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Abstract

Let G be a transitive permutation group of degree n and let A" be a nontrivial pronormal subgroup of
G (that is, for all g in G, K and Ks are conjugate in (K, Kg)). It is shown that K can fix at most
\(n — 1) points. Moreover if A" fixes exactly {(n — 1) points then G is either An or Sn, or GL(d, 2) in
its natural representation where n = 2d — 1 > 7. Connections with a result of Michael O'Nan are
discussed, and an application to the Sylow subgroups of a one point stabilizer is given.

1980 Mathematics subject classification (Amer. Math. Soc): 20 B 05, 20 B 10.

This paper is concerned with finding an upper bound for the number of fixed
points of certain subgroups of a transitive permutation group G. In [16] it was
shown that the number of fixed points of a Sylow subgroup was strictly less than
half the total number of points. Here we generalise that result to the class of
nontrivial pronormal subgroups of G, that is, nontrivial subgroups K such that for
all g in G, Kg is conjugate to K by an element of (K8, K). If p is a prime
dividing the order of G a ^-subgroup K of G is pronormal if and only if each
Sylow /^-subgroup of G contains exactly one conjugate of K, that is K weakly
closed in any Sylow p-subgroup of G containing it. In particular Sylow subgroups
are pronormal, and if G is soluble, then its Hall subgroups are pronormal. The
main result of the paper is the following theorem. The proof is by induction and
exploits results of Cameron [4,5]. (Note that if K is a permutation group on a set
fi then fixn A" and suppaAT denote its set of fixed points in B and its support
fi-fixa K in Q respectively.)
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THEOREM 1. Let G be a transitive permutation group on a set Q, of n points, and
let K be a nontrivial pronormal subgroup of G. Suppose that K fixes f points of fi.
Then

(a) /<i (n- I), and
(b) / / / = j (« — 1) then K is transitive on its support in Q, and either G > An, or

G = GL(d, 2) acting on the n = 2d — 1 nonzero vectors, and K is the pointwise
stabilizer of a hyperplane.

This result may be compared, with a result of Michael O'Nan ([13], Theorem
A) on subgroups of prime order of primitive permutation groups. We note that
O'Nan's result is true without the restriction that the subgroups have prime power
order. As a simple consequence of Theorem 1 and O'Nan's results we have
Theorem 2.

THEOREM 2. Let G be a primitive permutation group on a set fl of n points and let
K be a nontrivial subgroup of G satisfying: if g £ G is such that suppn K n
suppa K

g ¥= 0 , then K is conjugate to Kg in (K, Kg).
Then one of the following is true.

(ii) G D An,
(iii) G = GL(d, 2) on the n = 2d — 1 >7 nonzero vectors,
(iv) G = AGL(rf, 2) on the n = 2d > 8 vectors.

(For if K is conjugate to Kg in (K, Kg) for all g in G then K is pronormal and
the result follows from Theorem 1; if not then the result follows from [16]
Theorem A.) A less trivial consequence is the following; we note that O'Nan's
result is not strictly necessary for the proof.

THEOREM 3. Let G be a primitive permutation group on a set J2 of n points and let
K be a nontrivial subgroup of G such that fixa K is nonempty. Assume that K
satisfies

(*) If g G G is such that fixa K n fixa K
g ^ 0 then K is conjugate to Kg in

(K,Kg).
Then f=\fixaK\^ {n, and if / = \n either G 3 An or G = AGL(w,2) with

n = 2m > 8.

This has the following corollary.

COROLLARY TO THEOREM 3. Let G be a primitive permutation group on a set £2 of
n points, let p be a prime dividing \G\/n, and let K be a Sylowp-subgroup of the
stabilizer Ga of the point a of Q. Then f = | fixa K\< \n and if f — {n then n = 2p
and G D An.
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Theorem 1 is proved in Section 2, and Section 1 consists of preliminary results

among which is the following application of a result of Wielandt.

PROPOSITION 4. Let G be a primitive permutation group on S. For « £ 8 suppose

that K is a subgroup of Ga satisfying:

(**) / / Kg < Ga for gGG, then Kgh = K for some h in Ga.

Then K acts nontrivially on each orbit of Ga in Q, — {a}.

In Section 3 we prove a generalization of Theorem 3 and its corollary for
transitive groups. Our notation is fairly standard and follows the conventions of
[20]. However when it is convenient we shall use the notation of D. G. Higman [7]
for suborbits of a permutation group. If G acts as a permutation group on a set fi,
we shall call on orbit of G in suppfi G a nontrivial orbit.

The author has appreciated the help of Drs. Marcel Herzog, Chris Godsil and
Brendan McKay in discussions relating to this work.

1. Preliminary results

In this section we first prove Proposition 4. Then we examine some properties
of the groups of Theorem l(b) and some properties of pronormal subgroups
which will be useful in the inductive proof of Theorem 1. Finally we state for
convenience some known results about primitive groups with a small subdegree.

PROOF OF PROPOSITION 4. Let G, K satisfy the hypotheses of Proposition 4, and
let T be an orbit of Ga in fi - {a}. By [20] 18.1, for some g in G, Kg < Ga and
acts nontrivially on T. Thus for some x in K8, /? in T, we have fix ¥= /?. By
condition(**) , Kgh - K for some h in Ga. Then xh E K, j8* 6 T* = T, and

h^'h h h K a c t s nontrivially o n r .

Note we consider the groups An and GL(rf, 2).

LEMMA 1.1. Suppose that G, K satisfy the hypotheses of Theorem 1 and G 5= An.
Then K has only one nontrivial orbit. If this orbit has length a then f = a — ia(n),
where ia(n) is the integer satisfying 1 < ia(n) < a, n + ia(n) = 0(mod a). Thus if
f= i(« - 1) then n = 2a - I.

PROOF. Let a be the length of the shortest nontrivial orbit of K. Suppose that
/ > a and let T be a #-orbit of length a. Then there is an element g in An such that
r* C fixaAT. Then Tg is an orbit both of Kg and of (K, Kg). Since K is
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pronormal Kgh = K for some h in (K, Kg), but then Tgh = T8 is an orbit for K,
contradiction. H e n c e / < a and sof=a — ia(n) and the rest follows immediately.

Clearly G > An has nontrivial pronormal subgroups. As a corollary to the proof
we have

COROLLARY 1.2. If G, K satisfy the hypotheses of Theorem 1 and G is a-transitive
then f — a — ia(n) (where a is the length of the shortest nontrivial orbit of K).

