ON TRANSITIVE PERMUTATION GROUPS WITH A SUBGROUP SATISFYING A CERTAIN CONJUGACY CONDITION

CHERYL E. PRAEGER

(Received 6 July 1982)

Communicated by D. E. Taylor

Abstract

Let G be a transitive permutation group of degree n and let K be a nontrivial pronormal subgroup of G (that is, for all g in G, K and K^{g} are conjugate in $\left\langle K, K^{g}\right\rangle$). It is shown that K can fix at most $\frac{1}{2}(n-1)$ points. Moreover if K fixes exactly $\frac{1}{2}(n-1)$ points then G is either A_{n} or S_{n}, or GL $(d, 2)$ in its natural representation where $n=2^{d}-1 \geqslant 7$. Connections with a result of Michael O'Nan are discussed, and an application to the Sylow subgroups of a one point stabilizer is given.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 B 05, 20 B 10.

This paper is concerned with finding an upper bound for the number of fixed points of certain subgroups of a transitive permutation group G. In [16] it was shown that the number of fixed points of a Sylow subgroup was strictly less than half the total number of points. Here we generalise that result to the class of nontrivial pronormal subgroups of G, that is, nontrivial subgroups K such that for all g in G, K^{g} is conjugate to K by an element of $\left\langle K^{g}, K\right\rangle$. If p is a prime dividing the order of G a p-subgroup K of G is pronormal if and only if each Sylow p-subgroup of G contains exactly one conjugate of K, that is K weakly closed in any Sylow p-subgroup of G containing it. In particular Sylow subgroups are pronormal, and if G is soluble, then its Hall subgroups are pronormal. The main result of the paper is the following theorem. The proof is by induction and exploits results of Cameron [4,5]. (Note that if K is a permutation group on a set Ω then fix ${ }_{\Omega} K$ and $\operatorname{supp}_{\Omega} K$ denote its set of fixed points in Ω and its support Ω-fix $\Omega_{\Omega} K$ in Ω respectively.)

[^0]Theorem l. Let G be a transitive permutation group on a set Ω of n points, and let K be a nontrivial pronormal subgroup of G. Suppose that K fixes f points of Ω. Then
(a) $f \leqslant \frac{1}{2}(n-1)$, and
(b) if $f=\frac{1}{2}(n-1)$ then K is transitive on its support in Ω, and either $G \geqslant A_{n}$, or $G=\mathrm{GL}(d, 2)$ acting on the $n=2^{d}-1$ nonzero vectors, and K is the pointwise stabilizer of a hyperplane.

This result may be compared, with a result of Michael O'Nan ([13], Theorem A) on subgroups of prime order of primitive permutation groups. We note that O'Nan's result is true without the restriction that the subgroups have prime power order. As a simple consequence of Theorem 1 and O'Nan's results we have Theorem 2.

Theorem 2. Let G be a primitive permutation group on a set Ω of n points and let K be a nontrivial subgroup of G satisfying: if $g \in G$ is such that $\operatorname{supp}_{\Omega} K \cap$ $\operatorname{supp}_{\Omega} K^{g} \neq \varnothing$, then K is conjugate to K^{g} in $\left\langle K, K^{g}\right\rangle$.

Then one of the following is true.
(i) $\left|\operatorname{fix}_{\Omega} K\right|<\frac{1}{2}(n-1)$,
(ii) $G \supseteq A_{n}$,
(iii) $G=\mathrm{GL}(d, 2)$ on the $n=2^{d}-1 \geqslant 7$ nonzero vectors,
(iv) $G=\operatorname{AGL}(d, 2)$ on the $n=2^{d} \geqslant 8$ vectors.
(For if K is conjugate to K^{8} in $\left\langle K, K^{g}\right\rangle$ for all g in G then K is pronormal and the result follows from Theorem 1 ; if not then the result follows from [16] Theorem A.) A less trivial consequence is the following; we note that O'Nan's result is not strictly necessary for the proof.

Theorem 3. Let G be a primitive permutation group on a set Ω of n points and let K be a nontrivial subgroup of G such that $\mathrm{fix}_{\Omega} K$ is nonempty. Assume that K satisfies
(*) If $g \in G$ is such that $\mathrm{fix}_{\Omega} K \cap \mathrm{fix}_{\Omega} K^{g} \neq \varnothing$ then K is conjugate to K^{g} in $\left\langle K, K^{g}\right\rangle$.

Then $f=\mid$ fix $_{\Omega} K \left\lvert\, \leqslant \frac{1}{2} n\right.$, and if $f=\frac{1}{2} n$ either $G \supseteq A_{n}$ or $G=\operatorname{AGL}(m, 2)$ with $n=2^{m} \geqslant 8$.

This has the following corollary.
Corollary to Theorem 3. Let G be a primitive permutation group on a set Ω of n points, let p be a prime dividing $|G| / n$, and let K be a Sylow p-subgroup of the stabilizer G_{α} of the point α of Ω. Then $f=\mid$ fix $_{\Omega} K \left\lvert\, \leqslant \frac{1}{2} n\right.$ and if $f=\frac{1}{2} n$ then $n=2 p$ and $G \supseteq A_{n}$.

Theorem 1 is proved in Section 2, and Section 1 consists of preliminary results among which is the following application of a result of Wielandt.

Proposition 4. Let G be a primitive permutation group on Ω. For $\alpha \in \Omega$ suppose that K is a subgroup of G_{α} satisfying:
(**) If $K^{g} \leqslant G_{\alpha}$ for $g \in G$, then $K^{g h}=K$ for some h in G_{α}. Then K acts nontrivially on each orbit of G_{α} in $\Omega-\{\alpha\}$.

In Section 3 we prove a generalization of Theorem 3 and its corollary for transitive groups. Our notation is fairly standard and follows the conventions of [20]. However when it is convenient we shall use the notation of D. G. Higman [7] for suborbits of a permutation group. If G acts as a permutation group on a set Ω, we shall call on orbit of G in $\operatorname{supp}_{\Omega} G$ a nontrivial orbit.

The author has appreciated the help of Drs. Marcel Herzog, Chris Godsil and Brendan McKay in discussions relating to this work.

1. Preliminary results

In this section we first prove Proposition 4. Then we examine some properties of the groups of Theorem $1(b)$ and some properties of pronormal subgroups which will be useful in the inductive proof of Theorem 1. Finally we state for convenience some known results about primitive groups with a small subdegree.

Proof of Proposition 4. Let G, K satisfy the hypotheses of Proposition 4, and let Γ be an orbit of G_{α} in $\Omega-\{\alpha\}$. By [20] 18.1, for some g in $G, K^{g} \leqslant G_{\alpha}$ and acts nontrivially on Γ. Thus for some x in K^{g}, β in Γ, we have $\beta^{x} \neq \beta$. By condition (**), $K^{g h}=K$ for some h in G_{α}. Then $x^{h} \in K, \beta^{h} \in \Gamma^{h}=\Gamma$, and $\left(\beta^{h}\right)^{h^{-1} x h}=\beta^{x h} \neq \beta^{h}$. Thus K acts nontrivially on Γ.

Note we consider the groups A_{n} and $\mathrm{GL}(d, 2)$.

Lemma 1.1. Suppose that G, K satisfy the hypotheses of Theorem 1 and $G \geqslant A_{n}$. Then K has only one nontrivial orbit. If this orbit has length a then $f=a-i_{a}(n)$, where $i_{a}(n)$ is the integer satisfying $1 \leqslant i_{a}(n) \leqslant a, n+i_{a}(n) \equiv 0(\bmod a)$. Thus if $f=\frac{1}{2}(n-1)$ then $n=2 a-1$.

Proof. Let a be the length of the shortest nontrivial orbit of K. Suppose that $f \geqslant a$ and let Γ be a K-orbit of length a. Then there is an element g in A_{n} such that $\Gamma^{g} \subseteq \operatorname{fix}_{\Omega} K$. Then Γ^{g} is an orbit both of K^{g} and of $\left\langle K, K^{g}\right\rangle$. Since K is
pronormal $K^{g h}=K$ for some h in $\left\langle K, K^{g}\right\rangle$, but then $\Gamma^{g h}=\Gamma^{g}$ is an orbit for K, contradiction. Hence $f<a$ and so $f=a-i_{a}(n)$ and the rest follows immediately.

Clearly $G \geqslant A_{n}$ has nontrivial pronormal subgroups. As a corollary to the proof we have

Corollary 1.2. If G, K satisfy the hypotheses of Theorem 1 and G is a-transitive then $f=a-i_{a}(n)$ (where a is the length of the shortest nontrivial orbit of $\left.K\right)$.

Lemma 1.3. Suppose that $G=\operatorname{GL}(d, 2), d \geqslant 3$, acting on the set Ω of $n=2^{d}-1$ nonzero vectors. Let K be the pointwise stabilizer of a hyperplane Δ. Then K is elementary abelian of order 2^{d-1}, is regular on $\Omega-\Delta$, and is pronormal. Moreover no subgroup of K of index 2 is pronormal in G.

Proof. It is well known that K is elementary abelian of order 2^{d-1} and acts regularly on $\Omega-\Delta$. Moreover K is pronormal since each Sylow 2-subgroup of $\mathrm{GL}(d, 2)$ contains exactly one conjugate of K. Now K has 2^{d-1} subgroups of index 2 and each of these groups has two orbits of equal length in $\Omega-\Delta$. Thus there are $2^{d}-2$ orbits in $\Omega-\Delta$ of these subgroups, and each of these orbits is the intersection of $\Omega-\Delta$ with one of the $2^{d}-2$ hyperplane distinct from Δ. Since G is 2-transitive on the set of hyperplanes it follows that all subgroups of index 2 in K are conjugate in G. If L, L^{\prime} are distinct subgroups of K of index 2, then both L and L^{\prime} are normal in $\left\langle L, L^{\prime}\right\rangle=K$ and so neither is pronormal in G.

