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Previous mathematical models of quasi-steady turbulent plumes and fountains have
described the flow that results from a prescribed input of buoyancy. We offer a new
perspective by asking, what input of buoyancy would give rise to a plume, or fountain, with
given properties? Addressing this question by means of an analytical framework, we take
a first step toward enabling a plume with specific characteristics, i.e. a synthetic plume, to
be designed. We develop analytical solutions to the conservation equations that describe
four kinds of turbulent flow: axisymmetric plume, starting fountain, line plume and wall
plume. Crucially, our solutions do not require the buoyancy distribution to be specified,
whether this be the source or off-source distribution. Key to our approach, we specify a
function for the volume flux, Q = f (z), and take advantage of the weak coupling between
the conservation equations to uniquely express general solutions in terms of f . We show
that any analytic function f can form the basis for a set of solutions for the fluxes, local
variables and local Richardson number, though f /(df /dz) > 0 is a necessary condition
for physically realistic solutions. As an example of plume synthesis, we show that an
axisymmetric plume can have an invariant radius if there is an exponentially increasing
input of buoyancy to the plume centreline. We also consider how plume synthesis could
be achieved practically.

Key words: plumes/thermals

1. Introduction

A turbulent plume is a flow generated by a continuous input of buoyancy from a localised
source, of which there are a myriad of real-world examples (Woods 2010), varying from
scales of tens of kilometres, e.g. volcanic plumes, down to a few millimetres, e.g. a plume
generated by a heated wire. The buoyancy anomaly may be generated by a surface that
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is warm or cool relative to the surrounding fluid, for example a wall heated by the sun,
or there may be a direct injection of buoyant fluid, for example a chimney releasing hot
smoke. If the injected fluid is negatively buoyant, i.e. the buoyancy flux has opposite sign
to the momentum flux, then the initial flow moving away from the source is referred to as a
starting fountain (Turner 1966). In order to mathematically model these complex turbulent
flows it is the (suitably long) time-averaged behaviour that is considered. Plumes and
starting fountains from point or finite-area round sources are observed to be nominally
axisymmetric (Woods 2010; Hunt & Burridge 2015), whilst those from long slender
horizontal line-like sources and adjacent to vertical walls are quasi-two-dimensional (Lee
& Emmons 1961; Kotsovinos 1975).

The pre-eminent works of Zeldovich (1937) and Morton, Taylor & Turner (1956),
hereafter Zv and MTT, established the so-called ‘conservation equations’ for quasi-steady,
axisymmetric turbulent plumes rising from a localised circular source into a quiescent,
miscible environment. These coupled equations, which govern the time-averaged
behaviour of the bulk quantities in the plume with vertical distance z from the source,
are based on a number of simplifying assumptions. Readily justifiable in many situations
of practical interest, the key assumptions made are that plumes are long and thin flows,
the cross-stream profiles of the mean vertical velocity and mean buoyancy are self-similar,
and that molecular diffusion may be neglected. On making the Boussinesq approximation
(Boussinesq 1903), Zv and MTT reduce the Navier–Stokes equations in cylindrical polar
coordinates to the following ordinary differential equations, expressed here for ‘top-hat’
profiles of velocity and reduced gravity:

d
dz

(b2w) = 2αbw,
d
dz

(b2w2) = b2g′ and
d
dz

(b2wg′) = F(z). (1.1a–c)

In (1.1), b is the plume radius, w the vertical velocity, g′ the buoyancy or reduced gravity,
α the constant entrainment coefficient and F(z) the off-source buoyancy supply or loss.
For a stably stratified environment in the absence of off-source buoyancy supply or
loss, F = −N2Q, where N2 = −(g/ρ0)dρe/dz is the square of the buoyancy frequency
(MTT), g the acceleration due to gravity, ρe(z) the density of the environment and ρ0
a reference density. Whilst the solution approach we develop herein is equally valid for
Gaussian profiles, for convenience top-hat profiles are adopted throughout. In numerous
subsequent works on turbulent axisymmetric plumes, and herein, these equations are
routinely expressed in terms of the scaled local fluxes of volume, Q = b2w, specific
momentum, M = b2w2, and buoyancy, B = b2wg′, the actual fluxes being πQ, πM and
πB, respectively.

