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A REPAIR REPLACEMENT MODEL

LAM YEH,* The Chinese University of Hong Kong

Abstract

In this paper, we study a similar replacement model in which the
successive survival times of the system form a process with non-increasing
means, whereas the consecutive repair times after failure constitute a
process with non-decreasing means. The system is replaced at the time of
the Nth failure since the installation or last replacement. Based on the
long-run average cost per unit time, we determine the optimal replacement
policy N* and the maximum of the long-run average reward explicitly.
Under additional conditions, the policy N* is even optimal among all
replacement policies.

IFR; NBUE; RENEWAL THEORY

1. Introduction

At an early stage, the development of the replacement model is based on the assumption
that a failure system after repair will yield a functioning system which is ‘as good as new’.
However, this model is no longer applicable to a repairable deteriorating system. For
instance, in machine maintenance problems, in view of ageing and cumulative wear, on the
one hand, the operating times of a machine after repair will usually become shorter and
shorter and may tend to zero; on the other hand, the repair times will become longer and
longer, sometimes even tending to infinity, i.e., finally the machine will be non-repairable.
Thus, an appropriate model for these problems might be as follows: the successive survival
times are stochastically decreasing and the consecutive repair times are stochastically
increasing.

Downton (1971) and Thompson (1981) have used the non-homogeneous Poisson process
for modelling these deteriorating systems. This is in fact the minimal repair model (see
Barlow and Proschan (1965) or Ascher and Feingold (1984)). Another possible approach is to
consider some kind of monotone process. Lam (1988a, b) studied a replacement model in
which the successive survival times of the system form a non-increasing geometric process and
the consecutive repair times constitute a non-decreasing geometric process.

Stadje and Zuckerman (1990) consider a more general repair replacement model by
making the following assumptions: the successive survival times {X,, n=1,2,...} of the
system form a stochastically decreasing process and each survival time has a non-decreasing
failure rate (IFR), also the consecutive repair times {Y,, n =1, 2, ...} constitute a stochasti-
cally increasing process and each repair time has the property that new is better than used in
expectation (NBUE). A replacement policy T is used, by which we replace the system at time
T where T is the time elapsed since the installation or the last replacement.

Assume that the repair cost rate is C. The replacement cost during an operating interval is
C,. Also, if the system is replaced upon failure or during repair, the replacement cost is
assumed to be C; and C; = C,. Whenever the system is operating, the reward rate is R > 0.
Then, we have the following result.
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Theorem 1 (Stadje and Zuckerman (1990)). Suppose that:

(i) For each n=1, X, and Y, are both non-negative random variables, also A, = E(X,,) is
non-increasing and p,, = E(Y,,) is non-decreasing;

(i) lim, .. A, =0 or lim,_. pu, = %;

Gii) {X,, n=1,2,...} and {Y,, n=1,2,...} are two independent sequences of
independent random variables, also for each n =1, X, has IFR and Y, is NBUE;

(iv) Co=C;.

Then the replacement policy
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is optimal, where
o no=min {nZ1|(C+ ")t Z (R — ¢*)A,.1)

and ¢@* is the optimal value of the long-run average reward.

Thus, under some mild conditions, for a repairable deteriorating system, the optimal
replacement policy is of the form ‘replace after the Nth failure’, which we call policy N. To
determine the optimal policy T*, by Theorem 1 we have to specify n, which depends on 3 *.
However, y* is usually unknown before the optimal policy T* has been determined. To
overcome this difficulty and solve the problem completely, a direct way is to find the optimal
replacement policy N*, then T* and y* can be evaluated immediately.

In this paper, we generalize Lam’s earlier work (1988a, b) by introducing a model for a
repairable deteriorating system which is more general than the model suggested by Stadje
and Zuckerman (1990). In our model we study only the replacement policy N. Based on an
explicit expression of the long-run average reward per unit time, we determine the optimal
replacement policy N* and the corresponding optimal value of the long-run average reward
y* explicitly.

2. Model

We consider the following repair replacement model.

Assumption 1. At the beginning, a new system is installed. Whenever the system fails, it is
either repaired or replaced by a new and identical one.

Assumption 2. Let X, be the survival time after the (k—1)th repair, then {X,,
k=1,2,...} forms a sequence of non-negative random variables with non-increasing means
E(Xy) = M.

Assumption 3. Let Y, be the repair time after the kth failure, then {Y,, k=1,2,...}
constitutes a sequence of non-negative random variables with non-decreasing means E(Y,) =

B
Assumption 4. The system will be replaced by a replacement policy N.

Assumption 5. The repair cost rate is C, the replacement cost under policy N is C; and the
reward rate whenever the system is operating is R. By classical arguments from renewal
theory, the long-run average reward per unit time is given by

N
R kZ A’k - C
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R(N)
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R — C¢(N)
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where
N-1
(C+R) k§1 e + C ,
(3) 7 Cr(N) =— — , N=1,2,....
z=:1 A+ k§ [

Then, the optimal replacement policy N* can be determined by maximizing Rr(N) or
minimizing Cr(N). To do this, without loss of generality assume that {A,, k=1,2,...} and
{ue, k=1,2, ...} are all positive.

Now, starting from (3), straightforward calculation yields

) CE(N+1)— CE(N)={(C + R)fy — Cr(An+1 + un)}/ An
where

N+1 N N N-1
An=(2 A + I‘k)(z lk+2 ”'k)
k=1 k=1 k=1 k=1

and N

N
fn=bn E A — A 2 M.
k=1 k=1

Note that A, >0 and fy = Auy>0 forall N=1.
Then, define gy = (Ay; + tn)/fv, hence

N+1 N

gne1— 8n= (Anialin — AN+1I‘N+1)( 2 A+ 2 ﬂk)/(foNﬂ) =0,
k=1 k

=1
and we have the following result.

Lemma 1. {gy} is a non-increasing sequence from g, = (A, + p;)/ (A1) t0 g =limy_,.. gn-
The next lemma follows from (3).
Lemma 2.
) Cr(N+1)ECe(N) iff gyZE(C+R)/C;.
The combination of Lemma 1 and 2 yields the following result.
Theorem 2. The optimal policy N* is determined by
6) N*=min {NZ1|gy=(C+R)/C;}.

If besides Assumptions 1-5, the conditions (ii)—(iv) of Theorem 1 also hold, then the
optimal replacement policy N* given by (6) is exactly the same as T* given by (1), hence N*
is also optimal among all policies T. By (6), we can find N*; then from (2),

Y* =Rp(N*) =R — Cs(N*).

Note that, by (6), N* is non-increasing in C and non-decreasing in C;.

3. Comments

This model assumes neither the independence of successive survival times or that of
consecutive repair times, nor independence between them. Consequently, it is a realistic and
practical model, because in applications, we do not need to consider and test for
independence.

Essentially, the model requires only monotonicity in the means 4, and u,. Moreover, (2)
and (3) show that R-(N) and Cr(N) depend on the processes {X,, n=1,2,...} and {Y,,
n=1,2,...} only through parameters A, and pu, and are independent of their true
distributions. Of course, this distribution-free property has more extensive applications in
practice. Thus, the model is a very general one.

The replacement policy N has been considered by Morimura (1970) and Nakagawa (1984).
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It is an effective policy because the total operating time of a system is not recorded. For
practical purposes, the implementation of the optimal policy and hence the management of
the model are quite simple.

Under some mild additional conditions (Conditions (ii)—(iv) in Theorem 1), the optimal
policy N* is also optimal among all policies T.
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