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Abstract

In this paper we study parametric optimal control problems governed by a nonlinear para-
bolic equation in divergence form. The parameter appears in all the data of the problem,
including the partial differential operator. Using as tools the G-convergence of operators
and the f-convergence of functionals, we show that the set-valued map of optimal pairs is
upper semicontinuous with respect to the parameter and the optimal value function responds
continuously to changes of the parameter. Finally in the case of semilinear systems we
show that our framework can also incorporate systems with weakly convergent coefficients.

1. Introduction

In this paper we study the dependence of a nonlinear optimal control problem on
a parameter. The parameter appears in all the data of the problem, including the
partial differential operator. First we establish the nonemptiness of the set of optimal
"state-control" pairs and then we investigate how this set as well as the value of the
problem respond to changes of the parameter. Such sensitivity analysis (also known
in the literature as "variational stability"), is important because it gives us information
concerning the tolerances that are permitted in the specification of mathematical
models, it suggests ways to solve parametric problems and can also give us valuable
insight for the computational treatment of the problem.

Our tools are the G-convergence of operators and the F-convergence of functionals.
Using these two convergence concepts, we derive continuous dependence results. Our
approach follows that of Buttazzo-Dal Maso [2], who examined linear elliptic control
systems and systems monitored by ordinary differential equations. Here we consider
parabolic systems with nonlinear dynamics.

F-convergence is a convergence notion of sequences of functions specially designed

1 National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, GREECE
© Australian Mathematical Society, 1997, Serial-fee code 0334-2700/97

77

https://doi.org/10.1017/S033427000000922X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000922X


78 Nikolaos S. Papageorgiou [2]

in order to study convergence of solutions and values of corresponding minimization
problems; that is, is a "variational convergence". Among variational convergences,
T-convergence plays an important role for its nice compactness properties and for the
powerful results it generates concerning the limits of integral functionals. In addition,
T-convergence is closely related to the notion of G-convergence, which is used in
the study of the convergence properties of the solutions of a sequence of elliptic and
parabolic problems. Finally, almost all other variational convergences can be easily
expressed in the language of F-convergence. Hence it seems appropriate to use these
notions to study the variational stability (sensitivity) of optimal control problems.

2. Preliminaries

Let H be a separable Hilbert space of norm | • |. Let X be a reflexive, separable
Banach space with dual X* such that X c H c X* with dense and compact injections.
The norms of X and X* will be denoted by || • || and || • ||» respectively. We will use
(x, x*) to denote the duality brackets between x € Xandx* e X*. This coincides with
the inner product in H, whenever x* e H. Such a triple of spaces is usually known
in the literature as "evolution triple" (see Zeidler [13]; the names "Gelfand triple"
or "spaces in normal position" are also used). In concrete applications, evolution
triples are generated by Sobolev spaces (see Section 3). Let T = [0, b] and define
W{T) = [x e L2(T, X):x e L2(7\X*)}. In this definition, the derivative of x
is understood in the sense of vector-valued distributions. Furnished with the norm

\\x\\w(T) = 1\\X\\IHT,X) + II^II^IT-.X*)]'72'
 W{T) becomes a Banach space which is

separable and reflexive. Furthermore W(T) embeds continuously in C(T, H) and
compactly in L2(T, H). When X is a Hilbert space too, then so is W(T) with inner
product (x, y)w(T) = (*> y)mr,x) + (x, y)ow,x*)- For further details we refer Zeidler
[13] (Proposition 23.23, pp. 422-423 and p. 450).

Following Kolpakov [6], we say that a sequence of operators An: X —> X* G-
converges to an operator A: X —> X*, if for all n > 1, A~\ A~l: X* —>• X are defined
and for every x* € X*, A~lx* A A~lx* in X (hence strongly in H). We will use the
symbol G to indicate G-convergence. This is a nonlinear version of a convergence
concept introduced first by Spagnolo [11] for linear parabolic and elliptic equations and
was later extended to abstract linear evolution equations by Zhikov-Kozlov-Oleinik
[14].

Next, following Buttazzo-Dal Maso [2] and Buttazzo [1] (Chapter 5), we introduce
the notion of multiple sequential F-convergence. So let Xi, X2 be two topological
spaces and let /B:X, x X 2 -> K = 1 U {—oo, +00} n > 1 be a sequence of
functionals. We indicate by Z(+) the sup operator and by Z(—) the inf operator,
Let (JCI, x2) e X| x X2 and denote by 5,, i — 1, 2, the set of all sequences in X,,
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converging to xt. Finally let ocj, j = 0, 1,2 be one of the signs + or —. We define

= Z(ai)Z(a2)Z(-ao)Z(ao)Mxn
l,x^).

