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Abstract. Results for multidimensional stellar model simulations of both 2D
and 3D hydrodynamic models and 2D stellar evolution sequences are presented.
Simulations of the highly superadiabatic region of the solar convective region
provide a good example of the current status and limitations of explicit 3D fi-
nite difference methods in stellar problems. Such simulations cannot be used
for stellar cores, where the motion is expected to be well subsonic. The re-
sults of some 2D fully implcit hydrodynamic simulations of convective cores and
shells are given for models with and without rotation, and their effects exam-
ined through fully 2D stellar evolution sequences. One effect of moderate to
rapid rotation in convective cores is to alter the convective flow pattern so that
convective eddies tend to line up parallel to the rotation axis. Rotation also
appears to modestly reduce the amount of convective core overshooting, at least
for intermediate mass models.

1. Introduction

Multidimensional explorations of stars have become increasingly common over
the last few years. While perhaps not routine, they are becoming at least suffi-
ciently numerous to play an increasingly important part in stellar studies. An
obvious application is the 3D explicit finite difference technique simulation of
the upper region of the solar convection zone where the temperature gradient
is expected to be significantly superadiabatic. The assumptions and results of
two papers will be examined which represent the current capabilities and lim-
itations of this approach. The explicit nature of these calculations effectively
restricts their use to situations in which the flow speeds are some reasonable
fraction of the sound speed. This is unlikely to be true for treating convection
in stellar interiors, and one must either use implicit methods or approaches like
the anelastic modal approximation (e.g., Ogura & Phillips 1962, Latour, et al.
1976, Gilman & Glatzmaier 1981). For stellar interiors I present some results
of 2D fully implicit, finite difference simulations of convective cores and shells,
with and without rotation, and the effects of the results of these simulations on
stellar evolution through 2D stellar evolution calculations.

378

https://doi.org/10.1017/S0074180900195919 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900195919


Multidimensional Models

2. 3D Simulations of the Top of the Solar Convection Zone
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The current state of the numerical art in the arena of 3D finite difference sim-
ulations of quiescient stellar models may perhaps be represented by two recent
papers on the superadiabatic region of the solar convection zone by Robinson,
et al. (2003) and Asplund, et al. (2000). These calculations use on the order
of 105 zones. This may be compared with the largest calculation of which I am
aware (in another field) that has nearly 109 zones. This latter number suggests
what zoning capabilities astrophysics can expect to have available in the next
few years.

These calculations simulate only the upper part of the convective region
where the velocities are a reasonable fraction of the sound speed. They are also
limited in the horizontal width of the problem (usually with a ratio of width
to depth of about 2.5), so that the convective region simulated is a box which
includes only a very small fraction of the solar convection zone. The small size
means that this is not a suitable vehicle to study the effects of rotation on the
flow (this is not to suggest that rotation was a consideration for the authors).
Periodic boundary conditions are assumed on the sides of the box.

The turbulence model used in stellar convection studies is nearly always a
variant of the Smagorinsky (1963) analytic expression for the eddy viscosity. It
has the virtue that it is simple, both in concept and application. Other models
are available, but they are generally more complicated, such as solving a differ-
ential equation for the turbulent kinetic energy density at each mesh point to
obtain an eddy viscosity coefficient which can vary in space and time. There are
some modest differences between turbulence models, with the extent of convec-
tive overshooting being one, at least for the core helium flash (Deupree 1996).
One reason why the results for different turbulence models are fairly similar is
that they are nearly all have the same baseline sets of laboratory or environ-
mental data which are used to determine the values of the free parameters. It
is not clear that our knowledge of stellar convection is sufficient to justify one
turbulence model over another, and most researches have chosen to keep the
model as simple as possible.

