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Summary

Inferences about genetic values and prediction of phenotypes for a quantitative trait in the presence
of complex forms of gene action, issues of importance in animal and plant breeding, and in
evolutionary quantitative genetics, are discussed. Current methods for dealing with epistatic
variability via variance component models are reviewed. Problems posed by cryptic, non-linear,
forms of epistasis are identified and discussed. Alternative statistical procedures are suggested.
Non-parametric definitions of additive effects (breeding values), with and without employing
molecular information, are proposed, and it is shown how these can be inferred using reproducing
kernel Hilbert spaces regression. Two stylized examples are presented to demonstrate the methods
numerically. The first example falls in the domain of the infinitesimal model of quantitative genetics,
with additive and dominance effects inferred both parametrically and non-parametrically. The
second example tackles a non-linear genetic system with two loci, and the predictive ability of
several models is evaluated.

1. Introduction

The problem considered here is that of inferring gen-
etic values and of predicting phenotypes for a quan-
titative trait under complex forms of gene action, an
issue of importance in animal and plant breeding, and
in evolutionary quantitative genetics (Lynch &
Walsh, 1998). The discussion is streamlined as fol-
lows. Current methods for dealing with epistatic varia-
bility via variance component models are discussed in
section 2. Problems posed by cryptic, non-linear,
forms of epistasis are identified in section 3. Section 4
proposes non-parametric definitions of additive ef-
fects (breeding values), with and without employing
molecular information, and shows how these could
be inferred using reproducing kernel Hilbert spaces
(RKHS) regression models. Sections 5 and 6 present
stylized examples to demonstrate the methods.
The first example uses the infinitesimal model of

quantitative genetics, and the second one tackles a
non-linear genetic system. The paper ends with con-
cluding comments.

2. Extant theory

A standard decomposition of phenotypic value in
quantitative genetics (Falconer & Mackay, 1996) is

y=m+a+d+i+e,

where a, d and i are additive, dominance and epistatic
effects, respectively, and e is a residual, reflecting
environmental (residual) variability. This linear de-
composition can also be used to describe variability
of latent variables, especially if assumed Gaussian
(e.g. Dempster & Lerner, 1950; Gianola, 1982). The i
effect can be decomposed into additiveradditive,
additiverdominance, dominancerdominance, etc.,
deviates. In what has been termed ‘statistical epista-
sis ’ (Cheverud & Routman, 1995), these deviates are
assumed to be random draws from some distributions
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representing ‘ interactions’ between loci. Under cer-
tain assumptions (Cockerham, 1954; Kempthorne,
1954), the deviates are uncorrelated, leading to the
standard variance decomposition s2=sa

2+sd
2+saa

2 +
sad
2 +sdd

2 +…+se
2, where the s2s are variance com-

ponents, e.g., sad
2 represents the contribution of

additive by dominance effects to variance. The sum of
all variance components other than sa

2, sd
2 and se

2

is interpreted as variance ‘due to epistasis ’. For
the purposes of discussing problems this represen-
tation has, it suffices to assume that the only relevant
epistatic effects are those of an additiveradditive,
additiverdominance and dominancerdominance
nature.

(i) Henderson’s methods for predicting
epistatic effects

Using the Cockerham–Kempthorne (hereinafter, CK)
assumptions, Henderson (1985) extended their model
to the infinitesimal domain, and vectorially, by writ-
ing

y=Xb+(a+d+iaa+iad+idd)+e

=Xb+g+e, (1)

where b is some nuisance location vector (equal to m if
it contains a single element); X is a known incidence
matrix; a and d are vectors of additive and dominance
effects, respectively; iaa, iad and idd are epistatic effects,
and g=a+d+iaa+iad+idd is the ‘total ’ genetic value.
Assuming that g and e are uncorrelated, the vari-
ance–covariance decomposition is

Vy=Vg+Ve, (2)

where Vy,Vg and Ve are the phenotypic, genetic and
residual variance–covariance matrices, respectively.
Further,

Vg=As2
a+Ds2

d+(A#A)s2
aa+(A#D)s2

ad+(D#D)s2
dd:

(3)

Here, A is the numerator relationship matrix; D is a
matrix due to dominance relationships which can
be computed from entries in A, and the remaining
matrices involve Hadamard (element by element)
products of matrices A or D. Thus, under CK, all
matrices can be computed from elements of A, as
noted by Henderson (1985), because absence of in-
breeding and of linkage disequilibrium are assumed.
Cockerham (1956) and Schnell (1963) gave formulae
for covariances between relatives in the presence
of linkage, and difficulties posed by linkage dis-
equilibrium are discussed by Gallais (1974).

In CK–Henderson, with the extra assumption that
all genetic effects (having null means) and the data
(with mean vector Xb) follow a multivariate normal

distribution with known dispersion components,
one has

E (ajg)=Cov(a, g)Vx1
g g=s2

aAV
x1
g g: (4)

The best predictor (Henderson, 1973; Bulmer, 1980)
of additive genetic value in the mean-squared error
sense is

E (ajy)=Egjy[E (ajg)]=Egjy[s
2
aAV

x1
g g]

=s2
aAV

x1
g [Egjy (g)], (5)

where Eg|y (g)=VgVy
x1 (yxXb) is the best predictor

of g, and the matrix of regression coefficients Vg Vy
x1

is the multidimensional counterpart of heritability
in the broad sense. With known variance components,
b is typically estimated by generalized least-squares
(equivalently, by maximum likelihood under nor-
mality) as b̂. Then, ‘ the empirical best predictor’ of
the vector of additive effects is taken to be

Ê(ajy)=s2
aAV

x1
g [Êgjy(g)]

=s2
aAV

x1
g VgV

x1
y (yxXb̂)

=s2
aAV

x1
y (yxXb̂): (6)

This is precisely the best linear unbiased predictor
(BLUP) of additive merit when model (1) holds.
Likewise, the BLUP of additiverdominance devi-
ations is

Ê(iadjy)=s2
ad(A#D)Vx1

y (yxXb̂),

and so on.
The BLUPs of a, d, iaa, iad and idd in (1) can be

computed simultaneously using Henderson’s mixed
model equations, but this requires forming the inverse
matrices Ax1, Dx1, (A#A)x1, (A#D)x1 and (D#D)x1.
In a general setting, most of these inverses are im-
possible to obtain, contrary to that of A, which can be
written directly from a genealogy.