LEMMA 1.3. Suppose that G = GL(d, 2), d > 3, acting on the settiofn = 2d— 1
nonzero vectors. Let K be the pointwise stabilizer of a hyperplane A. Then K is
elementary abelian of order 2d~x, is regular on fl — A, and is pronormal. Moreover
no subgroup of K of index 2 is pronormal in G.

PROOF. It is well known that K is elementary abelian of order 2d~' and acts
regularly on fi — A. Moreover K is pronormal since each Sylow 2-subgroup of
Gh{d,2) contains exactly one conjugate of K. Now K has 2d~x subgroups of
index 2 and each of these groups has two orbits of equal length in fi — A. Thus
there are 2d — 2 orbits in fi — A of these subgroups, and each of these orbits is
the intersection of S2 — A with one of the 2d — 2 hyperplane distinct from A.
Since G is 2-transitive on the set of hyperplanes it follows that all subgroups of
index 2 in K are conjugate in G. If L, U are distinct subgroups of K of index 2,
then both L and L' are normal in (L, L') = K and so neither is pronormal in G.

In the proof of Theorem 1 we shall use the following results repeatedly.

LEMMA 1.4. Suppose that K is a nontrivial pronormal subgroup of the group G.
(a)IfK<H*£:G then K is a pronormal subgroup of H.
(b) / / X is a normal subgroup of G not containing K, then KX/X is a nontrivial

pronormal subgroup of G/X.

LEMMA 1.5. Suppose that K is a nontrivial pronormal subgroup of a primitive
permutation group G on SI. If a G fixn K then K acts nontrivially on each orbit of Ga

in S2 — {«}.

The proof of Lemma 1.4 is straightforward and that of Lemma 1.5 is simply an
application of Proposition 4. Finally we quote some results about primitive
permutation groups with small subdegrees.

LEMMA 1.6. Let G be a simply transitive primitive permutation group on fi of
degree n. Let a G i2 and suppose that Ga has an orbit of length k inQ, — {a}.
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(a) ([20] 18.7, 18.8) If k = 2 then n is prime and G is a Frobenius group of order
In.

(b) ([21]) Ifk = 3 then Ga is soluble with order dividing 48.
(c) ([18] Theorem 2.1 (10)) / / k is 3 or 4 then either n is divisible by a prime

greater than 3 or n = 2C or n = 3C for some c < k.

2. Proof of Theorem 1

Suppose that Theorem 1 is false, let n be the least integer for which a
counterexample of degree n exists, and let G be a counterexample of degree n.
Thus G has a nontrivial pronormal subgroup K w i t h / > ^(« — 1) fixed points in
Q, G 2 An, and G is not GL(J, 2) in its natural representation for any d.

LEMMA 2.1. G is primitive on SI.

PROOF. Suppose that G has a set 2 = ( 5 , , . . . ,Bt) of blocks of imprimitivity in
12 with 121= / > 1, |B,;|= b > 1, and n — tb. Since any block containing a point
of fixa K is fixed setwise by K and s i n c e / > 0 it follows that fix2 K is nonempty.
By [20] 3.5 applied to A?2 as a subgroup of Gs , NG(K) is transitive on fix2 K. It
follows that fB = | fixB AT| is independent of the choice of B in fix2 AT. Thus if we
set /s =jfix2 AT| t hen / = / 2 fB. If for B in fix2 AT, AT* ¥= 1 then the hypotheses of
Theorem 1 hold for the setwise stabilizer of B acting on B. Hence by minimality,
fB ^ 2(6 ~ 1). and so / < /f/B < | ( " ~ !)• If on the other hand KB = 1 for B in
fix2 A", t h e n / = 6/2 and so AT2 ^ 1. The hypotheses of Theorem 1 then hold for
G2 and again by minimality,/j; < j(t — 1), a n d / < j(n — 1). Thus G is primitive
on Q, since / s» ^(n — 1).

LEMMA 2.2. G is 2-transitive on Q and f'= %(n — 1).

PROOF. Let a G fixs K. Then by Lemma 1.5, K acts nontrivially on each orbit
F of Ga in B — {a}. By Lemma 1.4, the hypotheses of the theorem hold for G%
with nontrivial pronormal subgroup KT. Let {1^; 1 <j < s} be the Gn-orbits in
S2 - {a}, $2*1, and let | I} |= ny. and |fix K n I}|=/;., 1 < y < J. Then by
minimality / = 1 + 2 f,• < 1 + i2(w, — 1) = i ( « + 1 — 5). Thus either / = i (n
— 1) and 5 < 2 or 5 = 1 a n d / = 5/1. Assume that Ga is transitive on Q — {a} and
I fix K - {a} |= ^((n - 1) - 1). Then by minimality, either Ga > An_l, or Ga =
GL(d, 2) with « — 1 = 2d — 1 and AT the pointwise stabilizer of a hyperplane.
Since G 2 An, Ga — GL(d,2) is the collineation group of (d — l)-dimensional
projective geometry over a field of order 2 and d> 3. It follows from [6] 2.4.34
that G is a collineation group of a ^-dimensional affine geometry over a field of
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order 2. Since fix K — {a} is a hyperplane of the projective geometry, then both
fix K and supp K are hyperplanes of the affine geometry. Now G is transitive on
hyperplanes (since Ga is transitive on the hyperplanes containing a), and so
(supptf)* = fix K for some g in G. Then K and Kg centralise each other, a
contradiction since K is pronormal.

Thus / = i (n - 1) and s < 2. Assume that 5 = 2. Then fj = {{rij - 1) for
j — 1,2, and by minimality Ga is doubly transitive on both T, and T2, contradict-
ing [20] 17.7. Thus G is 2-transitive on fi.

Let G be (/-transitive but not (d + 1)-transitive. Then since G ^ An it follows
from [20] 15.1 that 2 < d < 5. It is easy to check that n > 11 and h e n c e / > rf. Let
A be a subset of £2 of size m = n — d + 1 such that fi-AC fixB A", and let H be
the pointwise stabilizer in G of S2 — A. Then / / is transitive but not 2-transitive on
A,K C H, and | fixA H\= f— d + 1 = i(/n — c?) = e > 0, say. Information about
an imprimitive H is given by the next lemma.

LEMMA 2.3. Let X be a transitive imprimitive permutation group on a set A of
m < n points having a nontrivial pronormal subgroup K with e = {(m — z) > 0
fixed points where 2 *£ z < 5. Then one of the following is true.