A number of numerical issues are examined in one or both papers. The
effects of the upper and lower zero velocity boundary conditions used by Robin-
son, et al. appear to limited to the region near the boundary, at least if the lower
boundary is sufficiently deep. Asplund, et al. allow the velocity to be nonzero
at the vertical boundaries and the relatively modest velocity differences near the
vertical boundaries between the two papers tend to support this conclusion. The
ratio of width to depth, generally taken to be 2.5 appears to provide satisfactory
resolution of horizontal variables, although the two papers seem to disagree the
sensitivity of the velocities to the horizontal resolution. While it seems like there
are a number of details to be worked out, current computational capabilities are
sufficient to allow a reasonable number of models to be calculated to cover the
variety of numerical issues which need to be resolved.
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3. 2D Interior Hydrodynamic and Stellar Evolution Studies

Here I first summarize the results of a number of 2D ZAMS convective core
hydrodynamic simulations, with and without rotation, by Deupree (2000, 2001).
These calculations have been performed for masses between 3 and 20 M0 for
both rotating and nonrotating models. The 2D rotation is expressed by the ratio
of the surface polar radius to the surface equatorial radius, and the values used
were 1, O. 98, 0.93, 0.84, and 0.72. These values cover a wide range or rotation
rates, but stop somewhat short of critical rotation. For a 20 M0 model, these
ratios of the surface polar to surface equatorial radius correspond to surface
equatorial velocities of 0, 150, 300, 450, and 600 km s-l. Critical rotation for
this model occurs at a surface equatorial velocity of about 750 km s-1.

The results of the hydrodynamic simulations of the convective cores of these
models may be summarized as follows: 1) the flow velocities in the convective
cores are appreciably higher than the standard phenomenological models would
predict (tens of km s-1 versus hundreds of m s-l, 2) as a consequence of this,
at any given time we may have both highly superadiabatic and subadiabatic
gradients in the core, although the average over space and time is adiabatic to
within computational accuracy, 3) there is appreciable overshooting beyond the
boundary of the convective core as measured by the motion of tracer particles,
more at higher mass (about 0.6 Hp at 20 M0 versus 0.25 Hp for 2 M0 ) and less for
increasing rotation, at least for lower mass models (by about 0.15 Hp between
a .nonrotating model and the most rapidly rotating model), 4) the convective
eddies tend to become oriented parallel to the rotation axis rather than vertically
for moderate and rapid rotation, and 5) the distribution of the rotation rate in
the convective core is neither uniform nor constant angular momentum per unit
mass, but can be represented by a power law in the distance from the rotation
axis (less reasonably for slow rotation than for rapid rotation) with an exponent
of approximately -0.5.

Based on these results I have performed several 2D stellar evolution se-
quences of nonrotating and rotating models. The first of these was a nonrotating
sequence designed to be compared with the standard calculations of 1D stellar
evolution codes. This sequence was carried into core helium burning and was
terminated at a central helium abundance of about 0.8 where my lack of inclu-
sion of carbon as a composition variable begins to affect the nuclear burning.
This calculation was compared with the Brunish & Truran (1982a,b) version of
the Iben (1963, 1965a, b) code with updated physics, a relatively current (mid
2000) version of the Paczynski (1970) code, and with the Yale evolutionary code
YREC (Guenther & Demarque 1997,2000). No attempt has been made to make
the equation of state and nuclear reaction rates of all codes common, but they all
do have the OPAL opacities (Iglesias & Rogers 1996). Rather than try to alter
some of the other codes, I have performed all calculations without convective
core overshooting.

The agreement among the four codes was quite good through core hydrogen
burning and the early stages of hydrogen shell burning. At this point, both the
Paczynski code and YREC stopped because they ran out of the physical input
tables. Significant effort would be required to allow these codes to continue to
later phases with the same physical input. The comparison with the Iben code
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Figure 1. Comparison of the evolutionary tracks for a 20 Mev model calcu-
lated with the Paczynski code (upper solid curve), YREC (lower solid curve),
the Iben code (dashed curve), and the 2D code ROTORC (dot-dash curve).

was carried on into core helium burning. The evolutionary tracks for all four
models are shown in Figure 1.