Sofor example Fseq(N
+, Xj", Xj)/n(^i,jc2) = inf sup lim/„(*",*?).

x"-+xi X"^X2 n-*oo

When the Fseq-limit is independent of the sign + or —, associated with one of the
spaces, then this sign is omitted. So for example, if

rseq(N+, X-, X+)fn(xl,x2) = Fseq(N-, Xf, X+)fn(xux2)

then their common value will be indicated by

If the topological spaces are first countable, then the above definition is equivalent
to the original topological definition of the F-limits (see Dal Maso [3], Proposition
8.1, p. 86). This is also the case in Banach spaces with a separable dual, equipped
with the weak topology and in reflexive Banach spaces again with the weak topology
(see Dal Maso [3], Chapter 8). The theory of F-convergence is an important tool
in Optimal Control and in the Calculus of Variations, because the equicoercivity
and the F-convergence of a sequence of functionals /„ to / , / not identically +oo,
imply the convergence of the minimizers (xn —> x) and of the corresponding minimal
values (fn(xn) —• /(*)) (see Theorem 7.19, p. 80 of Dal Maso [3]). The interested
reader can find a comprehensive introduction to the subject of F-convergence and its
applications, in the well-written monographs of Buttazzo [1] and Dal Maso [3].

Next we introduce our optimal control problem. So let T = [0, r] and Z a bounded
domain in RN with smooth boundary F = dZ. Let A be a complete metric space
of Rk-valued, measurable functions defined on Z (the parameter space) with metric
d{-, •). We will be studying the following optimal control problem, parametrized by
elements in A:

/ / L(t, z, x(t, z), u(t, z), \(z))dzdt -* inf = m{\)
• Jo Jz' Z

dxs.t.— - div (fl(z, Dx(t, z), k(z)) = f(t, z, x(t, z), Hz))u(t, z) a.e.
at

x\T*r = 0, JC(O, z) = JCO(Z), xo(-) G L2(Z),

\u(t, z)\ < 9{t, z, Hz)) a.e. with u(-, •) measurable.

• (1)

Here Dx = (D\x,... , DNxN), with Dk = j-k=l,...,N, denotes the gradient
of x. Throughout this paper the following hypotheses will be in effect.
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Hja): aiz, v, k) = Dv<piz, v,k), where Dv denotes gradient with respect to the
v e \&N variable and cp: Z x RN x R* ->• R is a function satisfying:

(1) (z, k) -> <piz, v, k) is measurable,
(2) v —>• (p(z, v, k) is convex,
(3) c1B||u||2 - c2B < <piz, v,kiz)) < c3B(l + ||u||2) a.e. on Z for every

[v, k] e R* x B, B c A compact, with 0 < c1B < c3B < oo and
0 < c2B < oo,

(4) for every xux2 e #o(Z) and every l £ g c A , B compact, we have

, Dxiiz), kiz)) - iaiz, Dx2iz), kiz))iDx\iz) — Dx2iz))dz

with y1B > 0, a(z,0,k) = 0 and for all x € /^(Z) ||fl(.,
HOWmz.W) < y2s(l + II^IIH^Z)) with y2B > 0,

(5) if kn -*• k in the metric space A, then cp(z, v, kn(z)) -> <p(z, v, k(z)) a.e.
onZ.

/ / ( / ) : / : r x Z x ! x R * - > - R i s a function such that

(1) (f, z, k) —> / ( r , z, J:, A.) is measurable,
(2) \f(t, z, x, k(z)) - fit, z, y, k(z))\ < kB(t, z)\x-y\ a.e. for all l e f i c

A compact and kB e LX(J, L°°(Z)),
(3) \f(t,z,x,k(z))\ <aB(t,z) + bB\x\a.e. foralU e B c A compact and

with aB € L2(7 x Z), fcB > 0,
(4) if kn^> k in A , then for almost a l l? G T f(t, -,x,kn(-))-+f(t, -,x,k(-))

in L2(Z).

REMARK 1. We could have assumed that the controls are Km-valued m > 1, in
which case fit, z,x,k) is Rm-valued and the right-hand side of the partial differential
equation becomes if it, z, xiz), A.(z)), M(Z))R». denoting the Euclidean inner product
in W". However to simplify our notation, we have assumed that m = \.