(ii) Reformulation of Henderson’s approach

Equivalently, as in de los Campos et al. (2008), one
may rewrite (1) as

y=Xb+Aa*+Dd*+(A#A) iaa*

+(A#D) iad*+(D#D) idd*+e, (7)

where a*=Ax1ay(0, Ax1sa
2),…, idd*=(D#D)x1iddy

(0, (D#D)x1sdd
2 ). Then, the BLUP of any of the trans-

formed genetic effects can be found by solving a
system of mixed linear model equations that does
not involve inverses of any of the genetic variance–
covariance matrices. For example, the b-equation is

XkXb̂+XkAâ*+XkDd̂*+Xk (A#A) î aa*

+Xk (A#D) î ad+Xk (D#D) î dd=Xky,

D. Gianola and G. de los Campos 526

https://doi.org/10.1017/S0016672308009890 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009890


and the iaa-equation is

(A#A)Xb̂+(A#A)Aâ*+(A#A)Dd̂*

+ (A#A)2+
s2
e

s2
aa

(A#A)

� �
î aa*+(A#A) (A#D) î ad*

+(A#A) (D#D) î dd*=(A#A)y:

Once the BLUPs of the (*) genetic effects are obtained,
linear invariance leads, for example, to â=Aâ*, and
to î dd=(D#D) î dd* . A computational difficulty here is
that A is typically not sparse, so all A#A, A#D, etc.,
are not sparse either. Note that the equations for the
genetic effects in the ‘reparameterized’ model are
similar to those in Henderson (1984). For example, if
in an animal model the a-equation

I+Ax1 s
2
e

s2
a

� �
â=Zk (yxXb)

is premultiplied by A, one obtains

A+I
s2
e

s2
a

� �
â=AZk (yxXb):

(iii) Bayesian implementation of the
reformulated model

In the standard Bayesian linear model (Wang et al.,
1993, 1994; Sorensen & Gianola, 2002), â*, î dd* , etc.,
are mean vectors of corresponding conditional pos-
terior distributions, for which sampling procedures
are well known. Further, with scaled inverse chi-
square priors assigned to variance components, Gibbs
sampling is straightforward, and does not require
forming inverses either. For example, a draw from
the conditional posterior distribution of the domi-
nancerdominance variance component is obtained
under the alternative parameterization as

s2
dd � [iddk*(D#D) idd*+nddS

2
dd],

where idd* is a draw from its conditional posterior dis-
tribution, given everything else (Sorensen & Gianola,
2002) and ndd and Sdd

2 are hyper-parameters.
While computations may still be formidable, in-

version of the genetic covariance matrices is cir-
cumvented. Apart from computational issues, an
important question, however, is whether or not the
CK–Henderson construct can cope with complex
genetic systems effectively.

3. Confronting complexity

Dealing with non-additive genetic variability may
be much more difficult than what equations (1) and
(3) suggest. Theoretically, at least in CK, epistatic
variance can be partitioned into orthogonal ad-
ditiveradditive, additiverdominance, dominancer

dominance, etc., variance components, only under
idealized conditions. These include linkage equilib-
rium, absence of mutation and of selection, and no
inbreeding or assortative mating (Cockerham, 1954;
Kempthorne, 1954). All these assumptions are vio-
lated in mature and in breeding programmes. Also,
estimation of non-additive components of variance
is very difficult, even under standard assumptions
(Chang, 1988), leading to imprecise inference. Link-
age disequilibrium induces covariances between dif-
ferent types of effects ; algebraically heroic attempts to
deal with this problem are in Weir & Cockerham
(1977) and Wang & Zeng (2006). Gallais (1974) de-
rived expressions aimed to describe the impact of
linkage disequilibrium on partition of genetic vari-
ance. The number of parameters is large, which makes
estimation of the needed dispersion components in-
tractable.

The question of whether or not standard random
effects models for quantitative traits can account ac-
curately for non-linear (non-additive) relationships
between infinitesimal genotypes and phenotypes re-
mains open. It is argued subsequently that parametric
models cannot handle well complexity resulting from
interactions between the hundreds or even thousands
of genes expected to affect multifactorial traits, such
as liability or resistance to disease. This was discussed
by Templeton (2000), Gianola et al. (2006) and
Gianola and van Kaam (2008).

In the standard theory for non-additive gene ac-
tion, e.g. epistasis, interaction effects enter linearly
into the phenotype, that is, the partial derivative of
the model with respect to any effect, be it additive or
of an interactive nature, is a constant that does not
involve any genetic effect. This theory is unrealistic in
non-linear systems, such as those used in metabolic
control theory (Bost et al., 1999). Arguing from the
perspective of ‘perturbation in analysis ’, Feldman &
Lewontin (1975) advanced the argument that linear
(i.e. analysis of variance) models are ‘ local ’, presum-
ably in the following sense. Suppose that the expected
value of phenotype y, given some genetic values G

(genotypes are discrete but their effects are con-
tinous), is some unknown function of effects of geno-
types at L loci represented as f(G1, G2, …, GL). A
second-order approximation to the surface of means
yields

E(yjG)=f(G1,G2, . . . ,GL)

� f (G
–
1,G
–
2, . . . ,G

–
L)+fk (G–1,G

–
2, . . . ,G

–
L)(Gx –

G)

+
1

2
(Gx

–
G)k

@2

@Gi@Gj

f (G1,G2, . . . ,GL)

� �
G=G

r(Gx
–
G),

whereG
–
i is the mean value of the effect of locus i (ty-

pically taken to be 0);G=(G1,G2, …, GL)k is a column
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vector and
–
G=E(G) ; fk(G1, G2, . . . , GL) is the row

vector of first derivatives of f(.) with respect to G and

@2

@Gi@Gj

f(G1, G2, � � � , GL)

� �
G=G

is the matrix of second derivatives, both evaluated at
–
G in the approximation.

A linear-on-variance-components decomposition
of variability may not be enlightening at all when a
phenotype results, say, from a sum of sine and cosine
waves. To illustrate, suppose that non-linearity (non-
additivity) enters as E (y|G1, G2, G3)=G1 exp (G2G3).
A log-transformation of the expected phenotypic
value of individuals with genetic value (G1, G2, G3)
would suggest linearity (in a log-scale) with respect to
locus 1, and interaction between loci 2 and 3. For this
hypothetical model, the first derivatives are

f(G1,G2,G3)=
eG2G3

G1G3e
G2G3

G1G2e
G2G3

2
64

3
75

=

1

0

0

2
64

3
75, whenG

–
1,G
–
2,G
–
3=0,

e

e

e

2
64

3
75, whenG

–
1,G
–
2,G
–
3=1,

8>>>>>>>><
>>>>>>>>:

and the matrix of second derivatives is

@2

@Gi@Gj

f :ð Þ
� �

=

0 G3e
G2G3 G2e

G2G3

G3e
G2G3 G1G

2
3e

G2G3 G1e
G2G3 (G2G3+1)

G2e
G2G3 G1e

G2G3 (G2G3+1) G1G
2
2e

G2G3

2
64

3
75

=

0 0 0

0 0 0

0 0 0

2
64

3
75, whenG

–
1,G
–
2,G
–
3=0,

0 e e

e e 2e

e 2e e

2
64

3
75, whenG

–
1,G
–
2,G
–
3=1:

8>>>>>>>><
>>>>>>>>:

In the neighbourhood of 0 for all effects, the local
approximation yields

E (yjG1,G2,G3) � G1: (8)

On the other hand, near 1 the local approximation
produces

E (yjG1,G2,G3) � e

�
3xG1x3G2x3G3+

1

2
G2

2+
1

2
G2

3

+G1G2+G1G3+2G2G3

�
, (9)

A local approximation near 0 suggests that pheno-
types are linear on the effect of locus 1, while an
approximation in the neighbourhood of 1 points
towards ‘dominance ’ at loci 2 and 3, and at 2 – factor
epistasis involving loci (1, 2), (1, 3) and (2, 3). This
relates to work by Kojima (1959), who studied con-
ditions for equilibria when a fitness surface was af-
fected by epistasis. He assumed free recombination,
random mating and constancy of genotypic values.
The arguments leading to (8) and (9) indicate that
constancy of genotypic values is not tenable when
local approximations are used to study the surface.

