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Abstract

We discuss a model of a burning process, essentially due to Sal'nikov, in which a
substrate undergoes a two-stage decay through some intermediate chemical to form
a final product. The second stage of the process occurs at a temperature-sensitive
rate, and is also responsible for the production of heat. The effects of thermal
conduction are included, and the intermediate chemical is assumed to be capable of
diffusion through the decomposing substrate. The governing equations thus form
a reaction-diffusion system, and spatially inhomogeneous behaviour is therefore
possible.

This paper is concerned with stationary patterns of temperature and chemical
concentration in the model. A numerical method for the solution of the governing
equations is outlined, and makes use of a Fourier-series representation of the pattern.
The question of the stability of these patterns is discussed in detail, and a linearised
solution is presented, which is valid for patterns of very small amplitude. The results
of accurate solutions to the fully non-linear equations are discussed, and compared
with the predictions of the linearised theory. Parameter regions in which there exists
genuine nonuniqueness of solutions are identified.

1. Introduction

The formation of patterns in reaction-diffusion systems is now a much stud-
ied subject, and there are applications in a remarkably wide variety of areas.
Turing [17] explained morphogenesis in embryos in terms of a biochemical
reaction-diffusion system, in which a spatially-homogeneous steady state would
become unstable, giving rise instead to a pattern of chemical concentration

'Dept of Mathematics, University of Queensland, St. Lucia, Queensland, 4072, Australia.
© Australian Mathematical Society, 1993, Serial-fee code 0334-2700/93

145

https://doi.org/10.1017/S0334270000009103 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009103


146 Lawrence K. Forbes > [2]

upon the embryo surface. This general behaviour type is now known as a
"Turing bifurcation", and has been invoked more recently by Murray [13], for
example, to account for the regular patterns of stripes and spots on animal coats.
Pattern formation has also been observed in aggregations of single-celled or-
ganisms, and the phenomenon has been described using a reaction-diffusion
system of equations by Tyson, Alexander, Manoranjan and Murray [19]. Vari-
ous inorganic chemical reactions are now known to admit patterns, such as
the celebrated Belousov-Zhabotinskii reaction (see Tyson [18] and Winfree
[21]). The formation of patterns in combustion processes has been described by
Brindley, Jivraj, Merkin and Scott [2] and by Gray and Scott [9] (chapter 10),
and reaction-diffusion systems of Ginzburg-Landau type are currently receiving
much attention as a means of explaining spiral defects and other non-linear
optical phenomena (see Rica and Tirapegui [14]). Recently, McNabb and Bass
[12] have used non-linear reaction-diffusion equations to model the uptake of
protein-bound ligands by biological cells.

In the present paper, we examine the formation of patterns in a reaction-
diffusion system which arises from a simple model of a burning process. The
model was apparently first proposed by Sal'nikov [15], and is adapted slightly
here to allow for spatial inhomogeneities. The burning process is imagined to be
occurring at the surface of some substrate 5, which decomposes in a sequence
of two first-order reactions, through some intermediate chemical C to form a
final product P. The reaction scheme is simply

SXCXP. (1.1)

The concentration [5] of substrate S is taken to be a constant, invoking an
assumption which is sometimes known as the "pool-chemical" approximation.
In the present problem, this assumption might be regarded as corresponding
to one of two physical situations. In the first, substrate S could be continu-
ously fed up to the reaction zone; in this case, the substrate might be a gaseous
hydrocarbon, and the patterns would correspond to spatially inhomogeneous
temperature distributions across the nozzle of an oxy-welding torch, for ex-
ample. The experimental work of Griffiths [10] shows that the simple Sal'nikov
reaction scheme (1.1) does indeed have some relevance to the combustion of
acetaldehyde in oxygen. The second physical interpretation of the assumption
of constant substrate concentration [S] is one in which 5 is a solid. The reaction
zone at the surface of 5 would then move through the solid substrate, and the
inert product P (soot) would be removed, perhaps by the action of wind. This
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[3] Patterns in burning 147

interpretation thus corresponds to a situation in which there is uniform ablation
of the substrate as a result of an internal chemical reaction.