In the proof of Theorem 1 we shall use the following results repeatedly.

Lemma 1.4. Suppose that K is a nontrivial pronormal subgroup of the group G.
(a) If $K \leqslant H \leqslant G$ then K is a pronormal subgroup of H.
(b) If X is a normal subgroup of G not containing K, then $K X / X$ is a nontrivial pronormal subgroup of G / X.

Lemma 1.5. Suppose that K is a nontrivial pronormal subgroup of a primitive permutation group G on Ω. If $\alpha \in$ fix $_{\Omega} K$ then K acts nontrivially on each orbit of G_{α} in $\Omega-\{\alpha\}$.

The proof of Lemma 1.4 is straightforward and that of Lemma 1.5 is simply an application of Proposition 4. Finally we quote some results about primitive permutation groups with small subdegrees.

Lemma l.6. Let G be a simply transitive primitive permutation group on Ω of degree n. Let $\alpha \in \Omega$ and suppose that G_{α} has an orbit of length k in $\Omega-\{\alpha\}$.
(a) ([20] 18.7, 18.8) If $k=2$ then n is prime and G is a Frobenius group of order $2 n$.
(b) ([21]) If $k=3$ then G_{α} is soluble with order dividing 48.
(c) ([18] Theorem 2.1 (10)) If k is 3 or 4 then either n is divisible by a prime greater than 3 or $n=2^{c}$ or $n=3^{c}$ for some $c<k$.

2. Proof of Theorem 1

Suppose that Theorem 1 is false, let n be the least integer for which a counterexample of degree n exists, and let G be a counterexample of degree n. Thus G has a nontrivial pronormal subgroup K with $f \geqslant \frac{1}{2}(n-1)$ fixed points in $\Omega, G \nsupseteq A_{n}$, and G is not $\operatorname{GL}(d, 2)$ in its natural representation for any d.

Lemma 2.1. G is primitive on Ω.

Proof. Suppose that G has a set $\Sigma=\left\{B_{1}, \ldots, B_{t}\right\}$ of blocks of imprimitivity in Ω with $|\Sigma|=t>1,\left|B_{i}\right|=b>1$, and $n=t b$. Since any block containing a point of fix ${ }_{\Omega} K$ is fixed setwise by K and since $f>0$ it follows that fix ${ }_{\Sigma} K$ is nonempty. By [20] 3.5 applied to K^{Σ} as a subgroup of $G^{\Sigma}, N_{G}(K)$ is transitive on fix ${ }_{\Sigma} K$. It follows that $f_{B}=\mid$ fix $_{B} K \mid$ is independent of the choice of B in fix ${ }_{\Sigma} K$. Thus if we set $f_{\Sigma}=\left|\operatorname{fix}_{\Sigma} K\right|$ then $f=f_{\Sigma} f_{B}$. If for B in fix ${ }_{\Sigma} K, K^{B} \neq 1$ then the hypotheses of Theorem 1 hold for the setwise stabilizer of B acting on B. Hence by minimality, $f_{B} \leqslant \frac{1}{2}(b-1)$, and so $f \leqslant t f_{B}<\frac{1}{2}(n-1)$. If on the other hand $K^{B}=1$ for B in $\mathrm{fix}_{\Sigma} K$, then $f=b f_{\Sigma}$ and so $K^{\Sigma} \neq 1$. The hypotheses of Theorem 1 then hold for G^{Σ} and again by minimality, $f_{\Sigma} \leqslant \frac{1}{2}(t-1)$, and $f<\frac{1}{2}(n-1)$. Thus G is primitive on Ω, since $f \geqslant \frac{1}{2}(n-1)$.

Lemma 2.2. G is 2 -transitive on Ω and $f=\frac{1}{2}(n-1)$.

Proof. Let $\alpha \in \operatorname{fix}_{\Omega} K$. Then by Lemma 1.5, K acts nontrivially on each orbit Γ of G_{α} in $\Omega-\{\alpha\}$. By Lemma 1.4, the hypotheses of the theorem hold for G_{α}^{Γ} with nontrivial pronormal subgroup K^{Γ}. Let $\left\{\Gamma_{j} ; 1 \leqslant j \leqslant s\right\}$ be the G_{α}-orbits in $\Omega-\{\alpha\}, s \geqslant 1$, and let $\left|\Gamma_{j}\right|=n_{j}$ and \mid fix $K \cap \Gamma_{j} \mid=f_{j}, 1 \leqslant j \leqslant s$. Then by minimality $f=1+\Sigma f_{j} \leqslant 1+\frac{1}{2} \Sigma\left(n_{j}-1\right)=\frac{1}{2}(n+1-s)$. Thus either $f=\frac{1}{2}(n$ -1) and $s \leqslant 2$ or $s=1$ and $f=\frac{1}{2} n$. Assume that G_{α} is transitive on $\Omega-\{\alpha\}$ and \mid fix $K-\{\alpha\} \left\lvert\,=\frac{1}{2}((n-1)-1)\right.$. Then by minimality, either $G_{\alpha} \geqslant A_{n-1}$, or $G_{\alpha}=$ $\mathrm{GL}(d, 2)$ with $n-1=2^{d}-1$ and K the pointwise stabilizer of a hyperplane. Since $G \nsupseteq A_{n}, G_{\alpha}=G L(d, 2)$ is the collineation group of $(d-1)$-dimensional projective geometry over a field of order 2 and $d \geqslant 3$. It follows from [6] 2.4.34 that G is a collineation group of a d-dimensional affine geometry over a field of
order 2. Since fix $K-\{\alpha\}$ is a hyperplane of the projective geometry, then both fix K and $\operatorname{supp} K$ are hyperplanes of the affine geometry. Now G is transitive on hyperplanes (since G_{α} is transitive on the hyperplanes containing α), and so $(\operatorname{supp} K)^{g}=$ fix K for some g in G. Then K and K^{g} centralise each other, a contradiction since K is pronormal.

Thus $f=\frac{1}{2}(n-1)$ and $s \leqslant 2$. Assume that $s=2$. Then $f_{j}=\frac{1}{2}\left(n_{j}-1\right)$ for $j=1,2$, and by minimality G_{α} is doubly transitive on both Γ_{1} and Γ_{2}, contradicting [20] 17.7. Thus G is 2-transitive on Ω.

Let G be d-transitive but not $(d+1)$-transitive. Then since $G \nsupseteq A_{n}$ it follows from [20] 15.1 that $2 \leqslant d \leqslant 5$. It is easy to check that $n>11$ and hence $f>d$. Let Δ be a subset of Ω of size $m=n-d+1$ such that $\Omega-\Delta \subseteq$ fix $_{\Omega} K$, and let H be the pointwise stabilizer in G of $\Omega-\Delta$. Then H is transitive but not 2-transitive on $\Delta, K \subseteq H$, and \mid fix $_{\Delta} H \left\lvert\,=f-d+1=\frac{1}{2}(m-d)=e>0\right.$, say. Information about an imprimitive H is given by the next lemma.

Lemma 2.3. Let X be a transitive imprimitive permutation group on a set Δ of $m<n$ points having a nontrivial pronormal subgroup K with $e=\frac{1}{2}(m-z)>0$ fixed points where $2 \leqslant z \leqslant 5$. Then one of the following is true.
(i) $m=y z, X$ has a set of z or y blocks of imprimitivity in Δ of length y or z respectively, and in either case the action of degree y is A_{y} or S_{y} (with $y \geqslant 3$ and y odd), or $\mathrm{GL}(r, 2)\left(\right.$ with $y=2^{r}-1 \geqslant 7$).
(ii) $m=4 y, z=4, X$ has $2 y$ blocks of imprimitivity of length 2 and X acts on the set of $2 y$ blocks as an imprimitive group with 2 blocks of imprimitivity of length y. The representation of degree y is as in (1).
(iii) $m=2 x, z=4, X$ has 2 or x blocks of imprimitivity of length x or 2 , the representation of degree x is primitive and the fixed point set of K in this representation has size $\frac{1}{2}(x-2)$.

Proof. Assume that X is imprimitive on Δ with a set $\Sigma=\left\{B_{1}, \ldots, B_{\imath}\right\}$ of $t>1$ blocks of imprimitivity of length $b>1$, where $m=t b$. Assume that the blocks are maximal proper blocks so that X acts primitively on Σ. As in Lemma 2.1 fix ${ }_{\Sigma} K$ is nonempty and $N_{X}(K)$ is transitive on fix ${ }_{\Sigma} K$. Thus if $e_{\Sigma}=\mid$ fix $\Sigma_{\Sigma} K \mid$ and $e_{B}=$ $\left|\mathrm{fix}_{B} K\right|$ for B in $\mathrm{fix}_{\Sigma} K$, then $e=e_{\Sigma} e_{B}$. Suppose first that for B in fix ${ }_{\Sigma} K$, $K^{B} \neq 1$. Then by minimality $e_{B}=\frac{1}{2}(b-u)$ for some positive integer u. Also either $e_{\Sigma}=t$ or $K^{\Sigma} \neq 1$ so that (again by minimality) $e_{\Sigma}<\frac{1}{2} t$. In the latter case $\frac{1}{2}(m-z)=e<\frac{1}{2} t e_{B}=\frac{1}{4}(m-t u)$, that is $m<2 z-t u$ so that $e=\frac{1}{2}(m-z)<$ $\frac{1}{2}(z-t u) \leqslant \frac{3}{2}$. Hence $e=1, z=5$, and $m=7$ which is a contradiction. Thus $\frac{1}{2}(m-z)=e=t e_{B}=\frac{1}{2}(m-t u)$, so that either $t=z, u=1$ and (i) follows by minimality, or $z=4$ and $t=u=2$; here consideration of the action on B_{1} and B_{2} of the subgroup of X fixing B_{1} and B_{2} setwise shows that one of (i), (ii), (iii), is
true. Thus assume that K fixes pointwise each block in fix ${ }_{\Sigma} K$. Then $K^{\Sigma} \neq 1$ and by minimality $e_{\Sigma}=\frac{1}{2}(t-u)$ for some positive integer u, so that $\frac{1}{2}(m-z)=e=$ $b e_{\Sigma}=\frac{1}{2}(m-b u)$. As above either $b=z, u=1$ and (i) is true, or $z=4, b=u=2$, and as X is primitive on Σ, (iii) is true.