To the extent that a linear model provides a ‘ local ’
approximation only, it may not be surprising why
attaining an understanding of epistasis within the
classical paradigm has been elusive. Kempthorne
(1978) disagrees with this view, however, although his
argument seems more a defence of the technique of
the analysis of variance (ANOVA) per se than of the
lack of ability of a linear model to describe complex,
interacting, systems. However, even if a linear model
holds at least locally, a standard fixed effects ANOVA
of a highly dimensional, multifactorial system is not
feasible, because one ‘runs out ’ of degrees of freedom
(df) (Gianola et al., 2006). Nevertheless, methodolo-
gies for dealing with complex epistatic systems are
becoming available and these include, for example,
machine learning, regularized neural networks (Lee,
2004), neural networks optimized with grammatical
evolution computations (Motsinger-Reif et al., 2008)
and non-parametric regression (e.g. Gianola et al.,
2006; Gianola & van Kaam, 2008). The latter is dis-
cussed in what follows.

4. Non-parametric breeding value

There is a wide collection of procedures for non-
parametric regression available. In particular, stat-
istical models based on RKHS have been useful, inter
alia, for regression (Wahba, 1990) and classification
(Vapnik, 1998). In many respects, RKHS regression is
the ‘mother ’ of non-parametric functional data ana-
lysis, since it includes splines, hard and soft classifi-
cation and even best linear unbiased prediction (de los
Campos et al., 2008) as special cases. Contrary to
many ad-hoc forms of non-parametric modelling,
RKHS is a variational method based on maximizing
penalized likelihoods over a rich space of functions
defined on a Hilbert space. Also, it uses flexible
kernels, which can be adapted to many different cir-
cumstances, and allows for varying classes of infor-
mation inputs, e.g. pedigrees, continuous valued
covariates and molecular markers of any type. The
Bayesian view of RKHS regression has been used to
motivate the methodology using Gaussian processes
(Rasmussen & Williams, 2006). In quantitative gen-
etics, Gianola et al. (2006) and Gianola & van Kaam
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(2008) suggested this approach for incorporating in-
formation on dense whole-genome markers into
models for prediction of genetic value of animals or
plants for quantitative traits. The dense molecular
data (e.g. SNPs) enter as covariates into a kernel (in-
cidence) square matrix whose dimension is equal to
the number of individuals with genotype information
available. Thus, the dimensionality of the problem is
reduced drastically, from that given by the number of
SNPs to the number of individuals genotyped, typi-
cally much lower. González-Recio et al. (2008a, b)
present applications to mortality rate and feed con-
version efficiency in broilers. In the absence of kernels
based on substantive theory, genetic interactions are
dealt with in RKHS in some form of ‘black box’.
However, the focus of non-parametric regression is
prediction rather than inference, an issue that will be
emphasized in this paper. Relationships between
RKHS regression and classical models of quantitative
genetics are discussed by de los Campos et al. (2008).
A question that arises naturally in plant and animal
breeding is whether or not measures of breeding value
can be derived from an RKHS regression model.

Briefly, a RKHS regression can be represented in
terms of the linear model

y=Xb+Kha+e, (10)

where Xb is as before; Kh={k(xi, xj, h)} is an nrn
symmetric positive-definite matrix of kernel entries
dependent on covariates (e.g. SNPs) xi and xj (sub-
scripts i and j define the individual whose phenotype is
considered and some other individual in the sample,
respectively), and possibly on a set of bandwith para-
meters hwhichmust be tuned in somemanner, as noted
below. González-Recio et al. (2008a) discuss kernels
that do not involve any h. Further, a in (10) is a set of
non-parametric regression coefficients, one for each
individual in the sample of data. For instance, if SNP
genotypes enter into k(xi, xj, h), then Kha can be con-
strued as a vector of genetic effects marked by SNPs.

The choice of kernel k (xi, xj, h) is absolutely critical
for attaining good predictions in RKHS regression,
and it can be addressed via some suitable model
comparison, e.g. by cross-validation. Each kernel is
associated with a space of functions, and de los
Campos et al. (2008) describe conditions under which
a kernel may be expected to work well. For example,
if a Hilbert space of functions associated with a given
kernel spans functions of additive and non-additive
genetic effects, the model would be expected to cap-
ture such effects. Otherwise, predictions may be very
poor, even worse than those attained with a linear
model (which, in some cases will also be a RKHS re-
gression).

It can be shown that the solution to the RKHS
regression problem is obtained by assuming that
ayN(0, Kh

x1sa
2 ), where sa

2 is a variance component

entering into the smoothing parameter
s2
e

s2
a
, and by

solving

XkX XkKh

Khk X Khk Kh+
s2
e

s2
a

Kh

2
4

3
5 b̂

â

� �
=

Xky
Khk y

� �
: (11)

The method can be implemented in either a BLUP –
residual maximum likelihood (REML) context, given
h assessed previously by cross-validation or general-
ized cross-validation (Craven &Wahba, 1979), or in a
fully Bayesian manner, with all parameters assigned
prior distributions.

The predicted genetic or genomic value is then Khâ,
as illustrated by González-Recio et al. (2008a) in an
analysis of broiler mortality in which sires had been
genotyped for thousands of SNPs, and by González-
Recio et al. (2008b) in a similar study of food con-
version ratio conducted in the same population. Their
results suggest that RKHS regression using SNP in-
formation can produce more reliable prediction
of current and future (offspring) phenotypes than
the standard parametric additive model used in an-
imal breeding. Also, albeit not unambiguously, some
RKHS specifications with filtered SNPs tended to
outperform parametric Bayesian regression models in
which additive effects of all SNPs had been fitted.

In what follows, the RKHS machinery is used to
develop non-parametric measures of breeding value.

(i) Infinitesimal non-parametric breeding value

Assume that some kernel matrix Kh has been found
satisfactory, in the sense mentioned above. Given the
context, vector Kha in (10) is a molecularly marked
counterpart of g=a+d+iaa+iad+idd in (1). Consider
now the positive-definite kernel matrix K=A+D+
(A#A)+(A#D)+(D#D). This is positive-definite, be-
cause it consists of the sum of positive-definite ma-
trices, and leads to the RKHS model

y=Xb+[A+D+(A#A)+(A#D)+(D#D)]a+e,

(12)

with ayN(0, Kx1 sa
2 ). Here, K does not depend on

any bandwidth parameters, which simplifies matters
greatly, relative to the parametric specification (7), in
which 6 variance components enter into the problem.
To obtain the RKHS predictor of genetic value (and
with only 2 variance components intervening), note
that solving (11) is equivalent to solving

X0X X0K

X K+
s2
e

s2
a

I

2
4

3
5 b̂

â

� �
=

X0y

y

� �
,

and the genetic value is predicted as

ĝ=[A+D+(A#A)+(A#D)+(D#D)]â

=Aâ+Dâ+(A#A)â+(A#D)â+(D#D)â: (13)
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Here, the ‘non-parametric ’ breeding value would be
Aa, and its predictor is Aâ. The posterior distribution
of Aa can be arrived at by drawing samples from the
posterior distribution of a.

(ii) SNP-based non-parametric breeding value

Let now Kh be a kernel matrix whose entries depend
on a string x of SNP genotypes or haplotypes avail-
able for a set of individuals having phenotypic re-
cords. For example, Gianola & van Kaam (2008)
consider the Gaussian kernel

kh(xi, xj)= exp x
(xixxj)k(xixxj)

h

� �
: (14)

Alternatively, one could use as kernel

kh(xi, xj)=
Ynumber of chromosome pairs

k=1

exp x
(xikxxjk)k(xikxxjk)

hk

� �
,

where xjk is the SNP string for chromosome k in in-
dividual j, and h1, h2, …, hk are chromosome-specific
positive bandwidth parameters.