If the intermediate chemical C in the Sal'nikov scheme (1.1) is able to diffuse
through the decomposing substrate S, then the kinetic rate equation for this
intermediate species is

^p- = DV2[C] + kolS] - *,[C], (1.2)
at

where D is the diffusion coefficient for quantity C. In the Sal'nikov scheme
(1.1), the first reaction is assumed to take place isothermally, with constant rate
k0, but the second stage produces heat, and occurs at a temperature-dependent
rate kx given by the Arrhenius law

kl(T) = Mlcxp(-E/{RT)). (1.3)

Here, Mj is a rate constant having units seconds"1, E is the activation energy for
the reaction, R is the universal gas constant, and T denotes absolute temperature.

In view of the involvement of the temperature T in the above rate equation,
an energy-balance equation is also required. Suppose that substrate 5 occupies
some planar region fi, with boundary 9 £2, and let 72 be an arbitrary region within
Q, having boundary 372.. The conservation of energy within region 72 per unit
width in the reaction zone then leads to the equation

•£• [ f pchTdA = -(f q-nd£+ f [ QdA, (1.4)
at J Jn hn J Jn

in which p is the density of the medium and ch is its heat capacity. The symbol
q denotes a heat flux vector per unit width at the boundary 372. of the arbitrary
region, which has normal n directed out of the region 72.. The quantity Q
represents the sum of the energy per unit time per unit surface area which is
generated internally by the second exothermic stage of the scheme (1.1) and that
which is gained or lost through the surface.

According to Fourier's law of conduction, the heat-flux vector q is given by

q = -KVT, (1.5)

where K is a heat conduction coefficient. The quantity Q is comprised of a loss
term due to Newtonian cooling at the surface, in a direction perpendicular to the
planar region SI, as indicated in Figure 1. There is also a term representing the
internal heat production, and hence

(1.6)
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A cooling Ta

(insulated)

x = 0 x = L

FIGURE 1. Sketch of the physical model, showing the burning face fi and its (insulated)
boundary dQ. The surface pattern is one-dimensional, and is indicated by the shaded regions
shown.

in which x and Q\ are proportionality constants for the Newtonian cooling term
and the heat production term, respectively. The ambient temperature is Ta.

Expressions (1.5) and (1.6) are substituted into the conservation relation (1.4),
and Green's theorem in the plane is used to convert the single integral term to
an integral over the planar region 1Z. In view of the arbitrariness of this region
within SI, we therefore obtain the conservation law in differential form

^- = KV2T -
at

- Ta) (1.7)

It is convenient now to introduce dimensionless variables, by scaling the
temperature with respect to the reference quantity E/R and the concentration
with reference to (pchE)(QlR)~l. Time is made dimensionless with respect to
I/Mi, and all lengths are referred to L, which is some measure of the size of
the domain £2. It may then be seen that solutions to the present problem are
dependent upon the five dimensionless parameter groups

D
o =

kp[S]QxR
M,L2' a —

K

MlPchL
2'

fK — ea =
RTa
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[5] Patterns in burning 149

The first of these represents the dimensionless diffusion coefficient of the inter-
mediate chemical C, and the second is effectively a measure of the substrate
concentration. The constant a corresponds to the thermal conductivity of the
medium, fi is the coefficient of Newtonian cooling through the substrate sur-
face, and the parameter 6a is a measure of the ambient temperature. In these
dimensionless variables, the governing reaction-diffusion equations (1.2), (1.3)
and (1.7) become

— = aV2T - P(T - da) + Ce~l/T within ft. (1.8)
at

We assume that the boundary of the region is perfectly insulated, and is imper-
vious to any of the reacting species. The boundary conditions appropriate to
this problem are therefore the Neumann conditions

dC dT
0 dQ <L 9>

In the original model of Sal'nikov [15], the effects of chemical diffusion and
thermal conductivity were not included, and so spatial inhomogeneity was not
a possibility. This corresponds to a situation in which the reagents are perfectly
well mixed in the present model, and is equivalent to setting our parameters a
and a to zero. Equations (1.8) then become a system of two ordinary differential
equations for the evolution of the concentration C and temperature T in time,
and Sal'nikov [15] showed that limit cycles were possible, corresponding to
periodic oscillations in the concentration and temperature.

