1:(k−1),d (E[�k,d | F N
tk−1(d)] − δk,d)]δ(k+1):(m∗+1),d

∣∣∣∣
under the conventions that �1:0,d = δ(m∗+2):(m∗+1) = 1. Applying Cauchy–Schwarz yields the
upper bound

E[�1:(k−1),d |E[�k,d | F N
tk−1(d)] − δk,d |]

≤ E
1/2[�2

1:(k−1),d ]E1/2[|E[�k,d | F N
tk−1(d)] − δk,d |2].

Via Lemma A.3 the second of the terms on the bottom line vanishes in the limit, so it suffices
to show that the first term on the bottom line is upper-bounded uniformly in d. Using the
Cauchy–Schwarz inequality, we have

E[�2
1:(k−1),d ] ≤

k−1∏
q=1

E
1/2[�4

q,d ].

Recalling the definition of �k,d = γ N
d,k(1)2/γ d,k(1)2 from (A.5) and using the triangle

inequality for norms, we have

E[γ N
d,q(1)8] ≤

(
1

N

N∑
i=1

E
1/8

[
exp

{
8

d

d∑
j=1

Gi
q,j

}])8

.

Now, we can complete the proof via Lemma A.6.

Proof of Proposition 3.1. To simplify the notation we drop i for the particle number and
define

Gl,d =
d∑

j=1

Gl,j

for 1 ≤ l ≤ k. Our proof proceeds by induction. For k = 1, the result follows by
Lemma A.1(iii). Assume that the result holds at time k − 1 ≥ 1. Then we have the simple
decomposition

E

[
exp

{ k∑
l=1

1

d
clGl,d

}]

= E

[
E[eckGk,d /d | F N

tk−1(d)]
{

exp

{k−1∑
l=1

1

d
clGl,d

}
− E

[
exp

{k−1∑
l=1

1

d
clGl,d

}]}]

+ E

[
exp

{k−1∑
l=1

1

d
clGl,d

}]
E[eckGk,d /d ]. (A.6)
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We begin by dealing with the first term on the right-hand side of (A.6). By Lemma A.4, we
have

E[eckGk/d | F N
tk−1(d)] − E

π⊗d
tk−1(d)

[eckGk/d ] P−→ 0,

whereas, from Lemma A.1(iii), we have

E
π⊗d

tk−1(d)
[eckGk/d ] → exp

{ 1
2c2

kσ
2
tk−1:tk

}
. (A.7)

Moreover, by the induction hypothesis,

{
exp

{k−1∑
l=1

1

d
clGl,d

}
− E

[
exp

{k−1∑
l=1

1

d
clGl,d

}]}
d−→ exp

{k−1∑
l=1

clXl

}
− exp

{
1

2

k−1∑
l=1

c2
l σ

2
tl−1:tl

}
.

The expression in the expectation of the first term of (A.6) is uniformly integrable: indeed,
careful and repeated (but otherwise straightforward) use of Hölder and Jensen inequalities will
eventually give

∣∣∣∣E[eckGk,d /d | F N
tk−1(d)]

{
exp

{k−1∑
l=1

1

d
clGl,d

}
− E

[
exp

{k−1∑
l=1

1

d
clGl,d

}]}∣∣∣∣
L1+ε

≤ M

k−1∏
l=1

(
E

[
exp

{ k∑
l=1

1

d
c′
lGl,d

}])1/(1+δl )

for positive constants c′
1:k , δ1:k , and M independent of d. As a consequence, convergence in

distribution also implies convergence of expectations:

E

[
E[eckGk,d /d | F N

tk−1(d)]
{

exp

{k−1∑
l=1

1

d
clGl,d

}
− E

[
exp

{
1

d

k−1∑
l=1

1

d
clGl,d

}]}]

→ E

[
1

2
exp{c2

kσ
2
tk−1:tk }

{
exp

{k−1∑
l=1

clXl

}
− exp

{
1

2

k−1∑
l=1

c2
l σ

2
tl−1:tl

}}]

≡ 0.