(i) m — yz, X has a set of z or y blocks of imprimitivity in A of length y or z
respectively, and in either case the action of degree y is Ay or Sy (with y > 3 andy
odd), or GL(r, 2) (withy = 2r - 1 3= 7).

(ii) m — 4y, z = 4, X has 2y blocks of imprimitivity of length 2 and X acts on the
set of2y blocks as an imprimitive group with 2 blocks of imprimitivity of length y.
The representation of degree y is as in (1).

(iii) m = 2x, z = 4, X has 2 or x blocks of imprimitivity of length x or 2, the
representation of degree x is primitive and the fixed point set of K in this
representation has size j(x — 2).

PROOF. Assume that X is imprimitive on A with a set 2 = {Bx,... ,Bt) of t > 1
blocks of imprimitivity of length b > 1, where m = tb. Assume that the blocks are
maximal proper blocks so that Xacts primitively on 2 . As in Lemma 2.1 fix2 A" is
nonempty and NX(K) is transitive on fix2 K. Thus if ex =|fix2^T| and eB =
\fixBK\ for B in fix2 K, then e = e-zeB. Suppose first that for B in fix2A\
KB =£ 1. Then by minimality eB = j(b — u) for some positive integer u. Also
either e 2 = t or K^ ^ 1 so that (again by minimality) e 2 < \t. In the latter case
j(m — z) — e < jteB = \(m — tu), that is m < 2z — tu so that e = {(m — z) <
{(z — tu) < f. Hence e — 1, z = 5, and m = 1 which is a contradiction. Thus
j(m — z) = e = teB = {(m — tu), so that either t = z, u = \ and (i) follows by
minimality, or z = 4 and t = u — 2; here consideration of the action on Bx and
B2 of the subgroup of X fixing Bx and B2 setwise shows that one of (i), (ii), (iii), is
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true. Thus assume that K fixes pointwise each block in f ix2 K. Then K^ ¥= 1 and

by minimality e 2 = \(t — u) for some positive integer u, so that j(m — z) — e =

be-z = ^{m — bu). As above either b — z, u = 1 and (i) is true, or z = 4, b = u — 2,

and as X is primitive on 2 , (iii) is true.

The next lemma gives information about a primitive group H, and we make

this explicit in the corollary.

LEMMA 2.4. Let X be a primitive permutation group on a set A of m < n points

having a nontrivial pronormal subgroup K with e = \{m — z)> 0 fixed points

where 1 < z < 5. Then

(i) ifz - \,X is ^-primitive or X = GL(d , 2), or X D Am,

(ii) if z = 2, X is 3-primitive, or m = 6, X = PGL(2,5) , or m = 4, X = A4, or

m = 2,

(iii) // z = 3, X is 2-primitive, or m = 9 and X is ASL(2,3) or AGL(2,3), or
m = 5 and \ X\ is 10 or 20, or m = 3,

(iv) i/ 4 < z < 5, X has rank at most z; and if z = 4 a«d A' w 2-transitive then X
is 2-primitive.

COROLLARY TO LEMMA 2.4. H is primitive and d is 4 or 5.

This corollary follows immediately from Lemma 2.2 and Lemma 2.4 parts (i),
(ii), and (iv).

PROOF OF LEMMA 2.4. Suppose that X satisfies the hypotheses of the lemma
with degree m < n, and e =|fixA K\= \{m — z) > 0, 1 «£ z < 5. Suppose also
that the lemma is true for groups of smaller degree. Clearly we may assume that
m>l, and e > 0. The proof is given in two steps.

Step 1. First assume that X is not 2-transitive; then z > 2 by minimality and
Lemma 2.2. Let 8 G fixA K and let T,,...,Ts be the orbits of Xs in A - {5}, where
| T, |= w, for each / < s, and s > 2. By Lemma 1.5, K acts nontrivially on each T,,
and so by minimality ek, = | fix K n F,|= \{mt• — z,) for some positive integer zt,
and 2 z,• — z + 1. If z}•= 1 for somey < s then by minimality Xs acts on 1̂ , as Am ,
S , or GL(r, 2) with wy = 2r - 1. By [20] 17.7, Xs cannot act 2-transitively on all
of the Tj so we conclude that at least one of the zy is greater than 1. It is
convenient to order the Fy so that z, < z2< • • • < zs; then zs > 2. Suppose next
that Zj = 1 for ally < s - 1. Then by [5], s < 3 and if s = 3 then m = 4t2(t + 2)2,
and m, = m2 = r(2/2 + 4/ + 1) for some odd positive integer t. Moreover by [4,
17], w3 = ml(m] — \)/k where k is 1, 2, or 3. It follows that t = 1, m, = 7,
A: = 2, and (by [5]), A^1 DA-;. Here Xs acts on F3 as on unordered pairs of points
of F,, and as K fixes 3 points of F, and has one orbit of length 4 (in order to be
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pronormal) it follows that K fixes exactly 3 points of F3. Thus z3 = 15 > z which
is a contradiction. Thus s = 2, z, = 1, and 2 < z2 = z «£ 5. Assume here that z is
2 or 3. Since Xs on F, is alternating or symmetric or GL(r, 2), by [4, 17],
m2 = m^m, — l)/& where k is 1, 2, or 3, and if k = 3 then /• ^ 4. Also, as Xs

cannot be 2-transitive on F2 it follows that Xs is imprimitive on F2 or z2 = 3 and
m2 is 3 or 5. In the latter case, m2 ¥* 5 as m2 — w^/w, — \)/k, and m2¥

z 3
follows from [20] 18.4. In the imprimitive case it follows from [20] 18.2 and
Lemma 2.3(i) that m2 = z2m, so that (m,, m2) is (3,6), (5,10), or (7,21). If
ffi, = 3 then (see [18]), X is A5 or S5 on unordered pairs; here e = 4 and so # is
generated by a transposition. However such a group is not pronormal. If m, = 5
then e = 7 divides |A"| which is impossible by [18]. If w, = 7 then m — 39, and
e = 13 divides | X| which is impossible by [20] 13.10. Thus if X is not 2-transitive
then z » 3 ; i f 3 < z < 6 then X has rank at most z; and if z = 3 and X has rank 3
t h e n zx= z 2 = 2.

