# THE EQUATION $y^{\prime}=f y$ IN ZERO RESIDUE CHARACTERISTIC by ALAIN ESCASSUT and MARIE-CLAUDE SARMANT 

(Received 16 October, 1989)

Let $K$ be an algebraically closed field complete with respect to an ultrametric absolute value $|$.$| and let k$ be its residue class field. We assume $k$ to have characteristic zero (hence $K$ has characteristic zero too).

Let $D$ be a clopen bounded infraconnected set [3] in $K$, let $R(D)$ be the algebra of the rational functions with no pole in $D$, let $\|.\|_{D}$ be the norm of uniform convergence on $D$ defined on $R(D)$, and let $H(D)$ be the algebra of the analytic elements on $D$ i.e. the completion of $R(D)$ for the norm $\|\cdot\|_{D}$.

Throughout this paper, $f$ will denote an element of $H(D),(\mathscr{C})$ will denote the equation $y^{\prime}=f y$ and $\mathscr{S}$ will be the space of the solutions of $(\mathscr{E})$ in $H(D)$.

In a previous paper where we made no hypothesis on the residue characteristic, we proved that when $\mathscr{S}$ contains at least one solution $g$ invertible in $H(D)$, then $\mathscr{S}$ has dimension 1. Otherwise, every solution different from zero is annulled by a $T$-filter [9].

When the residue characteristic $p$ is different from zero, for every integer $q \in \mathbb{N}$ we have constructed clopen bounded infraconnected sets $D$ and elements $f \in H(D)$ such that $\mathscr{S}$ has dimension $q$ (we have even constructed a $D$ and $f \in H(D)$ such that $\mathscr{S}$ has infinite dimension) [11].

Here, in residue characteristic zero, we will prove the following result.
Theorem. If $\mathscr{S}$ is not reduced to $\{0\}$, it has dimension one and every non identically zero solution is invertible in $H(D)$.

For all $a \in K, r \in \mathbb{R}_{+}, d(a, r)$ denotes the disk $\{x \in K:|x-a| \leq r\}, d^{-}(a, r)$ is the disk $\{x \in K:|x-a|<r\}$, and $C(a, r)$ is the circle $\{x:|x-a|=r\}$. For all $a \in K, r^{\prime}, r^{\prime \prime} \in R_{+}$ with $0<r^{\prime}<r^{\prime \prime}$, we will denote by $\Gamma\left(a, r^{\prime}, r^{\prime \prime}\right)$ the set $\left\{x \in K: r^{\prime}<|x-a|<r^{\prime \prime}\right\}$.

Let "Log" be a logarithm function of base $\omega>1$ and let $v$ be the valuation of $K$ defined by $v(x)=-\log |x|$.

Let $D$ be an infraconnected set of diameter $R$; for $g \in H(D), a \in D$ and $\mu \geq-\log R$, we define $v_{a}(g, \mu)=\lim _{\substack{v(x) \rightarrow \mu \\ v(x) \neq \mu \\ x \in D}} v(g(x))[3,5,12]$. When $a=0$ we write $v(g, \mu)$ instead of $v_{0}(g, \mu)$. The properties of the functions $v_{a}(g, \mu)$ were given in $[5,12]$ and recalled in many papers like [9]. Also the increasing and decreasing filters were defined in [5] and recalled in [9]. The $T$-filters were defined in [6].

Before proving the Theorem, we have to establish the Lemmas and Propositions A, $\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ mainly dedicated to the behaviour of the valuation function $v(f, \mu)$ when the residue characteristic is zero.

Lemma A. Let $r$ and $R \in \mathbb{R}_{+}$with $0<r<R$ and let $D$ be $\Gamma(r, R)$. Let $\mu$ belong to $]-\log R,-\log r\left[\right.$ and let $f$ be a Laurent series $\sum_{-\infty}^{+\infty} a_{n} x^{n} \in H(D)$ such that $v(f, \mu)=$
$v\left(a_{q}\right)+q \mu$ with $q \neq 0$. Then $v(f, \mu)=v\left(f^{\prime}, \mu\right)+\mu$.