Focusing on plumes which exhibit dynamical invariance, (1.1) admit power-law
solutions (Batchelor 1954); for a pure plume in unstratified surroundings (F ≡ 0) that
emanates from a point source at the origin, for which the source conditions are
B = B0(> 0), Q = Q0 = 0 and M = M0 = 0 at z = 0,

b ∼ z, w ∼ B1/3z−1/3 and g′ ∼ B2/3z−5/3. (1.2a,b)

Accordingly, the local Richardson number, Γ (z) ∼ Q2B/M5/2 ∼ bg′/w2 (Morton &
Middleton 1973), is invariant and normally scaled so that for this ‘pure’ plume case
Γ (z) = 1. Plumes with Γ = Γ0 < 1 at the source are referred to as ‘forced’ (Morton
1959) and those with Γ0 > 1 as ‘lazy’ (Hunt & Kaye 2005). If the source buoyancy flux is
negative, i.e. B0 = g′

0 Q0 < 0 because the source buoyancy g′
0 < 0, Γ0 < 0 and the flow

develops as a starting fountain (for a review, see Hunt & Burridge 2015).
Central to the original model of Zv and MTT, and the multiplicity of extensions that have

followed, is the original entrainment hypothesis proposed by Taylor (1945) which enabled

973 R2-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

78
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.784


General solutions of the plume equations

the governing equations to be closed. Whilst garnering significant debate (e.g. Turner
1986; Richardson & Hunt 2022), the constant entrainment coefficient α associated with
this closure is nominally 0.1, meaning that velocities induced in the otherwise quiescent
ambient are an order of magnitude smaller than in the plume locally.

Arguably the beauty of the early plume solutions, e.g. (1.1a–c), lies in their simplicity
and ease of use. These solutions opened a window to a wider understanding of
behaviour, including to plumes from area and non-pure-plume sources (viz. forced
plume Morton (1959) and lazy plume Hunt & Kaye (2005) solutions), to virtual origins
(Morton 1959; Hunt & Kaye 2001; Candelier & Vauquelin 2012; Ciriello & Hunt
2020), dynamical streamwise variability (Ezzamel, Salizzoni & Hunt 2015), to stratified
surroundings (Caulfield & Woods 1998), background turbulence (Hubner 2005) and
variable entrainment (Pham, Plourde & Kim 2005; van Reeuwijk & Craske 2015; Carlotti
& Hunt 2017). Moreover, the works of Zv and MTT have been the catalyst for theoretical
extensions to non-Boussinesq plumes (Rooney & Linden 1996; Woods 1997; Carlotti &
Hunt 2005), including the development of analytical solutions that span Boussinesq and
non-Boussinesq sources (van den Bremer & Hunt 2010) and to different source geometries,
including line sources (Lee & Emmons 1961) and planar area sources (van den Bremer &
Hunt 2014), and to time-dependent plumes (Scase et al. 2006; Scase & Hewitt 2012),
amongst others.

Whilst complementary modelling approaches that offer additional insights have been
developed (e.g. Carazzo, Kaminski & Tait 2006; van Reeuwijk & Craske 2015), it is
the original integral formulation and solution approach of MTT that has formed the
underpinnings of our primary understanding of plumes in nature and industry. These
include glacial plumes (Ezhova, Cenedese & Brandt 2017) and reacting plumes (Conroy,
Llewellyn Smith & Caulfield 2005; Cardoso & McHugh 2010). Reversing the sign of the
buoyancy flux relative to momentum flux so that BQ < 0, the MTT formulations have
additionally inspired works on the initial flow in turbulent fountains (Turner 1966; Kaye &
Hunt 2006; Milton-McGurk et al. 2022).

