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Abstract

In this paper, we will show that the spherical symmetric slices are the convex bodies that maximise
the volume, the surface area and the integral of mean curvature when the minimum width and the
circumradius are prescribed and the symmetric 2-cap-bodies are the ones which minimise the volume,
the surface area and the integral of mean curvature given the diameter and the inradius.

2010 Mathematics subject classification: primary 52A40; secondary 52A15.

Keywords and phrases: spherical symmetric slice, symmetric 2-cap-body, minimum width, diameter,
inradius, circumradius.

1. Introduction

For a planar convex set K, there are many functionals defining properties of K:
the perimeter P = P(K), the area A = A(K), the minimum width w = w(K), the
diameter d = d(K), the inradius r = r(K) and the circumradius R = R(K). There
are many inequalities comparing the sizes of these functionals (see, for example,
[2, 4, 6, 7, 14, 16, 17]).

Following Blaschke’s famous work [1], in 1961, Santaló [14] proposed mapping
the family of compact planar convex sets into a compact region [0, 1] × [0, 1] ⊂ E2,
which is called the Santaló diagram. The collection of inequalities determined by
a Santaló diagram constitutes a complete system of inequalities. Since there are six
functionals (P, A, w, d, r, R), the Santaló diagram has 20 cases giving bounds for
one of the functionals in terms of two others. Santaló [14] provided the solutions for
(A, P,w), (A, P, r), (A, P, R), (A, d,w), (P, d,w) and (d, r, R). The case (d,w, r) was
solved by Hernández Cifre via an imaginative method in [8]; she also solved (P, d, r)
and (P, d, R) in [9]. The cases (d,w, R) and (w, r, R) were concluded by Hernández
Cifre and Gomis in [13]. Böröczky et al. obtained the cases (A, r, R) and (P, r, R)
in [3]. Complete systems of inequalities for 3-rotational symmetric planar convex sets
are discussed in [11].
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For a three-dimensional convex body K, the volume V = V(K), the surface area
S = S (K) and the integral of the mean curvature M = M(K) are very significant
quantities besides the minimum width w, the diameter d, the inradius r and the
circumradius R of K. It is an interesting problem to find the convex bodies in three-
dimensional Euclidean space E3 which have maximum or minimum volume, surface
area and integral of mean curvature when some of the other functionals are fixed. Some
higher dimensional discussions have appeared in [10] and [12].

In this paper, inspired by [3], we derive two new groups of inequalities relating the
volume, the surface area and the integral of the mean curvature with the minimum
width and the circumradius and then with the diameter and the inradius of a convex
body K in E3. We prove the following two theorems.

Theorem 1.1. Let K be a compact convex body in the Euclidean space E3 and R and
w its circumradius and minimum width. Then

V(K) ≤ π
(
wR2 −

w3

12

)
, (1.1)

S (K) ≤ π
(
2R2 −

w2

2
+ 2wR

)
, (1.2)

M(K) ≤ 2πw + 2π

√
R2 −

w2

4
arccos

w
2R
, (1.3)

and the equality signs in (1.1)–(1.3) hold if and only if K is the spherical symmetric
slice, denoted by K s, that is, the part of the ball B3(R) bounded by two parallel planes
equidistant from the centre O of B3(R) and a distance w apart (see Figure 1(a)).

Theorem 1.2. Let K be a compact convex body in the Euclidean space E3 and r and d
its inradius and diameter. Suppose that there is a diameter of K which intersects the
inscribed ball of K. Then

V(K) ≥
πr2

3

(4r2

d
+ d

)
, (1.4)

S (K) ≥ πr
(4r2

d
+ d

)
, (1.5)

M(K) ≥ π
(4r2

d
+ d

)
, (1.6)

and the equality signs in (1.4)–(1.6) hold if and only if K is the symmetric 2-cap-body,
denoted by Kc

2, that is, the convex hull of the ball B3(r) and two points symmetric with
respect to the centre O of B3(r) and a distance d apart (see Figure 1(b)).