The next lemma gives information about a primitive group H, and we make this explicit in the corollary.

Lemma 2.4. Let X be a primitive permutation group on a set Δ of $m \leqslant n$ points having a nontrivial pronormal subgroup K with $e=\frac{1}{2}(m-z) \geqslant 0$ fixed points where $1 \leqslant z \leqslant 5$. Then
(i) if $z=1, X$ is 4 -primitive or $X=\mathrm{GL}(d, 2)$, or $X \supseteq A_{m}$,
(ii) if $z=2, X$ is 3-primitive, or $m=6, X=\operatorname{PGL}(2,5)$, or $m=4, X=A_{4}$, or $m=2$,
(iii) if $z=3, X$ is 2-primitive, or $m=9$ and X is $\operatorname{ASL}(2,3)$ or $\operatorname{AGL}(2,3)$, or $m=5$ and $|X|$ is 10 or 20 , or $m=3$,
(iv) if $4 \leqslant z \leqslant 5, X$ has rank at most z; and if $z=4$ and X is 2-transitive then X is 2 -primitive.

Corollary to Lemma 2.4. H is primitive and d is 4 or 5.

This corollary follows immediately from Lemma 2.2 and Lemma 2.4 parts (i), (ii), and (iv).

Proof of Lemma 2.4. Suppose that X satisfies the hypotheses of the lemma with degree $m \leqslant n$, and $e=\mid$ fix $_{\Delta} K \left\lvert\,=\frac{1}{2}(m-z) \geqslant 0\right.,1 \leqslant z \leqslant 5$. Suppose also that the lemma is true for groups of smaller degree. Clearly we may assume that $m \geqslant 7$, and $e>0$. The proof is given in two steps.

Step 1. First assume that X is not 2-transitive; then $z \geqslant 2$ by minimality and Lemma 2.2. Let $\delta \in$ fix $_{\Delta} K$ and let $\Gamma_{1}, \ldots, \Gamma_{s}$ be the orbits of X_{δ} in $\Delta-\{\delta\}$, where $\left|\Gamma_{i}\right|=m_{i}$ for each $i \leqslant s$, and $s \geqslant 2$. By Lemma $1.5, K$ acts nontrivially on each Γ_{i}, and so by minimality $e_{i}=\mid$ fix $K \cap \Gamma_{i} \left\lvert\,=\frac{1}{2}\left(m_{i}-z_{i}\right)\right.$ for some positive integer z_{i}, and $\sum z_{i}=z+1$. If $z_{j}=1$ for some $j \leqslant s$ then by minimality X_{δ} acts on Γ_{j} as $A_{m_{j}}$, $S_{m_{j}}$, or GL($r, 2$) with $m_{j}=2^{r}-1$. By [20] 17.7, X_{δ} cannot act 2-transitively on all of the Γ_{j} so we conclude that at least one of the z_{j} is greater than 1 . It is convenient to order the Γ_{j} so that $z_{1} \leqslant z_{2} \leqslant \cdots \leqslant z_{s}$; then $z_{s} \geqslant 2$. Suppose next that $z_{j}=1$ for all $j \leqslant s-1$. Then by [5], $s \leqslant 3$ and if $s=3$ then $m=4 t^{2}(t+2)^{2}$, and $m_{1}=m_{2}=t\left(2 t^{2}+4 t+1\right)$ for some odd positive integer t. Moreover by [4, 17], $m_{3}=m_{1}\left(m_{1}-1\right) / k$ where k is 1,2 , or 3 . It follows that $t=1, m_{1}=7$, $k=2$, and (by [5]), $X_{\delta}^{\Gamma_{1}} \supseteq A_{7}$. Here X_{δ} acts on Γ_{3} as on unordered pairs of points of Γ_{1}, and as K fixes 3 points of Γ_{1} and has one orbit of length 4 (in order to be
pronormal) it follows that K fixes exactly 3 points of Γ_{3}. Thus $z_{3}=15>z$ which is a contradiction. Thus $s=2, z_{1}=1$, and $2 \leqslant z_{2}=z \leqslant 5$. Assume here that z is 2 or 3. Since X_{δ} on Γ_{1} is alternating or symmetric or $\operatorname{GL}(r, 2)$, by [4, 17], $m_{2}=m_{1}\left(m_{1}-1\right) / k$ where k is 1,2 , or 3 , and if $k=3$ then $r \geqslant 4$. Also, as X_{δ} cannot be 2-transitive on Γ_{2} it follows that X_{δ} is imprimitive on Γ_{2} or $z_{2}=3$ and m_{2} is 3 or 5 . In the latter case, $m_{2} \neq 5$ as $m_{2}=m_{1}\left(m_{1}-1\right) / k$, and $m_{2} \neq 3$ follows from [20] 18.4. In the imprimitive case it follows from [20] 18.2 and Lemma 2.3(i) that $m_{2}=z_{2} m_{1}$ so that $\left(m_{1}, m_{2}\right)$ is $(3,6),(5,10)$, or $(7,21)$. If $m_{1}=3$ then (see [18]), X is A_{5} or S_{5} on unordered pairs; here $e=4$ and so K is generated by a transposition. However such a group is not pronormal. If $m_{1}=5$ then $e=7$ divides $|X|$ which is impossible by [18]. If $m_{1}=7$ then $m=39$, and $e=13$ divides $|X|$ which is impossible by [20] 13.10. Thus if X is not 2-transitive then $z \geqslant 3$; if $3 \leqslant z \leqslant 6$ then X has rank at most z; and if $z=3$ and X has rank 3 then $z_{1}=z_{2}=2$.

Assume then that $z=3, z_{1}=z_{2}=2$. Then as X_{δ} cannot be 2 -transitive on both Γ_{1} and Γ_{2} we may assume that it is imprimitive on Γ_{1} and its action satisfies Lemma 2.3(i); in particular $m_{1} \equiv 2(\bmod 4)$ and $m_{1} \geqslant 6$. Suppose that X_{δ} is primitive on Γ_{2}. Then either X_{δ} is 3-transitive on Γ_{2}, or $m_{2}=4$ and $X_{\delta}^{\Gamma_{2}}=A_{4}$, or $m_{2}=2$. By Lemma 1.6, $m_{2} \neq 2$ (since $m_{1} \geqslant 6$). By [4], $m_{1}=m_{2}\left(m_{2}-1\right) / k$ where k is 1 or 2 , or $m=(x+1)^{2}(x+4)^{2}, m_{2}=(x+1)\left(x^{2}+5 x+5\right), k=(x$ $+1)(x+2)$ for some integer $x \geqslant 1$. In the latter case x is odd since m_{2} is even, and hence m_{1} is odd, contradiction. Hence k is 1 or 2. By [20] 17.6, the only nonabelian composition factor of X_{δ} is $A_{x}, x=\frac{1}{2} m_{1}$, or $\mathrm{GL}(r, 2), \frac{1}{2} m_{1}=2^{r}-1$, $r \geqslant 3$. Also if m_{2} is a power of 2 then, since $m_{1}=2(\bmod 4)$ and $m_{1} \geqslant 6$, we have $m_{1}=6, m_{2}=4, m=11$, a contradiction to [20] 11.6 and 11.7. Thus we may assume (by [20] 11.3 and 12.1 and [3] page 202), that $X_{\delta}^{\Gamma_{2}}$ has a simple normal subgroup S which is 2-transitive of even degree m_{2}, where S is A_{x}, or $\operatorname{GL}(r, 2)$, and $\frac{1}{2} m_{1}$ is x, or $2^{r}-1$ respectively. By $[2,10],\left(\frac{1}{2} m_{1}, m_{2}\right)$ is $(5,6),(7,8)$, or $(15,8)$ all of which contradict $m_{1}=m_{2}\left(m_{2}-1\right) / k, k \leqslant 2$.