Hjd)\ 6: T x Z x R* -> R+ is a function such that

(1) 6i-, •, X(0) € L°°iT x Z) and sup{||0(-, -, A.(-))||«»: X € B} < oo for any
B c A compact,

(2) if Xn -)• X in A, then for almost all t <E T, Bit, •, A.n(-)) -4 0(f, -, A.()) in

//(L): L : r x Z x R x R x i ' ^ i i s a n integrand such that

(1) it, z, k) ->• Lit, z, x, u, k) is measurable,
(2) \u\2 < Lit, z, x, u, Xiz)) < y3Bil + \x\2 + \u\2) a.e. on T x Z, for all

[ i , « , i ] 6 K x l x B , B C A compact and with y3B > 0,
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(3) for every x, y e K such that |JC — >»| < 1 and every A. € B c A compact

\L(t, z, x, u, Hz)) - L(t, z, y, u, Hz))\ < pB(\x - y\)(t + \x\2 + \u\2)

with pB: [0, 1) —> K increasing, continuous and pB(0) = 0,1 > 0,
(4) u -> L(t, x, u, k) is convex,
(5) if kn -* k then L*(; -, *, u\ *„(•)) -+ L*(-, •, x, u*, k(-)) in V(T x Z)

for every [x, u*] e K x IR; here L* denotes the conjugate function of L
with respect to u and A denotes the weak convergence in L\T x Z)
(recall that L*(t, z, x, u*, X) = sup[(u% M)R* - L{t, z, x, u, X): u G Rk],
with (•, )K* being the Euclidean inner product in R*).

REMARK 2. This hypothesis which incorporates the quadratic cost functionals con-
sidered by Lions [7], will guarantee the rseq-convergence of J(x, u, kn) = f0 fz L(t,
z, x(t, z), u(t, z), kn(z))dzdt as kn —>• k in A. In particular, assume that the controls
take values in Rm and consider the quadratic cost functional

J(x, u,k)= [ I \x(t, z) - yo(t, z, k(z))\2dzdt
Jo Jz

[(N(t,z,k(z))u(t,z),u(t,z))K»dzdt\ f [
*• Jo Jz

with ybG.-.M-)) e L2(T x Z) and N(-,-,k(-)) e L\T x Z, Rmxm) for every
A.Q G A. We assume that for every (t, z) e T x Z, NO, z, X(z)) is symmetric
and positive definite and so N(t, z, Hz))'1 exists. Furthermore, we assume that
if kn -+ k, then >t><-, •,*«(•)) -^ yoO, •, A(-))2, yo(-,-,An(-))

2 4 . >b(-,-,M0) in
L\T x Z) and N(-, •, ̂ n(-))"' -^ A (̂-, •, >.(•))"' in LH^ X Z, Kmxm). So if we
set L(t, z, x, u, k) = \x - yo(t, z, k(z))\2 + \(N(t, z, k(z))u, M)R», we have that
L*(t, z, x, u*. k) = i(N(t, z, k(z))~lu*, M*)K™ -\x- yo(t, z, k(z))\2 and for this L
hypothesis H(L) is satisfied. This type of cost functional was used by Lions [7].

3. Convergence of the costs and the constraints

We start with the rseq-convergence of the costs, which can be obtained directly
from the results of Buttazzo-Dal Maso [2]. Let H = L2(Z), X = //O'(Z) and
X* = H~\Z). From the Sobolev embedding theorem, we know that (X, H, X*)
is an evolution triple. For this triple we will use the notation introduced in Section
2. Denote J(x, u, k) = /0* fz L(t, z, x(t, z), u(t, z), k(z))dzdt, for all (x, u, k) e
W{T) x L2(T, H) x A, where W(T) is the Hilbert space introduced in Section 2.

PROPOSITION 1. If hypothesis H(L) holds andkn ->• A. in A, then T^CN, w-W(T),
w-L2(T, H)~)J{x, u, kn) = J(x, u, k).
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Here w-W(T) (respectively, w-L2(T, H)) denotes the Hilbert space W(T) (respect-
ively, L2(T, H) = L2(T x Z)) furnished with the weak topology. The proof of
Proposition 1 goes exactly as the proof of Lemma 3.1 of Buttazza-Dal Maso [2],
with the independent variable z € Z replaced by (t, z) G T x Z, since our system is
parabolic and not elliptic. Also recall that W(T) embeds compactly into L2(T, H)
(see Section 2), which allows us to consider W(T) with the weak topology instead of
L2(T, H), with the strong topology.

Next let p: H* (Z) x //J (Z) x A -* K be the Dirichlet form defined by

p(x, y,X) = f a(z, Dx(z), X(z))Dy(z)dz.
Jz

From the Cauchy-Schwartz inequality, we have for all X G B c A compact:

\p(x,y,X)\ <

+ lkll//ol(z))ll}'IU(;(z) (cf. hypothesis H(a){A)).

So there exists a generally nonlinear operator A : X x A - > T defined by

(A(x,X),y) = p(x,y,X)

for every x,y e X and every X e A. As we indicated in Section 2, (•, •) denotes the
duality brackets for the pair (tfj(Z), H~l (Z)).