Irrespective of the kernel adopted, let now

Ka=aK+c,

where aK is defined as non-parametric breeding value,
and c is independent of aK. With A being the numer-
ator relationship matrix between the individuals
having SNP information, use of the reasoning leading
to (4) produces

aK=s2
aA[Var(Ka)]

x1Ka

=s2
aA[KK

x1s2
aK]

x1Ka=
s2
a

s2
a

Aa, (15)

where sa
2 is some estimate of additive genetic variance

for the trait in question. Thus, the non-parametric
breeding value of individual i in the sample has the
form

aK, i=
s2
a

s2
a

g
n

j=1
aijaj,

so that, if individuals are unrelated, aK, i=
s2
a

s2
a
ai, with

variance V(aK, i)=s2
a

s2
a

s2
a
kii

� �
, where kii is the ith diag-

onal element of Kx1.
Note that

Var(aK)=As2
a

s2
a

s2
a

Kx1A

� �
: (16)

This is equal to Asa
2 only if K=A and sa

2=sa
2 ; in this

case, no molecular information is used at all. Suppose

now that A=I, so that individuals are genetically
unrelated. However, non-parametric breeding values
turn out to be correlated, since

Var(aK)=s2
a

s2
a

s2
a

Kx1

� �
: (17)

This can be interpreted in the following manner, using
a Gaussian kernel to illustrate. Here, the entries of the
kernel matrix have the form

kh(xi, xj)= exp x
(xixxj)k(xixxj)

h

� �

=
Ynumber of markers

k=1

exp x
(xikxxjk)

2

h

� �
,

and exp x (xikxxjk)
2

h

h i
is maximum when xik=xjk,

that is, when individuals i and j have the same geno-
type at marker k. This means that the elements of the
kernel matrix (taking values between 0 and 1) will be
larger for pairs of individuals that are more ‘molecu-
larly alike’, even if unrelated by line of descent. This
molecular similarity is then propagated into (16)
and (17).

Given a point estimate of a(â), e.g. the posterior
mean, the non-parametric estimate of breeding
value is

âK=
s2
a

s2
a

Aâ: (18)

If computations are carried out in a fully Bayesian
Monte Carlo context (with m samples drawn from the
posterior distribution), the posterior mean estimate is

âK=E
s2
a

s2
a

AajDATA

� �
� As2

a

m
g
m

i=1

a(i)

s2(i)
a

,

and the uncertainty measure (akin to prediction error
variance–covariance in BLUP) is

Var
s2
a

s2
a

AajDATA

� �

� s4
aA

1

m
g
m

i=1

a(i)a(i)k

s2
a
(i)

	 
2 x 1

m

� �2

g
m

i=1

a(i)

s2
a
(i)

	 

" #(

r g
m

i=1

a(i)k
s2
a
(i)

	 

" #)

A:

Non-parametric breeding values of individuals that
are not genotyped can be inferred as follows. Let
A(x,+) be the additive relationship matrix between
individuals that are not genotyped (x) and those
which are genotyped (+). The non-parametric breed-
ing value of non-genotyped individuals would be

a(x,K)=
s2
a

s2
a

A(x,+)a
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with its point estimate being

â(x,K)=
s2
a

ŝ2
a

A(x,+)â:

Likewise, non-parametric breeding values of yet-to-be
genotyped and phenotyped progeny would be

a(prog,K)=
s2
a

s2
a

A(prog,K)a,

where A(prog,+) is the additive relationship matrix
between progenies and individuals with data.

(iii) Semi-parametric breeding value

Another possibility consists of treating additive gen-
etic effects in a parametric manner and non-additive
effects in the RKHS framework, as suggested by
Gianola et al. (2006). Let now the model be

y=Xb+u+Ka+e, (19)

where uy(0, Asa
2) and Ka as before, but with

K=[D#Kh+(A#A#Kh)+(A#D#Kh)+(D#D#Kh)],

where Kh is a positive-definite matrix of Gaussian
kernels with entries as in (14), so that SNP in-
formation is used. Since K is the sum of Hadamard
products of positive-definite matrices, it is positive-
definite as well and, hence, it is a valid kernel for
RKHS regression. The estimating equations (can be
rendered symmetric by premultiplying the a-set of
equations by K) take now the form

XkX Xk XkK

X I+
s2
e

s2
a

Ax1 K

X I K+
s2
e

s2
a

I

2
66664

3
77775

b̂
û

â

2
4

3
5= Xky

y

y

2
4

3
5,

where û is the predicted breeding value, and

Kâ=(D#Kh)â+(A#A#Kh)â+(A#D#Kh)â

+(D#D#Kh)â

is the predicted (SNP-based) non-additive genetic
value. For instance, (D#Kh)â is interpretable as a
predicted dominance value, and so on. A natural ex-
tension of this consists of removing u from (19) and
then taking as kernel matrix

K=[A+D+(A#A)+(A#D)+(D#D)]#Kh,

so that the predicted additive breeding value would
now be (A#Kh)â, much along the lines of (18). This
would give a completely non-parametric treatment of
prediction of additive and non-additive genetic effects
using dense molecular information.

5. Illustration: infinitesimal model

The toy example in Henderson (1985) is considered.
The problem is to infer additive and dominance gen-
etic effects of five individuals using data consisting of
phenotypic records for only four (subject 1 lacks a
record). The data and model are:

y2=5
y3=3
y4=7
y5=8

2
664

3
775=

1 2
1 3
1 1
1 5

2
664

3
775 b0

b1

� �
+

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

2
664

3
775

r

a1

a2

a3

a4

a5

2
66664

3
77775+

d1

d2

d3

d4

d5

2
66664

3
77775

0
BBBB@

1
CCCCA+

e2
e3
e4
e5

2
664

3
775=Xb+Z(a+d)+e:

Although 1 does not have a record, all additive and
dominance effects are included in the model, zeroing
out the incidence of a1 and d1 via a column of 0s in the
Z incidence matrix. Henderson (1985) assumed that
the additive, dominance and residual variance com-
ponents were sa

2=5, sd
2=4 and se

2=20, so that the
phenotypic variance was 29, and used the additive and
dominance relationship matrices

A=

1 0 1
2

1
2

1
2

0 1 1
2

1
2

0

1
2

1
2

1 1
2

1
4

1
2

1
2

1
2

1 1
4

1
2

0 1
4

1
4

1

2
666666664

3
777777775

and D=

1 0 0 0 0

0 1 0 0 0

0 0 1 1
4

0

0 0 1
4

1 0

0 0 0 0 1

2
666666664

3
777777775
:

Application of BLUP leads to the unique solutions
(rounded at the third decimal)

b̂k=[5�145 0�241],

âk=[0�045 x0�192 x0�343 0�096 0�242],

d̂k=[0 x0�073 x0�365 0�162 0�234]:

The predicted total genetic value is ĝ=â+d̂, yielding

ĝ=[0�045 x0�265 x0�708 0�259 0�477]:

Alternatively, a RKHS representation as in (12) is
used now, withK=A+D as kernel matrix, which does
not involve any bandwidth parameters. One has

K=

2 0 1
2

1
2

1
2

0 2 1
2

1
2

0
1
2

1
2

2 3
4

1
4

1
2

1
2

3
4

2 1
4

1
2

0 1
4

1
4

2

2
6666664

3
7777775
:
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The RKHS model (using the part of K pertaining to
individual with records) is

y2

y3

y4

y5

2
666664

3
777775=

1 2

1 3

1 1

1 5

2
666664

3
777775

b0

b1

" #
+

2 1
2

1
2

0

1
2

2 3
4

1
4

1
2

3
4

2 1
4

0 1
4

1
4

2

2
666664

3
777775

a2

a3

a4

a5

2
666664

3
777775+

e2

e3

e4

e5

2
666664

3
777775

=Xb+Ka+e:

