
J. Fluid Mech. (2024), vol. 980, A18, doi:10.1017/jfm.2024.16

A cyclic perspective on transient gust encounters
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Large-amplitude gust encounters exhibit a range of separated flow phenomena, making
them difficult to characterize using the traditional tools of aerodynamics. In this work, we
propose a dynamical systems approach to gust encounters, viewing the flow as a cycle (or
a closed trajectory) in state space. We posit that the topology of this cycle, or its shape
and structure, provides a compact description of the flow, and can be used to identify
coordinates in which the dynamics evolve in a simple, intuitive way. To demonstrate
this idea, we consider flowfield measurements of a transverse gust encounter. For each
case in the dataset, we characterize the full-state dynamics of the flow using persistent
homology, a tool that identifies holes in point cloud data, and transform the dynamics
to a reduced-order space using a nonlinear autoencoder. Critically, we constrain the
autoencoder such that it preserves topologically relevant features of the original dynamics,
or those features identified by persistent homology. Using this approach, we are able
to transform six separate gust encounters to a three-dimensional latent space, in which
each gust encounter reduces to a simple circle, and from which the original flow can be
reconstructed. This result shows that topology can guide the creation of low-dimensional
state representations for strong transverse gust encounters, a crucial step towards the
modelling and control of aerofoil–gust interactions.
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Figure 1. The broad stages of vortex shedding associated with a transverse gust encounter.

1. Introduction

In an increasing number of flight applications, aerodynamic bodies are subject to large,
unsteady disturbances, often resulting in separated, vortex-dominated flows (Jones, Cetiner
& Smith 2021). These flows are difficult to model in a low-order manner, but conceptually,
vortex shedding events are often described in intuitive terms. Consider the problem of a
wing encountering a discrete gust, illustrated in figure 1. This flow evolves in roughly three
stages: (1) the wing begins in a base state of cruise, likely characterized by attached flow;
(2) the wing encounters the gust, which triggers vortex shedding from the leading edge;
(3) the wing exits the gust and returns toward its base state. This flow is not periodic and
the underlying physics is inherently nonlinear, but in broad terms, these stages of vortex
shedding belong to a single cycle, from the base state to a disturbed state and back to the
base state.

The current work poses the following question: is there a way to describe
large-amplitude disturbances that appeals to our intuitive notion of cycles and loops?
Historically, cyclic events in aerodynamic flows have been described using Fourier
analysis, but for discrete transient manoeuvres, in which the dynamics of the flow is
unlikely to conform to a time-periodic basis, it can be difficult to characterize the flow
without resorting to a large number of modes. As an alternative, we propose a data-driven
framework that characterizes nonlinearly disturbed flows based on their topology, or their
shape and structure, in a high-dimensional state space. Our central idea is that large-scale
vortex shedding events, while complex and nonlinear in physical space, exhibit a fairly
simple topology in state space, which we can leverage to identify low-order, interpretable
representations of the flow.

To demonstrate this approach, we consider a set of experimental flowfield measurements
in which a flat-plate wing translates horizontally into a transverse gust. For each gust
encounter, we analyse the flow in two stages. First, we describe the dynamics of each
gust encounter using persistent homology, a method of topology characterization that
identifies the generating cycles, or ‘holes’, associated with a point cloud (Edelsbrunner &
Morozov 2014). Traditionally, persistent homology has found success in geometry-focused
applications, such as medical imaging (Qaiser et al. 2016) and molecular structure
identification (Townsend et al. 2020). More recent studies have applied persistent
homology to the characterization of dynamical events (Myers, Munch & Khasawneh
2019), but only a small fraction of these studies consider fluid systems (Kramar et al.
2016; Liu et al. 2020; Wu, Tao & Zheng 2021).

Second, we use an autoencoder to transform the full-state dynamics of each gust
encounter to a reduced-order space. The autoencoder is a data-driven method of feature
extraction, capable of reducing complex fluid flows to a small number of essential
state variables (Murata, Fukami & Fukagata 2020; Fukami & Taira 2023). In its basic
configuration, the autoencoder is constructed as an approximation of an invertible,
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Figure 2. The filtration process for a point cloud sampled (a) from a perfect circle in R
2, and (b) from the

trajectory of a dynamical system.

nonlinear transformation between a high-dimensional space and a low-dimensional space.
In this work, we construct an autoencoder such that it transforms the dynamics of each gust
encounter to a reduced-order space, while also preserving the most prominent topological
features of the system. Our goal is to arrive at a low-order space in which the trajectory of
the flow is simple and interpretable, all without sacrificing the reconstruction capabilities
of the autoencoder.

In the sections that follow, we present a brief treatise on both persistent homology and
nonlinear autoencoders, and we describe how these concepts can be combined to construct
topology-preserving maps. We then apply our approach to an experimental gust encounter
as a way of demonstrating the utility of this method in compressing, characterizing and
modelling large-scale aerodynamic disturbances.

2. Methods

2.1. Persistent homology
In this subsection, we review persistent homology and its application to dynamical
systems. Persistent homology is a computational tool for identifying homology groups,
or k-dimensional holes, in a multivariate point cloud (Edelsbrunner & Morozov 2014). It
characterizes a point cloud based on its topology, or the connectedness of nearby points,
and in doing so, provides an avenue for describing the underlying ‘shape’ from which the
points are sampled.