There is an interesting difference between the Iben code (and I expect it
would be true for the other codes as well) and the 2D code at relatively late time
in hydrogen shell burning. This arises from the fact that the velocities must be
calculated in the 2D code because it is not a Lagrangian code and the velocities
are needed to determine where the individual zones go with respect to the mesh.
The velocity terms are relatively large here (about 0.2 em s-1 as the model
crosses an effective temperature of about 13000K), and they do not disappear
instantaneously with the helium core ignition. This results in the loop to the
right in the HR diagram in the 2D evolution track in Figure 1. The time scale
for the loop is short, but not extremely so (68000 yr between the times when
the effective temperatures are the same and equal to the value at the left end
of the loop where quiescent core helium burning starts), and the model settles
down into core helium burning at essentially the same place in the HR diagram
as the Iben code does. The luminosity increase from the red end of the loop to
the blue end where core helium burning is well underway reflects the gradual
cessation of the use of the radiation emerging from the hydrogen burning shell to
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drive the envelope expansion. Note that this loop has nothing to do with the 2D
nature of the calculation, but only on the inclusion of the acceleration terms in
the momentum equation and the work terms in the energy equation. The effect
is fairly large here because the velocities are fairly large. They are much smaller
for lower mass models and for models which begin core helium burning closer to
the main sequence. Based on a detailed comparison with the Iben results, I feel
fairly confident that the 2D code functions well as an evolutionary code with
the traditional assumptions.

Even though the calculation does not include rotational mixing of any sort,
I was unable to resist the temptation to run the rapidly rotating model as a
"standard" evolutionary calculation to see if anything interesting occurred. One
of the standard features is uniform mixing in convective regions defined by the
Schwarzschild criterion, and it was found that the convective region associated
with the hydrogen burning shell that forms at this mass is very aspherical. The
Schwarzschild formal boundaries of the convective regions at one time during
core helium burning are shown in Figure 2. The helium burning convective
core is highly oblate, as one might expect for a rapidly rotating model, but the
hydrogen shell burning convective core is much larger at the equator than at
the poles. This at least suggests that the convective criteria deserve thoughtful
consideration.

One other feature of this model worth noting is that the differences between
nonrotating and rotating models at the model center (lower central temperature
and higher central density for rotating models) are present at core helium burn-
ing, but with larger differences than on the ZAMS. For example, the central
temperatures for the nonrotating and rotating ZAMS models are 3.548 x 107K

and 3.499 x 107K, respectively, while for core helium burning with Y=0.95 the
temperatures are 1.703 x 108K and 1.570 x 108K, respectively. This means
that quiescent core helium burning starts at an appreciably lower temperature
and higher density for the rotating model, which may change the relative abun-
dances of carbon and higher elements by the end of core helium burning in
rapidly rotating models with respect to the abundances for nonrotating models.

With these issues in mind, I decided to explore the hydrogen shell convec-
tive region. This is of particular interest since the convective region forms where
there is a composition gradient and thus we may learn something about the rel-
atively applicability of the Schwarzschild criterion versus the Ledoux criterion.
Here I calculated evolution sequences with overshooting and the power law rep-
resentation of the rotational velocity based on the hydrodynamic simulations
of the ZAMS convective cores. However, there is no special rotational mixing
or mass loss. Starting from the ZAMS models, I evolved 20 Mev models into
hydrogen shell burning. During core hydrogen burning I performed several hy-
drodynamic simulations to see if the convective core overshooting and angular
momentum distribution changed, but the results indicated that such changes
were small.

Turning to the nonrotating model first, I performed a hydrodynamic simu-
lation of a model just prior to the onset of convective instability (by either the
Schwarzschild or Ledoux criterion). As expected, the model produced no signifi-
cant hydrodynamic motion. The next model for which I took a dump had eleven
radial zones (zones 137-148) unstable according to the Schwarzschild criterion,
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Figure 2. Formal boundaries defined by the Schwarzschild criterion of the
He burning convective core and the convective region associated with the hy-
drogen burning shell for a rapidly rotating 20 Mev 2D model using traditional
ID stellar evolution model assumptions. The radial variable is the interior
mass, converted from the fractional surface equatorial radius using the hori-
zontal average of the density. The polar direction is vertical and the equatorial
direction horizontal. The He burning convective core is highly oblate, as one
might expect from its rapid rotation. The convective region associated with
hydrogen shell burning is highly aspherical, indicating perhaps that the treat-
ment of the convective boundaries should be investigated carefully for models
with rotation.
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Figure 3. Ratio of the convective stability criterion to the radiative gradient
as a function of radial zone number for the first model in the evolutionary
sequence with a convectively unstable shell as determined by the Schwarzschild
criterion. A ratio less than unity implies convective instability. The solid
curve results from the Schwarzschild criterion and the dash from the Ledoux
criterion. There are eleven radial zones which are modestly unstable according
to the Schwarzschild criterion and none according to the Ledoux criterion.
The hydrodynamic simulation shows modest convective activity and complete
mixing in the upper part of the Schwarzschild defined convective region.