In some of the different physical situations given above, there may be buoyancy supplied
to the plume away from the source, represented in (1.1) by F(z) /= 0. This ‘off-source’
buoyancy could be provided by a chemical reaction (Cardoso & McHugh 2010), by the
condensation of water vapour in a cumulus cloud (Bhat & Narasimha 1996), or by a
heated or cooled surface for a wall (Caudwell, Flór & Negretti 2016). The natural way
to attempt to solve the associated systems of plume equations, systems analogous to (1.1),
is to specify the buoyancy distribution F(z), which is typically known for the physical
problem under consideration, integrate the resulting equation for the vertical variation of
buoyancy flux (cf. (1.1c)), and then to seek solutions for the differential equations for
volume and momentum flux, simultaneously. However, it is not obvious a priori which
buoyancy distributions, F(z), permit analytical solutions. This provided the motivation
for the work herein, in which we propose an alternative route to solving the conservation
equations, developing general solutions (of which power-law solutions are a subset) for
axisymmetric plumes, starting fountains, line and wall plumes (hereinafter ‘the flows’).

In what follows we take advantage of the structure of the systems of governing
differential equations that describe the time-averaged flows. Instead of specifying a
function for the buoyancy distribution F, we specify a function for the volume flux,
Q = f (z). This allows the momentum flux M to be expressed in terms of f , which in
turn allows B and F to be expressed in a similar fashion, together with the quantities b, w,
g′ and Richardson number Γ . Our analysis shows that any thrice-differentiable and thus
any analytical function f provides a set of solutions to the relevant plume conservation
equations.
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An immediate benefit of this alternative approach is that it permits the design
or synthesis of plumes/fountains with particular properties. Rather than specifying a
particular buoyancy distribution F and attempting to solve for the fluxes (Q, B, M) and
associated quantities (b, w, g′, Γ ), a desired volume flux function (or, indeed, vertical
variation in width) can be chosen to meet the requirements of a particular application
and the buoyancy distribution calculated that would give rise to this desired behaviour.

The remainder of this paper is structured as follows. In § 2 we give the non-dimensional
governing equations. In § 3 we develop our approach. In § 4 we apply this approach
to develop general solutions to the governing equations for axisymmetric plumes and
starting fountains (§ 4.1), and line and wall plumes (§ 4.2). After discussing some of the
implications of our approach for power-law solutions, in § 5 we demonstrate the wider
merits of our approach by calculating the distribution of off-source buoyancy that would
give rise to a designer plume and fountain with specific properties. After outlining some
of the practical challenges of plume synthesis, we conclude in § 6.

2. Governing equations

In what follows, the dimensionless forms of the conservation equations for an
axisymmetric plume and starting fountain (§ 2.1), then those for a line plume and wall
plume (§ 2.2) are stated. Flows have been grouped in pairs this way given the similarities
between the forms that their governing equations take. Within each pairing there are
differences between the multiplicative coefficients, or prefactors, e.g. a factor of two
between the vertical variations of volume flux for line and wall plumes given the
entrainment is single-sided for the latter, and as there are numerous ways in which the
governing equations could be scaled on non-dimensionalising. To allow for all possible
scalings by characteristic constant quantities, the dimensionless coefficients 𝔮 > 0, 𝔪 > 0
and 𝔟 > 0 are introduced into the governing differential equation for non-dimensional
volume, specific momentum and buoyancy flux, respectively. To quantify 𝔮, 𝔪 and 𝔟
for the particular scaling adopted, it is simply a matter of equating coefficients. In
what follows, z now denotes the dimensionless vertical coordinate, and b, w and g′ the
dimensionless plume radius (axisymmetric/starting fountain cases) or plume width (line
and wall plume cases), vertical velocity and reduced gravity, respectively.

2.1. The axisymmetric plume and starting fountain
With the subscript (·)rθ indicating the multiplicative coefficients for the axisymmetric
cases, the dimensionless governing equations for an axisymmetric plume (M0B0 > 0) or
starting fountain (M0B0 < 0) may be expressed as

dQ
dz

= 𝔮rθM1/2,
dM
dz

= 𝔪rθ
BQ
M

and
dB
dz

= 𝔟rθF(z), (2.1a–c)

where Q = b2w, M = b2w2 and B = b2wg′ (MTT).

2.2. The line plume and wall plume
With the subscript (·)xy indicating the multiplicative coefficients for the two-dimensional
cases, the dimensionless governing equations for both a two-dimensional line plume
(Lee & Emmons 1961; van den Bremer & Hunt 2014) and wall plume (Cooper &
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Hunt 2010) may be expressed as
dQ
dz

= 𝔮xy
M
Q

,
dM
dz

= 𝔪xy
BQ
M

and
dB
dz

= 𝔟xyF(z), (2.2a–c)

where Q = bw, M = bw2 and B = bwg′.