Persistent homology is defined formally in the language of simplicial topology, and
its mathematical origins have been documented extensively throughout the literature (see
Rieck (2017) for a rigorous but approachable review). We aim to work with a more intuitive
understanding of persistent homology, which is best illustrated with an example. Consider
a point cloud sampled from a smooth circle embedded in R

2, sketched in figure 2(a). Let
us associate an ε-sphere with each point in figure 2(a), and examine the intersections that
result from gradually increasing its diameter. In particular, we note that there is a certain
diameter at which each ε-sphere intersects with its neighbours, and a ‘hole’ emerges at the
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centre of the point cloud. Likewise, there is a certain diameter at which all ε-spheres share
a common intersection, and the hole is closed. The persistence (p) of this hole is defined as
the difference between the diameter at which the hole emerges (‘birth’) and the diameter
at which the hole is closed (‘death’).

The procedure above is called a Vietoris–Rips filtration, and it can be used to quantify
various topological features in multivariate point cloud data. These features are generally
classified according to their homology group Hk (where k is the dimension of the manifold
that bounds the feature of interest). Each of these groups can be linked to an intuitive
notion of discrete shape or structure. In this work, we focus on two homology groups:
H0 (which corresponds to connected components) and H1 (which corresponds to holes,
or 1-cycles). The term ‘connected component’ refers to a collection of points that are
linked together through mutual intersection. That is, two data points belong to the same
connected component if one can travel between the two points without leaving an ε-sphere
(Zomorodian 2005). The notion of a ‘hole’ is exactly what was described in our initial
example. That is, we define a hole as a closed loop of ε-spheres, the collection of which
bounds a non-empty surface in ambient space. As an illustration, we note that the leftmost
filtration in figure 2(a) exhibits eight connected components and zero holes, while the
centre filtration in figure 2(a) exhibits one connected component and one hole.

As a data analysis tool, persistent homology is concerned with how these connected
components and holes change over successive values of ε. Such behaviour is typically
presented in a persistence diagram, an example of which is provided in figure 2(a) for the
circular point cloud. In this figure, the values of ε corresponding to the birth of topological
features are plotted on the abscissa, while the values of ε corresponding to the death
of topological features are plotted on the ordinate. Collectively, these birth–death pairs
provide a concise description of our point cloud in ambient space, and provide a framework
for describing the underlying shape from which our points were sampled.

Let us examine how the birth–death pairs of figure 2(a) relate to the filtration of
the circular point cloud. In this example, our dataset consists of eight points, each
separated by a distance 0.765 in R

2. At a low value of ε, each of these points is
immersed in a separate sphere, and our topological space consists of eight separate
connected components. At ε = 0.765, each ε-sphere intersects with its neighbours, and
the number of connected components is reduced from eight to one. In turn, the H0 group is
characterized by seven identical birth–death pairs at (0, 0.765). Each of these birth–death
coordinates corresponds to the intersection of two adjacent connected components; that
is, an intersection between two connected components always leads to one ‘death’. Note
that the diagram in figure 2(a) also features a final birth–death pair at (0, ∞). This point is
included as convention and captures the idea that the combined set of intersecting spheres
persists as a connected subset to arbitrarily large values of ε. It also ensures that the total
number of H0 birth–death pairs is equal to the number of input points.

The H1 group in figure 2(a) can be interpreted in a similar fashion. At ε = 0.765, the
intersections of adjacent ε-spheres form a closed 1-cycle, and the combined set of spheres
exhibits a ‘hole’ at the centre of R

2. This ‘hole’ persists for increasing values of ε up to
ε ≈ 2, at which point any two spheres in the set share a non-zero intersection, and the hole
is closed. The H1 group is then characterized by a single birth–death pair near (0.765, 2),
and we observe that the point cloud is characterized by a single large hole. Note that for
the H1 element in figure 2(a), the ‘death’ coordinate is not exactly ε = 2 (i.e. the diameter
of the circle), but rather ε ≈ √

3. This is a consequence of the mathematical definition
of a Vietoris–Rips complex; we refer the reader to Zomorodian (2005) and Adamaszek
& Adams (2017) for a detailed, group-theoretic definition of the H1 ‘death’ coordinate,
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Figure 3. The topological autoencoder used in the present study.

and how this definition manifests in the computation of a persistence diagram. For the
purposes of this work, we can still rely on the diagram of figure 2(a) for an intuitive idea
of when a hole is closed, even if the numerical value on the persistent diagram does not
align exactly with our intuition. Also note that the dashed line in figure 2(a) represents
minimal persistence (i.e. topological features that emerge and close at the same radius).
Later, we will see that this minimum persistence line provides a simple way to distinguish
between major topological features and noise in a persistence diagram.

The preceding example of a circular point cloud is simplistic, but the utility of persistent
homology lies in the notion that this simple procedure can be applied to point clouds
of arbitrary complexity and dimension. As a more practical example, figure 2(b) plots a
series of points sampled from a complex curve in R

3. This curve could be interpreted as
the trajectory of a dynamical system, where each axis corresponds to one of three state
variables, and each point corresponds to a different instance in time. The rightmost image
of figure 2(b) shows the persistence diagram for this point cloud. We see that much like the
circular point cloud, this curve is characterized by one highly persistent hole in H1. The
persistence of the hole in figure 2(b) is quite different from the persistence of the hole in
figure 2(a), but from a top level, the two curves share a similar topological description, in
that the rank of their H1 group is identical. This similarity points towards a more powerful
idea: the underlying curve in figure 2(a) is homeomorphic to the unit circle, meaning that
there exists an invertible map between the two curves.

