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SEQUENCE ENUMERATION AND THE DE BRUIJN-
VAN AARDENNE EHRENFEST-SMITH-

TUTTE THEOREM 

D. M. JACKSON AND I. P. GOULDEN 

1. Introduction and notation. The de Bruijn—van Aardenne Ehrenfest— 
Smith—Tutte theorem [1] is a theorem which connects the number of Eulerian 
dicircuits in a directed graph with the number of rooted spanning arborescences. 
In this paper we obtain a proof of this theorem by considering sequences over 
a finite alphabet, and we show that the theorem emerges from the generating 
function for a certain type of sequence. The generating function for the set of 
sequences is obtained as the solution of a linear system of equations in Section 
2. The power series expansion for the solution of this system is obtained by 
means of the multivariate form of the Lagrange theorem for implicit functions, 
and is given in Section 3, together with a restatement of the theorem as a 
matrix identity. Corollaries of these results are given in Section 4 and include 
the de Bruijn—van Aardenne Ehrenfest—Smith—Tutte theorem, and an ex
pression for the number of directed Hamiltonian cycles of a graph. In Section 5 
we consider briefly some possible extensions of the matrix identity to other 
sequence problems. 

To abbreviate some of the multivariate expressions which arise in the sub
sequent development, the following notational apparatus is used. 

1) A = [ai3]nXn, x = Oi, . . . , xn), X = diag (xi, . . . , xn) where 
{ai3\ i,j = 1, 2, . . . , n) and {xi, . . . , xn) are sets of indeterminates. 

2) M = [mi3]nXn, k = (fei, . . . , kn), K = diag (ku . . . , kn) where 
{mid\ i, j = 1, 2, . . . , n\ and {ki, . . . , kn} are sets of non-negative integers. 

3) When convenient we adopt an implied product convention in which 

AM = n i ^ i ^ / ^ ' a n d M ! = ITî.J-i *»„!. 

4) [(. . .)]ij denotes the (̂ , j)-element of the matrix (. . .). cofi:f(. . .) 
denotes the (signed) cofactor of (i,j) in the matrix (. . .). [xn] (. . .) denotes the 
coefficient of xn in the power series (. . .). 

2. Preliminaries. We now consider the enumeration of sequences over the 
set ^V = {1, 2, . . . , n) in the situation where, for each sequence, information 
concerning the frequencies of occurrence of each i and each adjacent pair ij 
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for i,j Ç J/ is to be retained. The following proposition sets up the appro
priate generating function for this purpose. 

PROPOSITION 2.1. Let £f = J/ * be the monoid of sequences over JV with 
concatenation {denoted by juxtaposition) and let j ^ + = S^\{e\ where e is the 
empty sequence. Then the generating function for <5^+ is 

*(x,A) = E ^ ^ W 
where W(a) = xkAM in which kt is the frequency occurrence of i in a and ma is 
the frequency of occurrence of ij in a. Furthermore, if a £ <5^+ begins with p and 
ends with q then 

kj = Z X i m a + àpjforj = 1,2, ... ,n 

kt = X)y=i ma + àiqfor i = 1,2, ... ,n. 

Proof. By construction, the number of sequences in 5 ^ + with kt occurrences 
of i for i = 1, 2, . . . , n and ra0- occurrences of ij for i,j — 1,2, . . . , n is 
[xkAM]$(x, A) so <£>(x, A) is the appropriate generating function. The second 
part of the proposition is immediate. 

The following lemma provides a means of determining this generating 
function. 

LEMMA 2.2. There is a unique y = (yly . . . , yn) which satisfies the linear 
system 

yT = xT + XAy r . 

Moreover, this y is such that 

yi + . . . +yn= $(x, A). 

Proof. Let 5^ \ C ^ + be the subset of sequences of j ^ + beginning with the 
symbol i £ JV. Then 

(i) y+ = yjuy^ 

Now each element of S^\ may be formed in a unique way by attaching i as 
a prefix to a member of ¥, so 

(2) y, = isr. 

Let z{ — ^cre^i W(a) so, from (1), 

$(x, A) = Zl + . . . + zn. 

Moreover, from (2), 

y \ - = {i} \J [i \J%, $ff\ for i = 1, 2, . . . , n 
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so z = (zi, . . . , zn) satisfies 

%i — %i -\- %i / j 9-—i CtZjZj, 1 — 1 , Z , . . . , ft 

which may be written 

zT = xT + XAzr. 