We deal with Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3.
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O
O

(a) Spherical symmetric slice (b) Symmetric 2-cap-body

Figure 1. Spherical symmetric slice and symmetric 2-cap-body.

2. Maximising the volume, the surface area and the integral of the
mean curvature

In order to prove Theorem 1.1, we first establish the following two lemmas.

Lemma 2.1. Let K be a compact convex body in the Euclidean space E3 and B3(R)
and w its circumscribed ball and minimum width, respectively. Let P1 and P2 be two
parallel support planes of K, where each Pi is perpendicular to the direction ~u of
minimum width. Then K cannot lie in any hemisphere of B3(R), unless the intersection
of P1 or P2 with K is a disc with centre O and radius R.

Proof. Since B3(R) is the circumscribed ball of K, K is contained in B3(R) and both
P1 and P2 intersect B3(R). If the conclusion fails, then P1 and P2 must intersect the
same hemisphere of B3(R) and neither of these two planes passes through the centre O
of B3(R), or one of them passes through O but the intersection of K and this plane is
not a disc with centre O and radius R. Denote by K̃ the zone bounded by P1, P2 and
B3(R); then K ⊂ K̃ (see Figure 2). So, we can move B3(R) in the direction ~u until the
centre O belongs to K̃, and then narrow the radius of B3(R) until it intersects K, which
contradicts the definition of circumscribed ball. �

Lemma 2.2. Let P1 and P2 be two parallel planes which intersect different hemispheres
of B3(R) and denote by K the convex body bounded by P1, P2 and B3(R). Denote by
x̃ and ỹ the distances from the centre O of B3(R) to P1 and P2 (see Figure 3). If
x̃ + ỹ = w < 2R, then

V(K) ≤ π
(
wR2 −

w3

12

)
, (2.1)

S (K) ≤ π
(
2R2 −

w2

2
+ 2wR

)
, (2.2)

M(K) ≤ 2πw + 2π

√
R2 −

w2

4
arccos

w
2R
, (2.3)

and the equality signs in (2.1)–(2.3) hold if and only if x̃ = ỹ = w/2, that is, K = K s.
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w

u
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O

Figure 2. P1 and P2 intersect the same hemisphere of B3(R).

K

O

w

Figure 3. K is bounded by P1, P2 and B3(R).

Proof. Since K can be generated by revolving the curve x =
√

R2 − y2 (−ỹ ≤ y ≤ x̃)
about the y-axis, its volume V and lateral area S 3 can be expressed by

V(K) =

∫ x̃

−ỹ
πx2 dy = π(R2(x̃ + ỹ) − 1

3 (x̃3 + ỹ3)),

S 3(K) =

∫ x̃

−ỹ
2πx
√

1 + x′2 dy = 2πR(x̃ + ỹ).

Denote by S i the area of the domain Pi ∩ K, i = 1, 2. Since P1 ∩ K and P2 ∩ K are
discs, it follows that S 1(K) = π (R2 − x̃2) and S 2(K) = π (R2 − ỹ2). So, the surface area
is

S (K) = S 1(K) + S 2(K) + S 3(K) = π(2R2 − x̃2 − ỹ2 + 2R(x̃ + ỹ)).
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K
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w

u

Figure 4. K̃ contains K.

Let H be the mean curvature of K and α1 and α2 the exterior dihedral angles along
the edges of P1 ∩ K and P2 ∩ K. From [5] and [6],

M(K) =

∫
S 3

H dσ +
1
2

∫
∂S 1

α1 ds +
1
2

∫
∂S 2

α2 ds

= 2π(x̃ + ỹ) + π
(√

R2 − x̃2 arccos
x̃
R

+

√
R2 − ỹ2 arccos

ỹ
R

)
.