Assume then that z = 3, z, = z2 = 2. Then as Xs cannot be 2-transitive on both
F, and F2 we may assume that it is imprimitive on F, and its action satisfies
Lemma 2.3(i); in particular m, =2(mod4) and m, s» 6. Suppose that Xs is
primitive on F2. Then either Xs is 3-transitive on F2, or m2 = 4 and Xg2 = A4, or
m2 = 2. By Lemma 1.6, m2 ¥= 2 (since m, > 6). By [4], m, = m2{m2 — \)/k
where A: is 1 or 2, or w = (x + l)2(x + 4)2, w2 = (x + \)(x2 + 5x + 5), k = (x
+ l)(x + 2) for some integer x 3* 1. In the latter case x is odd since m2 is even,
and hence m, is odd, contradiction. Hence fc is 1 or 2. By [20] 17.6, the only
nonabelian composition factor of Xs is Ax, x = jm,, or GL(r, 2), |m, = 2r — 1,
r 3s 3. Also if w2 is a power of 2 then, since m, = 2(mod4) and ml > 6, we have
w1 = 6, /M2 = 4, m = 11, a contradiction to [20] 11.6 and 11.7. Thus we may
assume (by [20] 11.3 and 12.1 and [3] page 202), that X[2 has a simple normal
subgroup S which is 2-transitive of even degree m2, where S is Ax, or GL(r, 2),
and \mx is x, or 2r — 1 respectively. By [2,10], (^m,,m2) is (5,6), (7,8), or
(15,8) all of which contradict w, = m2(m2 - \)/k, k<2.

Thus Xs is imprimitive on both F, and F2, with the actions given by Lemma 2.3.
By [20] 18.2 it follows that m, = m2 = 2(mod4) and m, > 6. If m, = 6 then
m = 13 contradicting [20] 11.6 and 11.7. If m, = 10 then m = 21, e = 9, and |A"|
is divisible by 3. Hence \N(K)\ is divisible by 27. However by [20] 13.10, \X\ is
not divisible by 25 and so Xs has only one composition factor A5. It follows that
\XS\ is not divisible by 9, a contradiction. Thus mi > 14. Suppose that Ax,
x = \mx is a composition factor of Xs. Then Xs contains a 5-element of degree at
most 20, a contradiction to [20] 13.10. Thus x = jm, = 2r — 1, and Xs has a
composition factor GL(/-, 2), r s* 3. Let Y be the smallest normal subgroup of Xs

such that Xg/Y is a (possibly trivial) 2-group. Then AY is represented as GL(r, 2)
(acting on points or hyperplanes), on either a set of x blocks of imprimitivity in F,
or on each of two blocks of length x in F7, fory = 1 andy = 2. Also the kernel of
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all these representations of KY is a possibly trivial 2-group. Let 6 be one of the
sets of size x on which KY is represented. Then Ke is the pointwise stabilizer of a
hyperplane and its normalizer in {KY)e is the setwise stabilizer of the hyperplane
and has index x in (AT)*; that is to say, if Yx is the kernel of KY on $ then
A ^ A T , ) has index x in KY. If g G Aky(AT,) then Kg < # 7 , and so K is
conjugate to AT8 in <K, A"g>< AT,. Thus since A ^ A y , ) contains NKY(K), then
| AT: AW(A) 1= x \ NKY(KY,): NKY(K)\= x | KY,: N(K) n KY, \ . Now
(KY)/Yi — GL(r, 2) and Ay has j composition factors isomorphic to GL(r, 2)
for some 1 <y < 4. If y > 1 then AT, is represented as GL(r, 2) on one of the sets
of length x described above. We define Yk inductively as the kernel of a
representation of KYk_i as GL(r,2) as above, for 1 < A: <y. Then as above,
\KYk_x: N(KYk) D Ay^., |= x and the number of conjugates of A in N(KYk) n
KYk^x is equal to the number of conjugates of A" in KYk. Thus IAYJ.. , :

N(K) n KY,.,^ x\(N(KYk) n KY^,): (N(K)n KYk_,)\= x\KYk: N(K)
n KYk\ for 1< k <>. Hence |AT: NKY(K)\= xJ\KYf. N(K) n KYj\, whether
or noty = 1. As we remarked above Yj is a possibly trivial 2-group, and | Xs: KY\
is a power of 2. Thus |XB: W(A) D Xs\= xJ2c for some c > 0, 1 < y < 4. Now
e = 4(2r" ' - 1) + 1 = 2x - 1 divides \X: N(K) D A"8| which divides mx42c,
and this is clearly impossible. Thus if X is not 2-transitive then z > 4.

Step 2. In this second part of the proof we assume that X is 2-transitive but not
2-primitive on A of degree m < «, and e = | fix A | = 2(m — z) where 1 *£ z < 4.
Then if 8 G fixA A, A'j satisfies one of (i), (ii), (iii) of Lemma 2.3 where
e - 1 = | fixA A - {5} |= K(w - 1) - (2 + 1)), 2 < z + l < 5 . As m>l, e - I
> 0. Set M = z + 1. If in (i) or (iii), Xs has a set of u or 2 blocks respectively then
the kernel of the action on blocks is 2-transitive on each of the blocks. By [12]
Theorem D it follows that X 2* PSL(3,3), and e = 5 divides \X\ which is
impossible. If in (i) Xs acts as Ay or Sy on a set of y blocks of length u then as K
fixes a block pointwise and y is odd, it follows from [14] that X contains
PSL(3, u), M = 2 or 4, or X is an extension of an elementary abelian group of
order 16 by A5 or Ss, u = 3. If u = 2 then (i) is true. If u = 4 then | X\ is divisible
by e | A | which is divisible by 27, a contradiction. If u = 3 then e = 7 divides | Z | ,
also a contradiction. Thus in case (i) Xs acts as GL(r, 2) on a set of 2r — 1 blocks
of length M. If r = 3 then m = 1 + 7M and e = 1 + 3M; e does not divide | A^ if u
is 3 or 4 so M is 2 or 5. If u = 2 then the 7-element in NX{K) must be a 7-cycle on
A, contradiction. If u = 5 then by [15] Corollary Bl, the translates of B U {5}
form the blocks of a design on A with X = 1, where B is one of the blocks of Xs of
length M; further fixA A is the union of three blocks of this design containing 8
which forces NX(K) to fix 8 whereas NX(K) is transitive on fixA A. Thus r> 4.
Let y be the setwise stabilizer of one of the blocks B of the set 2 of blocks of Xs

in A — {8}. Then Yx is an elementary abelian group N of order 2r~x extended by
GL(r —1,2) acting irreducibly on N; thus y 2 has no transitive representations of
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degree u, 2 < u < 5, and so the kernel Z of Xs on 2 is nontrivial. It follows from
[14] Lemma 1.1 that either u = 2, X = GL(r +1,2) (and so (i) is true), or Z is
semiregular on A — {8}. Assume the latter. Since K is the kernel of KZ acting on
B, where B G fix2 K, it follows that K and Z centralise each other. Now | Xs:
N(NZ) n Aj|= 2r - 1; any conjugate Kg of # by an element g in A^ATZ) n Xs

is conjugate to A" in (K, Kg) C AZ and hence is equal to K. Thus N(KZ) n Â
C ^AT) n A, and it follows that | A"s: 7V(A~) D Xs\= 2r - 1. Thus e = 1 +
u(2'"-1 - 1) =|JV(A"): #(*") n Xs\ divides |A": JV(A") n AT8|= (1 + w(2r - l))(2r

— 1). It follows that M = 2, and by [9] 6C(2), X has a regular normal subgroup of
order m — 3C = 2r+' — 1; but there is no solution c for any r > 4. Thus we may
assume that case (i) of Lemma 2.3 does not hold, and so u = 4.

