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Let K be an algebraically closed field complete with respect to an ultrametric
absolute value | . | and let k be its residue class field. We assume k to have characteristic
zero (hence K has characteristic zero too).

Let D be a clopen bounded infraconnected set [3] in K, let R{D) be the algebra of
the rational functions with no pole in D, let ||. ||D be the norm of uniform convergence on
D defined on R(D), and let H{D) be the algebra of the analytic elements on D i.e. the
completion of R{D) for the norm || . ||D.

Throughout this paper, / will denote an element of H(D), ((£) will denote the
equation y' =fy and Sf will be the space of the solutions of (g) in H(D).

In a previous paper where we made no hypothesis on the residue characteristic, we
proved that when 5̂  contains at least one solution g invertible in H{D), then & has
dimension 1. Otherwise, every solution different from zero is annulled by a T-filter [9].

When the residue characteristic p is different from zero, for every integer q e H we
have constructed clopen bounded infraconnected sets D and elements / e H(D) such that
Sf has dimension q (we have even constructed a D and / e H(D) such that 5̂  has infinite
dimension) [11].

Here, in residue characteristic zero, we will prove the following result.

THEOREM. If & is not reduced to {0}, it has dimension one and every non identically
zero solution is invertible in H(D).

For all a e K, r e M.+, d(a, r) denotes the disk {x e K: \x - a\ < r}, d~(a, r) is the disk
{xeK: \x-a\<r}, and C(a,r) is the circle {x: \x - a\ = r}. For all aeK, r', r"eR+

with 0 < r' < r", we will denote by T(a, r', r") the set {x e K: r' < \x - a\ < r").
Let "Log" be a logarithm function of base co > 1 and let v be the valuation of K

defined by v(x) = -Log |x|.
Let D be an infraconnected set of diameter R; for g e H{D), a e D and fi > — Log R,

we define va(g,[i)= lim v(g(x)) [3,5,12]. When a = 0 we write v(g,fi) instead of
( )

xeD

vo(g,n). The properties of the functions va(g,n) were given in [5,12] and recalled in
many papers like [9]. Also the increasing and decreasing filters were defined in [5] and
recalled in [9]. The T-filters were defined in [6].

Before proving the Theorem, we have to establish the Lemmas and Propositions A,
B, C, D, E mainly dedicated to the behaviour of the valuation function v(f, fi) when the
residue characteristic is zero.

LEMMA A. Let r and R e IR+ with 0<r<R and let D be T(r, R). Let n belong to
+ 00

] -Log/? , -Logr [ and let f be a Laurent series ^Janx"eH(D) such that u(/,ju) =
v{aq) + qfx with q^O. Then v(f, fi) = v(f, n) + //.

+ oo

Proof. f'(x) = X "fln*""1; hence v(f, ju) = inf v(nan) + (n- l)/x. Since the residue
_oo neZ
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characteristic of K is zero, v(nan) = v(an) for every n¥=0, hence inf v{nan) + (n - l)pi =
neZ

v{qaq) + (q- l)/x = v{aq) + (q- l)ju = v(f, ju) - ft.

LEMMA B. Let r',r" be numbers such that 0<r'<r" and let h(x) be a rational
function in K(x) such that v{h,pi) is not constant in any interval included in [r', r"]. Then
v(h', pi) = v(h, pi) — n whenever pi e[— Log r", — Log r'].

Proof. Since the function pi-*v(h, pi) is continuous in pi, it is enough to prove the
relation in ]-Logr", -Logr '[ . Let oe]-Logr", -Logr ' [ and let s = a>~a. We will
prove the relation at o by considering te]s,r"[ such that h has no pole in F(s,t).

Then h{x) is equal to a Laurent series 2 anx" and we can apply Lemma A that shows the
— oo

relation is true whenever pi e ] —Log t, a[. By continuity the relation then is true at a.

PROPOSITION C. Let D be a clopen bounded infraconnected set, of diameter R, such
that 0 belongs to D. Let r be the distance from 0 to D and let r',r" eU% be such that
0 < r' < r" =£ R and r =£ r'. Let f e H{D). We assume the function /i-> u( / , pi) is bounded
in the interval I = [—Logr", — Logr'] and it is not constant in any interval $ d . Then
v(f, pi) = v(f, fi) + ju whenever ft el.

Proof. Let M be the upper bound of v(f, ju) in / and let 6 = a>~M min(l, 1/R). By
[8, Theorem 6] there exists heR(D) satisfying (1) \\f-h\\D<6 together with (2)
\\f'-h'\\D<8. Relation (1) also implies v(f -h, /x)> M^v(f, (i) hence (3) u(/,/x) =
v(h, n) whenever pel.