Eliminating ỹ by using x̃ + ỹ = w gives

V(K) = π(wR2 − 1
3 (x̃3 + (w − x̃)3)),

S (K) = π(2R2 + 2wR − x̃2 − (w − x̃)2),

M(K) = 2πw + π
(√

R2 − x̃2 arccos
x̃
R

+
√

R2 − (w − x̃)2 arccos
w − x̃

R

)
.

The functionals V(K), S (K) and M(K) can be regarded as functions of x̃. Some
simple computations show that the maxima of these functions are attained only when
x̃ = w/2. Notice, in the case of M(K), that the function

(
u
/√

1 − u2) arccos u is strictly
monotonic increasing on (0, 1). Thus, (2.1)–(2.3) follow and the equality signs hold if
and only if x̃ = ỹ = w/2, that is, K = K s. �

Proof of Theorem 1.1. If R = w/2, then the results are obvious. Let P1 and P2 be the
support planes in the direction ~u of minimum width and B3(R) the circumscribed ball
of K. If R > w/2, for a convex body K in E3, by Lemma 2.1, P1 and P2 intersect
different hemispheres of B3(R) (see Figure 4) or P1 (or P2) passes through O and the
intersection of K and this plane is a disc with centre O and radius R.

Let K̃ be the zone bounded by P1, P2 and B3(R), so that K ⊂ K̃. From [6],
V(K) ≤ V(K̃), S (K) ≤ S (K̃) and M(K) ≤ M(K̃).
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For the first case in which P1 and P2 intersect different hemispheres of B3(R), it
follows from Lemma 2.2 that

V(K) ≤ V(K̃) ≤ π
(
wR2 −

w3

12

)
,

S (K) ≤ S (K̃) ≤ π
(
2R2 −

w2

2
+ 2wR

)
,

M(K) ≤ M(K̃) ≤ 2πw + 2π

√
R2 −

w2

4
arccos

w
2R
,

and the equality signs hold if and only if K = K̃ = K s.
For the second case in which P1 (say) passes through O and its intersection with K

is a disc with centre O and radius R, by a calculation similar to that in Lemma 2.2,

V(K) ≤ V(K̃) = π
(
wR2 −

w3

3

)
< π

(
wR2 −

w3

12

)
,

S (K) ≤ S (K̃) = π(2R2 − w2 + 2wR) < π
(
2R2 −

w2

2
+ 2wR

)
,

M(K) ≤ M(K̃) = 2πw +
π2R

2
+ π
√

R2 − w2 arccos
w
R

< 2πw + 2π

√
R2 −

w2

4
arccos

w
2R
. �

3. Minimising the volume, the surface area and the integral of the
mean curvature

Proof of Theorem 1.2. By assumption, there is a diameter of K, denoted by AB,
which intersects the inscribed ball B3(r). Denote by K̃ = conv{B3(r), A, B} the convex
hull of B3(r) and the two points A and B. Then K̃ ⊂ K; hence, according to [6],
V(K) ≥ V(K̃), S (K) ≥ S (K̃) and M(K) ≥ M(K̃).

Let x̃ and ỹ be the distances from the centre O of B3(r) to the points A and B. Let
π1 be the plane which passes through the three points O, A and B. Denote by D the
intersection of π1 and K̃. It is clear that D is the convex hull of B3(r) ∩ π1 and the two
points A, B. Set sin θ1 = r/x̃, sin θ2 = r/̃y (see Figure 5).

The volume and the surface area of the ‘cap’ about point A are denoted by V1,
S 1 and those of B are V2, S 2. The ‘cap’ body of point A can be generated by
revolving the domain D1 about the x-axis, where D1 is constructed by the curves
y1 = tan θ1x (0 ≤ x ≤ x̃ − r sin θ1), y2 =

√
r2 − (x − x̃)2 (x̃ − r ≤ x ≤ x̃ − r sin θ1) and

the x-axis. Hence,

V1(K̃) =

∫ x̃−r sin θ1

0
πy2

1 dx −
∫ x̃−r sin θ1

x̃−r
πy2

2 dx =
πr2

3
(x̃ − r)2

x̃
and

S1(K̃) =

∫ x̃−r sin θ1

0
2πy1

√
1 + y′21 dx =

πr(x̃2 − r2)
x̃

.
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B

Figure 5. The intersection of π1 and K̃.