If in case (iii) of Lemma 2.3 Xs has a set 2 of blocks of length 2, by minimality
A"8 is 3-primitive on 2 or x is 6 and A"8

2 = PGL(2,5) or x is 4 and Xf = AA (since
m > 7). In the first and third cases X is AGL(2,3) or ASL(2,3) by [15] Theorem
C and Theorem B respectively, while the case x = 6 cannot arise (since e = 11
cannot divide \X\). Suppose that case (ii) of Lemma 2.3 holds, with m — 1 = 4y.
UAy is involved then consideration of a 5-element \nAy and [20] 13.10 shows that
y is 3 or 5. If y = 3 then X > PSL(3,3) (see [18]) and Xs does not have blocks of
size 2. If y = 5 then 25 does not divide \X\, by [20] 13.10, while 27 divides e\K\
which divides | X\; these two assertions are incompatible with the structure of Xs

as its only composition factors are Z2 and A5. Thus GL(r, 2) is involved in Xs

where y - 2r - 1 > 7. By [11] the kernel Z of Xs on its set of 2y blocks in
A — {8} has order at most 2 and so K and Z centralise each other. It follows as
above that e = 1 + 4(2r"' - 1) divides \X: N(K) n Aj|= (1 + 4(2' - 1))(2' -
1), which gives a contradiction.

Steps (1) and (2) complete the proof of Lemma 2.4 after noting that none of
ASL(2,3), AGL(2,3) and PGL(2,5) have transitive extensions.

LEMMA 2.5. Let X be a primitive permutation group on a set A of m < n points
having a nontrivial pronormal subgroup K with e = j(m — 4) > 0 fixed points.
Then X is 2-transitive.

PROOF. Suppose that X is not 2-transitive, and that m is the least degree for
which such a group X exists. Then (see [18]) m > 16. Let 8 E fixA K and let
r , , . . . , r,, s > 2, be the orbits of Xs in A - {8}, where | T, |= w,, | fix K n T, |= *>,
= i ( w , ~ z,)> a nd 1 < z, < z2 =£ • • • < zs. By Lemma 2.4, 2 < s < 3 and in the
proof of that result we showed that if s = 3 then z2 > 1, that is z, = 1, z2 = z3 = 2.
In this case by [4,17] and minimality, m2, say, is w^w, — \)/k where k < 3 and
mi > 15 ii k = 3. Further by Lemma 2.4, [20] 17.7, and [5], Â  is imprimitive on
both T2 and T3, and by Lemma 2.3, and [20] 18.2-18.4, m2 = m3 = 2m,. Thus
m, = 2k + 1 is 3 or 5. If m, = 3 then m = 16, and we have a contradiction to
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Lemma 1.6. If w, = 5 then m = 26, and e — 11 divides |A"| contradicting [20]
13.10.

Thus 5 = 2 and (z{, z2) is (1,4) or (2,3). Consider the case (1,4) first. By
minimality and [4,17] m2 = Wi(w, — \)/k where k =£ 3 and m, is odd. By the
minimality of m and [20] 17.7, Xs is imprimitive on F2 and so by Lemma 2.3,
m2 = 0(mod4) so that w, = I(mod4). The case k = 1 is impossible by [1,7].
Thus if A^1 is alternating or symmetric then by [4], k = 2 and m2 = 10 z
0(mod4), contradiction. Hence m, = 2d — 1, d > 3; but again m, z I(mod4).

Thus z, = 2, z2 = 3. By [20] 17.7, Xs is not primitive on both F, and F2.
Suppose that Xs is primitive on F,, so that Xs is imprimitive on F2. By the
minimality of m either Xs is 4-transitive on F, or m, is 2, 4 or 6 and Xs is
2-transitive on F,. The case m, = 2 is impossible by Lemma 1.6 since e > 1. Also
by [4], m2 — w,(w, — \)/k where k is 1 or 2 (for even if m, is 4 or 6 then
k < i(m\ ~ l)so& < 2). Since m, is even and m2 is odd, k = 2 andm = 2(mod4).
By [20] 17.6, Xs is faithful on F2 and so the only nonabelian composition factors
of Xs are Ax, where JC = w2/3 is odd, or GL(r,2) where w2/3 = 2r - 1 > 7.
Since m, = 2(mod4), and by [3] page 202 and [20] 11.3 and 12.1, either X[' has a
simple normal subgroup S which is 3-transitive on F,, or m, = 6 . Thus if m, > 6,
S is Ax, x odd, or GL(r,2). By [2,10] and since m, = 2(mod4), it follows that
w, = 6, and x£< ^ PGL(2,5). Thus m2 = 15, m = 22, and e | # r 2 | which is 27 or
81 divides \X\; further K contains a 3-element of degree at most 9 and this
contradicts [13] Theorem E.

Thus Xs is imprimitive on F, and its action is given by Lemma 2.3, in particular
w, = 2(mod4). Suppose that Xs is primitive on F2. Then by the minimality of m,
either Â  is 3-transitive on F2 with m2 > 5, or m2 is 3, 5, or 9 and X[2 is soluble.
In the latter case Xs is soluble and m, = 6, m2 = 3 or 9, by [20] 18.3, 18.4. If
m2 = 3 then m = 10 and this is impossible by [18], as S5 on pairs has no
subgroup fixing e = 3 pairs. If w2 = 9 then K contains a 3-element of degree 6, a
contradiction to [13] Corollary 4. Thus Xs is 3-transitive on F2 of odd degree
m2>5. Then by [3] page 202, and [20] 11.3, 12.1, X[* has a simple normal
subgroup S which is 2-transitive on F2. By [20] 17.6, Xs is faithful on F, and it
follows that S is either Ax where x = j-m, is odd or GL(r, 2) where r > 3,
m, = 2(2r - 1). Hence by [2,10] either m, = 2m2 or (m,, w2) is (14,15). It
follows from [4] that m, = 2w2 = 10, e\Kr< \— 18 divides | Â  , and K contains a
3-element of degree 6, contradicting [ 13] Corollary 4.