Also let / : T x H x A —> H be the Nemitsky (superposition) operator corres-
ponding to the function f(t, z, x, A.); that is, f(t, x, X)(z) = f(t, z, x(z), X(z)).

Furthermore, let U(t, X) = {u e L2(Z): \u(z)\ < 6{t, z, X(z)) a.e. }. Clearly
because of hypothesis H(6), for every (t,X) G T X A, U(t,X) c L°°{Z) and so
given any u e U(t, X), (f(t, x, X)u(-) G L2(Z). Note that for every X e A, the graph
of the set-valued map t —> U{t, A.) is given by

GrU(-, X) = {(t, u)eT x L2(Z): [ \u(z)\dz < f 6{t, z, X(z))dz, C e B(Z)}
Jc Jc

with B(Z) being the Borel cr-field of Z.
LetlKw.C) = fc\u(z)\dza.nd%2(t,C) = fc8(t,z,X(z))dz. Then u -> £I(H,C)

is continuous, while by Fubini's theorem / -> i-2(t, C) is measurable. Recall that
B(Z) is countably generated and so we can find a countable field {Cn}n>i c B(Z)
which generates B(Z); that is, o({Cn}n>\) = B(Z). Define

^n(u) = ^(u,Cn) and ?2«(f) = fea,Cn).

We have that

GrU(-, X) = p|{(r, u) G T x L2(Z): | l n(«) < &,(0} € fi(T) x B(L2(Z))
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with B(T) (respectively, fi(L2(Z))) being the Borel cr-field of T (respectively, of
L2(Z)). So t -*• U{t, X) is a measurable set-valued map (see Wagner [12], Theorem
4.2) and by Aumann's selection theorem (see Wagner [12], Theorem 5.10), it admits
measurable selectors (that is, maps u: T -> L2(Z) measurable such that u(t) e U(t,k)
for all t e T).

Then we can rewrite the dynamics of our optimal control problem (1), in the
following equivalent evolution equation form:

x(t) + A(x(t), X) + f(t, x{t), X)u(t),
•x(O)=xo,

u{t) e U(t, X) a.e., «(•) measurable,

(2)

where *0 = *<>(•) e L2{Z).
By admissible "state-control" pair of (2) (equivalently of (1)), we mean a pair

[x, u] € W(T) x L2(T, H) satisfying (2) (equivalently the constraints of (1)). Given
X e A, let A (A.) c W(T) x L2(T, H) be the set of admissible state-control pairs
corresponding to this particular choice of the parameter. Let 8Am (x, u) be the indicator
function of A(X); that is, 5A<X)(*> U) = 0 if [x, u] € A (A.) and +oo otherwise. Then
problem (1) can be rewritten in the equivalent unconstrained form

m(X) = inf[J(*, u, X) + SAW(x, «)].

In the next proposition, we establish the rseq-convergence of the sets of admissible
state-control pairs.

Directly from the definition of r^-convergence, we have that if V\, V2 are topolo-
gical spaces and Bn c V{ x V2, n > 1, then

if and only if the following two conditions hold:

(i) if xn ->• x in Vu yn -*• y in V2 and (*„, yn) e Bn for infinitely many n's, then
(*, y) e B,

(ii) if (x, y) e B and xn -> x in Vu then there exist {yn}n>i c V2 and «0 > 1
such that yn -> y in V2 and (jcn, yn) € fin for all n > n0

(see also Buttazza-Dal Maso [2], p. 388).

REMARK 3. If Vi, V2 are first countable and condition (ii) above is replaced by the
weaker condition

(ii)' if (x, y) € B, then there exists a sequence {(*„, yn)}n>\ Q Vt x V2 such that
for all n > 1 (xn, yn) € Bn and *„ ->• x, yn ->• y as n -> co,
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then we have a characterization of the classical Kuratowski convergence of sets (see
Dal Maso [3], p. 41).

We will use the above observation concerning the F^-convergence of indicator
functions, to establish the F^-limit of [8A(K)(-, •)}„>[.

