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Let K be an algebraically closed field complete with respect to an ultrametric
absolute value | .| and let k be its residue class field. We assume & to have characteristic
zero (hence K has characteristic zero too).

Let D be a clopen bounded infraconnected set [3] in K, let R(D) be the algebra of

the rational functions with no pole in D, let || . ||, be the norm of uniform convergence on
D defined on R(D), and let H(D) be the algebra of the analytic elements on D i.e. the
completion of R(D) for the norm || . || .

Throughout this paper, f will denote an element of H(D), (%) will denote the
equation y' = fy and & will be the space of the solutions of (%) in H(D).

In a previous paper where we made no hypothesis on the residue characteristic, we
proved that when & contains at least one solution g invertible in H(D), then & has
dimension 1. Otherwise, every solution different from zero is annulled by a T-filter [9].

When the residue characteristic p is different from zero, for every integer g € N we
have constructed clopen bounded infraconnected sets D and elements f € H(D) such that
& has dimension g (we have even constructed a D and f € H(D) such that & has infinite
dimension) [11].

Here, in residue characteristic zero, we will prove the following result.

THEOREM. If & is not reduced to {0}, it has dimension one and every non identically
zero solution is invertible in H(D).

Forallae K, reR,, d(a,r) denotes the disk {x € K: |x —a|=r}, d(a, r) is the disk
{xeK:|x —a|<r}, and C(a,r) is the circle {x:|x —a|=r}. For all aeK, r', r"eR,
with 0 <r’' <r", we will denote by I'(a, 7', r") the set {x e K:r' <|x —a| <r"}.

Let “Log” be a logarithm function of base w>1 and let v be the valuation of K
defined by v(x) = —Log |x|.

Let D be an infraconnected set of diameter R; for g e H(D),ae D and u=—LogR,
we define v,(g, )= lim v(g(x)) [3,5,12]. When a=0 we write v(g, u) instead of

v(x)—>
e
X€
vo(g, u). The properties of the functions v,(g, u) were given in [5,12] and recalled in

many papers like [9]. Also the increasing and decreasing filters were defined in [S] and
recalled in [9]. The T-filters were defined in [6].

Before proving the Theorem, we have to establish the Lemmas and Propositions A,
B, C, D, E mainly dedicated to the behaviour of the valuation function v(f, ¢) when the
residue characteristic is zero.

LemmA A. Let r and R e R, with 0<r <R and let D be I'(r,R). Let u belong to
+0

]-LogR, —Logr[ and let f be a Laurent series Y, a,x" € H(D) such that v(f,u)=
v(a,) + qu with ¢ #0. Then v(f, u)=v(f',u)+p. =

+o
Proof. f'(x) =, na,x""'; hence v(f', u) = inf v(na,) + (n — 1)p. Since the residue
—® neZ
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characteristic of K is zero, v(na,) = v(a,) for every n #0, hence inf v(na,)+ (n — Du =
neZ

v(ga,) + (g —Nu=v(a,) +(g—Du=v(f,u)—p.

LEMMA B. Let r',r" be numbers such that 0<r'<r" and let h(x) be a rational
function in K(x) such that v(h, ) is not constant in any interval included in [r',r"}. Then
v(h', u) =v(h, u) — u whenever u € [—Logr", —Logr'].

Proof. Since the function p— v(h, p) is continuous in yu, it is enough to prove the
relation in ]-Logr”, —Logr'[. Let oe]-Logr",—Logr'[ and let s=w % We will
prove the relation at o by considering ¢ € s, r"[ such that A has no pole in I'(s, ).

<00

Then h(x) is equal to a Laurent series > a,x" and we can apply Lemma A that shows the

—

relation is true whenever u € ]| —Log¢, o[. By continuity the relation then is true at o.

ProrosiTioN C. Let D be a clopen bounded infraconnected set, of diameter R, such
that 0 belongs to D. Let r be the distance from 0 to D and let r',r" € R* be such that
O<r'<r"sRand r<r'. Let f € H(D). We assume the function u— v(f, u) is bounded
in the interval I =[—Logr", —Logr'] and it is not constant in any interval $ c 1. Then

u(f, u)=v(f’, u) + u whenever p € l.

Proof. Let M be the upper bound of v(f, u) in I and let 6 = @~ min(1, 1/R). By
[8, Theorem 6] there exists h € R(D) satisfying (1) ||f —h||p <8 together with (2)
[If'—h'llp <. Relation (1) also implies v(f —h, u) > M =v(f, u) hence (3) v(f, u) =
v(h, u) whenever p € I.