Proof. $f^{\prime}(x)=\sum_{-\infty}^{+\infty} n a_{n} x^{n-1}$; hence $v\left(f^{\prime}, \mu\right)=\inf _{n \in \mathbb{Z}} v\left(n a_{n}\right)+(n-1) \mu$. Since the residue
characteristic of $K$ is zero, $v\left(n a_{n}\right)=v\left(a_{n}\right)$ for every $n \neq 0$, hence $\inf _{n \in \mathbb{Z}} v\left(n a_{n}\right)+(n-1) \mu=$ $v\left(q a_{q}\right)+(q-1) \mu=v\left(a_{q}\right)+(q-1) \mu=v(f, \mu)-\mu$.

Lemma B. Let $r^{\prime}, r^{\prime \prime}$ be numbers such that $0<r^{\prime}<r^{\prime \prime}$ and let $h(x)$ be a rational function in $K(x)$ such that $v(h, \mu)$ is not constant in any interval included in $\left[r^{\prime}, r^{\prime \prime}\right]$. Then $v\left(h^{\prime}, \mu\right)=v(h, \mu)-\mu$ whenever $\mu \in\left[-\log r^{\prime \prime},-\log r^{\prime}\right]$.

Proof. Since the function $\mu \rightarrow v(h, \mu)$ is continuous in $\mu$, it is enough to prove the relation in $]-\log r^{\prime \prime},-\log r^{\prime}[$. Let $\sigma \in]-\log r^{\prime \prime},-\log r^{\prime}\left[\right.$ and let $s=\omega^{-\sigma}$. We will prove the relation at $\sigma$ by considering $t \in] s, r^{\prime \prime}[$ such that $h$ has no pole in $\Gamma(s, t)$. Then $h(x)$ is equal to a Laurent series $\sum_{-\infty}^{+\infty} a_{n} x^{n}$ and we can apply Lemma $A$ that shows the relation is true whenever $\mu \in]-\log t, \sigma[$ By continuity the relation then is true at $\sigma$.

Proposition C. Let D be a clopen bounded infraconnected set, of diameter $R$, such that 0 belongs to $\tilde{D}$. Let $r$ be the distance from 0 to $D$ and let $r^{\prime}, r^{\prime \prime} \in \mathbb{R}_{+}^{*}$ be such that $0<r^{\prime}<r^{\prime \prime} \leqslant R$ and $r \leqslant r^{\prime}$. Let $f \in H(D)$. We assume the function $\mu \rightarrow v(f, \mu)$ is bounded in the interval $I=\left[-\log r^{\prime \prime},-\log r^{\prime}\right]$ and it is not constant in any interval $\mathscr{I} \subset I$. Then $v(f, \mu)=v\left(f^{\prime}, \mu\right)+\mu$ whenever $\mu \in I$.

Proof. Let $M$ be the upper bound of $v(f, \mu)$ in $I$ and let $\delta=\omega^{-M} \min (1,1 / R)$. By [8, Theorem 6] there exists $h \in R(D)$ satisfying (1) $\|f-h\|_{D}<\delta$ together with (2) $\left\|f^{\prime}-h^{\prime}\right\|_{D}<\delta$. Relation (1) also implies $v(f-h, \mu)>M \geqslant v(f, \mu)$ hence (3) $v(f, \mu)=$ $v(h, \mu)$ whenever $\mu \in I$.