PROPOSITION 2. If hypotheses H(a), H(f), H(9) fold and kn -+ k in A, then
r ^ N , w-W(T)-. w-L\T, H))SMkn)(x, u) =

PROOF. Let [x,u] € A(k) and «„ 4 H in L2(T,H), un(t) e U{t,kn) a.e. Let
xn{-) € W(T) be the unique trajectory generated by the control wn() (see Papageorgiou
[8], Theorem 3.4). Uniqueness follows from the (strong) monotonicity of A(-, Xn) (cf.
hypothesis H(a)(4)) and the Lipschitzness of fit, •, Xn)un (cf. hypothesis f/( /)(2)).
So we have

xn(t) + A(xn(t), kn) = f(t, xn(t), kn)un) a.e.

xn(0) =x0

11,(0

We will derive some a priori bounds for the ;tn's. First let B = {kn, k}n>i c A
compact. Then from hypothesis H(a)(4), we have for k' e B:

((A(x, k') - A(y, k'), x-y)> yB\\x - yf, yB > 0,

((A(x, k'), x) > y'B\\x\\2, y'B>0 and \\A(x, k)\\t < y'B'{\ + \\x\\), y'B' > 0,

where || • || (respectively, || • ||,) denotes the norm of //O'(Z) (respectively, H~l(Z)).
Also {•, •) denotes the duality brackets for the pair (X = /J0'(Z), X* = H~l(Z)),
while in what follows by (•, •) we will denote the inner product in H = L2(Z) and by
| - | the corresponding norm. Recall that (-, •) \X*H= (•, •)', see Section 2. Then we
have

(xn(t), xn(t)} + (A(xn(t), K), xn(t)) = (f(t, xn(t), kn)un(t), xn(t)) a.e.

=• ~|Jc.(OI2

2 at

Applying on the right-hand side Cauchy's inequality with e > 0, we get

~\xm(t)\2 + y'B\\xn(t)\\
2 < ^||/(r,^(0,An)Mn(0ll» + ^- | |^(0ll2a.e. (3)

2 dt 2 2e
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Let* = 1/2%. We have

l d w (
2diM

Variational stability

2 1 ~
01 < -7Tj\\f{t,Xn{\

4vo

85

2y'B [
BJ0< l^o|2+ ^ 7 / \f(s,xn(s),Xn)un(s)\2ds

1YB JO

< \xo\
2 + ^ 7 ( I \fis, xn(s), kn)un(s)\2ds) sup ||0(.,., Knl.

2-YB \JO J »>\

From hypothesis H(0)(l), we have that supn2l \\6(-, -, A.n)||^ < oo. So

+ 2b2
B\xn(s)\2)ds

with fiB > 0, aB(s) = \\aB(s, )||2 and bB > 0 as in hypothesis H(f)(3).
Invoking Gronwall's lemma, we deduce that there exists Mt > 0 such that for all

n > 1 and all t e T we have

\xn(f)\<Mx. (4)

Next in inequality (3) above, let e = l/y'B. We get

~\Xn(t)\2 + ^.\\xn(t)\\
2<^7\f(t,xn(t),K)un(t)\

2a.c.
2dt 2 2yB

M * ) I I 2 ^ < l^ol2 + ^ r sup \\0(; -, XB)||^ [ (2aB(s)2 + 2b2
B\xn(s)\2)ds.

YB ">\ JO

Using bound (4) above, we deduce that there exists M2 > 0 such that for all n > 1
we have

\\Xn(f)\\LHT.X) < M2. (5)

Finally using hypothesis //(a)(4) and / / ( / ) (3) , as well as bounds (4) and (5), we
conclude that there exists M3 > 0 such that for all n > 1 we have

\\xn(t)\\mT,x>) < M3. (6)

From (5) and (6) above, we deduce that {xn }„> i is bounded in W (T), hence relatively
weakly sequentially compact. So by passing to a subsequence if necessary, we may
assume that xn A x in
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Next let git) = f{t, xit), X)u(t) and let yn(-) e W(T) be the unique solution of
the following evolution equation

yn(t) +A(t, >„(/), Xn) = git) a.e.,

yn(0) = x0.

The existence and uniqueness of yn(-) € W(T) solving the above Cauchy prob-
lem, is guaranteed by Theorem 30.A, p. 771 of Zeidler [13]. Let % be the family
of all open subsets of Z and define the functional <$>: //O'(Z) x fy x A -» K by
4>ix,Z',X) = fz,(p(z,Dx(z),k(z))dz. Then from hypothesis H(a)(5), together
with Theorem 5.14, p. 51 and Proposition 8.10, p. 93 of Dal Maso [3], we have
that rseq(N, w-H*(Z'))<t>(x, Z', A.n) = O(x, Z', X). Hence invoking Theorem 3.2 of

Defranceschi [5], we get that A(-, kn) 4- A(-, X). Then Theorem 1 of Kolpakov [6],
tells us that yn A x in W(T). Exploiting the monotonicity of the operator A(-, Xn),
we have

) - %(0, JCB(O - yn(t)) < (f{t, xn(t), Xn)unit) - git), xn(t) - yn0)) a.e.

= (/(*, xnit), Xn)unit) ~ (fit, x(t), Xn)unit), xnit) ~ %(0)

+ (f{t, xit), Xn)unit) - f(t, xit), X)uit), xnit) - ynit)) a.e.