Thus X_{δ} is imprimitive on both Γ_{1} and Γ_{2}, with the actions given by Lemma 2.3. By [20] 18.2 it follows that $m_{1}=m_{2} \equiv 2(\bmod 4)$ and $m_{1} \geqslant 6$. If $m_{1}=6$ then $m=13$ contradicting [20] 11.6 and 11.7. If $m_{1}=10$ then $m=21, e=9$, and $|K|$ is divisible by 3 . Hence $|N(K)|$ is divisible by 27 . However by [20] $13.10,|X|$ is not divisible by 25 and so X_{δ} has only one composition factor A_{5}. It follows that $\left|X_{\delta}\right|$ is not divisible by 9 , a contradiction. Thus $m_{1} \geqslant 14$. Suppose that A_{x}, $x=\frac{1}{2} m_{1}$ is a composition factor of X_{δ}. Then X_{δ} contains a 5-element of degree at most 20, a contradiction to [20] 13.10. Thus $x=\frac{1}{2} m_{1}=2^{r}-1$, and X_{δ} has a composition factor $\mathrm{GL}(r, 2), r \geqslant 3$. Let Y be the smallest normal subgroup of X_{δ} such that X_{δ} / Y is a (possibly trivial) 2-group. Then $K Y$ is represented as $\operatorname{GL}(r, 2)$ (acting on points or hyperplanes), on either a set of x blocks of imprimitivity in Γ_{j} or on each of two blocks of length x in Γ_{j}, for $j=1$ and $j=2$. Also the kernel of
all these representations of $K Y$ is a possibly trivial 2-group. Let θ be one of the sets of size x on which $K Y$ is represented. Then K^{θ} is the pointwise stabilizer of a hyperplane and its normalizer in $(K Y)^{\theta}$ is the setwise stabilizer of the hyperplane and has index x in $(K Y)^{\theta}$; that is to say, if Y_{1} is the kernel of $K Y$ on θ then $N_{K Y}\left(K Y_{1}\right)$ has index x in $K Y$. If $g \in N_{K Y}\left(K Y_{1}\right)$ then $K^{g} \leqslant K Y_{1}$ and so K is conjugate to K^{g} in $\left\langle K, K^{g}\right\rangle \leqslant K Y_{1}$. Thus since $N_{K Y}\left(K Y_{1}\right)$ contains $N_{K Y}(K)$, then $\left|K Y: \quad N_{K Y}(K)\right|=x\left|N_{K Y}\left(K Y_{1}\right): \quad N_{K Y}(K)\right|=x\left|K Y_{1}: \quad N(K) \cap K Y_{1}\right|$. Now $(K Y) / Y_{1} \simeq \mathrm{GL}(r, 2)$ and $K Y$ has j composition factors isomorphic to $\mathrm{GL}(r, 2)$ for some $1 \leqslant j \leqslant 4$. If $j>1$ then $K Y_{1}$ is represented as $\operatorname{GL}(r, 2)$ on one of the sets of length x described above. We define Y_{k} inductively as the kernel of a representation of $K Y_{k-1}$ as $\mathrm{GL}(r, 2)$ as above, for $1<k \leqslant j$. Then as above, $\left|K Y_{k-1}: N\left(K Y_{k}\right) \cap K Y_{k-1}\right|=x$ and the number of conjugates of K in $N\left(K Y_{k}\right) \cap$ $K Y_{k-1}$ is equal to the number of conjugates of K in $K Y_{k}$. Thus $\mid K Y_{k-1}$: $N(K) \cap K Y_{k-1}|=x|\left(N\left(K Y_{k}\right) \cap K Y_{k-1}\right):\left(N(K) \cap K Y_{k-1}\right)|=x| K Y_{k}: \quad N(K)$ $\cap K Y_{k} \mid$ for $1<k \leqslant j$. Hence $\left|K Y: N_{K}(K)\right|=x^{j}\left|K Y_{j}: N(K) \cap K Y_{j}\right|$, whether or not $j=1$. As we remarked above Y_{j} is a possibly trivial 2-group, and $\left|X_{\delta}: K Y\right|$ is a power of 2 . Thus $\left|X_{\delta}: N(K) \cap X_{\delta}\right|=x^{j} 2^{c}$ for some $c \geqslant 0,1 \leqslant j \leqslant 4$. Now $e=4\left(2^{r-1}-1\right)+1=2 x-1$ divides $\left|X: N(K) \cap X_{\delta}\right|$ which divides $m x^{4} 2^{c}$, and this is clearly impossible. Thus if X is not 2-transitive then $z \geqslant 4$.

Step 2. In this second part of the proof we assume that X is 2-transitive but not 2-primitive on Δ of degree $m \leqslant n$, and $e=\mid$ fix $K \left\lvert\,=\frac{1}{2}(m-z)\right.$ where $1 \leqslant z \leqslant 4$. Then if $\delta \in \operatorname{fix}_{\Delta} K, X_{\delta}$ satisfies one of (i), (ii), (iii) of Lemma 2.3 where $e-1=\mid$ fix $_{\Delta} K-\{\delta\} \left\lvert\,=\frac{1}{2}((m-1)-(z+1))\right., 2 \leqslant z+1 \leqslant 5$. As $m \geqslant 7, e-1$ >0. Set $u=z+1$. If in (i) or (iii), X_{δ} has a set of u or 2 blocks respectively then the kernel of the action on blocks is 2-transitive on each of the blocks. By [12] Theorem D it follows that $X \geqslant \operatorname{PSL}(3,3)$, and $e=5$ divides $|X|$ which is impossible. If in (i) X_{δ} acts as A_{y} or S_{y} on a set of y blocks of length u then as K fixes a block pointwise and y is odd, it follows from [14] that X contains $\operatorname{PSL}(3, u), u \equiv 2$ or 4 , or X is an extension of an elementary abelian group of order 16 by A_{5} or $S_{5}, u=3$. If $u=2$ then (i) is true. If $u=4$ then $|X|$ is divisible by $e|K|$ which is divisible by 27, a contradiction. If $u=3$ then $e=7$ divides $|X|$, also a contradiction. Thus in case (i) X_{δ} acts as $\mathrm{GL}(r, 2)$ on a set of $2^{r}-1$ blocks of length u. If $r=3$ then $m=1+7 u$ and $e=1+3 u$; e does not divide $|X|$ if u is 3 or 4 so u is 2 or 5 . If $u=2$ then the 7 -element in $N_{X}(K)$ must be a 7 -cycle on Δ, contradiction. If $u=5$ then by [15] Corollary B1, the translates of $B \cup\{\delta\}$ form the blocks of a design on Δ with $\lambda=1$, where B is one of the blocks of X_{δ} of length u; further fix ${ }_{\Delta} K$ is the union of three blocks of this design containing δ which forces $N_{X}(K)$ to fix δ whereas $N_{X}(K)$ is transitive on fix ${ }_{\Delta} K$. Thus $r \geqslant 4$. Let Y be the setwise stabilizer of one of the blocks B of the set Σ of blocks of X_{δ} in $\Delta-\{\delta\}$. Then Y^{Σ} is an elementary abelian group N of order 2^{r-1} extended by $\mathrm{GL}(r-1,2)$ acting irreducibly on N; thus Y^{Σ} has no transitive representations of
degree $u, 2 \leqslant u \leqslant 5$, and so the kernel Z of X_{δ} on Σ is nontrivial. It follows from [14] Lemma 1.1 that either $u=2, X=\mathrm{GL}(r+1,2)$ (and so (i) is true), or Z is semiregular on $\Delta-\{\delta\}$. Assume the latter. Since K is the kernel of $K Z$ acting on B, where $B \in$ fix $_{\Sigma} K$, it follows that K and Z centralise each other. Now $\mid X_{\delta}$: $N(N Z) \cap X_{\delta} \mid=2^{r}-1$; any conjugate K^{g} of K by an element g in $N(K Z) \cap X_{\delta}$ is conjugate to K in $\left\langle K, K^{g}\right\rangle \subseteq K Z$ and hence is equal to K. Thus $N(K Z) \cap X_{\delta}$ $\subseteq N(K) \cap X_{\delta}$ and it follows that $\left|X_{\delta}: N(K) \cap X_{\delta}\right|=2^{r}-1$. Thus $e=1+$ $u\left(2^{r-1}-1\right)=\left|N(K): N(K) \cap X_{\delta}\right|$ divides $\left|X: N(K) \cap X_{\delta}\right|=\left(1+u\left(2^{r}-1\right)\right)\left(2^{r}\right.$ $-1)$. It follows that $u=2$, and by [9] 6C(2), X has a regular normal subgroup of order $m=3^{c}=2^{r+1}-1$; but there is no solution c for any $r \geqslant 4$. Thus we may assume that case (i) of Lemma 2.3 does not hold, and so $u=4$.

If in case (iii) of Lemma $2.3 X_{\delta}$ has a set \sum of blocks of length 2, by minimality X_{δ} is 3-primitive on Σ or x is 6 and $X_{\delta}^{\Sigma}=\operatorname{PGL}(2,5)$ or x is 4 and $X_{\delta}^{\Sigma}=A_{4}$ (since $m \geqslant 7$). In the first and third cases X is $\operatorname{AGL}(2,3)$ or $\operatorname{ASL}(2,3)$ by [15] Theorem C and Theorem B respectively, while the case $x=6$ cannot arise (since $e=11$ cannot divide $|X|$. Suppose that case (ii) of Lemma 2.3 holds, with $m-1=4 y$. If A_{y} is involved then consideration of a 5-element in A_{y} and [20] 13.10 shows that y is 3 or 5. If $y=3$ then $X \geqslant \operatorname{PSL}(3,3)$ (see [18]) and X_{δ} does not have blocks of size 2. If $y=5$ then 25 does not divide $|X|$, by [20] 13.10, while 27 divides $e|K|$ which divides $|X|$; these two assertions are incompatible with the structure of X_{δ} as its only composition factors are Z_{2} and A_{5}. Thus $\operatorname{GL}(r, 2)$ is involved in X_{δ} where $y=2^{r}-1 \geqslant 7$. By [11] the kernel Z of X_{δ} on its set of $2 y$ blocks in $\Delta-\{\delta\}$ has order at most 2 and so K and Z centralise each other. It follows as above that $e=1+4\left(2^{r-1}-1\right)$ divides $\left|X: N(K) \cap X_{\delta}\right|=\left(1+4\left(2^{r}-1\right)\right)\left(2^{r}-\right.$ 1), which gives a contradiction.

Steps (1) and (2) complete the proof of Lemma 2.4 after noting that none of $\operatorname{ASL}(2,3), \operatorname{AGL}(2,3)$ and $\operatorname{PGL}(2,5)$ have transitive extensions.

