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Abstract

A recent article of G. Chang shows that an n X n partial latin square with prescribed diagonal can
always be embedded in an n X n latin square except in one obvious case where it cannot be done.
Chang's proof is to show that the symbols of the partial latin square can be assigned the elements of
the additive abelian group Z,, so that the diagonal elements of the square sum to zero. A theorem of
M. Halls then shows this to be embeddable in the operation table of the group. In this paper, we show
that when n is a prime one can determine exactly the number of distinct ways in which this assignment
can be made. The proof uses some graph theoretic techniques.

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 15.

1. Introduction

An n X n array A defined on an «-set V is called a partial latin square if each cell
of A is either empty or contains an element of V and every element of V is
contained in at most one cell of each row and column of A. The following
problem was recently solved by G. Chang [2].

An n X n partial latin square in which only the cells on the main
diagonal and only those cells contain elements of V (a partial latin
square with prescribed diagonal) can always be completed to an n X n
latin square except in the case where the elements on the main diagonal
consist of exactly 2 distinct symbols and one of these symbols occurs
precisely once.

Copyright Australian Mathematical Society 1983

138

https://doi.org/10.1017/S1446788700019820 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700019820


I21 A problem on latin squares 139

The proof given by Chang appeals to a theorem of M. Hall [4]:

THEOREM 1.1. For a given n-tuple of elements bu b2,... ,bn not necessarily

distinct, in an abelian group G of order n, a permutation

c , c 2 • • • c

of the elements of G exists such that
n

c, — a{ — bn 1 < i < n if and only if ^ bt• — 0.

Chang's proof is to show that, in all but a few exceptional cases, the elements of
V associated with a n n X n partial latin square with prescribed diagonal can be
assigned the elements of the additive abelian group Zn so that the sum of the
elements on the main diagonal is 0. Then, by Hall's theorem, this array is
embeddable in the operation table for addition for Zn and this, of course, is a
latin square. It is the purpose of this paper to show that when n is a prime one
can determine exactly the number of distinct ways in which this assignment can
be made.

To be more precise, suppose that the n X n partial latin square L with
prescribed diagonal has k distinct symbols yx, y2,...,yk occurring on the main
diagonal. Suppose yt occurs precisely mt times, 1 *£ i < k. Clearly, 2 w, = n.
Theorem 1.1 guarantees that L can be completed to a latin square if there exists a
mapping/: V -> Zn such that

k

lm,f(y,)=0.

W e will a s s u m e t h a t mx *s m 2 < ••• ^ mk. T h e p r o b l e m n o w is to show tha t
there exist k d i s t inc t e l emen t s xx, x2,... ,xk in Zn such t h a t

k

2 mtx: = 0 (mod n)
t=\

except in the case k — 2 where such a solution is clearly impossible. In the next
section, we enumerate the number of such solutions when n is a prime number.

2. Number of solutions

Consider the equation

(1) 2rn,x, = 0
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over Zn where 2*=1 w, = 0 but 2{=1 my. ^ 0 for any /, 1 < / < A: — 1 and any
{y'i> 72>-••'-//} C- {1,2,...,A:}. A solution by distinct elements of (1) is a solution
(>>,, j>2>-• • >^*) °f 0 ) m whichyi =£yj for all i,j, 1 < / <y < k. Let S(m) be the
number of solutions by distinct elements of (1). We now state and prove the main
theorem. The proof requires a basic familiarity with elementary graph theory. The
reader is referred to Bondy and Murty [1] for definitions.

THEOREM 2.1. For n = p, a prime number

PROOF. We say that a solution (xi,...,xk) to mlxl + • • • +mkxk — 0 has
property PtJ, for 1 < i <y =£ k, if xt — Xj. Then S(m) is the number of solutions
which have none of these (*) properties. Thus, by inclusion-exclusion, the
required number is

(!)
S(m) = 2 (-1)' 2 N(a)

1=0 aQBk

M=/
where 0k = {(/, j): 1 < i <j < A;}, and, if « = {(/,, y , ) , . . . ,(/„ y,)}, 7V(a) is the
number of solutions in which x, = x,•,... ,x, = x, .

We determine N(a) by considering the graph G(a), on labelled vertices
{1,2, . . . ,k) and edge set a. If G{a) has c connected components, then N(a) —
pc~' if c > 1, and ./V(a) = /? if c = 1. This is seen most easily by considering two
examples.

If k = 6 and a = {(1,3), (2,3), (4,5)}, then G(a) has 3 connected components,
on vertex sets {1,2,3}, (4,5} and {6}. Moreover, N{a) is the number of solutions
in which xx — x2 — x3 = x]23 and x4 = x5 — x45. Thus N(a) is the number of
solutions in GF(p) to

(w, + m2 + w3)x123 + (w 4 + ms)xA5 + m6x6 = 0.

But none of m, + m2 + m3, m4 + m5, and m6 are equal to 0, so we let xn3 and
x45 take on any value in GF(p) and can then determine x6 uniquely, since w^1

exists. Thus, N(a) = p2 in this case.
If k = 4 and a = {(1,2), (1,4), (2,4), (3,4)}, then G(a) is a connected graph,

and thus has a single connected component. In this case N(a) is the number of
solutions in which x{ — x2 = x3 — x4 = x1234, and is thus the number of solu-
tions in GF( p) to

(w, + m2 + m3 + m4)xU3A = 0.
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But m, + m2 + m3 + w4 = 0, and so x1234 can be any element of GF(p).
Accordingly, in this case, N(a) = p.

Thus

/=0 c=\

where gk(c, /) is the number of simple graphs on k labelled vertices, with c
components and / edges. The generating function for these numbers is well-known
(see, for example, [3]), and is given by

* 2 ' k ^k (

1 1 1 gk(c> l ) z y T T = 1 2 7T (

A:>0 1=0 c=\ L/s-

Moreover

i=o • u>o •

Thus, using the notation \xn]f{x) to denote the coefficient of x" in the power
series expansion of f(x), we have

( 2 ) k ( 2 )

1=0 c=\ 1=0

A:!

3. Conclusion

To solve equation (1) of Section 2 over Zn when « is composite appears to be
much more difficult. As can be seen above, S(m) is independent of the coeffi-
cients in (1) when the equation is over Zp. For n composite this is not the case.
For example, the equations x, + 2x2 + 3x3 = 0 and 2x, + 2x2 + 2x3 = 0 over
Z6 have different numbers of solutions.
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