Now turning to the second term on the right-hand side of (A.6), we work as follows:

E[eckGk,d /d ] = E[E[eckGk,d /d | F N
tk−1(d)] − E

π⊗d
tk−1(d)

[eckGk,d /d ]] + E
π⊗d

tk−1(d)
[eckGk,d /d ]

→ 0 + exp
{ 1

2c2
kσ

2
tk−1:tk

}
,

from Lemma A.4 and (A.7). Thus, we can deduce, by the induction hypothesis, that

E

[
exp

{k−1∑
l=1

1

d
clGl,d

}]
E[eckGk/d ] → exp

{
1

2

k∑
l=1

c2
l σ

2
tl−1:tl

}
≡

k∏
l=1

E[eclZ
l ]

which completes the proof.
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Lemma A.3. Assume (A1)–(A2) and g ∈ Bb(E). Then, for any ε > 0, N ≥ 1, and 1 ≤ k ≤
m∗ + 1,

E

[
γ N

d,k(1)2

γ d,k(1)2

∣∣∣∣ F N
tk−1(d)

]
− E

π⊗Nd
tk−1(d)

[
γ N

d,k(1)2

γ d,k(1)2

]
→ 0, in L1+ε.

Proof. Due to conditional independence among particles given F N
tk−1(d), we have

E[γ N
d,k(1)2 | F N

tk−1(d)]

= 1

N2

(
E

[ N∑
i=1

exp

{
2

d

d∑
j=1

Gi
k,j

} ∣∣∣∣ F N
tk−1(d)

]

+
∑
i �=m

E

[
exp

{
1

d

d∑
j=1

Gi
k,j

} ∣∣∣∣ F N
tk−1(d)

]
E

[
exp

{
1

d

d∑
j=1

Gm
k,j

} ∣∣∣∣ F N
tk−1(d)

])
.

(A.8)

Now, for any constant c ≥ 1 we have

sup
d

E
π⊗Nd

tk−1(d)

[
exp

{
c

d

d∑
j=1

Gi
k,j

}]
< ∞

from Lemma A.6. Hence, it suffices to prove that, for any constant c ≥ 1, we have, as d → ∞,

E

[
exp

{
c

d

d∑
j=1

Gi
k,j

} ∣∣∣∣ F N
tk−1(d)

]
− E

π⊗Nd
tk−1(d)

[
exp

{
c

d

d∑
j=1

Gi
k,j

}]
→ 0, in L2(1+ε).

The factor of two in the norm arises since we have to use Cauchy–Schwarz to separate the product
terms on the right-hand side of (A.8). Now, Lemma A.4 established the above convergence in
probability; this, together with uniform integrability, implied by Lemma A.6, establishes the
result.

Lemma A.4. Assume (A1)–(A2) and that g ∈ Bb(E). Then, for any N ≥ 1, i ∈ {1, . . . , N},
k ∈ {1, . . . , m∗ + 1}, and c ∈ R,

E

[
exp

{
c

d

d∑
j=1

Gi
k,j

} ∣∣∣∣ F N
tk−1(d)

]
− E

π⊗Nd
tk−1(d)

[
exp

{
c

d

d∑
j=1

Gi
k,j

}]
P−→ 0.

Proof. By the conditional independence along j , we have

E

[
exp

{
c

d

d∑
j=1

Gi
k,j

} ∣∣∣∣ F N
tk−1(d)

]
=

d∏
j=1

E
X̌ld (tk−1(d)),j

[e(c/d)Gi
k,j ].