Lemma 2.5. Let X be a primitive permutation group on a set Δ of $m<n$ points having a nontrivial pronormal subgroup K with $e=\frac{1}{2}(m-4) \geqslant 0$ fixed points. Then X is 2-transitive.

Proof. Suppose that X is not 2-transitive, and that m is the least degree for which such a group X exists. Then (see [18]) $m \geqslant 16$. Let $\delta \in \operatorname{fix}_{\Delta} K$ and let $\Gamma_{1}, \ldots, \Gamma_{s}, s \geqslant 2$, be the orbits of X_{δ} in $\Delta-\{\delta\}$, where $\left|\Gamma_{i}\right|=m_{i}, \mid$ fix $K \cap \Gamma_{i} \mid=e_{i}$ $=\frac{1}{2}\left(m_{i}-z_{i}\right)$, and $1 \leqslant z_{1} \leqslant z_{2} \leqslant \cdots \leqslant z_{s}$. By Lemma $2.4,2 \leqslant s \leqslant 3$ and in the proof of that result we showed that if $s=3$ then $z_{2}>1$, that is $z_{1}=1, z_{2}=z_{3}=2$. In this case by $[4,17]$ and minimality, m_{2}, say, is $m_{1}\left(m_{1}-1\right) / k$ where $k \leqslant 3$ and $m_{1} \geqslant 15$ if $k=3$. Further by Lemma 2.4, [20] 17.7, and [5], X_{δ} is imprimitive on both Γ_{2} and Γ_{3}, and by Lemma 2.3, and [20] 18.2-18.4, $m_{2}=m_{3}=2 m_{1}$. Thus $m_{1}=2 k+1$ is 3 or 5 . If $m_{1}=3$ then $m=16$, and we have a contradiction to

Lemma 1.6. If $m_{1}=5$ then $m=26$, and $e=11$ divides $|X|$ contradicting [20] 13.10.

Thus $s=2$ and $\left(z_{1}, z_{2}\right)$ is $(1,4)$ or $(2,3)$. Consider the case $(1,4)$ first. By minimality and $[4,17] m_{2}=m_{1}\left(m_{1}-1\right) / k$ where $k \leqslant 3$ and m_{1} is odd. By the minimality of m and [20] 17.7, X_{δ} is imprimitive on Γ_{2} and so by Lemma 2.3, $m_{2} \equiv 0(\bmod 4)$ so that $m_{1} \equiv 1(\bmod 4)$. The case $k=1$ is impossible by [1,7]. Thus if $X_{\delta}^{\Gamma_{1}}$ is alternating or symmetric then by [4], $k=2$ and $m_{2}=10 \neq$ $0(\bmod 4)$, contradiction. Hence $m_{1}=2^{d}-1, d \geqslant 3$; but again $m_{1} \neq 1(\bmod 4)$.

Thus $z_{1}=2, z_{2}=3$. By [20] 17.7, X_{δ} is not primitive on both Γ_{1} and Γ_{2}. Suppose that X_{δ} is primitive on Γ_{1}, so that X_{δ} is imprimitive on Γ_{2}. By the minimality of m either X_{δ} is 4-transitive on Γ_{1} or m_{1} is 2,4 or 6 and X_{δ} is 2-transitive on Γ_{1}. The case $m_{1}=2$ is impossible by Lemma 1.6 since $e>1$. Also by [4], $m_{2}=m_{1}\left(m_{1}-1\right) / k$ where k is 1 or 2 (for even if m_{1} is 4 or 6 then $k \leqslant \frac{1}{2}\left(m_{1}-1\right)$ so $\left.k \leqslant 2\right)$. Since m_{1} is even and m_{2} is odd, $k=2$ and $m \equiv 2(\bmod 4)$. By [20] 17.6, X_{δ} is faithful on Γ_{2} and so the only nonabelian composition factors of X_{δ} are A_{x}, where $x=m_{2} / 3$ is odd, or $\operatorname{GL}(r, 2)$ where $m_{2} / 3=2^{r}-1 \geqslant 7$. Since $m_{1} \equiv 2(\bmod 4)$, and by [3] page 202 and [20] 11.3 and 12.1 , either $X_{\delta}^{\Gamma_{1}}$ has a simple normal subgroup S which is 3-transitive on Γ_{1}, or $m_{1}=6$. Thus if $m_{1}>6$, S is A_{x}, x odd, or $\operatorname{GL}(r, 2)$. By $[2,10]$ and since $m_{1} \equiv 2(\bmod 4)$, it follows that $m_{1}=6$, and $X_{\delta}^{\Gamma_{1}} \simeq \operatorname{PGL}(2,5)$. Thus $m_{2}=15, m=22$, and $e\left|K^{\Gamma_{2}}\right|$ which is 27 or 81 divides $|X|$; further K contains a 3-element of degree at most 9 and this contradicts [13] Theorem E.

Thus X_{δ} is imprimitive on Γ_{1} and its action is given by Lemma 2.3, in particular $m_{1} \equiv 2(\bmod 4)$. Suppose that X_{δ} is primitive on Γ_{2}. Then by the minimality of m, either X_{δ} is 3 -transitive on Γ_{2} with $m_{2} \geqslant 5$, or m_{2} is 3,5 , or 9 and $X_{\delta}^{\Gamma_{2}}$ is soluble. In the latter case X_{δ} is soluble and $m_{1}=6, m_{2}=3$ or 9 , by [20] 18.3, 18.4. If $m_{2}=3$ then $m=10$ and this is impossible by [18], as S_{5} on pairs has no subgroup fixing $e=3$ pairs. If $m_{2}=9$ then K contains a 3 -element of degree 6 , a contradiction to [13] Corollary 4. Thus X_{δ} is 3-transitive on Γ_{2} of odd degree $m_{2} \geqslant 5$. Then by [3] page 202, and [20] 11.3, 12.1, $X_{\delta}^{\Gamma_{2}}$ has a simple normal subgroup S which is 2-transitive on Γ_{2}. By [20] 17.6, X_{δ} is faithful on Γ_{1} and it follows that S is either A_{x} where $x=\frac{1}{2} m_{1}$ is odd or $\operatorname{GL}(r, 2)$ where $r \geqslant 3$, $m_{1}=2\left(2^{r}-1\right)$. Hence by $[2,10]$ either $m_{1}=2 m_{2}$ or $\left(m_{1}, m_{2}\right)$ is $(14,15)$. It follows from [4] that $m_{1}=2 m_{2}=10, e\left|K^{\Gamma_{1}}\right|=18$ divides $|X|$, and K contains a 3 -element of degree 6 , contradicting [13] Corollary 4.

Thus X_{δ} is imprimitive on both Γ_{1} and Γ_{2}. It follows from Lemma 2.3 and [20] 18.2 that $m_{1} / 2=m_{2} / 3=x$ for some odd $x \geqslant 3$. If X_{δ} involves A_{x} with $x \geqslant 9$ then X_{δ} contains a 7 -element of degree at most 35 , contradicting [20] 13.10. Thus if X_{δ} involves A_{x} then x is 3,5 or 7 . If $x=7$, a Sylow 5 -subgroup of X fixes 11 points and so $|X|$ is divisible by 11, contradiction. If $x=5$ then $e=11$ divides $|X|$, contradiction. If $x=3$ then $m=16, m_{2}=9$ divides $|X|$, and $N(K)$
contains a 3-element g which fixes Γ_{1} pointwise and so has degree at most 9 . It follows from [13] Theorem E that a Sylow 3-subgroup of X has order 9, and it clearly fixes only one point and has an orbit length 9 . Since \mid fix $_{\Delta} g \mid=7$ does not divide $|X|$ it follows by [20] 3.5 that $\langle g\rangle$ is not weakly closed in a Sylow 3-subgroup of X, and this clearly has the wrong orbit lengths. Thus $x=2^{r}-1$, $r \geqslant 3$, and the only insoluble composition factor of X_{δ} is $\mathrm{GL}(r, 2)$. By a similar argument to that in the proof of Lemma 2.4 we can show that $e=5.2^{r-1}-4$ divides $m x^{5} 6^{c}=(5 x+1) x^{5} 6^{c}$ for some $c \geqslant 0$. It follows that r is 3 or 4 . If $r=4$ then $m_{1}=30$, and $m_{2}=45$. If $\gamma \in \Gamma_{1}$ then $X_{\delta \gamma}$ has orbits in $\Gamma_{1}-\{\gamma\}$ of lengths $1,14,14$ or 14,15 . If $\Gamma(\gamma)$ is the orbit of X_{γ} of length 30 then $\lambda=\left|\Gamma_{1} \cap \Gamma(\gamma)\right|$ is $0,1,14,15,28$ or 29 ; since X is primitive $\lambda \neq 29$ by [7] Corollary 3 , and by [7] Lemma 5, 2(19- $\lambda) / 3$ is an integer. Hence $\lambda=14$, which contradicts [7] Lemma 7. If $r=3$ a similar argument shows that $\lambda=7, \mu=4$. However if $\eta \in \Gamma_{2}$ then the $X_{\delta \eta}$ orbit lengths in Γ_{1} are sums of $1,1,6,6$, and no sum of these is equal to $\mu=4$. This completes the proof of Lemma 2.5.

It follows from Lemmas 2.4 and 2.5 that $d=5$ and H is primitive but not 2-transitive of rank at most 5 . To complete the proof of Theorem 1 we show that this situation is impossible. This follows from the next lemma since we are assuming that H has degree $m=n-4>7$.

Lemma 2.6. Let X be a primitive permutation group on a set Δ of $m<n$ points having a nontrivial pronormal subgroup K with $e=\frac{1}{2}(m-5) \geqslant 0$ fixed points. Then either m is 5 or 7, or X is 2-transitive.