Then the function $\mu \rightarrow v(h, \mu)$ is not constant in any interval included in $I$; hence by Lemma B, we have (4) $v\left(h^{\prime}, \mu\right)=v(h, \mu)-\mu$ whenever $\mu \in I$. On the other hand, by relation (2) we have $v\left(f^{\prime}-h^{\prime}, \mu\right)>M+\log R>M-\mu$ from which $v\left(f^{\prime}-h^{\prime}, \mu\right)>$ $v\left(h^{\prime}, \mu\right)$ hence $v\left(f^{\prime}, \mu\right)=v\left(h^{\prime}, \mu\right)$ whenever $\mu \in I$. Then relations (3) and (4) do show that $v\left(f^{\prime}, \mu\right)=v(f, \mu)-\mu$ whenever $\mu \in I$.

Proposition D. Let $D$ be a clopen bounded infraconnected set with a $T$-filter $\mathscr{F}$ and let $f \in H(D)$. We assume the equation $y^{\prime}=f y$ admits a solution $g$ strictly annulled by $\mathscr{F}$. Then $f$ is not annulled by $\mathscr{F}$.

Proof. We will first assume $\mathscr{F}$ is increasing, of center $a$, of diameter $R$. We can obviously assume $a=0$. Since $g$ is strictly annulled by $\mathscr{F}$, there exists $\lambda>-\log R$ such that $\lim _{\mu \rightarrow-\log R} v(g, \mu)=+\infty$ with $v(g, \mu)<+\infty$ for $\left.\left.\mu \in\right]-\log R, \lambda\right]$, and then there exists a sequence of couples $\left(\lambda_{n}^{\prime}, \lambda_{n}^{\prime \prime}\right)$ with $-\log R>\lambda_{n}^{\prime}>\lambda_{n}^{\prime \prime}, \lim _{n \rightarrow+\infty} \lambda_{n}^{\prime \prime}=\lim _{n \rightarrow+\infty} \lambda_{n}^{\prime}=-\log R$ and such that $(d / d \mu) v(f, \mu)$ exists and is strictly negative whenever $\mu \in\left[\lambda_{n}^{\prime}, \lambda_{n}^{\prime \prime}\right]$. By Proposition C we know that $v\left(g^{\prime}, \mu\right)=v(g, \mu)-\mu$ whenever $\mu \in\left[\lambda_{n}^{\prime}, \lambda_{n}^{\prime \prime}\right]$ therefore $v(f, \mu)=-\mu$ whenever $\mu \in\left[\lambda_{n}^{\prime}, \lambda_{n}^{\prime \prime}\right]$. Thus $v(f, \mu)$ does not go to $+\infty$ when $\mu$ approaches $-\log R$, which proves $f$ is not annulled by $\mathscr{F}$.

In the case that $\mathscr{F}$ is decreasing we can do the same demonstration in choosing a center of $\mathscr{F}$ (we can take it in a spherically complete extension of $K$, if required).

Proposition E. Let $D$ be a clopen bounded infraconnected set containing 0 , let $f$ belong to $H(D)$ and let $\varphi$ belong to $H(D)$ such that $\varphi^{\prime}=f \varphi$. We assume the function $\mu \rightarrow v(f, \mu)$ to be linear in an interval $I=\left[\lambda^{\prime}, \lambda^{\prime \prime}\right]$ and $v(\varphi, \mu)<+\infty$ whenever $\mu \in I$. Then the function $\mu \rightarrow v(\varphi, \mu)$ is also linear in $I$.

Proof. We assume $v(\varphi, \mu)$ to be non linear in $I$. Then there exists a point $\sigma \in] \lambda^{\prime}, \lambda^{\prime \prime}[$ such that $v_{d}^{\prime}(\varphi, \sigma) \neq v_{g}^{\prime}(\varphi, \sigma)$. With no loss of generality we can suppose $\sigma=0$ by performing a suitable change of variable.