3. The solution approach

We take advantage of the fact that, in each set of governing equations (2.1) and (2.2), the
variation of B is only dependent on F, and the variation of Q is only dependent on Q and
M. Taking the conservation equations for the axisymmetric plume as an example, let us
assume the solution for the volume flux is Q = f (z). Denoting differentiation with respect
to z by a prime, it follows that the general solutions to (2.1) may be expressed as

Q = f , M = ( f ′)2

𝔮2
rθ

, B = 2( f ′)3f ′′

𝔮4
rθ𝔪rθ f

, F = 2( f ′)2( ff ′f ′′′ + 3f ( f ′′)2 − ( f ′)2f ′′)
𝔮4

rθ𝔪rθ𝔟rθ f 2
.

(3.1a–d)

The highest derivative in (3.1) is three and, therefore, any three times differentiable, or
indeed, any analytic, function f leads to a set of solutions for M, B and F. The stratification
that would give rise to a plume with the above fluxes can also be determined given N2 =
−F/Q and F and Q are both known. It should be borne in mind, however, that there is no
guarantee that the resulting solutions are physically meaningful.

When attempting to model a particular plume in a particular setting it is unlikely
that Q will be known. Instead, we will probably have knowledge of, or insight into, the
buoyancy distribution F that drives the flow and, in general, it will be difficult to solve the
non-linear differential equation obtained by equating (3.1d) with that F. However, these
general solutions can provide insight into properties that any solutions of the conservation
equations, and thereby an associated plume, must have. As we shall show in § 5, this
approach also enables flows with particular properties to be synthesised.

We explore the solutions of (3.1) for the axisymmetric plume/starting fountain in § 4.1,
then apply the same method as outlined above to line/wall plumes in § 4.2.

4. General solutions

4.1. Axisymmetric plumes and starting fountains
From (3.1), the local properties can immediately be expressed as

b = 𝔮rθ f
f ′ , w = ( f ′)2

𝔮2
rθ f

, g′ = 2( f ′)3f ′′

𝔮4
rθ𝔪rθ f 2

. (4.1a–c)

Additionally, the Richardson number is

Γ = 5𝔪rθ

4𝔮rθ

Q2B
M5/2 = 5ff ′′

2( f ′)2 . (4.2)

Whilst deriving solutions for a particular buoyancy distribution may be non-trivial, we are
able to find power-law solutions. If f = zβ for β = const., then

Q = zβ, M = β2z2β−2

𝔮2
rθ

, B = 2β4(β − 1)z3β−5

𝔮4
rθ𝔪rθ

, F = 2β4(β − 1)(3β − 5)z3β−6

𝔮4
rθ𝔪rθ𝔟rθ

.

(4.3a–d)
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Figure 1. Variation of the asymptotic Richardson number Γ with β for power-law distributions of source
volume flux, f = zβ . (a) Γ = 5(β − 1)/2β: axisymmetric plumes and starting fountains. (b) Γ = (2β − 1)/β:
line and wall plumes. The values of β for which a classic jet (dotted line) and a pure plume (dot-dashed-line)
are obtained are indicated. The asymptotic values of Γ as β → ∞ are shown by dashed lines.

From (4.3), we see that there are two values of the exponent β for which F ≡ 0: β = 1
and β = 5/3. If β = 1 then Q = z, M = 1/𝔮2

rθ = const., B = 0 and we have recovered the
solution for a classic jet from a point source (Fischer et al. 1979). If β = 5/3, Q = z5/3,
M ∼ z4/3, B = const. and we recover the classic point source pure plume solutions of
MTT. From (4.1), we see that b = 𝔮rθ z/β and, thus, β > 0 is a necessary condition for a
physical plume. Additionally, from (4.2),

Γ = 5(β − 1)

2β
= const., (4.4)

for any power-law off-source buoyancy distribution, meaning that Γ → −∞ as β →
0+ and Γ → 5/2 as β → ∞. Therefore, by varying the value of β the flow varies
continuously from starting fountain, to jet, to forced plume, to pure plume and lazy plume.
A plot of the variation of Γ with β is shown in figure 1(a). A corollary of (4.4) is that
if a plume has Γ ≥ 5/2 it cannot be described by power-law solutions. However, other
solutions for such plumes, for example the lazy plume solutions of Hunt & Kaye (2005),
are entirely consistent with the general solutions (3.1).