The ‘cap’ body of point B can be generated by revolving the domain D2 about the
x-axis, where D2 is constructed by the curves y3 = −tan θ2x (−ỹ + r sin θ2 ≤ x ≤ 0),
y4 =

√
r2 − (x + ỹ)2 (−ỹ + r sin θ2 ≤ x ≤ r − ỹ) and the x-axis. By a similar argument,

V2(K̃) =

∫ 0

−ỹ+r sin θ2

πy2
3 dx −

∫ r−ỹ

−ỹ+r sin θ2

πy2
4 dx =

πr2

3
(ỹ − r)2

ỹ
,

S 2(K̃) =

∫ 0

−ỹ+r sin θ2

2πy3

√
1 + y′23 dx =

πr(ỹ2 − r2)
ỹ

.

Let S̃ 1 and S̃ 2 be the surface areas of B3(r) covered by the two ‘caps’ about points A
and B. Using the same method as above,

S̃ 1(K̃) =

∫ x̃−r sin θ1

x̃−r
2πy2

√
1 + y′22 dx = 2πr2(1 − sin θ1),

S̃ 2(K̃) =

∫ r−ỹ

−ỹ+r sin θ2

2πy4

√
1 + y′24 dx = 2πr2(1 − sin θ2).

Hence,

V(K̃) = V1(K̃) + V2(K̃) +
4πr3

3
=
πr2

3

(
x̃ + ỹ + r2 x̃ + ỹ

x̃ỹ

)
,
πr2

3
g(x̃, ỹ),

S (K̃) = S 1(K̃) + S 2(K̃) + (4πr2 − S̃ 1(K̃) − S̃ 2(K̃)) = πr
(
x̃ + ỹ + r2 x̃ + ỹ

x̃ỹ

)
, πr g(x̃, ỹ).

By considering the first derivatives of g(x̃, ỹ) with respect to x and y, it follows that
g(x̃, ỹ) is strictly monotonic increasing in each variable. If x̃ + ỹ > d, there exists a
positive real number x̃′ such that x̃ − x̃′ + ỹ = d, and x̃ − x̃′ > 0 (since OA, AB and
OB form a triangle), so g(x̃, ỹ) > g(x̃ − x̃′, ỹ). Therefore, we need only consider the
case x̃ + ỹ = d. The function g(x̃, ỹ) has its minimum at the point (a/2, a/2) under the
condition x̃ + ỹ = a. So,

V(K) ≥ V(K̃) =
πr2

3
g(x̃, ỹ) ≥

πr2

3
g
(d
2
,

d
2

)
=
πr2

3

(4r2

d
+ d

)
,

S (K) ≥ S (K̃) = πr g(x̃, ỹ) ≥ πr g
(d
2
,

d
2

)
= πr

(4r2

d
+ d

)
.
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For the integral of the mean curvature of K, it is well known that a general cap-body
(not necessarily symmetric) satisfies the relation S = Mr (see [15, pages 367–368]). It
is obvious that the relation holds for K̃; hence,

M(K) ≥ M(K̃) =
1
r

S (K̃) ≥ π
(4r2

d
+ d

)
,

and the equality is attained if and only if K = K̃ and x̃ = ỹ = d/2, that is, K = Kc
2. �

Remark 3.1. The hypothesis that there exists a diameter which intersects the convex
body K in E3 is necessary. For example, if K is a tetrahedron, all its edges are
diameters, but none of them intersects its inscribed ball.
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