We will first construct an interval $\mathscr{I}=\left[\mu^{\prime}, \mu^{\prime \prime}\right]$ with $\mu^{\prime}<0<\mu^{\prime \prime}$ such that the function $\mu \rightarrow v(\varphi, \mu)$ is linear in both $\left[\mu^{\prime}, 0\right]$ and $\left[0, \mu^{\prime \prime}\right]$ and $v\left(\varphi^{\prime}, \mu\right)$ is bounded in $\mathscr{F}$. Since $v(\varphi, \mu)<+\infty$ whenever $x \in I$, there exist $\mu_{1}, \mu_{2} \in I$ with $\mu_{1}<0<\mu_{2}$ such that $v(\varphi, \mu)$ is bounded by a number $L$ in the interval $\mathscr{I}=\left[\mu_{1}, \mu_{2}\right]$.

We can obviously choose $\mu_{1}, \mu_{2}$ close enough to 0 to have the function $\mu \rightarrow v(\varphi, \mu)$ linear in each one of the intervals $\left[\mu_{1}, 0\right.$ ] and $\left[0, \mu_{2}\right]$ because it is bounded in $\mathscr{I}$, hence piecewise linear in $\mathscr{\mathscr { L }}$. Since $v_{g}^{\prime}(\varphi, 0) \neq v_{d}^{\prime}(\varphi, 0)$, the function $\mu \rightarrow v(\varphi, \mu)$ is not constant in at least one of the two intervals $\left[\mu_{1}, 0\right]$ and $\left[0, \mu_{2}\right]$.

For example suppose first it is not constant in [ $\mu_{1}, 0$ ]. Since it is linear, it is not constant in any one of the intervals included in $\left[\mu_{1}, 0\right]$ and then we can apply Proposition C which proves $v\left(\varphi^{\prime}, \mu\right)=v(\varphi, \mu)-\mu$ whenever $\mu \in\left[\mu_{1}, 0\right]$ and therefore $v\left(\varphi^{\prime}, \mu\right)$ is bounded in $\left[\mu_{1}, 0\right]$ by a number $L_{1}^{\prime}$. In addition, since $v\left(\varphi^{\prime}, 0\right)=v(\varphi, 0)$ there exist $\mu^{\prime \prime} \in\left[0, \mu_{2}\right]$ such that $v\left(\varphi^{\prime}, \mu\right)$ is bounded in $\left[0, \mu^{\prime \prime}\right]$ by a number $L_{2}^{\prime}$. Let us put $\mu^{\prime}=\mu_{1}$ and $L^{\prime}=\max \left(L_{1}^{\prime}, L_{2}^{\prime}\right)$. The function $\mu \rightarrow v\left(\varphi^{\prime}, \mu\right)$ is then upper bounded by $L^{\prime}$ in $\left[\mu^{\prime}, \mu^{\prime \prime}\right]$ while $v(\varphi, \mu)$ is upper bounded by $L$.

In the same way, if we suppose $v(\varphi, \mu)$ to be non constant in $\left[0, \mu_{2}\right]$ we have a symmetric construction and therefore we finally have an upper bound $L^{\prime}$ for $v\left(\varphi^{\prime}, \mu\right)$ in the interval $\left[\mu^{\prime}, \mu^{\prime \prime}\right]$ in all cases.

We set $M=\max \left(L, L^{\prime}\right)$. By definition $\varphi$ satisfies (1) $v(\varphi, \mu) \leqslant M$ whenever $\mu \in \mathscr{I}$, and (2) $v\left(\varphi^{\prime}, \mu\right) \leqslant M$ whenever $\mu \in \mathscr{I}$.

