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SEPARABLE MEASURES AND THE DUNFORD-PETTIS PROPERTY

JosE AGUAYO AND JOSE SANCHEZ

Let X be a complete regular space. We denote by C3(X) the Banach space of
all real-valued bounded continuous functions on X endowed with the supremum-
norm.

In this paper we give a characterisation of weakly compact operators defined
from C3(X) into a Banach space E which are fBo-continuous, where B is a
locally convex topology on Cs(X) introduced by Wheeler. We also prove that
(Cb(X), Boo) has the strict Dunford-Pettis property and, if X is a o-compact
space, (Cb(X), Bo), has the Dunford-Pettis property.

The concepts introduced here arise from the theory of strict topologies for a com-
pletely regular space due to Sentilles [8] and several authors. The first three locally
convex topologies considered by them on Cy(X) were By, 8 and §; which relate to the
theory of measure on topological spaces developed in, for example, Varadarajan [10].
Such topological vector spaces have as duals the spaces My(X), M,(X) and M,(X)
of tight, T-additives and o-additives measures respectively.

Another important strict topology defined on Cy(X) is Boo introduced by Wheeler
[11]). The dual of (Cs(X), Boo) is Moo(X), the space of all u-additive measures.

1. PRELIMINARY RESULTS AND NOTATIONS

Let E be a Hausdorff locally convex space. E is said to have the D-P (respectively
the strict D-P) property if for any Banach space E and every linear continuous mapping
T: E — F for which T(B) is relatively weakly compact in F for every bounded
set B C E, T(C) is relatively compact (respectively {Tzn}n is Cauchy) in F for
any absolutely convex weakly compact subset C (respectively weak Cauchy sequence
{za}n) in E, [2, Definition 1 and 3]. The following theorem was proved by Khurana
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THEOREM 1.1. If E is a locally convex space with the strict D-P property and
E', the topological dual of E, has a o-compact dense subset in the o(E’', E)-topology,
then E has the D-P property.

Let K denote the class of all bounded and equicontinuous subsets of Cy(X). Boo is
defined to be the finest locally convex topology on Cy(X) agreeing with the pointwise
topology on each H € K. It is known [4] that 8 < B < B, and then My (X) is
contained in M,(X). It is not difficult to see that a o-additive measure p is p-additive
if and only if py is pointwise continuous on each H € K. Thus every Dirac measure
§z, ¢ € X, is a p-additive measure and the span Myg(X) of {é.: z € X} is contained in
Moo (X). Pachl [6] proved that M (X) is the completion of (M4(X), K-top), where
the K-top is the topology of uniform convergence on each H € K. Since X is, in
particular, a Hausdorff uniform space and such uniformity is generated by the family
of pseudometrics {dyg: H € K}, where

du(z, y) = sup{lf(z) — f(y)| : f € H} = sup{|6(f) — 6,(f)| : f € H},

we have that X is a topological subspace of (M. (X), K-top).
Wheeler and Sentilles {9] proved that a o-additive measure p is p-additive if and
only if 3 u(fa) = w(1) for any partition of unity {fa: a € A} in Cp(X). After
a€A

that, Koumoullis [5] exhibited a family U of compact subsets of 83X — X, where X
denotes the Stone-Cech compactification of X, and proved that a o-additive measure
u is p-additive if and only if |G| (K) =0 for all K € U, where & is the corresponding
regular Borel measure on X (via the isometry of Cy(X) and C(8X)).

In {1] we proved that any bounded linear operator defined on C3(X) into a Banach
space E is represented by a finitely additive vector measure defined on Ba(X), where
Ba(X) is the Baire o-algebra in X.

For every bounded linear operator T': C3(X) — E we denote T the corresponding
linear operator defined on C(8X) to E by T(f) = T(f), where f is the unique
extension of f to BX. It is clear that, for each z' € E', 2’0 T = z' o T and if m is
the associated finitely additive vector measure of T', then z' om = z' o 7% where m
is the associated finitely additive vector measure of T. We will write ||m||(A) for the
supremum of the set {|z' om|(A4): ||2'|| <1}.

2. CHARACTERISATION OF A WEAKLY COMPACT Boc-CONTINUOUS OPERATOR

THEOREM 2.1. Let T be a weakly compact operator defined from Cy(X) to a
Banach space E. The following statements are equivalent:
() T is Boo-continuous.
(b) Ty is pointwise continuous for all H € K.
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(c) |Im|(K)=0forall KeU.
(d) Forevery partition of unity {fa}aca in X and for every ¢ > 0, there ex-

ists a finite subset F of A such that |z' o m| (l -3 fa) < € uniformly
a€F

in 2!, ||='|| <1.

PROOF: (a) = (b) Since B coincides with the pointwise topology on each H
in K, the statement follows.

(b) = (c) Since z' o Tjy is pointwise continuous for all z' € E', we have that
z'oT € Moo(X) and then |z’ o7n|(K) =0 for all K € U (see [5, Theorem 3.2]). Thus
Il () = 0.