The value adopted for the sole smoothing parameter
is sa

2=sa
2+sd

2=9, and the estimating equation (11)
and the solution to the RKHS mixed model equa-
tions is

[b̂0=5�289 b̂1=0�200 â2=x0�128

â3=x0�781 â4=0�487 â5=0�422]:

The non-parametric additive genetic effects are in-
ferred using formula (18)

âK, 1

âK, 2

âK, 3

âK, 4

âK, 5

2
66666664

3
77777775
=

s2
a

s2
a

Aall,+â=
5

9

0 1
2

1
2

1
2

1 1
2

1
2

0

1
2

1 1
2

1
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1
2

1
2

1 1
4

0 1
4

1
4

1

2
6666666664

3
7777777775

x0�128
x0�781
0�487
0�422

2
66664

3
77775

=

0�036
x0�153
x0�276
0�076
0�194

2
66666664

3
77777775
,

and the non-parametric estimates of dominance ef-
fects are

d̂K, 1

d̂K, 2

d̂K, 3

d̂K, 4

d̂K, 5

2
6666666664

3
7777777775
=

s2
d

s2
a

Dall,+â=
4

9

0 0 0 0

1 0 0 0

0 1 1
4

0

0 1
4

1 0

0 0 0 1

2
666666664

3
777777775

x0�128

x0�781

0�487

0�422

2
666664

3
777775

=

0

x0�057

x0�293

0�130

0�188

2
666666664

3
777777775
:

The total genetic value is estimated at

ĝK, 1
ĝK, 2
ĝK, 3
ĝK, 4
ĝK, 5

2
66664

3
77775=

âK, 1
âK, 2
âK, 3
âK, 4
âK, 5

2
66664

3
77775+

d̂K, 1
d̂K, 2
d̂K, 3
d̂K, 4
d̂K, 5

2
666664

3
777775=

0�036
x0�210
x0�569
0�206
0�382

2
66664

3
77775:

Suppose now that one wishes to predict future
performance of these five individuals, and assume that
the record of 1 will be made under the same conditions
as those for the record of 2, with all conditions re-
maining the same. The model for future records f is
then

yf
1

yf
2

yf
3

yf
4

yf
5

2
666666664

3
777777775
=

1 2

1 2

1 3

1 1

1 5

2
666666664

3
777777775
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b1

" #
+

a1

a2

a3

a4

a5

2
666666664

3
777777775
+

d1

d2

d3

d4

d5

2
666666664

3
777777775
+

ef1

ef2

ef3

ef4

ef5

2
666666664

3
777777775

=MPhP+e f,

for the parametric model, whereas that for the RKHS
treatment is

yf
1

yf
2

yf
3

yf
4

yf
5

2
666666664

3
777777775
=

1 2

1 2

1 3

1 1

1 5

2
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1
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1
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2 1
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1
2
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1
2

2 3
4

1
4

1
2

3
4

2 1
4

0 1
4

1
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2

2
666666664

3
777777775
+

a2

a3

a4
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2
666664

3
777775+

e f1

e f2

e f3

e f4

e f5

2
666666664

3
777777775

=MKhK+e f:

Above M. and h. denote incidence matrices and re-
gression coefficients, respectively ; P and K indicate
parametric and RKHS treatments, respectively. Using
a standard Bayesian argument (Sorensen & Gianola,
2002), the mean vector and covariance matrix of the
predictive distributions are

yf
1

yf
2

yf
3

yf
4

yf
5

2
666666664

3
777777775
j

y2

y3

y4

y5

2
666664

3
777775, dispersion (smoothing) parameters

� (M:ĥ:, (M:C
x1
: M:k+If)s

2
e), (20)

where C is the corresponding coefficient matrix for
each of the procedures ; the 5r5 matrix Ifse

2 conveys
uncertainty stemming from the fact that the future
records (f) have not been realized yet. For the two
procedures, means and standard deviations of the
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predictive distributions are

P=

5�674t6�020
5�364t5�460
5�162t5�353
5�646t5�834
6�828t6�115

2
66664

3
77775; K=

5�754t5�576
5�286t5�659
4�735t5�561
5�919t5�940
7�061t6�157

2
66664

3
77775:

6. Illustration: non-linear system

(i) Two-locus model

A hypothetical system with two biallelic loci was
simulated. It was assumed that phenotypes were
generated according to the rule

E(yjai,aj, bi, bj)=ai+aj+bibj+aiaj

ffiffiffiffiffiffiffiffi
bibj

q
, (21)

where ai (bi) and aj (bj) are effects of alleles i and j
at the a (b) locus. The system is nonlinear on allelic
effects, as indicated by the first derivatives of the
conditional expectation function with respect to the
as or bs. For instance,

@E(:)

@aj

=1+ai

ffiffiffiffiffiffiffiffi
bibj

q
;

@E(:)

@bj

=bi+
1

2
aiaj

ffiffiffiffi
bi

bj

s
:

The a-effects were two random draws from an ex-
ponential distribution with mean value equal to 2; the
first draw was assigned to allele A and the second to
allele a. The bs were drawn from a Weibull (2,1) dis-
tribution, having median, mean and mode equal to
0.347, 0.887 and 0.25; the first (second) deviate was
the effect of allele B (b). The non-linearity of the sys-
tem is illustrated in Fig. 1, where the derivative of

the model for the expected phenotype with respect to
the effect of Weibull allele b is plotted, with all other
alleles evaluated at the values drawn. Variation in
values of b produces drastic modifications near the
origin, but phenotypes are essentially insensitive for
b>1.5, even though these values are plausible in the
Weibull process hypothesized.

Residuals were drawn from the normal distribution
N (0, 20), and added to (21) to form phenotypes. The
resulting phenotypic distribution is unknown, because
y is a non-linear function of exponential and Weibull
variates, plus an additive normally distributed re-
sidual. There were 5 individuals with records for each
of the AABB, AABb, AAbb genotypes; 20 for each
of AaBB, AaBb and Aabb and 5 for each of aaBB,
aaBb and aabb. Thus, there were 90 individuals with
phenotypic records, in total.

Since there are nine distinct mean genotypic values,
variation among their average values can be explained
completely with a linear model on 9 df ; in the stan-
dard treatment, these df correspond to an overall
mean, additive effects (2 df), dominance (2 df) and
epistasis (4 df). Due to non-linearity, it is not straight-
forward to assess the proportion of variance ‘due to
genetic effects ’ using a random effects model based
on the Weibull and exponential distributions, al-
though an approximation can be arrived at. A linear
approximation of the phenotype of an individual
yields

y �2ā+b
–2+ā2b

–+(2āb
–+2)(axā)

+(ā2+2b
–
)(bxb

–
)+e

,

where ā and b
–
are the means of the exponential and

Weibull processes, respectively, and eyN(0, s2). An
approximation to heritability is

h2=
(2āb

–+2)2Var(a)+(ā2+2b
–
)2Var(b)

(2āb
–+2)2Var(a)+(ā2+2b

–
)2Var(b)+s2

: (22)

For the situation simulated, ā=2, b
–
=0�887,

Var(a)=4, Var(b)=0.785, so that for s2=1000,
100, 20, 10 one obtains h2B0.13, 0.60, 0.88 and 0.94,
respectively. The simulation produced a high pen-
etrance trait, that is, one with heritability near 0.88,
which provides a challenge to any non-parametric
treatment.