Evidently, the plume sides become increasingly steep as β increases (b′ ∼ 1/β), so that
in the limit as β → ∞ the sides would be vertical. Whilst Hunt & Kaye (2005) show that
an axisymmetric plume from an area source is straight-sided at the source (but not above)
for a source Richardson number of 5/2, the power-law variation Q = zβ considered here
does not permit such straight-sidedness at any height given that b′ ∼ 1/β, which is never
zero. In § 5 we show that a vertically sided plume can, however, be established with an
exponential distribution of off-source buoyancy.

The above analysis shows that the requirement that the volume flux follow a power-law
variation with z leads to a constant and unique value of Γ for a given value of β. In the case
of plumes with constant, or linearly increasing, buoyancy flux, i.e. β = 5/3 or β = 2, (4.4)
gives Γ = 1 and Γ = 5/4, respectively. These are the asymptotic values of Γ , i.e. those
attained at large z, irrespective of the value of Γ0 (Hunt & Kaye 2005). Asymptotic values
of Γ for all other values of β are also given by (4.4). This assertion can be confirmed as
follows. Substitution of (3.1a), (3.1b) and (4.3c) into (4.2) gives

Γ = 5β4(β − 1)z3β−5f 2

2( f ′)5 , (4.5)

the variation of Γ with height for any plume with a power-law distribution of off-source
buoyancy. The results of Hunt & Kaye (2005) that plumes with no or constant off-source
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buoyancy input asymptote to Γ = 1 and Γ = 5/4, respectively, suggest that plumes with
other power-law distributions of off-source buoyancy input will asymptote to particular
values of Γ . Therefore, we differentiate (4.5) w.r.t. z and set Γ ′ equal to zero:

(3β − 5)f
zf ′ + 2 − 5ff ′′

( f ′)2 = 0. (4.6)

Noting that ( f /f ′)′ = 1 − ff ′′/( f ′)2, (4.6) has solution f /f ′ = Cz1−3β/5 + z/β for constant
C, which is valid for all values of β. Hence, the condition that f /f ′ = b/𝔮rθ = 0 at
z = 0 requires C = 0. Finally, f /f ′ = z/β has solution f = Azβ for constant A > 0. Thus,
assuming a power-law distribution of buoyancy flux implies an asymptotic state with a
power-law distribution of volume flux, and therefore (4.4) gives the asymptotic value of Γ

for a plume with a power-law distribution of off-source buoyancy input.
If 0 < β < 1 then {Q, M, F} > 0 and {B, Γ } < 0 ∀ z > 0. Hence, whilst such releases

would be classified as fountains in terms of the source conditions, unlike true fountains
these flows never reach a maximum height due to the off-source input of buoyancy, the
flow never reversing. If 1 < β < 5/3, {Q, M, B} > 0 and F < 0 ∀ z > 0 and, noting that
N2 = −F/Q ∝ z2β−6, means that N > 0 ∀ z, i.e. the environment is stably stratified. These
flows are forced plumes given 0 < Γ < 1 (4.4) and the limiting values of β for this flow
are in agreement with those identified by Caulfield & Woods (1998) in their examination
of plumes in stratified environments. As shown by MTT, fluid in a pure axisymmetric
plume in a stably stratified environment will always attain a maximum height at which
the local momentum flux has reduced to zero and reduce to a height of neutral buoyancy
before spreading laterally. However, for every β ∈ (1, 5/3) there exists a stratification with
N2 ∝ z2β−6 in which a forced plume would rise without limit, as M > 0 ∀ z.