Thus X8 is imprimitive on both F, and F2. It follows from Lemma 2.3 and [20]
18.2 that w,/2 = w2/3 = x for some odd x > 3. If Xs involves Ax with x ^ 9
then Xs contains a 7-element of degree at most 35, contradicting [20] 13.10. Thus
if Xs involves Ax then x is 3, 5 or 7. If x = 7, a Sylow 5-subgroup of A" fixes 11
points and so | A' | is divisible by 11, contradiction. If x = 5 then e = 11 divides
| A" | , contradiction. If x = 3 then m = 1 6 , m2 = 9 divides | X\, and
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contains a 3-element g which fixes F, pointwise and so has degree at most 9. It
follows from [13] Theorem E that a Sylow 3-subgroup of X has order 9, and it
clearly fixes only one point and has an orbit length 9. Since | fixa g\= 7 does not
divide \X\ it follows by [20] 3.5 that ( g ) is not weakly closed in a Sylow
3-subgroup of X, and this clearly has the wrong orbit lengths. Thus x = T — 1,
r ^ 3, and the only insoluble composition factor of Xs is GL(r, 2). By a similar
argument to that in the proof of Lemma 2.4 we can show that e = 5.2r~' — 4
divides mxs6c = (5x + I)x56c for some c > 0. It follows that r is 3 or 4. If r = 4
then m, = 30, and m2 — 45. If y £ F, then A^y has orbits in F, — {y} of lengths
1, 14, 14 or 14, 15. If F(y) is the orbit of Xy of length 30 then X = | F, f\ F(y) | is
0, 1, 14, 15, 28 or 29; since X is primitive \ ^ 29 by [7] Corollary 3, and by [7]
Lemma 5, 2(19 — X)/3 is an integer. Hence X = 14, which contradicts [7] Lemma
7. If r = 3 a similar argument shows that X = 7, ju = 4. However if r\ £ F2 then
the XSv orbit lengths in F, are sums of 1, 1, 6, 6, and no sum of these is equal to
li = 4. This completes the proof of Lemma 2.5.

It follows from Lemmas 2.4 and 2.5 that d = 5 and H is primitive but not
2-transitive of rank at most 5. To complete the proof of Theorem 1 we show that
this situation is impossible. This follows from the next lemma since we are
assuming that H has degree m = « — 4 > 7.

LEMMA 2.6. Let X be a primitive permutation group on a set A of m < n points
having a nontrivial pronormal subgroup K with e = j(m — 5) > 0 fixed points.
Then either m is 5 or 1, or X is 2-transitive.

PROOF. By [18] the result is true for m < 13, so assume that m > 15 is minimal
such that X is not 2-transitive. Let 8 e fixA K and let F , , . . . .F,, s 3* 2 be the
orbits of Xs in A - {8}, where | F , | = w , , | fix K n F,|= et, = |(m,, - zt) and
1 < z, ^ • • • < zs. By Lemma 2.4, 2 z, = 6 and 2 =£ 5 < 4, and from the proof of
that result, if s > 3 then z^_, 2* 2. First let s — 4; then zl= z2= 1, z3 = z4 = 2.
By Lemma 2.4 and [5] Xs is imprimitive on F3 and F4 and these actions are given
by Lemma 2.3. By [20] 18.2, and Lemma 2.3, 2mx = 2m2 = m3 = w4. Now by
[4] one of the subdegrees is equal to mx(mx — \)/k > 2mt. Thus k = j{mx — 1)
and by [4], w, is 3 or 5. Thus m = 1 + 6m, is 19 or 31, a contradiction to [20]
11.6 and 11.7. Thus J is 2 or 3.

Suppose that s is 3. Then (z,, z2, z3) is (1,2,3) or (2,2,2). Consider the case
(1,2,3); Xs is 2-transitive on F, and (by Lemma 2.4, [5], Lemma 1.6, and [20] 17.7
and 18.3), imprimitive on F2 and either imprimitive on F3 or m3 is 3 or 5 and Xs is
soluble. From Lemma 2.3, and [20] 18.2, 18.3, ( w 1 , m 2 , m 3 ) is (x,2x,3x) for
some odd x > 3 or is (3,6,3). The latter is impossible by [20] 11.6 and 11.7, so

w 3 / 3 = x > 3. Now by [4,17] one of m2, m3 is x(x — l)/k where
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k < 3. If m2 = x(x - \)/k then k = (x - l ) /2 is 1 or 2 by [4] and m is 19 or 31,
a contradiction as before. Similarly if w3 = x(x — l)/k then x = 3k + 1 = 7 as
w | is odd. Then m = 43, again a contradiction.

Thus if s = 3 then z, = z2 = z3 = 2. If A'g is imprimitive on all three suborbits
then by Lemma 2.3 and [20] 18.2, m, = m2 — m3 = 2x = 2(mod4). If. Xs has Ax

as a composition factor with x > 9 then X contains a 7-element of degree at most
42, a contradiction to [19]. Thus if Xs has Ax as a factor then x is 3, 5, or 7 and w
is 19, 31, or 43 respectively, a contradiction to [20] 11.6 and 11.7. So x = 2r - 1
> 7. By a similar argument to that in the proof of Lemma 2.4, we can show that
e = 3x — 2 divides mx62c = (6x + I)x62c for some c > 0, a contradiction. Thus
we may assume that Xs is primitive on at least one suborbit and we may suppose
that m, is maximal among the w, such that Xs is primitive on F,. By the
minimality of m, Xs is 5-transitive on F,, or w1 < 6 and Xs is 2-transitive on F,.
Then by [4], m2 say is m,(wi, — \)/k where k is 1 or 2 (even if mx <£ 6). By the
maximality of m,, A'g is imprimitive on F2, and by Lemma 2.3, m 2 > 6 s o m 1 > 4;
also m2 = 2(mod4). By [20] 17.5, A"s acts faithfully on the union of suborbits on
which it is imprimitive. Hence by Lemma 2.3 and [20] 18.2 the only insoluble
composition factor of Xs is Ax, where x = m2/2 > 3 is odd, or GL(r, 2) where
m2 = 2(2r -\),r> 3. By [20] 11.3, 12.1 and [3] page 202, if w, > 6 then Xs has a
simple normal subgroup S which is 4-transitive on F, of even degree m,. Since S
must be Ax or GL(r, 2) this is impossible. Hence ml is 4 or 6. If m, is 4 then by
[20] 18.3, Xs is soluble so that m2 = 6, and m3 is 4 (if Xs is primitive on F3) or 6
(if Xg is imprimitive on F3). If w3 is 4 we have a contradiction to [5] while if m3 is
6 then m = 17, contradicting [20] 11.6 and 11.7. If w, = 6 then since w2 is even
w2 = 30, a contradiction by Lemma 2.3 and [20] 18.2.