Now by [8, Theorem 6] there exists $\psi \in R(D)$ satisfying $\|\varphi-\psi\|_{D}<\omega^{-M}$ and $\left\|\varphi^{\prime}-\psi^{\prime}\right\|_{D}<\omega^{-M}$ and therefore we have (3) $v(\varphi-\psi, \mu)>M$ whenever $\mu \in \mathscr{I}$, together with (4) $v\left(\varphi^{\prime}-\psi^{\prime}, \mu\right)>M$ whenever $\mu \in \mathscr{I}$. Then (1) and (3) imply (5) $v(\varphi, \mu)=$ $v(\psi, \mu)$ whenever $\mu \in \mathscr{I}$ while (2) and (4) imply $v\left(\varphi^{\prime}, \mu\right)=v\left(\psi^{\prime}, \mu\right)$ whenever $\mu \in \mathscr{I}$, hence $v\left(\psi^{\prime} / \psi, \mu\right)=v\left(\varphi^{\prime} / \varphi, \mu\right)=v(f, \mu)$ whenever $\mu \in \mathscr{I}$, which proves that $v\left(\psi^{\prime} / \psi, \mu\right)$ is linear in $\mathscr{\mathscr { L }}$, in the form $q \mu+B$ with $q \in \mathbb{Z}$.

Now $\psi$ factorizes in the form $(P / Q) \theta$ where $P$ and $Q$ are monic polynomials that have all of their zeros in $C(0,1)=\{x:|x|=1\}$ and $\theta$ belongs to $R(D)$ and has no zero in $C(0,1)$.

Since $v_{d}^{\prime}(\varphi, 0) \neq v_{g}^{\prime}(\varphi, 0)$, by (5) we have $v_{d}^{\prime}(\psi, 0) \neq v_{g}^{\prime}(\psi, 0)$ so that $P$ and $Q$ don't have the same number of zeros in $C(0,1)$. Let $P(x)=\sum_{j=0}^{m} \alpha_{j} x^{j}$ and let $Q(x)=\sum_{j=0}^{n} \beta_{j} x^{j}$. Then $m \neq n$ and (6) $\alpha_{m}=\beta_{n}=1$.

On the other hand, since $P$ and $Q$ have all of their zeros in $C(0,1)$ we see that $\left|\alpha_{j}\right| \leqslant 1$ whenever $j=0, \ldots, m,\left|\beta_{j}\right| \leqslant 1$ whenever $j=0, \ldots, n$, and (7) $v(P, 0)=$ $v(Q, 0)=0$.
$P^{\prime} Q-P Q^{\prime}$ is then a polynomial $\sum_{j=0}^{m+n-1} \lambda_{j} x^{j}$ with $\left|\lambda_{j}\right| \leqslant 1$ whenever $j=0, \ldots$, $m+n-1$ and by (6) we have $\lambda_{m+n-1}=m-n$, hence $\left|\lambda_{m+n-1}\right|=1$.

Then $v\left(P^{\prime} Q-P Q^{\prime}, 0\right)=0$, hence by (7) we see that

$$
\begin{equation*}
v\left(\frac{P^{\prime} Q-P Q^{\prime}}{P Q}, 0\right)=0 \tag{8}
\end{equation*}
$$

Now we will show that

$$
\begin{equation*}
v\left(\frac{\boldsymbol{\theta}^{\prime}}{\boldsymbol{\theta}}, 0\right)>0 . \tag{9}
\end{equation*}
$$

Since $\theta$ has neither any zero nor any pole in $C(0,1)$, there exist $r^{\prime}, r^{\prime \prime}$ such that $r^{\prime}<1<r^{\prime \prime}$ and such that $\theta$ has neither any zero nor any pole in $\Gamma\left(0, r^{\prime}, r^{\prime \prime}\right)$ and therefore $\theta$ is equal to a Laurent series $\sum_{-\infty}^{+\infty} a_{n} x^{n}$ convergent in $\Gamma\left(0, r^{\prime}, r^{\prime \prime}\right)$. Moreover, there exists $t \in \mathbb{Z}$ such that $\left|a_{t}\right||x|^{t}>\left|a_{n}\right||x|^{n}$ whenever $x \in \Gamma\left(0, r^{\prime}, r^{\prime \prime}\right)$. Let us factorize $\theta$ in the form $x^{t} \gamma$. Then in $\Gamma\left(0, r^{\prime}, r^{\prime \prime}\right) \gamma$ is equal to a Laurent series $\sum_{-\infty}^{+\infty} b_{n} x^{n}$ with $b_{0}=a_{t}$ and we see that