Accordingly, z satisfies the given linear system. Now 

(I - XA)zT = xT 

and I — XA is non-singular since A and X are matrices of indeterminates. 
Thus the solution is unique and the lemma follows. 

3. The main theorem. The following theorem gives an explicit power 
series expansion for the generating function for S^+. 

THEOREM 3.1. 4>(x, A) = 3/1 + . . . + yn where 

Jv = ZMxkAM |K - M|(k - 1)!(M!)-1 

in which the summation is over all n X n non-negative integer matrices M such 
that 

kj = X^=i mij + &pj> 3 = 1» 2, . . . , n 

providing there exists q £ jV such that 

hi = J2nj=i mfj + ôiq, i = 1, 2, . . . , n. 

Proof. From Lemma 2.2, the generating function is given by 

$(x, A) = yi + .. . +yn 

and the summation conditions on M are given by Proposition 2.1. Furthermore, 
from Lemma 2.2, we have 

Ji = xifiiy), i = 1,2, . . . ,n 

where 

fi(y) = 1 + JL%i anyj, i = 1, 2, . . . , n. 

Accordingly our task is to expand yv as a function of Xi, . . . , xn where y is 
given intrinsically in terms of x by the above functional equations. We use the 
multivariate form of the Lagrange theorem for implicit functions [5], which 
holds [14] for the algebra of formal power series. Let f = (/1, . . . ,fn). Then 

[xk]y, = [yk]yPfk||ô„ - (yj/ft) àf{/àyj\\ 

= [yk]y,ll««/i*' - (yj/kt) àf^/àyj\\ 

= Z M ni-i l tyi""1 • • • ynm"]f,k,}\\ôii - mjkiW 
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where the summation is taken over M such that 

2 " = i ma = ki ~ ôjp> f o r i = 1, 2, . . . , w. 

Clearly 

2^"=i niij S k{, for i = 1, 2, . . . , n 

but since ^ J = i ]Ci=i mu = ]C;=i kj ~~ 1» then 

^j-=i ra*;- = &z- — biq for some g f {1, 2, . . . , n}. 

Thus 

w 1 ( kl \ 
[AMxk]yp = |K - M| H Y\mn>-m'min' dlqJ 

M! ' ' 

under the given conditions on M. 

The following two corollaries are, in effect, restatements of Theorem 3.1 in 
purely matrix terms. 

COROLLARY 3.2. Let J be the n X n matrix of all Vs. Then 

trace (I - XA)-*XJ = £ M x k A M | K - M|(k - 1)!(M!)-1 

where the summation is taken over all non-negative integer matrices M such that 
there exist p, q (z ̂ V for which 

kj = X X i mu + ÔPV j = 1,2, . • . ,n 

kt = X"=i mij + àiq, i = 1, 2, . . . , n. 

Proof. From Lemma 2.2 

yT = xT + XAy r 

so yt = [(I - X A ^ X J J a , Thus trace (I - XA)-*XJ = yx + . . . + yn and 
the corollary follows from Theorem 3.1. 

COROLLARY 3.3. 

[(I - XA)^X]pq - x A Z M x k X M {cof„(K - M)}(k - 1)!(M!)-1 

where the summation is taken over all non-negative integer matrices M where the 
row sums and the column sums of K — M are zero. 

Proof. [(I — XA) _ 1 X]^ is the generating function for the subset of se
quences of £f+ which begin with p and end with q. The corollary follows from 
Proposition 2.1 and Theorem 3.1. 
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In the following section a number of applications of these results is con
sidered. 

4. Applications. We now consider the use of these results in determining 
the number of Eulerian and Hamiltonian dicircuits of a directed graph. 

COROLLARY 4.1 (de Bruijn-van Aardenne Ehrenfest-Smith-Tutte theorem 
[1]). Let ^ be a digraph with vertex set {v\, . . . , vn) such that in — degree 
(Vi) = out — degree (v^ = kt for i = 1, 2, . . . , n. If e(@) is the number of 
Eulerian dicircuits in & and ti(&) is the number of spanning arborescences of & 
rooted at v~: then 

e{&) = (k - l)lti(&)fori = 1, 2, . . . , ». 

Proof. Consider the sequences of 5 ^ + which begin and end at p, and let npp 

be the number of such sequences. Then 

e(&) = M\npp 

since the edges are distinct. Now let %\ = x2 = . . . = xn = 1 in Theorem 3.1 
since the information about vertices is not to be retained. Then from Theorem 
3.1 we have directly 

nvv = [AM]yP =\K- M| (k - 1)!(M!)"1 

where 

kj = 2Jl=i vtij + ôpj and 

kt = 22nj=i mij + dip. 