Thus s - 2 and (z,, z2) is (1,5), (2,4), or (3,3). Consider the case (1,5). By
[4,17], m2 = m](mi — \)/k where k «£ 3. It follows from the minimality of m and
[20] 17.7 that Xs is imprimitive on F2, and by Lemma 2.3 and [20] 18.2,
m2 = Sm^, so m, = 5k + 1. Since m, is odd k = 2 and m — 67, a contradiction
to [20] 11.6 and 11.7.

Next consider the case z, = 2, z2 = 4. Suppose first that Xs is primitive on F,.
Then by Lemma 2.5 and [20] 17.7, Â  is 4-transitive on F, or w, < 6 and Xs is
2-transitive on F,, and Xs is imprimitive on F2. By [4], m2 = w,(w, — \)/k where
k is 1 or 2. Suppose that m, < w2/4 and that y E r : . By Lemma 2.3, Xa

Tl

involves a 2-transitive representation of degree w2/2 or w2/4, and so by [8]
Hilfsatz 1, all orbits of A^ in F2 have length a multiple of m2/4. Now if F(y) is
the orbit of Xy of length m, then A"fiy is transitive on F, — {y} and F(y) — {8}
and it follows from [7] Corollary 3 that F(y) - {8} C F2. Hence m, - 1 3* m2/4,
contradiction. Therefore m, > m2/4 = ml(m] — 1)/4A:, where k = 1 or 2, and
so (m,, m2) is (8,28), (6,15), (4,12), (4,6) or (2,2). Now m2 is divisible by 4, so
m, is 4 or 8 and A^1 is alternating or symmetric. By [4], Jfc=l, s o m = 1 7 , a
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contradiction to [20] 11.6, 11.7. Hence Xs is imprimitive on F,. If m2 < jm, and
if y G F2, then all orbits of XSy in F, have length a multiple of jm, (by Lemma
2.3 and [8] Hilfsatz 1). If F2(y) is the orbit of Xy of length m2, then if m2 < {mx

we must have F2(y) - {8} C F2. Hence F2 U {8} is fixed setwise by (Xs, Xy)- X,
contradiction. Thus m2 > {mv If Xs is primitive on F2 then by Lemma 2.5 it is
2-transitive and hence by [4], m, = m2(m2 — \)/k> m][m2 - \)/2k, that is
k s* (m2 — l)/2. By [4], m2 is 3 or 5, a contradiction since m2 is even. Hence Â
is imprimitive on both F, and F2 and w, < 2w2. Suppose first that X[2 satisfies
Lemma 2.3(i) or (ii). Then by [20] 18.2, ml = 2x, m2 = 4x for some odd x 3= 3,
and m = 1 + 6x. Since m is not prime x 3* 9. As above we can show that J4X is
not involved; hence x = 2r — 1 s* 15, and we show as above that e = 3x — 2
divides (6x + \)x66c, for some c > 0, a contradiction. Thus Zs

r2 satisfies Lemma
2.3(iii), and by the minimality of m either the representation of degree ̂  = \m2 is
5-transitive or >> < 6. If .y < 6 then by [20] 18.4, (m,, m2) is (6,8) or (10,12). The
first case is impossible by [18] since S6 on pairs has no subgroup fixing e = 5
pairs; in the other case it is also impossible since m = 23 is prime. Thus y s* 8 and
so by [20] 11.3, 12.1, X[2 has a composition factor 5 which is 4-transitive of
degree y. If S is not a composition factor of X[' then the kernel Y of Xs on F, has
two orbits of lengthy in F2 (by [20] 13.1), and is 4-transitive on each. If y £ F,
and F,(Y), F2(y) are the orbits of Xy of length m,, m2 respectively, then
H = | F2 n F2(y) I is 0, y, or 2y. By [7] Corollary 3, n = y. Thus Y has 1 orbit of
lengthy in F,(Y) and fixes the remaining points of F,(Y). Since the lengths of the
orbits of XSy in F,(y) are either 1, 1, |m, — 1, {mx — 1, or 1, \mx — 1, \mx, and
since Y is normal in XSy and y is even, it follows that y is }m, — 1. Then as Y is
4-transitive on this orbit of length y it follows that X[l, involves the alternating
group of degree \mx = y + 1, a contradiction to [20] 18.2. Thus 5 is a composi-
tion factor of Xg< hence is either Ax where x = \mx is odd or GL(r, 2) where
m, = 2(2r — 1) > 14. Since S is 4-transitive of even degree y we have a contradic-
tion.

The final case is s = 2, z, = z2 = 3. By Lemma 2.4, [20] 17.7, and since
m s* 15, X8 is not primitive on both suborbits. We may therefore assume that Xs

is imprimitive on F,. If Xs is also imprimitive on F2 then by Lemma 2.3, [20] 18.2
and 18.4, m, = m2. If ^4 ,̂ x = m,/3 odd, is involved then by considering a
7-element as before, x < 7, but then m is prime. Hence m,/3 = 2r — 1 3= 7. If r is
3 then w is prime; if r is 4 then e — \{m — 5) = 43 divides | X\, a contradiction
to [23] 13.10. If r > 5 then arguing as before we can show that e — 3x — 2 divides
(6JC + I)x66c for some c ^ 0, a contradiction. Thus Xs is primitive on F2 and by
Lemmas 2.4 and 2.5 is either 3-transitive, or m2 is 9, 5 or 3 and Xs is soluble, by
[20] 18.3. In the latter case m, = 9, and so only the primes 2 and 3 divide | X8 \;
thus m2 is 3 or 9. Since m ** 15, m2 is 9 and then m = 19 is prime. Thus A'g is
3-transitive on F2 and m2 > 5. If m2 < w, /3 and if y G F2 then all orbits of X8y
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in F, have length a multiple of w , /3 ^ m2 by [8] Hilfsatz 1; hence T] is also an
orbit for Xy, a contradiction as before. So m2 > w , /3 and both mx and m2 are
odd. By [4] it follows that m, = 21,m2 = 7. In this case X[2 > A-, and we have a
contradiction to [4]. This completes the proof of Lemma 2.6.