Then the function n—*v{h,n) is not constant in any interval included in /; hence by
Lemma B, we have (4) v{h', ju) = v(h, n)-fi whenever pi el. On the other hand, by
relation (2) we have v(f -h', fi)>M+ LogR>M- n from which v(f'-h',fi)>
v(h',n) hence v(f',ii) = v(h',n) whenever pel. Then relations (3) and (4) do show
that v(f, fi) = v(f, fi) — n whenever n e I.

PROPOSITION D. Let D be a clopen bounded infraconnected set with a T-filter 8F and
let f e H(D). We assume the equation y' =fy admits a solution g strictly annulled by &.
Then f is not annulled by 3>.

Proof. We will first assume 9 is increasing, of center a, of diameter R. We can
obviously assume a = 0. Since g is strictly annulled by S', there exists A > —Log R such
that lim v(g, /i) = +°° with v(g, ju) < +°o for fi e ] - LogR,k], and then there exists

IX—'—Log R

a sequence of couples (X'n, AJ,') with -Log R > X'n > Â ', lim Â ' = lim X'n = -Log R and

such that {dldn)v{f, pi) exists and is strictly negative whenever pi e [k'n, A£]. By Proposition
C we know that v(g', pi) = v(g, pi)- pi whenever ^e[A^,A^'] therefore u(/ , / i ) = -ju
whenever pie[X'n,X'^\. Thus v(f,n) does not go to +°o when pi approaches - L o g R ,
which proves / is not annulled by &.

In the case that 9 is decreasing we can do the same demonstration in choosing a
center of 9 (we can take it in a spherically complete extension of K, if required).
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PROPOSITION E. Let D be a clopen bounded infraconnected set containing 0, let f
belong to H{D) and let q> belong to H{D) such that q>' =fq>. We assume the function
fi—>v(f, ft) to be linear in an interval I = [A', A"] and v{cp, fi) < +°° whenever fie I. Then
the function fi —» u(<p, ju) is also linear in I.

Proof. We assume v(cp, fi) to be non linear in /. Then there exists a point a e ]A', A"[
such that v'd{(p,o)i=v'g{q),o). With no loss of generality we can suppose o = 0 by
performing a suitable change of variable.

We will first construct an interval 3 = [fi', fi"] with fi' < 0 < fi" such that the function
fi—*v{q>,fi) is linear in both [ju',0] and [0, fi"] and v(<p',n) is bounded in 3. Since
v(q>,fi)< +<» whenever x el, there exist fiu fi2el with fix <0< fi2 such that v(q>, fi) is
bounded by a number L in the interval 3 = [ju,, fi2].

We can obviously choose fiu fi2 close enough to 0 to have the function fi—>v((p, fi)
linear in each one of the intervals [/^i,0] and [0, fi2] because it is bounded in 3, hence
piecewise linear in 3. Since vg(q>, 0) ¥=Vd(q>, 0), the function [i—>v(cp, fi) is not constant
in at least one of the two intervals [fiu 0] and [0, (i2\

For example suppose first it is not constant in [/ii,0]. Since it is linear, it is not
constant in any one of the intervals included in [fi{, 0] and then we can apply Proposition
C which proves u(<p',/i) = v{q>, fi) - n whenever jue[^ , ,0 ] and therefore v{q>', fi) is
bounded in [/Xi,0] by a number L\. In addition, since v(cp',0) = u(<p, 9) there exist
^ "e [0, fi2]

 s u c r i that v(cp', ft) is bounded in [0, /i"] by a number L'2. Let us put / i ' = nx

and L' = max(Li, L'2). The function /j,—>v(q)', /x) is then upper bounded by L' in [ju', ju"]
while v(cp, n) is upper bounded by L.

In the same way, if we suppose u(<p, fi) to be non constant in [0, fi2] we have a
symmetric construction and therefore we finally have an upper bound L' for u(<p',/i) in
the interval [fi', fi"] in all cases.

We set M = max(L,L') . By definition q> satisfies (1) v(q>, fi)^M whenever fie 3,
and (2) v(q>', fi)^M whenever fie 3.

Now by [8, Theorem 6] there exists xp e R(D) satisfying \\cp — tp\\D < co~M and
II<P' ~ V'llo < (W~M a n ( l therefore we have (3) v(cp — if>, fi)>M whenever n e 3, together
with (4) v(q>' — ip', fi)> M whenever fie 3. Then (1) and (3) imply (5) v{q>,fi) =
u(t/>,/x) whenever fie 3 while (2) and (4) imply v(q>', fi) = v(xp', fi) whenever fie 3,
hence v{ip'Ity, fi) = v(q>'/q), (i) = v(f, fi) whenever fie 3, which proves that v(\\>'/ip, fi)
is linear in 3, in the form qfi + B with q e Z.