< / ifis,xnis),Xn)unis) - fis,xis),Xn)unis),xnis) -ynis))ds
Jo

f »
+ / ifis, xis),Xn)unis) - fis,xis),X)uis),xnis) - ynis))ds

Jo
< / \fis,xnis), Xn)unis) - fis,xis),Xn)unis)\ • \xnis) -ynis)\ds

Jo

/

'
ifis, xis), Xn)unis) - fis, xis), X)u(s), xnis) - ynis))ds.

Observe that

,xnis),Xn)unis) - fis,xis),Xn)unis)\ • \xn(s) -ynis)\ds

< sup \\9i-, •, XJHoc [\fis, xnis), Xn)unis)-fis, JC(J), Xn)unis)\-\xnis)-ynis)\ds
n>\ Jo

< sup ||0(., ., An)|U f icBis)\xais) - ynis)\2ds, with kB(s) = \\kBis, •){]„.
n>\ Jo

/

I

\f(s,.
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Also we have

f „
/ (f(s,x(s),kn)un(s) - f(s,x(s),X)u(s),xn(s) - yn(s))ds
Jo

+ / / (/(•*• z, x(s> z)> K(z))un(s, z)
Jo Jz

- f(s, z,x(s, z), k(z)))u(s, Z))(^,(J, z) - yn(s, z))dzds

= f(s,z,x(s,z),K(z))(un(s,z) -u(s,z))(xn(s,z)-x(s,z))dzds
Jo Jz

+ f [(.f(s,z,x(s,z),K(z))
Jo Jz

- f(s, z, x(s, z), X(z)))u(s, z)(*«(s, z) - yn(s, z))dzds.

Since W(T) embeds into L2(T, H) compactly, we have that xn A x and yn -*• x

in L2(T, H) = L2(T x Z). Also by hypothesis un —>• u in L2(T x Z) and because

of hypothesis H(G), we have un ^ u in L°°(T x Z). So using hypothesis / / ( / ) , we

get

/ I f(s, z,x(s, z),K(z))(un(s, z) -u(s,z))(xn(s, z) -x(s,z))dzds
Jo Jz

+ I f(f(s,z,x(s,z),K(z))-f(s,z,x(s,z),k(z)))u(s,zmxn(s,z)
Jo Jz

/
Jo

— yn(s, z))dzds —> 0 as n —>• oo

())d^-0 as n-»-oo.

Jo

JO

Thus in the limit as n —> oo, we get

\X(O ~ X(t)\2 < 2SUP\\9(; ; K)^ / kB(s)\xn(S) -
n>l

From Gronwall's lemma, we conclude that x = x. Hence every subsequence

of (*n}n>i has a further subsequence which weakly converges in W(T) to x. Since

[*n ()}„>! equipped with the relative weak-W(r) topology is metrizable, we conclude

that xn —>• x in W(T) and [xn, Mn] € A(Xn), n > 1. So we have established condi-

tion (ii) in the characterization of F^C IN, w-W(T)~, w-L2(T, //))<5A(X,,)(-. •) provided

earlier.

Next we will show that condition (i) is also valid, establishing this way the desired

Fjeq-convergence of the indicator maps SA(kn)(-, •). So let [xn, un] e A(A.n), n > 1,

and assume that xn -> x in W(T) and un A u in L2(T, H). We will show that

[x, u] € A(X).
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Let£B(r) = f(t,xn(t),Xn)un(t) and g(t) = f(t,x(t),X)u(t). We have already
seen in the first part of the proof, that by passing to a subsequence if necessary, we may
have gn -4- g in L2(T, H). Let vn e W(T) be the unique solution of the evolution
equation

vn(t) + A(vn(t),Xn)=g(t) a.e.

vn(0) = x0.

Since A(-, Xn) -> A(-, X), from Theorem 1 of Kolpakov [6], we know that vn -4- v
in W(T), with «(•) e W(r) being the unique solution of the evolution equation

I) = g(t) a.e.

v(0) = x0.

Recalling that W(T) embeds compactly in L2(T, H), and continuously in C(7\ H),
by passing to a subsequence if necessary, we may assume that xn(t) -*• x(t) and
vn(t) -*• v(t) in H for all t e T (in fact using the results of Simon [9], we can
actually show that {xn}n>u {vn}n>i are relatively compact in C(T, H)). Exploiting the
monotonicity of A(-, Xn) we have

(*„(/) - vn(t), Xnif) - vn(t)) < (gn(t) - g(t), xn(t) - vH(t)) a.e.

=• ^-r\x"(t) - vn(t)\
2 < (gn(t) - g(t),xn(t) - vn(t)) a.e.