We now omit various sub-/superscripts to simplify the notation, using also Eπ ≡ Eπtk−1(d)
and
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E
X̌0,j

≡ E
X̌ld (tk−1(d)),j

. We can rewrite

E

[
exp

{
c

d

d∑
j=1

Gj

} ∣∣∣∣ F N

]
− Eπ⊗Nd

[
exp

{
c

d

d∑
j=1

Gj

}]

=
( d∏

j=1

Eπ [ecGj /d ]
)[ d∏

j=1

{ {E
X̌0,j

− Eπ }[ecGj /d ]
Eπ [ecGj /d ] + 1

}
− 1

]
. (A.9)

From Lemma A.1(iii) it follows that
∏d

j=1 Eπ [ecGj /d ] → exp{ 1
2c2σ 2

tk−1:tk }; hence, we can now
concentrate on the second factor-term on the right-hand side of (A.9). We will replace the
product with a sum using logarithms. To that end, define

βj (d) :=
{E

X̌0,j
− Eπ }[ecGj /d ]

Eπ [ecGj /d ] .

Note that, since g ∈ Bb(E), we have Gj/d bounded from above and below. Hence, there exist
an ε > 0 and M > 0 such that

−1 + ε ≤ βj (d) ≤ M < ∞. (A.10)

We need to prove that exp{∑d
j=1 log(1+βj (d))}−1

P−→ 0. We consider a second-order Taylor
expansion of the exponent

d∑
j=1

log(1 + βj (d)) =
d∑

j=1

{
βj (d) − 1

2

1

(1 + ξj (d))2 β2
j (d)

}
, (A.11)

where ξj (d) ∈ [0 ∧ βj (d), 0 ∨ βj (d)]. By Lemma A.5 we have

d∑
j=1

βj (d)
P−→ 0,

d∑
j=1

β2
j (d)

P−→ 0.

Since the ξj (d)s are bounded due to (A.10), these two results imply, via the Taylor expansion
in (A.11), that

∑d
j=1 log(1 + βj (d))

P−→ 0 also. Due to the continuity of the exponential
function, this now implies that exp{∑d

j=1 log(1 + βj (d))} − 1 ⇒ 0 and the proof is now
complete since weak convergence to a constant implies convergence in probability.

Lemma A.5. Assume (A1)–(A2) and g ∈ Bb(E). Then we have, for any N ≥ 1, i ∈
{1, . . . , N}, k ∈ {1, . . . , m∗ + 1}, and c ∈ R,

(i)
d∑

j=1

{
E

X̌i
ld (tk−1(d)),j

− Eπtk−1(d)

}[ecGi
k,j /d ]

Eπtk−1(d)
[ecGi

k,j /d ]
→ 0, in L1.

(ii)
d∑

j=1

({
E

X̌i
ld (tk−1(d)),j

− Eπtk−1(d)

}[ecGi
k,j /d ]

Eπtk−1(d)
[ecGi

k,j /d ]

)2

→ 0, in L1.
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Proof. To simplify the presentation, we drop many super-/subscripts; that is, we write the
quantity of interest as:

{E
X̌0,j

− Eπ }[ecGj /d ]
Eπ [ecGj /d ] .

Note that Eπ [ecGj /d ] ≡ Eπ [ecG1/d ]. Since |g| is bounded, |G1/d| is also bounded, and
therefore Eπ [ecG1/d ] is lower and upper bounded by positive constants and can be ignored in
the calculations. We will be using the second-order Taylor expansion

ecGj /d = 1 + cGj

d
+ 1

2
eξj (d)

(
cGj

d

)2

, (A.12)

where ξj (d) ∈ [0 ∧ cGj/d, 0 ∨ cGj/d].
Proof of (i). The L1-norm of the variable of interest is upper bounded by (recall that

Eπ [Gj ] ≡ 0)

E

∣∣∣∣
d∑

j=1

E
X̌0,j

[
cGj

d

]∣∣∣∣ + c2

2
E

∣∣∣∣
d∑

j=1

{
E

X̌0,j
− Eπ

}[
eξj (d)

(
Gj

d

)2]∣∣∣∣.
The first term in this bound goes to 0 by Lemma A.1(iv). Thus, considering the second term,
we have the trivial inequality (for convenience we set σ 2 ≡ σ 2

tn−1:tn )

E

∣∣∣∣
d∑

j=1

{
E

X̌0,j
− Eπ

}[
eξj (d)