(ii) RKHS modelling

Among the many possible candidate kernels avail-
able, an arbitrarily chosen Gaussian kernel was
adopted for the RKHS regression implementations,
using as covariate a 2r1 vector consisting of the
number of alleles at each of the two loci, e.g. xAA=2,
xAa=1 and xaa=0. For example, the kernel entry for

0 1 2 3 4 5 6 7
0·9

1·0

1·1

1·2

1·3

1·4

1·5

Weibull variate

D
er
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e

Fig. 1. Rate of change of the expected phenotypic

value @E(:)
@bj

=bi+
1
2
aiaj

ffiffiffi
bi
bj

q� �
with respect to the Weibull

variable bj.
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genotypes AABB and AAbb is

k(xAABB, xAAbb, h)= exp x
(2x2)2+(2x0)2

h

� �

= exp x
4

h

� �
,

and the 9r9 kernel matrix for all possible genotypes
(labels for genotypes are included, to facilitate under-
standing of entries) is

There are only five distinct entries, a result of the
measure of ‘allelic disimilarity’ adopted, e.g. ex8/h

stems from disimilarity in 2 alleles at each of the A
and B loci (AABB versus aabb). Figures 2 and 3 depict
values of the kernel as a function of the bandwidth
parameter h at different levels of S, which enters
into exp(xS/h). Values of h larger than 10 (Fig. 2)
produce strong ‘prior correlations’ between geno-
types ; also, the kernel matrix becomes more poorly
conditioned as h increases. After evaluating the kernel
matrix at h=6, 4, 2 and 1.75, it was decided to adopt
h=1.75 as the bandwidth parameter, producing 6
unique entries in the Kmatrix: 1.0 (diagonal elements,

the two individuals have identical genotypes) ; 0.565
(3 alleles in common in a pair of individuals) ; 0.319
(2 alleles in common, 1 per locus) or 0.102 (2 alleles in
common at only one locus) ; 0.06 (1 allele in common)
and 0.01 (no alleles shared).

(iii) Fitting the RKHS model to the means

A ‘means’ RKHS regression was fitted, including an
intercept (b). The model for the 9r1 vector of

averages ȳ={ȳi} was
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ȳAABb
ȳAAbb
ȳAaBB
ȳAaBb
ȳAabb
ȳaaBB
ȳaaBb
ȳaabb

2
6666666666664

3
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1
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2
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3
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+

ēAABB
ēAABb
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ēAaBB
ēAaBb
ēAabb
ēaaBB
ēaaBb
ēaabb

2
6666666666664

3
7777777777775
,

where the as are the non-parametric regression coef-
ficients ; K1.75 is the 9r9 kernel matrix with h=1.75
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Fig. 2. Kernel value k(:, :;h)= exp x S
h

	 

against the

bandwidth parameter h. Curves, from top to bottom,
correspond to S=1, 2, 4, 5, 8.
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Fig. 3. Kernel value k(:, :;h)= exp x S
h

	 

against the

bandwidth parameter h. Curves, from top to bottom,
correspond to S=1, 2, 4, 5, 8.

Kh=

AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb

AABB 1 ex1=h ex4=h ex1=h ex2=h ex5=h ex4=h ex5=h ex8=h

AABb ex1=h 1 ex1=h ex2=h ex1=h ex2=h ex5=h ex4=h ex5=h

AAbb ex4=h ex1=h 1 ex5=h ex2=h ex1=h ex8=h ex5=h ex4=h

AaBB ex1=h ex2=h ex5=h 1 ex1=h ex4=h ex1=h ex2=h ex5=h

AaBb ex2=h ex1=h ex2=h ex1=h 1 ex1=h ex2=h ex1=h ex2=h

Aabb ex5=h ex2=h ex1=h ex4=h ex1=h 1 ex5=h ex2=h ex1=h

aaBB ex4=h ex5=h ex8=h ex1=h ex2=h ex5=h 1 ex1=h ex4=h

aaBb ex5=h ex4=h ex5=h ex2=h ex1=h ex2=h ex1=h 1 ex1=h

aabb ex8=h ex5=h ex4=h ex5=h ex2=h ex1=h ex4=h ex1=h 1

2
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3
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:
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and ēi is the mean of the residuals pertaining to
observations of individuals with genotype i. As be-
fore, the assumptions were ajs2

a � N(0,Kx1
1�75s

2
a),

and, for the 9r1 vector of average residuals,
ējs2

e � N(0,Nx1s2
eÞ. Here, N=Diag {5, 5, 5, 20, 20,

20, 5, 5, 5} is a 9r9 diagonal matrix.
The solution to the RKHS regression problem was

obtained as

b̂

â

� �
=

1kN1 1kNK1�75

K1�75N1k K1�75k NK1�75+
s2
e

s2
a

K1�75

2
4

3
5
x1

1kNȳ

K1�75k Nȳ

� �
:

The model was fitted for each of the following values
of the shrinkage ratio l= s2

e

s2
a
: 100 (strong shrinkage

towards 0), 15, 1, 1
15

and 1
100

; with l=0 there is no
shrinkage of solutions at all. For each of these values,
the residual sum of squares

SSRl= ȳx1b̂xK1�75â
� �

k ȳx1b̂xK1�75â
� �

,

and the weighted residual sum of squares

WSSRl= ȳx1b̂xK1�75â
� �

kN ȳx1b̂xK1�75â
� �

,

were computed, where 1 is a 9r1 vector of ones. Also,
the effective number of parameters, or model df
(Ruppert et al., 2003), was assessed as

dfl=Tr(W*Cx1W*k),

where

W*=N1=2 [ 1 K1�75 ],

and N1=2 is a diagonal matrix containing the square

roots of the entries of N. Note that, when
s2
e

s2
a
=0, the

estimating equations have an infinite number of
solutions, as only 9 parameters are estimable. In
this case, a solution is obtained by using a generalized
inverse of the coefficient matrix, yielding

b̂
0

â0

" #
=

0 0

0 Kk1�75NK1�75

" #x
1kNȳ

Kk1�75Nȳ

" #

=
0 0

0 (Kk1�75NK1:75)
x1

" #
1kNȳ

Kk1�75Nȳ

" #
=

0

Kx1
1�75 ȳ

" #
:

Here, the fitted values are ȳ̂=1r0+K1�75K
x1
1�75 ȳ=ȳ so

the model ‘copies ’ the data, and the fit is perfect. Note
that ȳi is the least-squares estimate of mij=ci+dj+
(cd)ij where ci (i=AA, Aa, aa) and dj (j=BB, Bb, bb)
are main effects of genotypes at loci A and B, re-
spectively; this model accounts for 8 df ‘due to’
additive and dominance effects at each of the two
loci, and additiveradditive, additiverdominance,
dominanceradditive and dominancerdominance
interactions.