In the sections that follow, we apply a similar analysis to the dynamics of an unsteady
gust encounter. Our core idea is that if we can identify a simple shape that is topologically
similar to the full-state dynamics of a gust encounter, then we can construct a map between
the two shapes. Because of turbulence and measurement noise, the full-state dynamics of
a gust encounter is unlikely to be exactly homeomorphic to such a simple shape (Wu et al.
2021). We aim instead to find a transformation that results in a minimal loss of information,
or an ‘approximate’ homeomorphism. We propose that this transformation can be found
using a modified autoencoder.

2.2. Autoencoder
In this subsection, we describe a process for finding transformations between
high-dimensional trajectories and simple, low-order shapes, a task that we accomplish
using an autoencoder. We begin by reviewing the basic framework of the autoencoder,
before highlighting how this framework can be augmented through topological data
analysis. As a starting point, figure 3 provides a conceptual diagram of our network
architecture. In this figure, a time series of flowfield snapshots is mapped from a
high-dimensional state space to a low-order (or latent) space by an encoder f , and reverse
transformed by a decoder g. The latent vector ξ serves as the bottleneck of the network
architecture; its number of components defines the autoencoder compression ratio, and
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generally corresponds to the minimum number of variables needed to reconstruct the flow.
In our implementation, the encoder and decoder are each composed of a convolutional
neural network (CNN; Lecun et al. 1998) and a multi-layer perceptron (MLP; Rumelhart
& McClelland 1986). Within these networks, each layer is associated with a set of
model weights, and is coupled to adjacent layers by an activation function, for which we
choose the hyperbolic tangent. In a process called ‘training’, the value of each weight is
determined by minimizing a loss function, which is based conventionally on the difference
between the input flowfield and the reconstructed flowfield.

The key feature of our approach is that in addition to constraining the autoencoder to
reconstruct the flow, we place topological constraints on the loss function, such that the
latent space preserves the most persistent features of the input trajectory (Moor et al. 2020).
Figure 3 includes a rough sketch of how we incorporate topological constrains into the
training of our autoencoder. For a given time series of flowfields, we compute the persistent
homology of the trajectory, and identify the number of elements associated with each
homology group Hk. We then manually select a target shape, or a simple analytic curve
in R

2 or R
3, that exhibits the same number of highly persistent holes, or the same rank

of each Hk, as the input trajectory. The effect of persistent homology is then enforced
implicitly via the loss function: a new term is added to the loss function that quantifies the
difference between the latent trajectory and the target shape. The central idea is that we
are forcing the latent trajectory to conform to a simple, tractable shape, and because that
shape preserves the topology of the full-state dynamics (i.e. the encoder approximates a
homeomorphism), the reconstruction capabilities of the autoencoder should be unaffected.

With the overall goal of our method in mind, we write an expression for the loss function
of our autoencoder as

L = βr ‖q − f ◦ g(q)‖2 + βs ‖ f (q) − s(κ)‖2 + βp 〈 p ( f (q)) − p (s(κ))〉, (2.1)

where q represents the full state of the flow, s represents the trajectory of the target shape
(the selection of which depends upon a set of case-dependent parameters κ), and p( f (q))

and p(s) represent the persistence of the latent trajectory and target shape, respectively.
Note that double modulus rules in (2.1) indicate an average among snapshots, while angle
brackets indicate an average among trajectories.

Each term in (2.1) serves a specific purpose in ensuring that the autoencoder converges
towards a topology-preserving map. The first term in (2.1), called the reconstruction term,
ensures that the transformation f is as close as possible to a bijection. Topologically, it
ensures that adjacent vertices in R

n remain adjacent in the latent space. The second term
forces the latent trajectory of the system to conform to the target shape (s). Note that this
term assumes that s is given analytically, such that f (q) − s(κ) is the distance between a
point and a curve, but it does not assign a specific location along the shape to each encoded
snapshot. The final term in (2.1) places a minimum threshold on the persistence of holes
(or elements of the H1 group) in the latent trajectory. This term is related implicitly to the
shape conformation term, in that the persistence threshold is dependent upon target shape
selection, but we must note that this term is included in the loss function strictly as an
aid to convergence. Setting βp /= 0 prevents the autoencoder from finding erroneous local
minima (e.g. a jump discontinuity) and can be seen as a way of ensuring that the latent
trajectory approximates a closed curve. Note that this term can also be augmented such
that it incurs a penalty if the number of holes exceeds a certain value. However, such an
augmentation is optional, and not strictly necessary to ensure convergence of the method.
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Figure 4. Persistence diagram for (a) the single gust encounter case and (b) the collection of six separate gust
encounter cases. In each diagram, the dominant elements of the H0 and H1 groups are highlighted with grey
and blue boxes, respectively.

3. Results

We now use our methodology to construct a low-order, data-driven representation of a
large aerodynamic disturbance. As a representative dataset, we consider the particle image
velocimetry measurements of Sedky et al. (2023), the basic set-up of which is shown in
figure 1. A flat-plate wing (chord c = 7.62 cm, aspect ratio AR = 4) is towed horizontally
at constant velocity (U∞) and constant incidence (α) before encountering a transverse,
vertical gust. The gust profile is trapezoidal and is characterized by the gust ratio (G),
or the ratio of gust velocity to wing translational velocity. As the wing is towed through
the gust, flow tends to separate about the sharp leading edge of the wing, resulting in the
formation and shedding of a leading edge vortex (LEV). In the dataset considered here,
the experiment was repeated for three gust ratios (0.25 � G � 0.71) and four incidence
angles (−15◦ � α � 15◦). The variable freestream parameters from (2.1) are thus defined
as κ = {α, G}.