Proof. By [18] the result is true for $m \leqslant 13$, so assume that $m \geqslant 15$ is minimal such that X is not 2 -transitive. Let $\delta \in$ fix $_{\Delta} K$ and let $\Gamma_{1}, \ldots, \Gamma_{s}, s \geqslant 2$ be the orbits of X_{δ} in $\Delta-\{\delta\}$, where $\left|\Gamma_{i}\right|=m_{i}$, \mid fix $K \cap \Gamma_{i} \left\lvert\,=e_{i}=\frac{1}{2}\left(m_{i}-z_{i}\right)\right.$ and $1 \leqslant z_{1} \leqslant \cdots \leqslant z_{s}$. By Lemma 2.4, $\Sigma z_{i}=6$ and $2 \leqslant s \leqslant 4$, and from the proof of that result, if $s \geqslant 3$ then $z_{s-1} \geqslant 2$. First let $s=4$; then $z_{1}=z_{2}=1, z_{3}=z_{4}=2$. By Lemma 2.4 and [5] X_{δ} is imprimitive on Γ_{3} and Γ_{4} and these actions are given by Lemma 2.3. By [20] 18.2, and Lemma 2.3, $2 m_{1}=2 m_{2}=m_{3}=m_{4}$. Now by [4] one of the subdegrees is equal to $m_{1}\left(m_{1}-1\right) / k \geqslant 2 m_{1}$. Thus $k=\frac{1}{2}\left(m_{1}-1\right)$ and by [4], m_{1} is 3 or 5 . Thus $m=1+6 m_{1}$ is 19 or 31 , a contradiction to [20] 11.6 and 11.7. Thus s is 2 or 3.

Suppose that s is 3 . Then $\left(z_{1}, z_{2}, z_{3}\right)$ is $(1,2,3)$ or $(2,2,2)$. Consider the case ($1,2,3$); X_{δ} is 2-transitive on Γ_{1} and (by Lemma 2.4, [5], Lemma 1.6, and [20] 17.7 and 18.3), imprimitive on Γ_{2} and either imprimitive on Γ_{3} or m_{3} is 3 or 5 and X_{δ} is soluble. From Lemma 2.3, and [20] 18.2, 18.3, $\left(m_{1}, m_{2}, m_{3}\right)$ is $(x, 2 x, 3 x)$ for some odd $x \geqslant 3$ or is $(3,6,3)$. The latter is impossible by [20] 11.6 and 11.7 , so $m_{1}=\frac{1}{2} m_{2}=m_{3} / 3=x \geqslant 3$. Now by $[4,17]$ one of m_{2}, m_{3} is $x(x-1) / k$ where
$k \leqslant 3$. If $m_{2}=x(x-1) / k$ then $k=(x-1) / 2$ is 1 or 2 by [4] and m is 19 or 31 , a contradiction as before. Similarly if $m_{3}=x(x-1) / k$ then $x=3 k+1=7$ as m_{1} is odd. Then $m=43$, again a contradiction.

Thus if $s=3$ then $z_{1}=z_{2}=z_{3}=2$. If X_{δ} is imprimitive on all three suborbits then by Lemma 2.3 and $[20] 18.2, m_{1}=m_{2}=m_{3}=2 x \equiv 2(\bmod 4)$. If X_{δ} has A_{x} as a composition factor with $x \geqslant 9$ then X contains a 7 -element of degree at most 42, a contradiction to [19]. Thus if X_{δ} has A_{x} as a factor then x is 3,5 , or 7 and m is 19,31 , or 43 respectively, a contradiction to [20] 11.6 and 11.7. So $x=2^{r}-1$ $\geqslant 7$. By a similar argument to that in the proof of Lemma 2.4, we can show that $e=3 x-2$ divides $m x^{6} 2^{c}=(6 x+1) x^{6} 2^{c}$ for some $c \geqslant 0$, a contradiction. Thus we may assume that X_{δ} is primitive on at least one suborbit and we may suppose that m_{1} is maximal among the m_{i} such that X_{δ} is primitive on Γ_{i}. By the minimality of m, X_{δ} is 5-transitive on Γ_{1}, or $m_{1} \leqslant 6$ and X_{δ} is 2-transitive on Γ_{1}. Then by [4], m_{2} say is $m_{1}\left(m_{1}-1\right) / k$ where k is 1 or 2 (even if $m_{1} \leqslant 6$). By the maximality of m_{1}, X_{δ} is imprimitive on Γ_{2}, and by Lemma $2.3, m_{2} \geqslant 6$ so $m_{1} \geqslant 4$; also $m_{2} \equiv 2(\bmod 4)$. By [20] 17.5, X_{δ} acts faithfully on the union of suborbits on which it is imprimitive. Hence by Lemma 2.3 and [20] 18.2 the only insoluble composition factor of X_{δ} is A_{x}, where $x=m_{2} / 2 \geqslant 3$ is odd, or $\operatorname{GL}(r, 2)$ where $m_{2}=2\left(2^{r}-1\right), r \geqslant 3$. By [20] 11.3, 12.1 and [3] page 202, if $m_{1}>6$ then X_{δ} has a simple normal subgroup S which is 4-transitive on Γ_{1} of even degree m_{1}. Since S must be A_{x} or $\mathrm{GL}(r, 2)$ this is impossible. Hence m_{1} is 4 or 6 . If m_{1} is 4 then by [20] 18.3, X_{δ} is soluble so that $m_{2}=6$, and m_{3} is 4 (if X_{δ} is primitive on Γ_{3}) or 6 (if X_{δ} is imprimitive on Γ_{3}). If m_{3} is 4 we have a contradiction to [5] while if m_{3} is 6 then $m=17$, contradicting [20] 11.6 and 11.7. If $m_{1}=6$ then since m_{2} is even $m_{2}=30$, a contradiction by Lemma 2.3 and [20] 18.2.

Thus $s=2$ and $\left(z_{1}, z_{2}\right)$ is $(1,5),(2,4)$, or $(3,3)$. Consider the case $(1,5)$. By [4,17], $m_{2}=m_{1}\left(m_{1}-1\right) / k$ where $k \leqslant 3$. It follows from the minimality of m and [20] 17.7 that X_{δ} is imprimitive on Γ_{2}, and by Lemma 2.3 and [20] 18.2, $m_{2}=5 m_{1}$; so $m_{1}=5 k+1$. Since m_{1} is odd $k=2$ and $m=67$, a contradiction to [20] 11.6 and 11.7.

Next consider the case $z_{1}=2, z_{2}=4$. Suppose first that X_{δ} is primitive on Γ_{1}. Then by Lemma 2.5 and [20] 17.7, X_{δ} is 4-transitive on Γ_{1} or $m_{1} \leqslant 6$ and X_{δ} is 2-transitive on Γ_{1}, and X_{δ} is imprimitive on Γ_{2}. By [4], $m_{2}=m_{1}\left(m_{1}-1\right) / k$ where k is 1 or 2 . Suppose that $m_{1}<m_{2} / 4$ and that $\gamma \in \Gamma_{1}$. By Lemma 2.3, $X_{\delta}^{\Gamma_{2}}$ involves a 2-transitive representation of degree $m_{2} / 2$ or $m_{2} / 4$, and so by [8] Hilfsatz 1, all orbits of $X_{\delta \gamma}$ in Γ_{2} have length a multiple of $m_{2} / 4$. Now if $\Gamma(\gamma)$ is the orbit of X_{γ} of length m_{1} then $X_{\delta \gamma}$ is transitive on $\Gamma_{1}-\{\gamma\}$ and $\Gamma(\gamma)-\{\delta\}$ and it follows from [7] Corollary 3 that $\Gamma(\gamma)-\{\delta\} \subseteq \Gamma_{2}$. Hence $m_{1}-1 \geqslant m_{2} / 4$, contradiction. Therefore $m_{1} \geqslant m_{2} / 4=m_{1}\left(m_{1}-1\right) / 4 k$, where $k=1$ or 2 , and so $\left(m_{1}, m_{2}\right)$ is $(8,28),(6,15),(4,12),(4,6)$ or $(2,2)$. Now m_{2} is divisible by 4 , so m_{1} is 4 or 8 and $X_{\delta}^{\Gamma_{1}}$ is alternating or symmetric. By [4], $k=1$, so $m=17$, a
contradiction to [20] 11.6, 11.7. Hence X_{δ} is imprimitive on Γ_{1}. If $m_{2}<\frac{1}{2} m_{1}$ and if $\gamma \in \Gamma_{2}$, then all orbits of $X_{\delta \gamma}$ in Γ_{1} have length a multiple of $\frac{1}{2} m_{1}$ (by Lemma 2.3 and [8] Hilfsatz 1). If $\Gamma_{2}(\gamma)$ is the orbit of X_{γ} of length m_{2}, then if $m_{2}<\frac{1}{2} m_{1}$ we must have $\Gamma_{2}(\gamma)-\{\delta\} \subseteq \Gamma_{2}$. Hence $\Gamma_{2} \cup\{\delta\}$ is fixed setwise by $\left\langle X_{\delta}, X_{\gamma}\right\rangle=X$, contradiction. Thus $m_{2} \geqslant \frac{1}{2} m_{1}$. If X_{δ} is primitive on Γ_{2} then by Lemma 2.5 it is 2-transitive and hence by [4], $m_{1}=m_{2}\left(m_{2}-1\right) / k \geqslant m_{1}\left(m_{2}-1\right) / 2 k$, that is $k \geqslant\left(m_{2}-1\right) / 2$. By [4], m_{2} is 3 or 5 , a contradiction since m_{2} is even. Hence X_{δ} is imprimitive on both Γ_{1} and Γ_{2} and $m_{1} \leqslant 2 m_{2}$. Suppose first that $X_{\delta}^{\Gamma_{2}}$ satisfies Lemma 2.3(i) or (ii). Then by [20] 18.2, $m_{1}=2 x, m_{2}=4 x$ for some odd $x \geqslant 3$, and $m=1+6 x$. Since m is not prime $x \geqslant 9$. As above we can show that A_{x} is not involved; hence $x=2^{r}-1 \geqslant 15$, and we show as above that $e=3 x-2$ divides $(6 x+1) x^{6} 6^{c}$, for some $c \geqslant 0$, a contradiction. Thus $X_{\delta}^{\Gamma_{2}}$ satisfies Lemma 2.3(iii), and by the minimality of m either the representation of degree $y=\frac{1}{2} m_{2}$ is 5 -transitive or $y \leqslant 6$. If $y \leqslant 6$ then by [20] 18.4, $\left(m_{1}, m_{2}\right)$ is $(6,8)$ or $(10,12)$. The first case is impossible by [18] since S_{6} on pairs has no subgroup fixing $e=5$ pairs; in the other case it is also impossible since $m=23$ is prime. Thus $y \geqslant 8$ and so by [20] 11.3, 12.1, $X_{\delta}^{\Gamma_{2}}$ has a composition factor S which is 4-transitive of degree y. If S is not a composition factor of $X_{\delta}^{\Gamma_{1}}$ then the kernel Y of X_{δ} on Γ_{1} has two orbits of length y in Γ_{2} (by [20] 13.1), and is 4-transitive on each. If $\gamma \in \Gamma_{1}$ and $\Gamma_{1}(\gamma), \Gamma_{2}(\gamma)$ are the orbits of X_{γ} of length m_{1}, m_{2} respectively, then $\mu=\left|\Gamma_{2} \cap \Gamma_{2}(\gamma)\right|$ is $0, y$, or $2 y$. By [7] Corollary $3, \mu=y$. Thus Y has 1 orbit of length y in $\Gamma_{1}(\gamma)$ and fixes the remaining points of $\Gamma_{1}(\gamma)$. Since the lengths of the orbits of $X_{\delta \gamma}$ in $\Gamma_{1}(\gamma)$ are either $1,1, \frac{1}{2} m_{1}-1, \frac{1}{2} m_{1}-1$, or $1, \frac{1}{2} m_{1}-1, \frac{1}{2} m_{1}$, and since Y is normal in $X_{\delta \gamma}$ and y is even, it follows that y is $\frac{1}{2} m_{1}-1$. Then as Y is 4-transitive on this orbit of length y it follows that $X_{\delta}^{\Gamma_{1}}$, involves the alternating group of degree $\frac{1}{2} m_{1}=y+1$, a contradiction to [20] 18.2. Thus S is a composition factor of $X_{\delta}^{\Gamma_{1}}$ hence is either A_{x} where $x=\frac{1}{2} m_{1}$ is odd or $\operatorname{GL}(r, 2)$ where $m_{1}=2\left(2^{r}-1\right) \geqslant 14$. Since S is 4-transitive of even degree y we have a contradiction.