and no zones unstable according to the Ledoux criterion, as shown in Figure 3.
Here the hydrodynamic calculation showed appreciable motion in the upper part
(radial zones 145-148) of the Schwarzschild defined convective region, but much
less in the lower part where the composition gradient is steeper. This calcula-
tion was followed for about ten days. After about three days the composition
in the upper part of the convective region had become nearly uniform, while
that below was only slightly modified. This composition profile was maintained
with only very minor modifications throughout the remaining seven days of the
calculation. I compare the beginning composition profile with the horizontal
average of the composition at the end of the calculation in Figure 4.

Based on this result I allowed the upper part of the convection zone to
mix and the lower part to be unmixed as an initial model for continuing the
stellar evolution sequence. The Schwarzschild formal boundaries of the convec-
tive region grow as the evolution continues. Hydrodynamic simulations of later
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Figure 4. Hydrogen mass fraction as a function of radial zone number. The
circles denote the values for the hydrostatic model that was used to begin
the hydrodynamic simulations, and the solid curve represents the horizontal
average of the hydrogen mass fraction for the last hydrodynamic model at
ten days after the beginning of the simulation (although the differences in
the horizontal average are very slight after three days). The Schwarzschild
defined convective region is between radial zones 137 and 148. In the upper
part of the Schwarzschild defined convective region (radial zones 145-148) the
composition has become effectively uniform, with the necessary steepening of
the composition gradient to match the values at distant locations from the
uniformly mixed region. There has been little modification to the composition
in the lower part of the Schwarzschild defined convective region.
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evolutionary models continue to show that the upper region of the convective
region mixes, but that the lower region does not, at least on the time scale of
the hydrodynamic simulations.

I also calculated the companion evolutionary sequence for a rapidly rotat-
ing model. The primary effect is that the convective region forms later in the
hydrogen shell burning phase and is smaller than for the nonrotating model.
This is most likely due to the smaller "effective g" for the rotating model and
the fact that the convection zone is smaller for lower masses. The convective
region is aspherical, being smaller at the pole than at the equator. In the as-
sociated hydrodynamic simulations, the tracer particles near the equator cover
more ground than those near the pole, but there is some slight tendency of the
tracer particles at the bottom of the convection zone to penetrate the bottom
of the convective region horizontally. Figure 5 shows the motion of a number
of tracer particles in the two dimensional grid. It is quite clear that the motion
near the pole is appreciably less, as determined by the length of the individual
traces, than it is near the equator.

These calculations are in a fairly early stage of refinement. A number of
other features need to be included, most notably following secular instabilities
which allow material to be mixed. These simulations are sufficient to reveal that
there is a possibility for a richness in solution space which ID models of rotation
do not capture. Further work is required to determine if this is truly the case.
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Figure 5. Motion of tracer particles in the convective region associated with
hydrogen shell burning for a rapidly rotating 20 M0 model. The static model
occurs in the evolution some time after the convective region has formed. Each
tracer particle begins at a plus sign. The dash-dot curve denotes the outer
boundary of the mixed region in the static model. This includes some over-
shooting. The solid curve denotes the formal inner boundary of the convective
region as determined by the Schwarzschild criterion. The dash curve repre-
sents a spherical surface at the formal convective boundary innner radius at
the pole. Note the difference in motion between low and high latitudes.

387

https://doi.org/10.1017/S0074180900195919 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900195919