4.2. The line plume and wall plume
Starting from (2.2) and using the approach outlined in § 3, one obtains

Q = f , M = ff ′

𝔮xy
, B = ff ′f ′′ + ( f ′)3

𝔮2
xy𝔪xy

, F = ff ′f ′′′ + f ( f ′)2 + 4( f ′)2f ′′

𝔮2
xy𝔪xy𝔟xy

. (4.7a–d)

The local plume properties are

b = 𝔮xyf

f ′ , w = f ′

𝔮xy
, g′ = ff ′f ′′ + ( f ′)3

𝔮2
xy𝔪xy𝔟xyf

, (4.8a–c)

and the Richardson number is

Γ = 𝔪xy

𝔮xy

Q3B
M3 = ff ′′

( f ′)2 + 1. (4.9)

As for the axisymmetric cases, power-law solutions are readily obtained. Writing f = zβ

we have

Q = zβ, M = βz2β−1

𝔮xy
, B = β2(2β − 1)z3β−3

𝔮2
xy𝔪xy

, F = 3β2(β − 1)(2β − 1)z3β−4

𝔮2
xy𝔪xy𝔟xy

.

(4.10a–d)

Accordingly, if β = 4/3, F = const. and we recover the solutions of Cooper & Hunt (2010)
for a plume adjacent to a wall that provides a uniform buoyancy input. The solutions
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Q M B F

Axisymmetric plume or starting fountain f
( f ′)2

𝔮2
rθ

2( f ′)3f ′′

𝔮4
rθ𝔪rθ f

2( f ′)2( ff ′f ′′′ + 3f ( f ′′)2 − ( f ′)2f ′′)
𝔮4

rθ𝔪rθ𝔟rθ f 2

Line or wall plume f
ff ′

𝔮xy

ff ′f ′′ + ( f ′)3

𝔮2
xy𝔪xy

ff ′f ′′′ + f ( f ′)2 + 4( f ′)2f ′′

𝔮2
xy𝔪xy𝔟xy

Table 1. Dimensionless solutions for M, B and F for a given Q = f .

b w g′ Γ

Axisymmetric plume or starting fountain
𝔮rθ f

f ′
( f ′)2

𝔮2
rθ f

2( f ′)3f ′′

𝔮4
rθ𝔪rθ f 2

5ff ′′

2( f ′)2

Line or wall plume
𝔮xyf

f ′
f ′

𝔮xy

ff ′f ′′ + ( f ′)3

𝔮2
xy𝔪xyf

ff ′′

( f ′)2 + 1

Table 2. Dimensionless solutions for b, w, g′ and Γ for a given Q = f .

compatible with no off-source buoyancy input are for β = 1, for which we recover the
solutions for a pure line plume (cf. Lee & Emmons 1961), and for β = 1/2, for which we
recover the solutions for a two-dimensional jet (Fischer et al. 1979). As in the axisymmetric
cases of § 4.1, it is necessary that β > 0 to ensure that b > 0. Additionally, from (4.9),

Γ = 2β − 1
β

= const. (4.11)

The familiar (asymptotic) result that Γ = 0 for a jet (β = 1/2) and Γ = 1 for a pure line
plume (β = 1) are recovered by inspection, as well as the result that Γ → 2 as β → ∞.
Indeed, it is readily shown, by the same method as outlined in § 4.1, that (4.11) prescribes
the asymptotic value of Γ for a power-law distribution of off-source buoyancy. As in the
axisymmetric cases, flows with interesting properties result for other values of β. For
example, if 1/2 < β < 1, for which 0 < Γ < 1, (4.10a–d) shows that the resulting line
plumes would rise without limit through a stably stratified environment on the grounds
that {M, B} > 0 and N2 = −F/Q > 0 ∀ z. If 0 < β < 1/2, from (4.10a–d) we see that the
flow would be a starting fountain but the flow would never reverse as M > 0 and B < 0 ∀ z.
The dependence of Γ and the different flow regimes on β are shown in figure 1(b).

4.3. Summary
The dimensionless solutions obtained for each of the flows considered above are
summarised in tables 1 and 2.