3.1. Single trajectory
We begin our analysis by considering a single time series of flowfield measurements
corresponding to α = 5◦, G = 0.71 and Re∞ = U∞c/ν = 104. This ‘baseline’ case
includes 800 snapshots, each consisting of a rectangular 200 × 120 grid of spanwise
vorticity measurements (ωz), and covers the wing during initial translation (≈200
snapshots), passage through the gust (≈300 snapshots), and recovery (≈300 snapshots).
Note that prior to analysis, we applied a spatial Gaussian filter to each snapshot as a way
of normalizing the degree of measurement noise across the time series, which we do not
expect to impact our current results significantly.

Figure 4(a) shows the persistence diagram associated with the baseline gust encounter.
To generate this figure, we consider 400 flowfield snapshots, each sampled uniformly
in time, and cast each snapshot to a column vector in R

24 000. That is, we convert each
flowfield snapshot, which originally takes the form of a 200 × 120 grid, to a column vector
of size 24 000 × 1. This process is identical to the preparation of a data matrix in proper
orthogonal decomposition (POD). We then perform a Vietoris–Rips filtration on the
complete point cloud in R

24 000, and collect the resulting birth–death pairs in figure 4(a).
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Note that the relevant properties of figure 4 remain unchanged when increasing the number
of snapshots beyond 400; we report this convergence behaviour in the Appendix.

Our goal now is to formulate a description of the overall topology in ambient space,
guided by the persistence diagram of the trajectory. To begin, consider the behaviour of
the homology group H0, which tracks connected components throughout the filtration.
In figure 4(a), the H0 group is characterized by a large number of birth–death pairs near
(0, 0), along with a final birth–death pair at the ∞ line. These low-persistence pairs can be
attributed to the proximity of points associated with adjacent time steps, and are expected
behaviour for a point cloud sampled from a single continuous trajectory (Myers et al.
2019).

The H1 homology group, which tracks the persistence of holes, provides a much clearer
picture of the topology associated with this gust encounter. In figure 4(a), the H1 group
is characterized by a single, highly persistent birth–death pair near (70, 370), while the
remaining H1 elements lie close to the line of minimum persistence. This figure points
towards an important observation: because the H1 group contains a single highly persistent
element, we expect the data to resemble a single, large loop in state space, with a number
of secondary loops (or noise) emerging along the path.

The results of figure 4 have important implications in the next step of our analysis. If we
were to set a noise threshold in figure 4, such that we ignore any cycle that lies near the
minimum persistence line, then our persistence diagram would consists of a single 1-cycle
in H1 and a single connected component in H0. Such a shape is homeomorphic to a simple
circle in R

2. We do not suggest that the underlying trajectory is exactly homeomorphic to
a circle, but knowing that our flow ultimately forms a cycle, we posit that our point cloud
can be projected onto this dominant 1-cycle without a significant loss of information. We
next assess the validity of this hypothesis, and use the topology-preserving autoencoder to
find a transformation between the full-state dynamics of the gust encounter and a simple
circle.

Figure 5 shows the latent space and the reconstructed flowfield that results from
encoding the dynamics of the single gust encounter, with 200 snapshots used for training,
and 600 snapshots used for test/validation (the effect of varying the number of training
snapshots is discussed in the Appendix). As a target shape for this case, we select a circle
of radius 0.75, and set the case-dependent hyper-parameters to constant values βr = 5,
βs = 15 and βp = 5. Note that the choice of target radius, for this single case, is arbitrary.
From our analysis of figure 4(a), we concluded that the full-state trajectory of this case is
approximately homeomorphic to a circle in the plane. Topologically, this means that the
underlying curve can be transformed to any circle in R

2 without incurring a significant
loss.

Let us begin our assessment by considering figure 5(a). In this figure, each blue dot
corresponds to a state of the system in latent coordinates, and each state is connected to its
temporal neighbours by a solid black line. If we start at the base state of the system (state
1), then the latent coordinates rotate anticlockwise as the wing enters the gust (state 2),
reach the apogee of the cycle during the shedding of the LEV (state 3), and re-approach
the base state during gust recovery (state 4). The evolution of this latent trajectory
is approximately continuous with respect to time (i.e. there are no significant jumps
between time steps), and Euclidean distance, when measured relative to the initial state at
ξ = (0.75, 0), corresponds approximately to the degree of flow separation incurred by the
gust disturbance. Crucially, it also appears that this cyclic latent space is obtained without
a significant loss of flowfield information. Figures 5(c,d) compare the reconstructed
flowfield, obtained by decoding the latent space, to the original flowfield at key moments
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Figure 5. (a) Latent space, (b) phase angle, (c) reconstructed flowfield, and (d) measured flowfield associated
with the α = 5◦, G = 0.71 case.

throughout the gust encounter. The structural similarity index measure (SSIM; Wang et al.
2004) is included as a quantitative measure of each snapshot’s reconstruction accuracy.
Qualitatively and quantitatively, the snapshots in figure 5(c) reconstruct a range of complex
phenomena, including the onset of flow separation, the formation and shedding of an LEV,
and the distortion of the gust shear layer upon the wing’s exit.