Then the function y— v(h, u) is not constant in any interval included in I; hence by
Lemma B, we have (4) v(h', u) =v(h, u) — u whenever u€l. On the other hand, by
relation (2) we have v(f'—h',u)>M +LogR>M —pu from which v(f' —h', u)>
v(h', u) hence v(f', u)=v(h', u) whenever u € l. Then relations (3) and (4) do show
that v(f', u) = v(f, u) — u whenever p € l.

ProrosiTioNn D. Let D be a clopen bounded infraconnected set with a T-filter ¥ and
let f € H(D). We assume the equation y' = fy admits a solution g strictly annulled by %.
Then f is not annulled by %.

Proof. We will first assume % is increasing, of center a, of diameter R. We can
obviously assume a =0. Since g is strictly annulled by &, there exists A > —Log R such

that lim wv(g, u) =+ with v(g, u) <+ for u € ]| — Log R, A], and then there exists
pu——Log R

a sequence of couples (4, A;) with —LogR>A4,>4,, lim A;= lim A,=-LogR and

n—+o n—»+o
such that (d/du)v(f, p) exists and is strictly negative whenever u € [A,,, A;)}. By Proposition
C we know that v(g', u)=v(g, u) — nu whenever pue€[A,,A,] therefore v(f,u)=—pn
whenever p €[4, A;]. Thus v(f, u) does not go to +o when pu approaches —LogR,
which proves f is not annulled by . '

In the case that & is decreasing we can do the same demonstration in choosing a
center of ¥ (we can take it in a spherically complete extension of K, if required).
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ProrosiTioN E. Let D be a clopen bounded infraconnected set containing 0, let f
belong to H(D) and let @ belong to H(D) such that @' =fp. We assume the function
u—v(f, u) to be linear in an interval I = [A', "] and v(p, ) < +o whenever p € l. Then
the function u— v(@, u) is also linear in 1.

Proof. We assume v(@, u) to be non linear in I. Then there exists a point 0 € JA’, A"[
such that vy (@, o) #vg(@, 0). With no loss of generality we can suppose o=0 by
performing a suitable change of variable.

We will first construct an interval $ = [u', u”] with p’ <0< g” such that the function
p— v(@, u) is linear in both [u’,0] and [0, u"] and v(@’, u) is bounded in $. Since
v(@, u) <+ whenever x € I, there exist u;, u, € I with p; <0< u, such that v(e, pu) is
bounded by a number L in the interval % = [u,, u,].

We can obviously choose u,, u, close enough to 0 to have the function u— v(@, u)
linear in each one of the intervals [u,, 0] and [0, u,] because it is bounded in #, hence
piecewise linear in . Since vgz(@, 0) #vi(@, 0), the function u— v(g@, u) is not constant
in at least one of the two intervals [u,, 0] and [0, u,].

For example suppose first it is not constant in [y, 0]. Since it is linear, it is not
constant in any one of the intervals included in [u,, 0] and then we can apply Proposition
C which proves v(@', u) = v(®, u) — u whenever p €[u;,0] and therefore v(g’, u) is
bounded in [u,,0] by a number Lj. In addition, since v(¢',0)=v(p,9) there exist
u" €[0, u,] such that v(e@’, u) is bounded in [0, u"] by a number Lj. Let us put u’ =y,
and L' =max(L{, L;). The function u— v(@’, u) is then upper bounded by L' in [u’, u"]
while v(@, u) is upper bounded by L.

In the same way, if we suppose v(g, u} to be non constant in [0, u,] we have a
symmetric construction and therefore we finally have an upper bound L’ for v(¢’, 1) in
the interval [p’, u"] in all cases.

We set M =max(L, L’). By definition ¢ satisfies (1) v(g, u) <M whenever u € ¥,
and (2) v(¢', u) <M whenever p e $.

Now by [8, Theorem 6] there exists y € R(D) satisfying ||¢ — ¥|lp <o ™ and
le' = ¥'llp < @™ and therefore we have (3) v(@ — v, u) > M whenever u € #, together
with (4) v(¢'—y',u)>M whenever ue $. Then (1) and (3) imply (5) v(p,pu)=
v(y, u) whenever u € $ while (2) and (4) imply v(¢’', u) =v(y’, u) whenever pe 4,
hence v(y'/y, u) =v(g@'/@, u) = v(f, u) whenever u € #, which proves that v(y'/y, u)
is linear in %, in the form qu + B with q € Z.