(c) = (d) Let {fa}a be a partition of unity for X and 0 < &€ < 1. For every
finite subset F of A, we define Zr = {z € X: Y fo(z) <1—¢} and let K be the

a€F

intersection of all Zr. Then K is a compact subset of 8X — X and belongs to U . See
(5, Lemma 3.1).
We claim that ||m| (K) = inf{||m||(ZF): F is a finite subset of A}. In fact, since
K € U, for all finite subsets F of A, we have || (K) < inf ||| (ZF) (||m]] is a
non-decreasing set function). For each z' € E', |z' om|(K) = inf |z' oT|(ZF) and
therefore ||| (K) = sup |¢' om|(K) = sup inf|z' om|(ZF). Thus, to prove the
I='1I<1 =<1 F

claim is to prove that inf sup |z’ oT|(ZF) < sup inf |2’ o TR|(ZF).
F=i<s =<1 F

Take a finite subset F of A and ¢ > 0. Then there is z, € E' such that

sup |2' o7i|(ZF) < |z, o7R|(ZF) + €. That implies
Iz’ li<1

inf ||| (Zr) = inf sup |z’ oT|(ZF)
F F=i<
< iz}f |z, om™|(ZF) + ¢
< sup inf|z' om|(2F) +¢
=<1 F
<|ml(K) +e.

Since € > 0 was arbitrary, we have infr ||| (ZF) < ||| (K).
Now, take z' € E' with ||z'|| <1 and € > 0; by above, there is a finite subset F
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of A such that ||m| (ZF) < ||m|| (K)+¢. Thus

|z’ om| (1) - Z |z' o m|(fa) = |2’ om]| (1— Zfa) = |z' om| (1 - ZTQ)

a€EF a€F a€EF
- / (1 - Z?a)dlz' o 7|
ZF a€EF
+/M_x (1 - ‘gpfa)dlz o |

< |2’ o (2ZF) + ¢z’ om| (BX)
< ™l (ZF) + € |Im]| (BX)
< e(1 + |m|| (BX)).

Therefore |z' o m| (1 - fa) < ¢ uniformly in 2', ||2'|| < 1.
a€F

(d) = (a) Since {|z' om| : ||z'|| < 1} is bounded, we have that for every par-
tition of unity {fo}aea and £ > 0, there exists a finite subset F of A such that
|z’ o m| (1 -¥ f.,) < € uniformly in 2', ||2'| < 1, which implies that {|z' o m]| :

a€F
II2’|| < 1} is Boo-equicontinuous [5, Proposition 3.6) and T is Bo-continuous. 0

3. THE STRICT DUNFORD-PETTIS AND THE DUNFORD-PETTIS
PROPERTY IN (Cj(X), Bo)

THEOREM 3.1. (Cus(X), Boo) has the strict Dunford-Pettis property.

PROOF: Let T be a weakly compact Boo-continuous operator from Cy(X) into a
Banach space E. Since B < B, (see Khurana [4]), the associated vector measure
m is o-additive and so it admits a control positive real-valued measure p [1]. Take a
weakly Cauchy sequence {f,}n in Cp(X). Then {fn}n is Beo-bounded which implies
{fn}n is norm bounded (see for example Khurana [4}); thus, there is L > 0 such that
|Ifnll < L/2 forall n € N. Given € > 0, there exists § > 0 such that u(F) < § implies
lm|| (F) < €/2L. On the other hand, for each z € X, {fn(z)}n is a Cauchy sequence
in R which implies, by Egoroff’s Theorem, that there exists F; in Ba(X) such that
{fn}n is uniformly Cauchy on X — Fs and pu(Fs) <§.

Choose ng € N so that, for n, m > ng, we get

sup{||fa(2) — fm(2)l| : = € X — Fs} <¢/2M, with M = ||m||(X).
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Thus, if n, m > ny, then

/. U fmim| + / 5 (f,.—fm)‘dm”

< (sup{[|fa(z) — fm(2)|| : = € X})M + L |Im|| (F5)
<ef2+e/2=cE,

"Tfn - Tfm" <

50 {T(fn)}n converges in E and the theorem is proved. 1]

THEOREM 3.2. (Cu(X), Bo) possesses the Dunford-Pettis property, if X is o-
compact.

PROOF: Let {K,}, be an increasing sequence of compact subsets of X such that
UK, is dense in X. Let L, denote absco(K,) in M. Since K, are compact in
M, (X) with the K-topology and the space (Mq(X), K-top) is complete, we have
that L, are compact subsets of Mo,(X). Moreover {L,}n is an increasing sequence.

We claim that UL, is K-dense in Muo(X). In fact, take p € Mo(X) and a
balanced neighbourhood V of p. Since My(X) is K-dense in Myo(X), V contains
some element of My(X), say v = zn: aibz;, with 2, z2,..., 2, € X. Suppose that

i=1

0<a= zn: la;] €1 (if @ =0, VNUL, # 0 and we are done) and take neighbourhoods
Wi, Wz,‘.=.l. y Wa of 682, 62,, ..., 6;, respectively such that a3y W3 + caW3 + ... +
a,W, C V. Since W; N X is a neighbourhood of z; in X, we have that there exists
6, € Ky, such that 6,, € WiNX. Thus 3. aiby, € 3> aW; C V and ¥, aiby, € Lw,
where N = max{n;:i=1,...,n} and tl;:rlefore |4 r‘1=(lULn) #0. .

Suppose now that a > 1; hence a E (ai/a)bz; € V and then Z (aifa)bz; €

i=1

1/aV C V. Applying the above argument to 1/aV, we get 0 # l/aV N(uL,) C
VN(UL,). Thus, for every p € Moo(X) and every neighbourhood V of u, VN(UL,) #
0. )
Therefore, (Moo(X), K-top) has a o-compact dense which implies that
(Moo(X), 0(Mo(X), Cs(X))) has a o-compact dense subset. The conclusion of the
Theorems follows from Theorems 1.1 and 3.1. a
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