Now tp factorizes in the form (P/Q)d where P and Q are monic polynomials that
have all of their zeros in C(0,1) = {x: \x\ = 1} and d belongs to R(D) and has no zero in

Since Vd(q>,0)¥=vg((p,0), by (5) we have u^(i/»,0)#Ug(V,0) so that P and Q don't
m n

have the same number of zeros in C(0,1). Let P{x) = 2 ajx' a n d l e t Q(x) ~ 2 Pjx'-
Then m ^ n and (6) am = f3n = 1. / = 0 y=0

On the other hand, since P and Q have all of their zeros in C(0,1) we see that
\<Xj\^l whenever / = 0, . . . , m , |/S,| =£ 1 whenever j = 0,...,n, and (7) u(P,0) =

w(G,o) = o.
/n+n — 1

P ' Q - P Q ' is t h e n a p o l y n o m i a l X V ^ w ' t n l ^ y l ^ l w h e n e v e r / = 0 , . . . ,
y=o

m +n - 1 and by (6) we have Am+n_! = m-n, hence |Am+M_,| = 1.
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Then v(P'Q - PQ',0) = 0, hence by (7) we see that

Now we will show that

'6'
v[-,0)>0. (9)

Since 9 has neither any zero nor any pole in C(0,1), there exist r',r" such that
r' < 1< r" and such that 6 has neither any zero nor any pole in F(0, r', r") and therefore 6

is equal to a Laurent series £ anx" convergent in T(0, /•', r"). Moreover, there exists t e Z
— oo

such that |a,| br|' > \an\ \x\" whenever x e r(0, r', r"). Let us factorize 0 in the form x'y.

Then in F(0, r', r") y is equal to a Laurent series E bnx" with b0 = a, and we see that
— oo

u(y\ 0) = inf v{nbn) = inf w(ftn) > v(b0) = v(y, 0)

from which u(y'/y, 0)>0. As 6'/8 = y'ly + t/x we see v(d'/6,0) = v(y'/y,0) +
v(t/x, 0) = u(y'/y, 0) > 0 which finally shows (9).

Now let us consider ip'/xp = 6'Id + (P'Q - PQ')/PQ. By (8) and (9) we have

and therefore there exists an interval °U = [—p,p] such that

PQ

whenever (i e °U.. Then we have

/V' \ (P'Q-PQ' \
v\ — , M j = v(v JQ , Mj whenever p e <U. (10)

Let us put h{x) = {P'Q-PQ')lPQ. Since P{x)Q{x) has exactly m + n zeros in
C(0,1), and P'Q-PQ' has at most m + n - 1 zeros in C(0,1) we see that (11)

Now by (10) we have v^(ip'/ip,O) = v^h,Q) and v^xl>'/y,0) = v^h,0) hence by
(11) we obtain Vd(\l>'/ip,0)>Vg(ip'/ip,0) which contradicts the fact v(%p< l\\>,n) is a
linear function in 3, and that finishes proving Proposition E.

Proof of the Theorem. Let us assume that ($) admits a non identically zero solution
g and assume g is not invertible in H(D). By [9, Theorem 2], g is strictly annulled by a
T-filter 9* on D and, by Proposition D, / i s not strictly annulled by SF.

For example let us assume ^ is increasing, of center 0 and of diameter R and assume
first / is annulled by &. Since / is not strictly annulled by 9, there exists r e ]0, R[ such
that u(/,/x) = +oo whenever fi e [-Log R,-Log r] hence (1) v(g', n) = +°° whenever
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/i e [—Log/?, —Logr]. But since g is strictly annulled by &, there exists an interval
^ c [ - L o g / ? , -Logr] such that v(g, ft) is a linear non constant function in 3 and by
Proposition C we know that v(g', ju) = u(g, ft)- fi, which contradicts (1). Thus, / is not
annulled by &>.

Now we know the function ju—»-u(/,jx) is linear in an interval [—Log/?, A]
([5], [6], [12]). By Proposition E the function (i—>v(g,iJ,) is also linear in [—Log/?, A]
and that contradicts the hypothesis that g is strictly annulled by &'.

In case SF is decreasing we can perform a similar demonstration (by taking a center
in a spherically complete extension of K if required).

Thus g is invertible in H{D) and then by [9, Theorem 1] we know that the space of
solutions of (&) has dimension 1.
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