Thus 

e(&) = (k - 1)!|K - M|. 

But |K — M| = cofpp(K — M) = cofpp(K — G) where G is the adjacency 
matrix of 0 \ But 

cof„(K - G) = tp{^) 

by the Matrix-tree theorem ([2] and [13]) and the corollary follows. 

Corollary 3.3 is a slight restatement of the result of Hutchinson and Wilf 
[8] who obtained the number of sequences in S/P+ with a prescribed set of 
symbols and a prescribed number of subsequences of the form if. However, 
their proof invokes the de Bruijn-van Aardenne Ehrenfest-Smith-Tutte 
theorem while our treatment derives it. 

COROLLARY 4.2. Let & be a digraph on n vertices with adjacency matrix G. 
If h(@) is the number of Hamiltonian dicircuits in & then 

n-l 

H&) = Z ( - 1 ) " Z detG[a|a]perG(a|a), for any p Ç J/ 
Jc=0 aC/\(pj 
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where G[a\a] is the submatrix of A with rows and columns from a and G(a\a) = 
G[JY \a\JY \a\. 

Proof. Let a £ 5^ + be a sequence beginning and ending with p, and con
taining each of the remaining symbols exactly once. Then each such a cor
responds to a Hamiltonian dicircuit of S .̂ Thus, from Lemma 2.2 we have, 

rl\& ) = \X\ . . . Xp—iXp Xp+i . . . Xn\yp 

where y satisfies 

yT = xT + XGy r . 

Thus yv = [(I — XG^XJpp whence 

h(&) = [Xl. . . xn] |I - XGI"1 coîpp(l - XG). 

But by the MacMahon Master Theorem ([11] and [3]) we have 

[xai . . . xak] |I — XG| _ 1 = per G[a|a] 

where a = {«i, . . . , ak} 
Accordingly 

|I - X G p 1 = £ £ *«. • • • *«* Per G[a|«] + /-'(x) 
fc=0 a ç / 

|a|=A; 

where 7 (̂x) consists of the remaining terms, each of which contains an xt to a 
power greater than one. But, expanding the determinant of the sum of a pair 
of matrices [12], 

colpP(I - XG) = £ ( - 1 ) ' E xfil... xfit det G[j8||8]. 

Thus 

A ( ^ ) = [Xl...Xn] D ( - i ) ' l £ 
l « l = f c |/3 |: Z 

X Xai . . . a t̂f/si • • • %pi per G[a|a] det G[0|0] 
and the theorem follows. 

This expression for h(@) involves the sum over all subsets of^K \{p}. It is 
rather more efficient than the expression given by [15], for Hamiltonian cir
cuits, which involves a sum over all partitions of ̂ K . 

5. Concluding remarks. Hutchinson and Wilf have considered the situa
tion in which A is symmetric and have reported that they encountered con
siderable difficulties [8]. Unfortunately, analogous difficulties present them
selves in the application of the methods of the proof of Theorem 3.1, for in this 
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case the partial derivatives with respect to atj contain more terms than in the 
case we have treated. We have been unable to detect any elegant simplifications 
which would warrant a disclosure. It would appear that the reason why the 
proof of Theorem 3.1 may be carried out is that/*(y) is linear in an, . . . , ain 

and yi, . . . , yn. Indeed, any departure at all from these serious constraints 
appears to lead either to a situation in which the Lagrange theorem cannot be 
applied or to an intolerable proliferation of terms which do not condense. For 
example, an expansion of trace (I — XAX(J — A)) - 1 XJ, which enumerates 
general alternating sequences [10] remains intractable by this method in spite 
of the apparent close affinity of this expression to trace (I — XA)~1XJ, which 
appears in the statement of Corollary 3.2. 

It is interesting, although not altogether surprising, that at the other ex
treme, where A has the form 

(y if i < j 
dij = <z if i = j 

[x if i > j 

so that the elements of A are highly dependent, the generating function 
$(x, A) again may be determined [8]. This fact unifies a large number of 
well known sequence enumeration problems under a common approach. 

A number of applications of the multivariate Lagrange theorem and the 
de Bruijn—van Aardenne Ehrenfest—Smith—Tutte theorem to sequence 
enumeration may be found in [4], [6] and [7]. 
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