The final case is $s=2, z_{1}=z_{2}=3$. By Lemma 2.4, [20] 17.7, and since $m \geqslant 15, X_{\delta}$ is not primitive on both suborbits. We may therefore assume that X_{δ} is imprimitive on Γ_{1}. If X_{δ} is also imprimitive on Γ_{2} then by Lemma 2.3, [20] 18.2 and 18.4, $m_{1}=m_{2}$. If $A_{x}, x=m_{1} / 3$ odd, is involved then by considering a 7 -element as before, $x \leqslant 7$, but then m is prime. Hence $m_{1} / 3=2^{r}-1 \geqslant 7$. If r is 3 then m is prime; if r is 4 then $e=\frac{1}{2}(m-5)=43$ divides $|X|$, a contradiction to [23] 13.10. If $r \geqslant 5$ then arguing as before we can show that $e=3 x-2$ divides $(6 x+1) x^{6} 6^{c}$ for some $c \geqslant 0$, a contradiction. Thus X_{δ} is primitive on Γ_{2} and by Lemmas 2.4 and 2.5 is either 3-transitive, or m_{2} is 9,5 or 3 and X_{δ} is soluble, by [20] 18.3. In the latter case $m_{1}=9$, and so only the primes 2 and 3 divide $\left|X_{\delta}\right|$; thus m_{2} is 3 or 9 . Since $m \geqslant 15, m_{2}$ is 9 and then $m=19$ is prime. Thus X_{δ} is 3-transitive on Γ_{2} and $m_{2} \geqslant 5$. If $m_{2}<m_{1} / 3$ and if $\gamma \in \Gamma_{2}$ then all orbits of $X_{\delta \gamma}$
in Γ_{1} have length a multiple of $m_{1} / 3 \geqslant m_{2}$ by [8] Hilfsatz 1 ; hence Γ_{1} is also an orbit for X_{γ}, a contradiction as before. So $m_{2} \geqslant m_{1} / 3$ and both m_{1} and m_{2} are odd. By [4] it follows that $m_{1}=21, m_{2}=7$. In this case $X_{\delta}^{\Gamma_{2}} \geqslant A_{7}$ and we have a contradiction to [4]. This completes the proof of Lemma 2.6.

Thus the proof of Theorem 1 is complete.

3. Proof of Theorem 3 and its corollary

In this section we prove the following generalizations of Theorem 3 and its corollary for transitive groups.

Theorem 3'. Let G be a transitive permutation group on a set Ω of n points and let K be a nontrivial subgroup of G such that $\mathrm{fix}_{\Omega} K$ is nonempty. Assume that K satisfies
(*) If $g \in G$ is such that $\operatorname{fix}_{\Omega} K \cap \mathrm{fix}_{\Omega} K^{g} \neq \varnothing$ then K is conjugate to K^{g} in $\left\langle K, K^{g}\right\rangle$.
Then $f=\mid$ fix $_{\Omega} K \left\lvert\, \leqslant \frac{1}{2} n\right.$, and if $f=\frac{1}{2} n$ either
(i) fix ${ }_{\Omega} K$ is a block of imprimitivity for G, or
(ii) G has a set Σ of m blocks of imprimitivity in Ω such that G^{Σ} is A_{m} or S_{m}, or AGL($d, 2$) in its natural representation where $m=2^{d} \geqslant 8$. Moreover K fixes half the blocks pointwise and is transitive on the remaining blocks.

Corollary to Theorem 3^{\prime}. Let G be a transitive permutation group on a set Ω of n points, let p be a prime dividing $|G| / n$, and let K be a Sylow p-subgroup of the stabilizer G_{α} of the point Ω. Then $f=\mid$ fix $_{\Omega} K \left\lvert\, \leqslant \frac{1}{2} n\right.$ if $f=\frac{1}{2} n$ then K is semiregular on Ω and either
(i) $\mathrm{fix}_{\Omega} K$ is a block of imprimitivity for G, or
(ii) G has a set Σ of $2 p$ blocks of imprimitivity in Ω such that $G^{\Sigma} \supseteq A_{2 p}$.

Proof of Theorem 3^{\prime}. Let G, K be as in Theorem 3^{\prime}. Suppose first that, for all g in G, fix ${ }_{\Omega} K \cap \operatorname{fix}_{\Omega} K^{g}$ is nonempty. Then by assumption K and K^{g} are conjugate in $\left\langle K, K^{g}\right\rangle$, that is K is pronormal in G. Thus by Theorem $1, f<\frac{1}{2} n$. So suppose that K has a conjugate K^{g} such that $\mathrm{fix}_{\Omega} K$ and fix K_{Ω}^{g} are disjoint. Then $n \geqslant\left|\mathrm{fix}_{\Omega} K \cup \mathrm{fix}_{\Omega} K^{g}\right|=2 f$ so that $f \leqslant \frac{1}{2} n$. If $f=\frac{1}{2} n$ then clearly $\operatorname{supp}_{\Omega} K^{g}$ $=\mathrm{fix}_{\Omega} K$.
To complete the proof we must examine the case $f=\frac{1}{2} n$ more closely. Let $\alpha \in \operatorname{fix}_{\Omega} K$ and define $H=\left\langle K^{g} \mid K^{g} \leqslant G_{\alpha}, g \in G\right\rangle$. Let \mathcal{C} denote the conjugacy class of K in G and if L is a subgroup of G let $\mathcal{C} \cap L$ denote the set of conjugates of K contained in L. Then $\mathcal{\varrho} \cap G_{\alpha}$ is a generating set of H. Let $B=\operatorname{fix}_{\Omega} H$. Then clearly if $\beta \in B, \mathcal{C} \cap G_{\alpha}=\mathcal{C} \cap G_{\beta}$. Suppose that $g \in G$ is such that $B \cap B^{g} \neq \varnothing$,
say $\beta^{g}=\gamma$ for some $\beta, \gamma \in B$. Then $\left(\mathcal{C} \cap G_{\alpha}\right)^{g}=\left(\mathcal{C} \cap G_{\beta}\right)^{g}=\mathcal{C} \cap G_{\gamma}=\mathcal{C} \cap G_{\alpha}$, that is g fixes setwise a set of generators of H. Thus $g \in N_{G}(H)$ and so $B^{g}=B$. We have therefore shown that B is a block of imprimitivity for G in Ω. Now B is a subset of fix $_{\Omega} K$ and if $B=\mathrm{fix}_{\Omega} K$ then part (i) is true. So assume that B is a proper subset of fix ${ }_{\Omega} K$. Then there is a conjugate K^{h} of K such that $K^{h} \leqslant G_{\alpha}$ and $\mathrm{fix}_{\Omega} K \neq \mathrm{fix}_{\Omega} K^{h}$, that is fix $\Omega_{\Omega} K^{h}$ contains points of both fix ${ }_{\Omega} K$ and $\operatorname{supp}_{\Omega} K$.