(
Gj

d

)2]∣∣∣∣
≤ E

∣∣∣∣
d∑

j=1

E
X̌0,j

[
(eξj (d) − 1)

(
Gj

d

)2]∣∣∣∣ + E

∣∣∣∣
d∑

j=1

E
X̌0,j

[(
Gj

d

)2]
− σ 2

∣∣∣∣
+

∣∣∣∣σ 2 − 1

d
Eπ [eξ1(d)G2

1]
∣∣∣∣. (A.13)

Note that:

• |ξ1(d)| < M (due to the boundedness assumption on g);

• ξ1(d)
d−→ 0 in distribution (thus also in Lp for any p ≥ 1 due to the above uniform

bound);

• Eπ [G2
1/d] → σ 2,

with the last two results following from Lemma A.1(i,ii). These results, together, imply that
the last term on the right-hand side of (A.13) goes to 0. For the first term on the right-hand side
of (A.13) we work as follows. Since for each j , |Gj/d| is bounded, we have |eξj (d) − 1| ≤
M|ξj (d)| ≤ M|Gj/d|. As a result, using the triangular inequality and then this latter bound,
we have

E

∣∣∣∣
d∑

j=1

E
X̌0,j

[
(eξj (d) − 1)

(
Gj

d

)2]∣∣∣∣ ≤ M

d3

d∑
j=1

E[E
X̌0,j

|Gj |3] = M

d3

d∑
j=1

E|Gj |3.
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From Lemma A.1(ii), the latter term is upper-bounded by (M/d3)dd3/2 → 0. Now, for the
second term on the right-hand side of (A.13) we work as follows. We have

E
X̌0,j

[G2
j ] = E

X̌0,j
[(Gj − E

X̌0,j
[Gj ])2] + E

2
X̌0,j

[Gj ].

Lemma A.1(ii) gives |E
X̌0,j

[Gj ]| ≤ M , so we have (1/d2)
∑d

j=1 E
2
X̌0,j

[Gj ] → 0 in L1. The
result now follows from Lemma A.1(iv).

Proof of (ii). We will use again the Taylor expansion (A.12). Clearly, the L1-norm of the
random variable of interest is bounded by

2
d∑

j=1

E

[(
E

X̌0,j

[
Gj

d

])2]
+ 2

d∑
j=1

E

[({
E

X̌0,j
− Eπ

}[
1

2

(
Gj

d

)2

eξj (d)

])2]
.

The first term goes to 0 from the first result in Lemma A.1(ii), and the second term goes to 0
from the second result in Lemma A.1(ii) applied here for p = 4.

Lemma A.6. Assume (A1)–(A2) and g ∈ Bb(E). Then we have, for any N ≥ 1, i ∈
{1, . . . , N}, k ∈ {1, . . . , m∗ + 1}, and any fixed c ∈ R,

sup
d

E

[
exp

{
c

d

d∑
j=1

Gi
k,j

}]
< ∞.

Proof. To simplify the notation we rewrite the quantity of interest as

E

[
exp

{
c

d

d∑
j=1

Gj

}]
≡ E

[ d∏
j=1

E
X̌0,j

[
exp

{
c

d
Gj

}]]
.

Applying a second-order Taylor expansion for e(c/d)Gj yields the above equal to

E

[ d∏
j=1

(
1 + cE

X̌0,j

[
Gj

d

]
+c2

2
E

X̌0,j

[(
eξj (d) Gj

d

)2])]

with ξj (d) ∈ [0 ∧ cGj/d, 0 ∨ cGj/d]. Using the fact that |Gj/d| is upper bounded by a
constant, from Lemma A.1(ii) we have

∣∣∣∣cE
X̌0,j

[
Gj

d

]∣∣∣∣ ≤ |c|M
d

,
c2

2
E

X̌0,j

[(
eξj (d) Gj

d

)2]
≤ c2 M

d
.