5. Synthesising plumes and fountains

5.1. A cylindrical plume
As an example of the potential scope for designing plumes offered by our approach,
we consider a circular source and enquire what distribution of centreline off-source
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buoyancy F would give rise to a cylindrical plume of constant radius R, i.e. such that
b ≡ R > 0 ∀ z > 0. From table 2, we require f /f ′ = R/𝔮rθ , which has solution

f = A e𝔮rθ z/R, (5.1)

for constant A > 0. It follows immediately from the solutions in tables 1 and 2 that

F = 6A3𝔮2
rθ

𝔪rθ𝔟rθR6 e3𝔮rθ z/R, w = A
R2 e𝔮rθ z/R, Γ = 5

2
. (5.2a–c)

Therefore, an exponentially increasing off-source buoyancy distribution (5.2a) produces a
plume with constant radius, by means of an exponentially increasing plume velocity (5.2b).
Moreover, this plume is dynamically invariant with Γ (z) = 5/2 ∀ z. A Richardson number
of Γ = 5/2 is predicted by Hunt & Kaye (2005) and Kaye & Scase (2011) as the value for
which an axisymmetric plume would have vertical sides, but only at a particular height as
opposed to the entire height of the plume. Note that all plume fluxes and properties are
finite at z = 0.

Following the same procedure for a line or wall plume also shows that an exponentially
increasing off-source buoyancy distribution gives rise to a width that is independent of z.
In this case Γ (z) = 2 ∀ z, which is in accord with the analysis of van den Bremer & Hunt
(2014) who predicted that the sides of a line plume are vertical for Γ = 2.

5.2. Another infinite fountain
In §§ 4.1 and 4.2 it was shown that there exist families of starting fountains that rise without
limit for particular power-law distributions of off-source buoyancy. Those are not the only
such starting fountains, however. Letting f = tanh (kz) for an axisymmetric plume, where
k is a wavenumber, from tables 1 and 2 it follows immediately that

b = 𝔮rθ

k
sinh (kz) cosh (kz), F = 32k6

𝔮4
rθ𝔪rθ𝔟rθ

sinh(kz)

cosh9(kz)
, Γ = −5 sinh2 (kz) cosh2 (kz).

(5.3a–c)

The other plume fluxes and properties are also well-behaved. Of note is that Γ → −∞
as z → ∞, a dynamical behaviour unlike all other flows considered herein where Γ

asymptotes to a finite value. In this context, this means that the momentum flux in the
plume is decaying to zero from above faster than the buoyancy flux is decaying to zero
from below.

5.3. Practical considerations
Controlling F(z) in order to synthesise a particular plume is difficult and presents
considerable practical challenges. The most straightforward way to generate a custom F(z)
is likely to be by controlling the temperature of a vertical wall, enabling the synthesis of
wall plumes. Creating a custom F(z) for an axisymmetric or line plume could perhaps
be achieved by a carefully designed grid of individually heated wires, or by creating a
particular stratification in a saline environment, e.g. by variations on Oster’s ‘double-tank’
method (Oster 1965; Economidou & Hunt 2009). Whilst diffusion does mean that any
ambient stratification will smooth out over time, it occurs over time scales much longer
than those of a plume, allowing measurements of a particular plume to be made before the
stratification would be meaningfully altered.
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6. Conclusions

We have developed a new approach to the solution of the conservation equations for
turbulent axisymmetric plumes and starting fountains, line plumes and wall plumes,
encompassing off-source buoyancy input as well as stratified environments. At the heart of
our approach, we specify a function for the volume flux f , rather than, as is conventional,
specifying the buoyancy flux. Whilst at first sight, one might have anticipated little to be
gained from this approach, we show that our general analytical solutions offer new insight
into plume and fountain behaviour, including, but not limited to, the classic power-law
solutions. Our approach shows that any analytic function f can be used to generate a set
of solutions to the equations, with f /f ′ > 0 being a necessary condition for a physically
realisable flow. Crucially, our approach enables us to take the very first steps towards
synthesising flows with particular properties, steps that were not apparent on following
conventional solution approaches, and has improved our understanding of the role played
by particular off-source distributions of buoyancy. Regarding the latter, we show how to
synthesise ‘cylindrical’ plumes and negatively buoyant releases that rise perpetually. We
anticipate that follow-up studies on plume/fountain synthesis following our approach will
potentially reveal further insights, a key next step being the incorporation of an entrainment
coefficient that varies with the local properties of the flow.
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