=> \\x«(t) -vn(t)|
2

- g(s), xn(s) - x(s)) + (gn(s) - g(s), x(s) - v(s))

+ (gn(s) ~ g(s), V(s) - Vn(s))ds

=*\Xn(t)-Vn(t)\^0

=$• \x(t) - v(t)\ = 0; that is, x = v.

Therefore [x, v] 6 A (A.) and so we have established condition (i) and we can
conclude that T ^ N , w-W(T)-, w-L2(T, H))SMK)(x, u) = SA(k)(x, u).

4. Main convergence theorem

In this section, using the auxiliary proposition of Section 3, we will examine the
variatibnal stability (sensitivity) of our optimal control problem (1).

Let Q(X) be the optimal state-control pairs corresponding to the parameter X € A;
that is, Q(X) = {[x, u] € W(T) x L2(T, / / )) : [x, u] solves problem (1)}. Recall that
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if Y, Z are Hausdorff topological spaces, then a set-valued function R: Y -*• 2Z{0}
is said to be upper-semicontinuous (u.s.c), if for all U open in Z, R+(U) = {y €
Y: R(y) c [/} is open in Y. An u.s.c. /?(•) with closed values has a closed graph;
that is, if [yp, Zp) is a net in y x Z, ẑ  G /?(^) and [yp, zp\ -> b \ z], then we have
z € R(y).

THEOREM 1. If hypotheses H(A), H(f), H{6) and H{L) hold, then for every X e A,
Q(X) ^ 0, X —> <2(A.) w u.s.c. /rom A into f/ie nonempty, weakly compact subsets of
W(T) x L2(T, H) andm: A - > R u continuous.

PROOF. From the a priori bounds established in the proof of Proposition 2, we know
that for every A € A, A(X) is weakly sequentially, compact in W(T) x L2(T, H).
Also if Xn = X n > 1 (constant sequence), we have from Proposition 1 that /(•, •, X) is
the f-regularization of itself and so from Proposition 1.3.1, p. 16 of Buttazzo [1] we
get that /(•, •, X) is sequentially weakly lower semicontinuous on W(T) x L2(T, H).
So for every X e A, the problem inf[/(;t, u, X): [x, u] e A(X)] has the solution; that
is, Q(X) # 0.

Next let Xn -> A. in A. Combining Propositions 1 and 2 of this paper with
Theorem 2.1 of Buttazzo-Dal Maso [2], we get that io-IIm Q(Xn) = {[x, u] e W(T) x
L2(T, H)):[x,u] = w-lim[xnk, unk], [xni,unk] e Q(Xnt), nx < n2 < n3 < • • • <

1—i w

Hk < • • •} ^ QiX)- But we saw in the proof of Proposition 1 that yj Q(Xn) is
n>l

a weakly compact subset of W(T) x L2(T, H) (recall that the weak topology on
the product space W(T) x L2(T, H) is the product of the weak topologies; that is,
(W(T) x L2(7\ H))w = W(T)W x L2(T, H)w). So from Remark 1.6. of DeBlasi-
Myjak [4], we get the desired upper-semicontinuity of X —> Q(X).

Next let Xn -> X in A and let [xn, un] € Q(Xn) n > 1. Then m(Xn) = J(xn, un, Xn)
and by passing to a subsequence if necessary, we may assume that xn A x in W(T)
and un -> u in L2(7\ / / ) . Then from Proposition 2 we have [x, u] e Q(X). Also
from Proposition 1 and the definition of rseq-limits, we have

J(x, u, X) < Iim7(jcn, un, Xn) = lim

. (7)

Next let [x, u] 6 Q{X) and e > 0. We have m(X) = J(x, u, X), [x, u] G A(X).
From Propositions 1 and 2 of this paper and Corollary 2.1 of Buttazzo-Dal Maso [2],
we have that

I W N , w-W(T)-, w-L2(T, H)-)U(; ; K) + «A(W(-, -))(x, u)

= (70, •, A.)
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Then from the definition of P^-limits we know that we can find a sequence
{[*«, "„]}«>! c W(T) x L2(T, H) such that xn A x in W(T), ii, A x in L2(7\ / /)
and

lim[J(xn, un, Xn) + 8MK)(xn, «„)] < J(x, u, X) + SMX) + € < oo.

Hence for all n large enough, we have that [xn, un] e A(Xn) and so

limm(kn) < lim J(xn, un, kn) < m(X) + e.

Let e 4, 0. We get that

< m(X). (8)

From (7) and (8) above, we deduce that m(kn) ->• m(X) and so we have proved
that X -> /n(A.) is continuous.