Thus the proof of Theorem 1 is complete.

3. Proof of Theorem 3 and its corollary

In this section we prove the following generalizations of Theorem 3 and its
corollary for transitive groups.

THEOREM 3'. Let G be a transitive permutation group on a set SI of n points and
let K be a nontrivial subgroup of G such that fixaK is nonempty. Assume that K
satisfies

(*) / / g £ G is such that fixa K n fixa K
g ¥= 0 then K is conjugate to Kg in

(K,Kg).
Then / = | fixa K\^ \n, and iff = {n either
(i) fixn K is a block of imprimitivity for G, or
(ii) G has a set 2 of m blocks of imprimitivity in Q such that G2 is Am or Sm, or

AGL(d, 2) in its natural representation where m = 2d ** 8. Moreover K fixes half
the blocks pointwise and is transitive on the remaining blocks.

COROLLARY TO THEOREM 3'. Let G be a transitive permutation group on a set Q
of n points, let p be a prime dividing \G\/n, and let K be a Sylow p-subgroup of the
stabilizer Ga of the point fi. Then / = | fixa # | < \n if f ~ \n then K is semiregular
on Q and either

(i) fix.aK is a block of imprimitivity for G, or
(ii) G has a set 2 of 2p blocks of imprimitivity in fl such that G2 D A2p.

PROOF OF THEOREM 3'. Let G, K be as in Theorem 3'. Suppose first that, for all
g in G, fixa K n fixa K

g is nonempty. Then by assumption K and Kg are
conjugate in (K, Kg), that is K is pronormal in G. Thus by Theorem 1, / < {n.
So suppose that K has a conjugate Kg such that fixa K and fixa K

g are disjoint.
Then n >|fixaA: U fixnA^g|= 2 / so t h a t / < {n. I f / = {-n then clearly suppa Kg

= fixa K.
To complete the proof we must examine the case f'= \n more closely. Let

a e fixaK and define H = (Kg\Kg < Ga, g £ G>. Let Q denote the conjugacy
class of K in G and if L is a subgroup of G let S D L denote the set of conjugates
of K contained in L. Then Q n Ga is a generating set of H. Let B = fixa H. Then
clearly if P G B,G n Ga = Gn Gfi. Suppose that g G G is such that B D £« ^ 0 ,
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say/?« = y for some fry G 5. Then (6 n Ga)
g = (G n Gfi)

g = G n Gy = Gn Ga,
that is g fixes setwise a set of generators of H. Thus g G NG(H) and so Bg = B.
We have therefore shown that B is a block of imprimitivity for G in £2. Now B is a
subset of fixa A and if B = fixa A then part (i) is true. So assume that B is a
proper subset of fixa A. Then there is a conjugate A* of A such that Kh < Ga and
fixa A =£ fixa A \ that is fixa A

A contains points of both fixa A and suppa AT.
Let 2 = {Bg\g G G} and consider the action of G on 2. The setwise stabilizer

X of 5 in G is # G (#) , for clearly NG(H) C *, and i f x £ l , say ax = B G B,
then ((3 n GJ* = <3 n Gfi = G n Ga so that JC G A^(i/). Let A' G 6 n X. If
fixa A"' n fixaA ¥= 0 then A' and A are conjugate in (A', A ) < X. If not then
fixa A' = suppa A, and the subgroup A* defined above is such that fixB A*
contains points of fixa A and fixa A'. It follows that A' and A are conjugate in
( A', KH, A ) < X. Thus all conjugates of A contained in X are conjugate to A in
X By [20] 3.5, NG(K) is transitive on fix2A, and so A fixes pointwise all
members of fix2 A.

Let A be an orbit of X in 2 — {B}. Suppose that A acts trivially on A and let
C G A. By our remark above C C fixa A. Let A' G S fl Ga C (3 n X. Then
A' = A* for some x G * and so (A')A = (A*)A = (KA)X = 1. Thus C G fix2 A'
and so C C fixa A'. Hence C is fixed pointwise by all members of a generating
set for H, and so C C fixa H — B, a contradiction. Thus AA ^ 1 and in particu-
lar X* ¥= 1. So XA is a transitive group with nontrivial pronormal subgroup AA

(by Lemma 1.4) and so by Theorem 1, j ^ =|fixA A|=e ^(| A | - 1). Thus \ 121=

where r is the number of orbits of X in 2 — {B}. It follows from Theorem 1 that
X is transitive on 2 — {B} and Xx~(B} is alternating or symmetric, or is GL(rf, 2)
for some rf > 3. In the former case G2 is alternating or symmetric. In the case of
GL( d, 2), A 2 is a 2-group and by O'Nan's result [ 13] Theorem A, G2 = AGL( d, 2).
This completes the proof of Theorem 3'.

PROOF OF COROLLARY TO THEOREM 3'. Let G be a transitive permutation group
on fi of degree n, let a G S2, let p be a prime dividing \Ga\, and let A be a Sylow
/^-subgroup of Ga. It is easy to check that A satisfies condition * of Theorem 3'
and so / = | f i x a A | < {n. Suppose that f — \n. We showed in the proof of
Theorem 3' that in this case A has a conjugate A' such that fixa A = suppa A'.
Then (A, A') = A X A' is a/>-subgroup of G containing A and for all B G fixa A,
A X K'p < Gp. Since A is a Sylow p-subgroup of Ĝ  we must have K'p = 1. Thus
A' and hence A are semiregular on the points they permute.

Finally we must consider the action of G on the set 2 of blocks of imprimitivity
in case (ii) of Theorem 3'. Let H, B, 2 and X be as in the proof of Theorem 3'. Let
Y be the pointwise stabilizer of B. Then A < Y and Y < X. Now Ar2" <B} is Am_,
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or Sm_,, or GL(rf,2) where 121= m, and 121= 2d s* 8 respectively. Since K acts
nontrivially on 2 it follows that y2~~W contains Am__x or GL(rf,2) respectively.
Since K is a Sylow ^-subgroup of Y and fixes half the blocks of 2, the groups
GL(J,2) do not arise, and in the case of ^m_, and Sm_,, « must be 2p. This
completes the proof.
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