$$
v\left(\gamma^{\prime}, 0\right)=\inf _{n \in \mathbb{Z}} v\left(n b_{n}\right)=\inf _{n \neq 0} v\left(b_{n}\right)>v\left(b_{0}\right)=v(\gamma, 0)
$$

from which $v\left(\gamma^{\prime} / \gamma, 0\right)>0$. As $\theta^{\prime} / \theta=\gamma^{\prime} / \gamma+t / x$ we see $v\left(\theta^{\prime} / \theta, 0\right)=v\left(\gamma^{\prime} / \gamma, 0\right)+$ $v(t / x, 0)=v\left(\gamma^{\prime} / \gamma, 0\right)>0$ which finally shows (9).

Now let us consider $\psi^{\prime} / \psi=\theta^{\prime} / \theta+\left(P^{\prime} Q-P Q^{\prime}\right) / P Q$. By (8) and (9) we have

$$
v\left(\frac{\theta^{\prime}}{\theta}, 0\right)>v\left(\frac{P^{\prime} Q-P Q^{\prime}}{P Q}, 0\right)
$$

and therefore there exists an interval $\mathscr{U}=[-\rho, \rho]$ such that

$$
v\left(\frac{\theta^{\prime}}{\theta}, \mu\right)>v\left(\frac{P^{\prime} Q-P Q^{\prime}}{P Q}, \mu\right)
$$

whenever $\mu \in \mathscr{U}$. Then we have

$$
\begin{equation*}
v\left(\frac{\psi^{\prime}}{\psi}, \mu\right)=v\left(\frac{P^{\prime} Q-P Q^{\prime}}{P Q}, \mu\right) \text { whenever } \mu \in \mathscr{U} . \tag{10}
\end{equation*}
$$

Let us put $h(x)=\left(P^{\prime} Q-P Q^{\prime}\right) / P Q$. Since $P(x) Q(x)$ has exactly $m+n$ zeros in $C(0,1)$, and $P^{\prime} Q-P Q^{\prime}$ has at most $m+n-1$ zeros in $C(0,1)$ we see that (11) $v_{d}^{\prime}(h, 0)>v_{g}^{\prime}(h, 0)$.

Now by (10) we have $v_{d}^{\prime}\left(\psi^{\prime} / \psi, 0\right)=v_{d}^{\prime}(h, 0)$ and $v_{g}^{\prime}\left(\psi^{\prime} / \psi, 0\right)=v_{g}^{\prime}(h, 0)$ hence by (11) we obtain $v_{d}^{\prime}\left(\psi^{\prime} / \psi, 0\right)>v_{g}^{\prime}\left(\psi^{\prime} / \psi, 0\right)$ which contradicts the fact $v\left(\psi^{\prime} / \psi, \mu\right)$ is a linear function in $\mathscr{I}$, and that finishes proving Proposition E.

Proof of the Theorem. Let us assume that ( $\mathscr{E}$ ) admits a non identically zero solution $g$ and assume $g$ is not invertible in $H(D)$. By [ 9 , Theorem 2$], g$ is strictly annulled by a $T$-filter $\mathscr{F}$ on $D$ and, by Proposition $\mathrm{D}, f$ is not strictly annulled by $\mathscr{F}$.

For example let us assume $\mathscr{F}$ is increasing, of center 0 and of diameter $R$ and assume first $f$ is annulled by $\mathscr{F}$. Since $f$ is not strictly annulled by $\mathscr{F}$, there exists $r \in] 0, R$ [ such that $v(f, \mu)=+\infty$ whenever $\mu \in[-\log R,-\log r]$ hence (1) $v\left(g^{\prime}, \mu\right)=+\infty$ whenever
$\mu \in[-\log R,-\log r]$. But since $g$ is strictly annulled by $\mathscr{F}$, there exists an interval $\mathscr{I} \subset[-\log R,-\log r]$ such that $v(g, \mu)$ is a linear non constant function in $\mathscr{I}$ and by Proposition C we know that $v\left(g^{\prime}, \mu\right)=v(g, \mu)-\mu$, which contradicts (1). Thus, $f$ is not annulled by $\mathscr{F}$.