5: Semilinear systems

In this section we consider systems with semilinear dynamics. The linearity of the
partial differential operator x —> A(x, k) allows us to incorporate in the framework
of this paper, semilinear systems with weakly convergent coefficients (e.g. rapidly
oscillating coefficients).

So let T and Z c R" be as before. We consider the optimal control problem

/ / L(t, z, x(t, z), u(f, z), Kz))dzdt -*• inf = m(k),
Jo Jz

N

s.t. -£• - V D,(flij(z, Hz))DjX(f, z))
dt u^i (9)

= fit, z,x{t, z), Hz))u(t, z) a.e. on T x Z,

x | r*r= 0, JT(O,Z) = xo(z) a.e. on Z, *<>(•) e L2(Z),
a.e.

We will make the following hypothesis on the coefficients, atj{z, X):

H{a)x for every X e A, au(;X(-)) e L°°(Z), au(;X(-)) = a,,(-,M0) i, j =

1,2,..-, N, for every z € RN, m, ||z||2 < E ^ = i fltf (z. ̂ (z))z.^ < «2l|z||2

with 0 < m] < m2 < 00 and if A.n ->• X in A, then a,7(-, Xn(-)) A

fly(., X(-)) in L\Z) for all j , j e {1, 2 , . . . , Â } and £ f 4
£ £ , AflyO, A-(O) in //"'(Z) for all ; e { l , 2 iV}.
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In this case <p(z, x, X) = (A(z, k)x, x)&* where A(z, X) = (au(z, A.))".=1 € &NxN.
Let O://0'(Z) x <% x A -» R be <&(x, Z', A) = / z ?(Z,JC(Z), X{z))dz, where as
before (see the proof of Proposition 1), ^ is the collection of all open subsets
of Z. Then because of hypothesis H(a)\, we have that if An -> A. in A, then
T^CN, w-H£(Z))®(x, Xn) = ®(x, X) (see Dal Maso [3]). So if for X' e A we define

€ &{H*(Z), H~l(Z)) by (A(X')x, y> = / z £ " = 1 «u(z.

dz, then from Theorem 3.2 of Defranceschi [5], we have that A(Xn) —*• A(X). Hence
the proof of Proposition 2 goes through and therefore we can state the following result.

THEOREM 2. If hypotheses H(a)u H(f), H(G) and H(L) hold, then for all X e A,
Q(X) ^ 0,the set-valued map X —> Q(X) is u.s.c. from A into the nonempty, weakly
contact subsets ofW(T) x L2(7\ H) andm: A ^ l i s continuous.

As a simple illustration, let Z c K2 and assume that the sequence of partial
differential operators of the approximating problems is Bn = —A — j cos(nz2)02.
Remark that {| cos(nz2)}n>i is a sequence of C°° functions, which converges strongly
in H~l (Z) but not in L2 (Z) (recall that by the Riemann-Lebesque lemma \ cos(nz2) -^>
0 in L2(Z) and since L2(Z) embeds compactly in H~l(Z), we have | cos(nz2) -*• 0

in H~l(Z)). Then Bn —̂  B = —A and so Theorem 2 is applicable for systems
monitored by parabolic partial differential equations involving these operators. In
particular then we have convergence of the corresponding optimal values.

If N = 1, the situation is simpler. In this case the partial differential operator is
— ̂ (a(z, A.(z))^- and hypothesis H{a)x takes the following form:

H(a)2 for every A. G A and almost all z € Z, wii < a(z, X(z) < m2 and if A, —*• X in

A then S in L°°(Z).
a(-,Xn(-)) a(-,k(-))

Under this hypothesis, we know (cf. Dal Maso [3]), that

, Z ' , Xn) = <t>(x, Z', A.),

where <D: H0'(Z) x <% x A -+ 01 is given by <D(.x, Z', A') = / z , g
So again Proposition 2 is valid and so we state the following result.

THEOREM 3. If hypotheses H(a)2, H(f), H{$) and H(L) hold, then for all X e A,
Q(X) :/ 0,the set-valued map X -» Q(X) is u.s.c. from A into the nonempty, weakly
contact subsets of W(T) x L2(7\ / /) andX —*• m(X) is continuous.

This is the case for example if an(z) = 1 + e"z and an(z) = 1. Then J- -^ i = 1
in L°°(Z). Note that \\an - a||oo = 1. S o a n 7 ^ a strongly in L°°(Z).

REMARK 4. This type of coefficient convergence was considered by Sokolowski [10].
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Finally, we mention that the framework of this paper allows us also to treat optimal
control problems with homogenization in the dynamics. In this case in the context of
semilinear systems a"j(z) = aij(ynz) with atj periodic and yn -» oo (see Dal Maso
[3], Chapter 24). Also we can investigate systems with controls in the coefficients
(see Sokolowski [10]).
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