With the successful reconstruction in mind, figure 5 appears to confirm that the
dynamics of a transient gust encounter can be reduced to a very simple geometry, so long as
that geometry preserves the most persistent topological features of the full-state trajectory.
This result has numerous advantages from the perspective of dynamical analysis, several
of which can be gleaned directly from figure 5. Note, for instance, that the simple trajectory
of figure 5(a) provides a natural definition for a phase angle θ(t), measured relative to the
origin of the latent space. Such a definition allows us to leverage the concept of phase
reduction (Nakao 2016; Taira & Nakao 2018; Nair et al. 2021; Godavarthi, Kawamura &
Taira 2023), typically a technique limited to periodic flows, in our analysis of this transient
flow. Figure 5(b) plots the phase angle of our latent trajectory as a function of convective
time t∗. Much like the circle in figure 5(a), the evolution of θ(t) mirrors closely the physical
progression of the flow: the phase remains at θ(t) = 0 while the wing is far from the gust
(state 1), increases rapidly as an LEV begins to develop on the wing surface (state 2), and
levels out smoothly as the wing transitions into recovery (states 3 and 4). In constructing
figure 5(b), we have effectively reduced the dynamics of our gust encounter, an aperiodic,
transient flow, to the dynamics of a single scalar phase variable.

This straightforward application of phase reduction, and the simplicity of the resulting
dynamics, is a unique feature of the topological autoencoder, and points to the substantial
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Figure 6. (a) Latent dynamics, (b) reconstruction error, and (c) flowfield reconstruction associated with a
two-mode POD reconstruction (red), a standard autoencoder (purple), and the topological autoencoder (AE,
blue), all applied to the α = 5◦, G = 0.71 gust encounter case.

degree to which our methodology is able to simplify dynamics in the latent space.
As a way of contextualizing the utility of the topological autoencoder, figure 6 shows
a series of comparisons between our topological approach and two conventional data
reduction techniques: POD and a standard autoencoder (i.e. an autoencoder with βs =
βp = 0). Looking at figure 6(a), the latent trajectories associated with POD (red) and
the standard autoencoder (purple) are quite complex, and any dynamical model based
on these trajectories will inevitably require a large number of basis functions to resolve
accurately the various changes in curvature. This complexity is compounded by the dense
clustering of states near t∗ = 0 in both methods; these states correspond to small-scale,
turbulent wake shedding associated with the initial translation of the wing, and ultimately
contribute little to the wake behaviour as the wing passes through the gust. The topological
autoencoder, collapses these clusters to a single point at ξ = (0.75, 0), and effectively
guarantees that the latent dynamics will be well-behaved and tractable. In this sense,
the topological autoencoder can be seen as a dynamical filter, wherein flow features are
preserved only if they contribute to the most persistent elements of the trajectory’s discrete
homology.

Figure 6(b) highlights another important feature of our topological approach. This
plot shows the mean square error associated with the topological autoencoder compared
with that of the standard autoencoder (purple) and a two-mode POD reconstruction
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(red). In this plot, we see that the topological autoencoder maintains a mean square
error very similar to that of the standard autoencoder, and produces similar results on
a snapshot-by-snapshot basis (figure 6c). Such a result captures succinctly the appeal of
the topological autoencoder: our method is able to simplify the latent dynamics without
sacrificing reconstruction capability. Figure 6c also includes a more detailed comparison
between the topological autoencoder and POD, showing that our topological approach
produces a decoded flowfield of quality similar to that of a ten-mode POD reconstruction.
Note that the autoencoder is designed with a larger number of weights than POD and a
nonlinear activation function, both of which contribute to its reconstruction capabilities.

In summary, we have found that a modified neural network, the architecture of which
is guided implicitly by persistent homology, is capable of reducing the trajectory of a
complex gust encounter to a simple, low-dimensional shape, a process that effectively
filters small-scale turbulent fluctuations based on their contribution to the overall
disturbance trajectory. In the next subsection, we apply the same analysis to a family of gust
encounters, and demonstrate that topology-based dimensionality reduction can provide
meaningful insights into the broader gust parameter space.

3.2. Multiple trajectories
Let us now consider a set of six separate gust encounters. This dataset captures a broader
representation of the gust parameter space, and includes a sweep of incidence angles
at constant gust ratio (G = 0.71, α = {−5◦, 0◦, 5◦, 15◦}) and a sweep of gust ratios at
constant incidence (α = 0◦, G = {0.25, 0.50, 0.71}). Note that gust ratio is varied among
cases by changing the strength of the impinging jet, such that the freestream Reynolds
number is held constant at Re∞ = 104 for all six cases.

As a starting point, figure 4(b) shows the persistence diagram for the set of six
gust encounters. This figure plots birth–death coordinates on the abscissa and ordinate,
respectively, and was generated by including all six gust encounters in the input point
cloud (with 400 uniformly sampled snapshots included from each trajectory). Let us first
examine homology group H0. In figure 4(b), the H0 group is characterized by a large
number of birth–death pairs near (0, 0), and four highly persistent birth–death pairs above
(0, 100). We can intuit that these four birth–death pairs correspond to our four cases with
varying α, as a change in α can affect dramatically the state associated with the wing’s
initial condition. A change in G, meanwhile, does not impact the initial condition, and we
expect our three G cases to intersect early in the filtration.