Now we know the function $\mu \rightarrow v(f, \mu)$ is linear in an interval $[-\log R, \lambda]$ ([5], [6], [12]). By Proposition $E$ the function $\mu \rightarrow v(g, \mu)$ is also linear in $[-\log R, \lambda]$ and that contradicts the hypothesis that $g$ is strictly annulled by $\mathscr{F}$.

In case $\mathscr{F}$ is decreasing we can perform a similar demonstration (by taking a center in a spherically complete extension of $K$ if required).

Thus $g$ is invertible in $H(D)$ and then by [9, Theorem 1] we know that the space of solutions of ( $\mathscr{E}$ ) has dimension 1.

## REFERENCES

1. Y. Amice, Les nombres p-adiques, P.U.F. (Paris, 1975).
2. B. Dwork, Lectures on p-adic differential equations (Springer-Verlag, 1982).
3. A. Escassut, Algèbres de Krasner, Comptes Rendus Acad. Sci. Paris, 272 (1971), 598-601.
4. A. Escassut, Algèbres d'éléments analytiques en analyse non archimédienne, Indagationes Math. 36 (1974), 339-351.
5. A. Escassut, Eléments analytiques et filtres percés sur un ensemble infraconnexe, Annali di Mat. Pura et Appl. Bologna, 110 (1976), 335-352.
6. A. Escassut, T-filtres, ensembles analytiques et transformation de Fourier p-adique, Ann. Inst. Fourier, 25 (1975), 45-80.
7. A. Escassut, Algèbres de Krasner intègres et noethériennes, Proc. Koninklijke Neder. Akad. van Wetenschappen, Series A 78 (1976), 109-130.
8. A. Escassut, Derivative of analytic elements on infraconnected clopen sets. Proc. Koninklijke Neder. Akad. van Wetenschappen, Series A 92 (1989), 63-70.
9. A. Escassut and M. C. Sarmant, The differential equation $y^{\prime}=f y$ in the algebras $H(D)$, Collectanea Math. 39 (1988) 31-40.
10. A. Escassut and B. Diarra, Non constant analytic element with a null derivative on an infraconnected open set. J. London Math. Soc., to appear.
11. A. Escassut, The equation $y^{\prime}=f y$ in $C_{p}$ when $f$ is not quasi-invertible, Revista di Mat. Pura ed Applicata, to appear.
12. G. Garandel, Les semi-normes multiplicatives sur les algèbres d'éléments analytiques au sens de Krasner, Indagationes Math. 37 (1975), 327-341.
13. M. Krasner, Prolongement analytique dans les corps valués complets: préservation de l'analycité par la convergence uniforme et par la dérivation; théorème de Mittag-Leffler généralisé pour les éléments analytiques, Comptes Rendus Acad. Sci. Paris 244 (1957), 2570-2573.
14. M. Krasner, Prolongement analytique uniforme et multiforme dans le corps valués complets. Les tendances géométriques en algèbre et théorie des nombres, Colloques Internationaux du C.N.R.S. Paris, 143, C.N.R.S. Paris, 97-141.
15. Ph. Robba, Fonctions analytiques sur les corps valués ultramétriques complets, Prolongement analytique et algèbres de Banach ultramétriques, Astérisque, 10 (1973), 109-220.
16. M. C. Sarmant and A. Escassut, T-suites idempotentes, Bull. Sci. Math. 106 (1982), 189-203.

Université Blaise Pascal
(Clermont II)
Mathematiques pures
F-63177 Aubiere Cedex
France

Université Pierre et Marie Curie
Mathematioues
F- 75230 Paris 05
France