Let $\Sigma=\left\{B^{g} \mid g \in G\right\}$ and consider the action of G on Σ. The setwise stabilizer X of B in G is $N_{G}(H)$, for clearly $N_{G}(H) \subseteq X$, and if $x \in X$, say $\alpha^{x}=\beta \in B$, then $\left(\mathcal{C} \cap G_{\alpha}\right)^{x}=\mathcal{C} \cap G_{\beta}=\mathcal{C} \cap G_{\alpha}$ so that $x \in N_{G}(H)$. Let $K^{\prime} \in \mathcal{C} \cap X$. If $\operatorname{fix}_{\Omega} K^{\prime} \cap \operatorname{fix}_{\Omega} K \neq \varnothing$ then K^{\prime} and K are conjugate in $\left\langle K^{\prime}, K\right\rangle \leqslant X$. If not then $\mathrm{fix}_{\Omega} K^{\prime}=\operatorname{supp}_{\Omega} K$, and the subgroup K^{h} defined above is such that fix ${ }_{\Omega} K^{h}$ contains points of fix $_{\Omega} K$ and fix ${ }_{\Omega} K^{\prime}$. It follows that K^{\prime} and K are conjugate in $\left\langle K^{\prime}, K^{h}, K\right\rangle \leqslant X$. Thus all conjugates of K contained in X are conjugate to K in X. By [20] 3.5, $N_{G}(K)$ is transitive on fix $_{\Sigma} K$, and so K fixes pointwise all members of $\mathrm{fix}_{\Sigma} K$.

Let Δ be an orbit of X in $\Sigma-\{B\}$. Suppose that K acts trivially on Δ and let $C \in \Delta$. By our remark above $C \subseteq \operatorname{fix}_{\Omega} K$. Let $K^{\prime} \in \mathcal{C} \cap G_{\alpha} \subseteq \mathcal{C} \cap X$. Then $K^{\prime}=K^{x}$ for some $x \in X$ and so $\left(K^{\prime}\right)^{\Delta}=\left(K^{x}\right)^{\Delta}=\left(K^{\Delta}\right)^{x}=1$. Thus $C \in \operatorname{fix}_{\Sigma} K^{\prime}$ and so $C \subseteq \operatorname{fix}_{\Omega} K^{\prime}$. Hence C is fixed pointwise by all members of a generating set for H, and so $C \subseteq \mathrm{fix}_{\Omega} H=B$, a contradiction. Thus $K^{\Delta} \neq 1$ and in particular $X^{\Delta} \neq 1$. So X^{Δ} is a transitive group with nontrivial pronormal subgroup K^{Δ} (by Lemma 1.4) and so by Theorem $1, f_{\Delta}=\mid$ fix $_{\Delta} K \left\lvert\, \leqslant \frac{1}{2}(|\Delta|-1)\right.$. Thus $\frac{1}{2}|\Sigma|=$ $\left|\operatorname{fix}_{\Omega} K\right| /|B|=\left|\operatorname{fix}_{\Sigma} K\right|=1+\Sigma f_{\Delta} \leqslant 1+\Sigma \frac{1}{2}(|\Delta|-1)=\frac{1}{2}(|\Sigma|+1-r) \leqslant \frac{1}{2}|\Sigma|$, where r is the number of orbits of X in $\Sigma-\{B\}$. It follows from Theorem 1 that X is transitive on $\Sigma-\{B\}$ and $X^{\Sigma-\{B\}}$ is alternating or symmetric, or is $\mathrm{GL}(d, 2)$ for some $d \geqslant 3$. In the former case G^{Σ} is alternating or symmetric. In the case of $\mathrm{GL}(d, 2), K^{\boldsymbol{\Sigma}}$ is a 2-group and by $\mathrm{O}^{\prime} \mathrm{Nan}$'s result [13] Theorem $\mathrm{A}, G^{\boldsymbol{\Sigma}}=\mathrm{AGL}(d, 2)$. This completes the proof of Theorem 3'.

Proof of Corollary to Theorem 3^{\prime}. Let G be a transitive permutation group on Ω of degree n, let $\alpha \in \Omega$, let p be a prime dividing $\left|G_{\alpha}\right|$, and let K be a Sylow p-subgroup of G_{α}. It is easy to check that K satisfies condition * of Theorem 3^{\prime} and so $f=\left|\mathrm{fix}_{\sqrt{2}} K\right| \leqslant \frac{1}{2} n$. Suppose that $f=\frac{1}{2} n$. We showed in the proof of Theorem 3^{\prime} that in this case K has a conjugate K^{\prime} such that fix $\Omega_{\Omega} K=\operatorname{supp}_{\Omega} K^{\prime}$. Then $\left\langle K, K^{\prime}\right\rangle=K \times K^{\prime}$ is a p-subgroup of G containing K and for all $\beta \in \operatorname{fix}_{\Omega} K$, $K \times K_{\beta}^{\prime} \leqslant G_{\beta}$. Since K is a Sylow p-subgroup of G_{β} we must have $K_{\beta}^{\prime}=1$. Thus K^{\prime} and hence K are semiregular on the points they permute.

Finally we must consider the action of G on the set Σ of blocks of imprimitivity in case (ii) of Theorem 3^{\prime}. Let H, B, Σ and X be as in the proof of Theorem 3^{\prime}. Let Y be the pointwise stabilizer of B. Then $K \leqslant Y$ and $Y \unlhd X$. Now $X^{\Sigma-\{B\}}$ is A_{m-1}
or S_{m-1}, or $\mathrm{GL}(d, 2)$ where $|\Sigma|=m$, and $|\Sigma|=2^{d} \geqslant 8$ respectively. Since K acts nontrivially on Σ it follows that $Y^{\Sigma-\{B\}}$ contains A_{m-1} or $\operatorname{GL}(d, 2)$ respectively. Since K is a Sylow p-subgroup of Y and fixes half the blocks of Σ, the groups $\mathrm{GL}(d, 2)$ do not arise, and in the case of A_{m-1} and S_{m-1}, n must be $2 p$. This completes the proof.

References

[1] M. Aschbacher, 'The nonexistance of rank three permutation groups of degree 3250 and subdegree 57', J. Algebra 19 (1971), 538-540.
[2] E. Bannai, 'Doubly transitive permutation representations of the finite projective special linear groups PSL(n, q)', Osaka J. Math. 8 (1971), 437-445.
[3] W. Burnside, Theory of groups of finite order (Cambridge University Press, London, 1911, reprinted Dover, New York, 1955).
[4] P. J. Cameron, 'Permutation groups with multiply transitive suborbits', Proc. London Math. Soc. (3) 25 (1972), 427-440.
[5] P. J. Cameron, 'Primitive groups with most suborbits doubly transitive', Geometricae Dedicata 1 (1973), 434-446.
[6] P. Dembowski, Finite geometries (Ergebnisse der Mathematik 44, Springer-Verlag, Berlin-Heidelberg-New York, 1968).
[7] D. G. Higman, 'Finite permutation groups of rank 3', Math. Z. 86 (1964), 145-156.
[8] N. Ito, 'Über die Gruppen $\operatorname{PSL}_{n}(q)$, die eine Untergruppe von Primzahlindex enthalthen', Acta Sci. Math. (Szeged) 21 (1960), 206-217.
[9] W. M. Kantor, '2-Transitive designs', Combinatorics, Part 3, Combinatorial group theory, ed. by M. Hall, Jr. and J. H. van Lint (Math. Centre Tracts 57, Amsterdam, 1974, 44-97).
[10] E. Maillet, 'Sur les isomorphes holoédriques et transitifs des groupes symétriques ou alternés', J. Math. Pures Appl. Ser. (5) 1 (1895), 5-34.
[11] M. O'Nan, "A characterisation of $L_{n}(q)$ as a permutation group,' Math. Z. 127 (1972), 301-314.
[12] M. O'Nan, "Normal structure of the one-point stabilizer of a doubly transitive permutation group II', Trans. Amer. Math. Soc. 214 (1975), 43-74.
[13] M. O'Nan, 'Estimation of Sylow subgroups in primitive permutation groups', Math. Z. 147 (1976), 101-111.
[14] C. E. Praeger, 'Doubly transitive permutation groups which are not doubly primitive', J. Algebra 44 (1977), 389-395.
[15] C. E. Praeger, 'Doubly transitive automorphism groups of block designs', J. Combinatorial Theory Ser. A 25 (1978), 258-266.
[16] C. E. Praeger, 'Sylow subgroups of transitive permutation groups,' Math. Z. 134 (1973), 179-180.
[17] C. E. Praeger, 'On primitive permutation groups with a doubly transitive suborbit', J. London Math. Soc. (2) 17 (1978), 67-73.
[18] C. C. Sims, 'Computational methods in the study of permutation groups', Computational problems in abstract algebra (Oxford, 1967), ed., by J. Leech (Pergamon Press, Oxford-LondonEdinburgh, 1970, 169-184).
[19] M. J. Weiss, 'On simply transitive groups,' Bull. Amer. Math. Soc. 30 (1928), 333-359.
[20] H. Wielandt, Finite permutation groups (Academic Press, New York-London, 1964).
[21] W. J. Wong, 'Determination of a class of primitive permutation groups,' Math. Z. 99 (1967), 235-246.

Department of Mathematics
University of Western Australia
Nedlands, W. A. 6009
Australia

[^0]: (c) 1984 Australian Mathematical Society $0263-6115 / 84 \$ A 2.00+0.00$