Next, we consider homology group H1. In figure 4(b), the H1 group is dominated by
six highly persistent birth–death pairs, while all remaining birth–death pairs lie near the
minimum persistence line. If we classify these low-persistence elements as noise, then we
are left with an H1 group of rank 6. As shown in figures 4(a) and 5, each individual gust
encounter case must be associated with at least one generating cycle, as the wing always
re-approaches its base state. The topology of our point cloud can thus be described as a
collection of six primary loops, where each loop corresponds to a different combination
of G and α.

Let us discuss the implications of figure 4(b). We have incorporated several new cases
into our point cloud, yet the topology described above remains quite simple. In fact, the
de-noised topology of figure 4(b), wherein all states are projected onto the six generating
1-cycles, is homeomorphic to a collection of simple circles in R

3. The final stage of our
analysis seeks to transform the full-state dynamics of all six gust encounter cases to a
series of circles in R

3, the organization of which is chosen manually to be interpretable
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and tractable. Keep in mind that because we are dealing with multiple trajectories, we must
now consider both local constraints (i.e. the topology of individual trajectories) and global
constraints (i.e. how these trajectories intersect). Based on figure 4(b), the only global
constraint on our latent space is related to the variable gust ratio cases: these three latent
trajectories share an initial condition, and thus must intersect near the starting point of their
trajectory. Otherwise, we are free to organize the circles in whichever fashion best meets
our application, and as long as the relevant intersections among circles are preserved, we
should be able to maintain low reconstruction loss.

Figure 7(a) shows the latent space identified by the topological autoencoder, given the
loss function described above. In this figure, each colour-coded trajectory corresponds to
a different combination of G and α, and each marker corresponds to a different state of the
flow. This figure is generated by considering 200 snapshots from each gust encounter case,
specifying a target shape for each case based on the topology of figure 4, and training the
topological autoencoder to approximate an invertible transformation between the full state
and the target shape. Note that we complete the training process in a series of segments,
adding gust encounter cases to the dataset one at a time, and retraining the autoencoder
after each addition. The hyper-parameters βr, βs and βp were tuned with the addition of
each new trajectory, but generally conformed to the formulas βr = 1, βs = 20 and βp =
1/n, where n is the number of cases included in the current training segment.

Before proceeding with our analysis, let us briefly describe the process of selecting
a target shape for each of the six trajectories in figure 7(a). Since each trajectory is
mapped to one circle in R

3, our task involves simply selecting a radius, centroid and ξ3
location for each circle, with the goal of imparting as much physical relevance into the
latent space as possible. To meet this goal, we selected circle radii/locations such that
(1) a change in vertical location can be interpreted as a change in angle of attack, (2) a
change in circle radius can be interpreted as a change in the magnitude of the disturbance
(i.e. radius is analogous to arc length in ambient space), and (3) the latent dynamics
of each gust encounter evolves on a ξ1–ξ2 hyperplane. In this sense, the latent variable
ξ3 corresponds directly to the angle of attack, the circle centre and radius combine to
define the gust ratio, and the phase θ corresponds to a stretched time variable. Keep in
mind that much like the single trajectory in figure 5, the choice of radius in figure 7(a)
is essentially arbitrary, so long as the latent space preserves the rank of the H0 and H1
homology groups. We chose to define the radius of each circle as proportional to its
full-state persistence (i.e. Ri/Rj = pi/pj, where Ri is the radius of the ith latent trajectory,
and pi is the persistence of the leading H1 element in the ith full-state trajectory) as a
noise-robust alternative to arc length. Effectively, this choice equips the latent space with
a distance metric, and provides a physical link between the radius of each trajectory and
the relative strength of the gust disturbance.

At this point, let us revisit our original hypothesis regarding the topology of the latent
space. Earlier in this section, we posited that we could encode a family of transient gust
encounters to a collection of circles in R

3, and because we chose a target shape with the
appropriate topology, we could then reconstruct the original flowfield with minimal loss.
Figure 7 provides clear support for this hypothesis. The insets of figure 7(a) show a series
of comparisons, both qualitative and quantitative, between the reconstructed vorticity field
and the measured vorticity field for four representative gust encounter cases. Each pair
of flowfields represents a different combination of G and α, and corresponds to a phase
(θ ≈ π/2) at which the wing is completely immersed in the gust. These cases cover
a wide spectrum of physical phenomena; the case with negative incidence (α = −15◦,
G = 0.71), for instance, exhibits a reversal in the sign and location of its leading edge
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Figure 7. (a) The latent space, (b) a sample interpolated flowfield, and (c) the phase dynamics associated
with the set of six gust encounter cases. (d) Illustration of the definition of phase for a sample subset of cases.

shear layer as it passes through the gust. Figure 7(a) indicates that the autoencoder is able
to reconstruct accurately the vortex shedding behaviour of each of these various cases by
simply decoding a collection of circular trajectories in R

3.
Looking at figure 7(a), it would appear that we have identified an avenue by which

discrete gust encounters can be expressed as cycles and loops, satisfying our original goal
from § 1. Beyond visualization, however, figure 7(a) is imbued with numerous features that
simplify the analysis of our parameter space. In the remainder of this section, we discuss
how the latent space of figure 7(a) can augment three specific data processing tasks,
namely dynamical modelling, time series interpolation and time series interpretation.
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Figure 8. Gust encounter trajectories in the latent space found from (a) POD, (b) a standard autoencoder, and
(c) the topological autoencoder.