For the sake of comparison, the following fixed ef-
fects model was fitted as well

y=m+ci+dj+ēi,

where, as before, ci (i=AA, Aa, aa) are main effects of
genotypes at the A-locus, and dj (j=BB, Bb, bb) are
the counterparts at the locus B. The linear model was
parameterized as
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ȳaaBb
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+
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ēAabb
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ēaaBb
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3
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: (23)

This model has 5 free parameters, interpretable as
an ‘overall mean’ plus additive and dominance effects
at each of the 2 loci. Estimates of estimable functions
of fixed effects were obtained from a weighted least-
squares approachwith solution vector b0=(XkNX)xr
XkNȳ, where (XkNX)x is a generalized inverse of
XkNX and X is the 9r7 incidence matrix given above.
Weighted residual sums of squares were computed
as (ȳxXb0)kN(ȳxXb0). Mean values of A-locus and
B-locus genotypes were estimated as

m̂AA
m̂Aa
m̂aa
m̂BB
m̂Bb
m̂bb

2
6666664

3
7777775
=

1 1 0 0 1
3

1
3

1
3

1 0 1 0 1
3

1
3

1
3

1 0 0 1 1
3

1
3

1
3

1 1
3

1
3

1
3

1 0 0

1 1
3

1
3

1
3

0 1 0

1 1
3

1
3

1
3

0 0 1

2
666666664

3
777777775
b0=

8�37
3�97
1�39
4�87
5�73
3�12

2
6666664

3
7777775
,

and dominance effects were inferred as

d̂A-locus

d̂B-locus

" #
=

0 x 1
2

1 x 1
2

0 0 0

0 0 0 0 x 1
2

1 x 1
2

" #
b0

=
x0�91
1�73

� �
:
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This analysis would create the illusion of non-
additivity and overdominance at the A and B loci,
respectively, but without bringing light with respect to
the non-linearities of (21). While this model does not
have mechanistic relevance, it has predictive value, an
issue which is illustrated below.

Table 1 gives estimates of the intercept b and of
the RKHS regression coefficients a for each of the
shrinkage ratio values employed, using h=1.75 as
bandwidth parameter in all cases. The residual sum of
squares (weighted and unweighted) and the effective
number of parameters, or model df, are presented as
well. As l decreased from 102 to 10x2, model fit im-
proved, but the efective number of parameters in-
creased from 1.46 to 8.95, near the maximum of 9. The
implementations with l=15x1 and l=10x2 essen-
tially produced a ‘saturated’ model, that is, one that
fits to the means perfectly (as it is the case when l=0).
Large values of the variance ratio (15, 100) produced
excessive shrinkage, as indicated by the small values
of the RKHS regression coefficients a, and small
values of the variance ratio tended to overfit, as noted.
On the other hand, the linear 2-locus model on addi-
tive effects, with 5 parameters, had residual sum of
squares, SSR=19.98, and weighted residual sum of
squares, SSR=99.88. These values are more than 5
times those attained with the RKHS regression im-
plementation with a variance ratio of 1 (SSR=3.55,
WSSR=19.12), which are shown in Table 1.

A more important issue, at least from the perspec-
tive taken in this paper, is ‘out of sample ’ predictive
ability. To examine this, 3 new (independent) samples
of phenotypes were generated, assuming the residual
distribution N (0, 20) , as before, and with 5 individ-
uals per genotype, i.e. there were 45 subjects in each
sample. The predictive residual sums of squares (un-
weighted and weighted, using 5 as weight) were
calculated, using the fitted values from the training

sample employed to compute statistics in Table 1, and
the ‘new sample ’ phenotypes. The 2-locus additive
model was also involved in the comparison. Results
are shown in Table 2, where entries are the average,
minimum and maximum values of the predictive sum
of squares over the 3 new samples. As expected, pre-
dictive residual sum of squares were much larger than
those observed in the training sample, notably for
implementations in which overfitting to the training

data was obvious (l= s2
e

s2
a
=15x1, 10x2, 0; see Table 1).

The specifications producing strong shrinkage towards

0 in the training sample had the worse predictive per-

formance, whereas that with
s2
e

s2
e
=1 had the best per-

formance, on average, albeit close to the 2-locus
additive model. It is not surprising that small variance
ratios led to reasonable predictive performance, be-
cause the simulation mimicked high penetrance,

Table 1. Estimates of the intercept (b) and of non-parametric regression coefficients (ai) for each of the values of
the variance ratio (l=se

2/sa
2 ) employed. RSS and WRSS are the residual and weighted residual sums of squares,

respectively; df gives the model df, or effective number of parameters fitted

Item l=102 l=15 l=1 l=15x1 l=10x2 l=0

b 4.26 4.25 4.30 4.22 4.21 0
a1 0.27 1.27 2.24 x1.50 x2.34 0.94
a2 0.31 1.589 7.501 14.543 15.808 16.219
a3 1.4r10x3 x6.5r10x2 x0.90 0.35 0.77 4.78
a4 6.2r10x2 0.11 1.56 7.49 8.77 9.28
a5 2.2r10x2 x0.21 x4.53 x13.16 x14.90 x16.00
a6 x0.27 x1.01 x3.72 x9.15 x10.31 x11.22
a7 x0.21 x1.07 x4.51 x9.00 x9.88 x6.61
a8 x0.10 x0.35 1.96 7.70 8.84 9.22
a9 x8.2r10x2 x0.27 0.41 2.73 3.25 7.29
RSS 91.83 49.80 3.55 0.07 1.9r10x3 0
WRSS 487.18 258.01 19.12 0.39 1.1r10x2 0
df 1.46 2.96 6.75 8.71 8.95 9

Table 2. Predictive (weighted and unweighted by the
number of individuals per geno-type) residual sums of
squares for each of the variance ratios (l=se

2/sa
2 )

employed in the non-parametric regression
implementation, and for the two-locus model with
main effects of genotypes at each of the loci. Entries
are average (boldface) from three predictive samples,
with minimum and maximum values over samples in
parentheses

Item Sum of squares
Weighted sum
of squares

l=102 136.6 (96.6, 198.9) 682.8 (483.1, 994.3)
l=15 92.5 (61.8, 136.6) 462.4 (308.9, 682.9)
l=1 51.3 (39.3, 58.51) 256.7 (196.7, 292.6)
l=15x1 58.8 (54.2, 66.6) 293.9 (271.1, 333.2)
l=10x2 60.6 (56.1, 68.8) 303.0 (280.4, 343.8)
l=0 61.0 (56.2, 69.2) 304.9 (281.0, 346.0)
Two-locus
additive model

53.9 (48.8, 62.2) 269.7 (244.1, 311.0)
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i.e. phenotypes are very informative about genotypes,
this being so because the approximate heritability (22)
for a residual variance of 20 is about 0.88, as already
noted.

For this example, the 2-locus additive model is un-
tenable, at least mechanistically, yet it had a reason-
able predictive performance. Apart from genetic
considerations discussed later, this is because any of
the models considered here can be associated with a
linear smoother, with predictions having the form

ŷ=Ly={lkiy},

for some matrix L and where lik is its ith row. For the
2-locus model,

L=X(XkNX)xXkN,

whereas for any of the RKHS specifications

L= 1 K1�75½ �
1kN1 1kNK1�75

Kk1�75N1 Kk1�75NK1�75+
s2
e

s2
a
K1�75

" #x1

r 1 K1�75½ �k:

Hence, all predictors can be viewed as consisting
of different forms of averaging observations, with the
RKHS-based averages having optimality properties,
in some well defined sense (Kimeldorf & Wahba,
1971; Wahba, 1990; Gianola & van Kaam, 2008;
de los Campos et al., 2008). Since the data consisted
of phenotypic averages, i.e. a non-parametric aver-
aging method where a ‘bin’ is a given genotype, this
represented a challenge for any of the smoothers, in-
cluding the 2-locus additive model. However, some of
the smoothers (e.g. RKHS with l=1 and the 2-locus
additive model) met the challenge satisfactorily.