Now 1 factorizes in the form (P/Q)8 where P and Q are monic polynomials that
have all of their zeros in C(0,1) = {x:|x| =1} and 6 belongs to R(D) and has no zero in
C(0,1).

Since vy(@, 0) # vy(@, 0), by (5) we have vy(y,0)+ Ué(l/) 0) so that P and Q don’t

have the same number of zeros in C(0,1). Let P(x)= Z a;x’ and let Q(x) = Z Bx'.

Then m #n and (6) a,,, =B, =1. =0 i=

On the other hand, since P and Q have all of their zeros in C(0,1) we see that
|oj|<1 whenever j=0,...,m, |B|<1 whenever j=0,...,n, and (7) v(P,0)=
v(Q,0)=0. . e

m+n—1

P'Q— PQ’ is then a polynomial Z Ax’ with |A|<l whenever j=0,...,

m +n — 1 and by (6) we have A,,,,_y=m —n, hence |A,,,,—| = 1.
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Then v(P'Q — PQ', 0) =0, hence by (7) we see that

PIQ — PQI ) _
v( PO ,01=0. (8)
Now we will show that
Ol
v(g , o) >0, )

Since @ has neither any zero nor any pole in C(0, 1), there exist r’,r” such that

r' <1<r" and such that 8 has neither any zero nor any pole in I'(0, r', r") and therefore 6
+o0

is equal to a Laurent series ), a,x" convergent in I'(0, r',r"). Moreover, there exists t € Z

such that |a,| |x|* > |a,| |x|” whenever x e T(0, r', r"). Let us factorize 6 in the form x'y.

+x
Then in I'(0, r', r") y is equal to a Laurent series ¥, b,x” with b, =a, and we see that
v(y’, 0) = inf v(nb,) = inf v(b,) > v(by) = v(y, 0)
neZ n#0

from which v(y'/y,0)>0. As 0'/8=y'/y+t/x we see v(8'/0,0)=u(y'/y,0)+
v(t/x,0)=v(y'/y,0) >0 which finally shows (9).
Now let us consider ¢'/y = 8'/6 + (P'Q — PQ’")/PQ. By (8) and (9) we have

(50)> (g 0)

and therefore there exists an interval U = [—p, p] such that

o5 0)(P2 )

6 PO
whenever p € U. Then we have
Y’ ) (P'Q - PQ’ ) '
v(— , ) =v|————, u) whenever u € 4. 10
" PO [0 u (10)

Let us put h(x)=(P'Q — PQ')/PQ. Since P(x)Q(x) has exactly m +n zeros in
C(0,1), and P'Q —PQ’' has at most m+n—1 zeros in C(0,1) we see that (11)
v (h,0)>v,(h,0).

Now by (10) we have vi(y'/vy,0)=wv;(h,0) and vy(y'/y,0)=wv;(h,0) hence by
(11) we obtain vg(vy'/y,0)>ve(y'/v,0) which contradicts the fact v(y'/y,p) is a
linear function in #, and that finishes proving Proposition E.

Proof of the Theorem. Let us assume that (&) admits a non identically zero solution
g and assume g is not invertible in H(D). By [9, Theorem 2], g is strictly annulled by a
T-filter & on D and, by Proposition D, f is not strictly annulled by %.

For example let us assume % is increasing, of center 0 and of diameter R and assume
first f is annulled by %. Since f is not strictly annulled by %, there exists r € 0, R[ such
that v(f, n) =+ whenever ue[—LogR, —Logr] hence (1) v(g’, u) = + whenever
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pe[—LogR, —Logr]. But since g is strictly annulled by %, there exists an interval
#c[-LogR, —Logr] such that v(g, 1) is a linear non constant function in $ and by
Proposition C we know that v(g’, u) = v(g, u) — u, which contradicts (1). Thus, f is not
annulled by &.

Now we know the function py—wv(f,u) is linear in an interval [—LogR, 2]
([5], [6}, [12]). By Proposition E the function p— v(g, u) is also linear in [—~LogR, 1]
and that contradicts the hypothesis that g is strictly annulled by %.

In case & is decreasing we can perform a similar demonstration (by taking a center
in a spherically complete extension of K if required).

Thus g is invertible in H(D) and then by [9, Theorem 1] we know that the space of
solutions of (%) has dimension 1.
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