Hence, we have

E

[
exp

{
c

d

d∑
j=1

Gj

}]
≤

(
1 + M

d

)d

with the latter upper bound converging by standard results in analysis.
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A.4. Propagation of chaos

Proof of Proposition 3.2. For simplicity, consider the first q of N particles and j = 1. Then,
for a function F : Eq → [0, 1], we have, using the notation X

1:q
s(d),1 = (X1

s(d),1, . . . , X
q

s(d),1),

|E[F(X
1:q
s(d),1)] − π

⊗q
s (F )|

≤ |E[F(X
1:q
s(d),1)] − E

π⊗N
tk−1(d)

[F(X
1:q
s(d),1)]| + |E

π⊗N
tk−1(d)

[F(X
1:q
s(d),1)] − π

⊗q

s(d)(F )|
+ |π⊗q

s(d)(F ) − π
⊗q
s (F )|. (A.14)

The last term on the right-hand side goes to 0 via the bounded convergence theorem (this follows
directly from having assumed that g is upper bounded), so we consider the first two terms. For
the first term on the right-hand side of (A.14) we can use conditional expectations and write it
as

E[E[F(X
1:q
s(d),1) | F N

tk−1(d)] − E
π⊗N

tk−1(d)
[F(X

1:q
s(d),1)],

where F N
tk−1(d) is the filtration generated by the particle system up to (and including) the (n−1)th

resampling time. The quantity inside the expectation can be equivalently written as

{k⊗q

u(d)(X̌
1:q
ld (tk−1(d)),1, ·) − (πtk−1(d)ku(d))

⊗q}(F ), (A.15)

where we set u(d) = (ld(tk−1(d)) + 1) : ld (s(d)). For 1 ≤ l ≤ q we define the probability
measures

μl = μl(dy1:(l−1), dy(l+1):q) = (πtk−1(d)ku(d))
⊗(l−1) ⊗ k

⊗(q−l)

u(d) (X̌
(l+1):q
ld (tk−1(d)),1, ·).

Notice the simple identity (since intermediate terms in the sum below will cancel out)

{k⊗q

u(d)(X̌
1:q
ld (tk−1(d)),1, ·) − (πtk−1(d)ku(d))

⊗q}(dy1:q)

=
q∑

l=1

(ku(d)(X̌
l
ld (tk−1(d)),1, ·) − πtk−1(d)ku(d))(dyl) ⊗ μl(dy1:(l−1), dy(l+1):q). (A.16)

Since |F | ≤ 1, we have | ∫ μl(dy1:(l−1), dy(l+1):q)F (y1:q)| ≤ 1 for any yl . Given this property
and using the identity (A.16), the expression in (A.15) is bounded in absolute value by

∣∣∣∣
q∑

l=1

∫
R

{ku(d)(X̌
l
ld (tk−1(d)),1, ·) − πtk−1(d)ku(d)}(dyl)

×
{ ∫

μl(dy1:(l−1), dy(l+1):q)F (y1:q)

supyl∈R | ∫ μl(dy1:(l−1), dy(l+1):q)F (y1:q)|
}∣∣∣∣

≤
q∑

l=1

‖ku(d)(X̌
l
ld (tk−1(d)),1) − πtk−1(d)ku(d)‖tv.

The above total variation bound converges to 0 in L1 as d → ∞ by Lemma A.2(i). Thus, the
first term on the right-hand side of (A.14) also goes to 0 as d → ∞. The second term on the
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right-hand side of (A.14) can be treated in a similar manner. We again have the identity

E
π⊗N

tk−1(d)
[F(X

1:q
s(d),1)] − π

⊗q

s(d)(F )

=
q∑

l=1

∫
R

{πtk−1(d)ku(d) − πs(d)}(dxl){π⊗(l−1)
s(d) ⊗ (πtk−1(d)ku(d))

⊗(q−l)(F (xl))}

≤ ‖πtk−1(d)ku(d) − πs(d)‖tv.

This last bound goes to 0 by Lemma A.2(i). Hence we conclude.
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