First, we note that much like the single trajectory of figure 5, the latent trajectories
of figure 7(a) provide a natural definition of the phase angle θ(t). Figure 7(c) plots
the phase angle associated with each of the six gust encounter cases, with the initial
state of each trajectory corresponding to θ(t0) = 0. Note that in this figure, the phase
angle is measured in a reference frame specific to each circle, such that θ(t) =
arctan [(ξ2(t) − ξC

2 )/(ξ1(t) − ξC
1 )], where ξC

i denotes the centroid of a given trajectory
(see figure 7(d) for a visual illustration). Although no explicit constraint was placed on
the phase angle during autoencoder training, figure 7(c) shows that the phase distributions
collapse to single curve for all six gust encounter cases, providing a global transformation
between time and phase. With this transformation, coupled with the encoder f and decoder
g, we have sufficient information to define a closed, data-driven system for the dynamics of
figure 7. Exploring the generality of such a system is outside the scope of the current work,
but our topological autoencoder nonetheless provides a simple framework from which
more general models can be built.

Next, note that figure 7(a) provides a convenient space from which new gust trajectories
can be interpolated. Figure 7(b) shows an interpolated time series of flowfield snapshots
extracted from our latent space. These snapshots were generated in a particularly
straightforward fashion: we simply chose values of ξ3 and R lying halfway between
two training cases (G = 0.71, α = 15◦ and G = 0.71, α = 5◦), and constructed a
new trajectory under the assumption of circular dynamics. In the resulting flowfield
reconstruction, we see that the wing exhibits an incidence angle α ≈ 10◦, and the vorticity
field evolves in a physically realizable manner, capturing the expected stages of LEV
growth and shedding.

Such a simple procedure, wherein a new gust trajectory is drawn intuitively from
encoded dynamics, would prove difficult without the shape constraints imposed by
the topological autoencoder. As a demonstration, figure 8 shows a three-dimensional
latent space built from POD (i.e. using the first three POD coefficients), a standard
autoencoder (i.e. an autoencoder with βs = βp = 0) and the topological autoencoder, each
of which is trained using all six gust encounters. While continuous, the trajectories of
figure 8(a) (POD) and figure 8(b) (standard autoencoder) are disorganized from trajectory
to trajectory. Without the ability to identify a clear surface in R

3 connecting adjacent
cases, it is difficult to predict where interpolated trajectories will lie, a problem again
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Figure 9. Application of the autoencoder to an unseen gust encounter case, showing (a) the gust profile,
(b) the latent trajectory, (c) the corresponding phase angle, (d) the reconstructed flowfield, and (e) the measured
flowfield.

compounded by the clustering of points near t0 = 0. Figure 8 thus demonstrates concisely
the ease with which an entire time series of flowfield snapshots can be interpolated using
our topological approach.

As a final comment, we note that autoencoders, in general, are formulated to reconstruct
trajectories from the training dataset, yet the topological autoencoder has proven capable
of extracting essential flow features from unseen gust encounter scenarios. In figure 9,
we apply the autoencoder to a gust encounter case that was not included in the training
dataset. This untrained case consists of a transverse gust encounter at α = 0◦ and G = 1.0.
This case was measured in the same water tank facility as our training data, and exhibits
a similar vortex shedding pattern relative to the training data, but features a different
gust profile and a larger gust ratio (Towne et al. 2023). Figures 9(d) and 9(e) show that
our autoencoder is able to reconstruct the location and size of the primary vortex in the
untrained case with a very reasonable degree of accuracy. In addition, the latent trajectory
associated with this case (see figures 9b,c) indicates that the sin2 gust at G = 1.0 is
actually quite similar to a trapezoidal gust at 0.5 < G < 0.71, suggesting that the mean
gust velocity (which is similar between the two profiles) represents an appropriate metric
for predicting the evolution of the LEV. Inevitably, the current model is limited to the
reconstruction of cases with shedding patterns similar to the training data, but we can
still conclude reasonably that the latent space of figure 7 is applicable beyond the specific
conditions of our experimental dataset, and carries with it a certain degree of generality.

4. Concluding remarks

We considered a cyclic approach to the study of discrete gust encounters, focusing on
experiments in which a wing is towed through a transverse gust. We used persistent
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homology to describe each gust encounter as a cyclic event, and determined that each case
could be described by a single, highly persistent 1-cycle. We then posited that because of
their topological simplicity, each gust encounter could be transformed to a basic shape.
Using a nonlinear autoencoder, we identified a subspace in which the dynamics of six
separate gust cases are represented by six circular trajectories in R

3, each of which can be
decoded to reconstruct accurately the original flowfield.

After identifying a simple, three-dimensional latent space, we then explored a number of
ways in which topology-based dimension reduction can simplify the analysis of transient
gust encounters. Specifically, we showed the following: (1) the latent space permits a
natural definition of the phase θ(t), allowing us to apply phase reduction analysis to the
gust encounter problem; (2) the latent space provides a natural framework for interpolating
time series of flowfield snapshots; and (3) the latent space can be decoded to reconstruct
conditions outside the training dataset, implying that our topological constraints impart a
certain degree of robustness. Overall, we believe that the current approach holds promise
in its ability to identify useful coordinate transformations for the purposes of flowfield
analysis, and our future work aims to explore how these coordinates can simplify the
modelling and control of large-scale aerodynamic disturbances.
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Appendix

Throughout this work, we used persistent homology as a means of describing the shape
of dynamical trajectories in a high-dimensional state space. While persistent homology
is inherently robust to measurement noise (Edelsbrunner & Morozov 2014), we must
acknowledge that it is still a numerical method, and our descriptions of topology will
ultimately exhibit some dependence on data sampling practices. In this appendix, we
examine the effect of sampling rate on (1) our persistent homology computations, and
(2) our topology-based autoencoder procedure.