(iv) Fitting the RKHS model to
individual observations

The RKHS regression model (using the Gaussian
kernel with h=1.75) was fitted again to the 90 data
points in a newly simulated sample used to estimate
(train) the intercept and the nine non-parametric
coefficients. In addition, the following parametric
specifications were fitted: additive model (3 location
parameters : intercept and additive effects of the A
and B loci), additive+dominance model (2 extra
parameters corresponding to dominance effects at
the two loci), and additive+dominance+epistasis
(4 additional df pertaining to additiveradditive, ad-
ditiverdominance, dominanceradditive and domi-
nancerdominance interactions). The corresponding
regression coefficients for the parametric models were
‘shrunken’ using a common variance ratio, corre-
sponding to each of the 15 l values employed in the
RKHS fitting. Subsequently, 100 predictive samples
of size 45 each were simulated, and the realized values
were compared against the predictions obtained from

the sample used to train either the RKHS regression
or the three parametric models.

Figure 4 displays the average squared residual (over
the 90 data points in the training sample) for each
of the four models fitted. As expected, the RHKS and
the additive+dominance+epistatic models fitted
the data best at l=0 (no shrinkage), because of hav-
ing a larger effective number of parameters (9) than
the additive (3) and additive+dominance (5) models.
When effects were gradually shrunken (l increased
from 0 to 20), the parametric models maintained their
relative standings, whereas RKHS voyaged through
all three models, eventually giving a very poor fit, due
to oversmoothing. The trajectory of the effective df
is shown in Fig. 5, where the ability of RKHS to
explore models of different degrees of complexity be-
comes clear. The out-of-sample predictive perform-
ance of the fourmodels is shown in Fig. 6. The simplest
model, that is, one with additive effects at each of the
two loci fitted, had the best predictive performance,
even better than the two additional parametric speci-
fications although the simulated gene action was not
additive at all! RKHS regression was competitive, but
its predictive ability deteriorated markedly when l
was greater than 5 in the training sample.

How does one explain the paradox that a simple
additive model had better predictive performance
when gene action was non-linear, as simulated here?
In order to address this question, consider the ‘ true’
mean value of the 9 genotypes simulated:

BB Bb bb

AA 11.933 8.000 6.417
Aa 3.626 2.919 2.757
Aa 0.916 0.304 0.185

22

21

20

19

18

17

16

M
ea

n 
R

SS

0 5 10 15 20

λ

RKHS
Additive
Additive and dominance
Additive, dominance and epistasis

Fig. 4. Average (over 90 data points) squared residual for
four models plotted to the training sample (RKHS=
RKHS regression with Gaussian kernel and h=1.75) for
each value of the smoothing parameter l.
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The ‘corrected’ sum of squares among these means is
125.23. A fixed effects ANOVA of these ‘true’ values
(assuming genotypes were equally frequent) gives the
following partition of sequential sum of squares,
apart from rounding errors : (i) additive effect of
locus A : 82.8%; (ii) additive effect of locus B after
accounting for A : 7.06%; (iii) dominance effects of
loci A and B : 4.2%, and (iv) epistasis : 6.2%. Thus,
even though the genetic system was non-linear, most
of the variation among genotypic means can be ac-
counted for with a linear model on additive effects.

The additive model had the worst fit to the data (even
worse than the models that assume dominance and
epistasis) and, yet, it had the best predictive ability,
followed by RKHS for (roughly) 0.5<l<3.

The simulation was also carried out at larger values
of the residual variance, se

2=100 and 500. Again,
the purely additive model had the best predictive
performance, but the difference between models es-
sentially disappeared for l>50. In particular, the av-
erage squared prediction error of RKHS was larger
than that for the additive model by 5, 3 and 1% for
se
2=20, 100 and 500, respectively, when evaluated at

the ‘optimal ’ l in each case.
It should be noted that the RKHS implementation

used here was completely arbitrary. For example, the
kernel chosen was not the result of any formal model
comparison, so predictive performance could be en-
hanced by a more judicious choice of kernel. As noted
earlier, the choice of a good kernel is critical in this
form of non-parametric modelling.

7. Conclusion

Inference about genotypes and future phenotypes
for a complex quantitative trait was discussed in
this paper. In particular, it was argued that the
Kempthorne–Cockerham theory for partioning vari-
ance into additive, dominance and epistatic compo-
nents has doubtful usefulness, because practically all
assumptions required are violated in artificial and
natural populations. This theory is probably illusory
when genetic systems are complex and non-linear,
in agreement with views in Feldman & Lewontin
(1975) and Karlin et al. (1983). Further, an ANOVA-
type decomposition is inadequate for a non-linear
system (because the ANOVA model is linear in the
parameters), and unfeasible in a highly dimensional
and interactive genetic system involving hundreds
or thousands of genes. As a minimum, the ANOVA
treatment would encounter a huge number of empty
cells, extreme lack of orthogonality, and high-order
interactions would be extremely difficult to interpret,
in the usual sense. Last but not the least, the ANOVA
model would require more df than the number of data
points available for analysis.

For these reasons, a predictive approach was ad-
vanced in this paper, focused on the use of non-para-
metric methods, especifically RKHS regression. Use
of this methodogy in conjunction with standard the-
ory of quantitative genetics leads to non-parametric
estimates of additive, dominance and epistatic effects.
These ideas were illustrated using a stylyzed example
in Henderson (1985), and it was shown how additive,
dominance and total genetic values can be predicted
using a single smoothing parameter (in addition to the
residual variance) coupled with kernels based on
substantive theory, a point that is also made in de los
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Additive
Additive and dominance

Additive, dominance and epistasis

Fig. 6. Average (over 100 samples with 45 realized
observations in each) squared prediction error for four
models plotted to the predictive sample (RKHS=RKHS
regression with Gaussian kernel and h=1.75) for each
value of the smoothing parameter l.
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Additive and dominance

Additive, dominance and epistasis

Fig. 5. Effective df for four models plotted to the training
sample (RKHS=RKHS regression with Gaussian kernel
and h=1.75) at each value of the smoothing parameter l.
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Campos et al. (2008). A non-linear 2-locus system was
simulated as well, to illustrate the RKHS approach,
which was found to have a better out-of-sample
predictive performance of means than the standard 2-
locus fixed effects model (with and without epistasis).

On the other hand, a 2-locus model with estimates
of additive effects shrunken to different degrees had
the best performance when predicting future individ-
ual observations. This was explained by the obser-
vation that most of the variation among genotypic
means could be accounted for by ‘additive effects ’.
This is consistent with theoretical and empirical results
presented by Hill et al. (2008), who gave evidence
that, even in the presence of non-additive genetic ac-
tion, most variance is of an additive type. Even though
molecular geneticists view the additive model as irri-
tatingly reductive, our results give reassurance to a
common practice in animal breeding, i.e. predict gen-
etic values using additive theory only. It is unknown,
however, to what extent these results (from a predic-
tive perspective) carry to more complex systems, dif-
ficult to be described suitably with naive linear
models. In such situations, RKHS regression could be
valuable, because of its ability to navigate through
models of different degrees of complexity and, as
shown here, it can be very competitive when the
smoothing parameters are tuned properly.

In conclusion, it is felt that the non-parametric
methods discussed here coupled with machine learn-
ing procedures, such as in Long et al. (2007) and Long
et al. (2008), could play an important role in quanti-
tative genetics in the post-genomic era.
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