Before presenting the results of this investigation, let us recall the intended purpose of
our persistent homology analysis. In the context of this work, the overall goal of persistent
homology is to determine the number of highly persistent elements associated with the
H0 and H1 groups, such that we can select manually a target shape that preserves these
elements up to homeomorphism. Thus we can claim reasonably that our persistence
diagrams have converged if it can be shown that the number of highly persistent H0
and H1 elements is insensitive to data sampling. Toward this end, figure 10 shows
a grid of persistence diagrams, generated for the purpose of assessing the impact of
snapshot number. Figures 10(a–c) correspond to persistence diagrams associated with
the single trajectory point cloud (G = 0.71, α = 5◦); figures 10(d– f ) correspond to the
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Figure 10. Convergence behaviour of persistent homology with respect to the number of snapshots in the
input point cloud.

multi-trajectory point cloud (G = {0.25, 0.50, 0.71}, α = {−15◦, 0◦, 5◦, 15◦}); and each
column is associated with a different number of flowfield snapshots, sampled uniformly in
time.

In figure 10, we identified manually the highly persistent elements of the H0 and H1
groups, and have highlighted the corresponding birth–death pairs in blue. For the single
trajectory case, we see that the persistence diagram exhibits one highly persistent element
in H0 and one highly persistent element in H1 when including as few as 200 snapshots
in the input point cloud. Likewise, for the multi-trajectory case, the persistence diagram
exhibits four highly persistent elements in H0, and six highly persistent elements in H1,
for as few as 400 snapshots. We thus conclude that the persistence diagrams of figure 4,
which incorporated 400 snapshots for the single trajectory case and 400 snapshots for the
multi-trajectory case, are reasonably converged with respect to snapshot number.

Based on figure 10, we can conclude that our persistent homology computation exhibits
a weak dependence on sampling rate when expanding snapshot number beyond the value
used to generate figure 4. As a final item in this appendix, we note that the next stage of
our methodology, autoencoder training, also features some degree of dependence on the
number of snapshots, in that the autoencoder weights may be considered more converged
for datasets with a larger number of snapshots. The authors explored the sensitivity of an
autoencoder to snapshot number in a previous work relating to fluid systems (Fukami et al.
2021), with the conclusion that generally, reconstruction is unaffected by snapshot number
beyond a certain threshold; however, we include a short sensitivity study here to confirm
that these conclusions can be extended to gust encounter measurements.

Figures 11(a–d) show the latent space and a sample flowfield reconstruction for the
single trajectory point cloud when training with 100, 200, 300 and 400 snapshots,
respectively. In generating each subfigure, we retrained the single trajectory autoencoder
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Figure 11. Convergence of the topological autoencoder with respect to the number of flowfield snapshots,
using the single trajectory point cloud (G = 0.71, α = 5◦) as a test bed.

from scratch, varying only the number of training snapshots, and holding constant the
target shape (a circle of radius 0.75) and the hyper-parameters (βr = 5, βs = 3, βp = 5).

Figure 11 indicates that both the latent space and the quality of flowfield reconstruction
are fairly insensitive to the number of snapshots. As snapshot number is increased, we see
that the latent trajectory simply features more points along the trace of the target shape,
while the reconstructed flowfields exhibit very slight differences in their representation of
the LEV. Thus, on the whole, we find that the results of autoencoder training, much like
the results of our persistent homology analysis, are only weakly sensitive to the number of
snapshots included in the input point cloud, as long as our number of snapshots exceeds a
reasonable threshold.
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Zakrzewski), pp. 31–50. EMS Press.

FUKAMI, K., HASEGAWA, K., NAKAMURA, T., MORIMOTO, M. & FUKAGATA, K. 2021 Model order
reduction with neural networks: application to laminar and turbulent flows. SN Comput. Sci. 2 (467), 1–16.

FUKAMI, K. & TAIRA, K. 2023 Grasping extreme aerodynamics on a low-dimensional manifold. Nat.
Commun. 14, 6480.

GODAVARTHI, V., KAWAMURA, Y. & TAIRA, K. 2023 Optimal waveform for fast entrainment of airfoil
wakes. J. Fluid Mech. 976, R1.

JONES, A.R., CETINER, O. & SMITH, M.J. 2021 Physics and modeling of large flow disturbances: discrete
gust encounters for modern air vehicles. Annu. Rev. Fluid Mech. 54, 469–493.

KRAMAR, M., LEVANGER, R., TITHOF, J., SURI, B., XU, M., PAUL, M., SCHATZ, M.F. & MISCHAIKOW,
K. 2016 Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology. Physica
D 334, 82–98.

980 A18-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

16
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.16


Gust encounters through the lens of persistent homology

LECUN, Y., BOTTOU, L., BENGIO, Y. & HAFFNER, P. 1998 Gradient-based learning applied to document
recognition. Proc. IEEE 86 (11), 2278–2324.
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