Chemical oscillations are now well documented in isothermal reactions (e.g.
Tyson [18]), and have been observed for temperature dependent reactions sim-
ilar to the present Sal'nikov model by Griffiths [10]. He noted two types of
oscillatory behaviour, a cool-flame oscillation which occurred almost at uni-
form temperature, and a more violent type, which involved large temperature
variations and was accompanied by flashes of light. The Sal'nikov model ((1.8)
with a = a = 0) has since been studied by Gray, Kay and Scott [8], using
the Frank-Kamenetskii approximation to the full Arrhenius exponential term in
(1.3). They identified the Hopf bifurcation points, at which the homogeneous
steady state becomes unstable, and a stable oscillatory solution emerges instead.

In a later paper, Kay and Scott [11] analysed the exact equations with the full
exponential non-linearity, and showed that there are parameter regions in which
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two oscillatory solutions can exist simultaneously; one of these is stable and
the other unstable. This situation comes about as a result of a subcritical Hopf
bifurcation occurring at one of the two possible Hopf points. Gray and Roberts
[7] have also examined the fully non-linear Sal'nikov model, and applied de-
generate singularity theory in an attempt to build up a global description of
the solution behaviour. Forbes [4] has recently established rigorously the para-
meter values for which oscillatory behaviour is not possible, and has introduced
a shooting method for computing periodic solutions when they occur. This
approach automatically determined whether or not the limit cycle was stable.

When chemical diffusion and heat conduction are permitted (a and a are
non-zero), oscillatory behaviour is now not limited to temporal variations only,
but can also occur spatially. The time-dependent kinematic waves of chemical
activity so produced may be structures of great topological complexity, such
as the "spiral" and "scroll" waves described by Winfree [21] and Winfree and
Jahnke [22] in the case of the isothermal Belousov-Zhabotinskil equation, and
by Winfree [20] in more general excitable media.

Genuine pattern formation occurs as a limiting case of these spatio-temporal
waves, when the propagation speed is zero. A time-independent structure is
then observed. In this paper, we compute such patterns in the Sal'nikov model
(1.8), allowing variation in a single space dimension only. The patterns would
thus appear as a series of stripes across the face of the burning material, as in
Figure 1. The Neumann boundary conditions (1.9) ensure that this is a non-
linear eigenvalue problem, and so the pattern amplitude is usually required to
be specified in advance, and one of the physical parameters is to be determined
as part of the solution. A numerical method for solving the one-dimensional
problem is outlined in Section 2, and is similar to that used by Forbes [5], [6],
since the concentration C(x) and temperature T(x) are represented in terms of
Fourier series, with coefficients that are to be found numerically.

Becker and Field [1] computed stationary patterns in the Belousov-Zhabotin-
skiT reaction using a method which integrated the governing reaction-diffusion
equations forward in time until some stationary state was reached. This approach
guaranteed that the pattern thus obtained would be stable. However, Forbes [5]
obtained patterns directly as solutions to the steady equations, and no such
guarantee of stability is available to this solution technique. Indeed, Comstock
and Field [3] have shown that Forbes' solutions are unstable, with the result
that they probably would not be observable in the laboratory. The question
of stability is thus a very significant concern for solution methods like those
of the present paper, and was addressed in a later paper by Forbes [6] for the
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Belousov-Zhabotinskii reaction. He succeeded in producing patterns which
were quasi-stable, with a life-time sufficiently long to be observable.

In the present paper, we treat the problem of pattern stability in some detail,
since the solution technique we employ is capable of computing stable and
unstable patterns with equal ease. In Section 3, an eigenvalue approach is used
to determine whether any Fourier component of an arbitrary applied disturbance
is capable of growing without bound, so rendering the pattern unstable. We
identify the regions of parameter space within which the stable and unstable
solution types may be produced.

A linearised theory, valid for patterns of very small amplitude, is presented
in Section 4, and the stability of the linearised patterns is related to the onset
of oscillatory behaviour in the well-stirred Sal'nikov model. In Section 5,
we present the results of extensive numerical experimentation, and Section 6
contains some concluding remarks.

2. The spectral solution technique

In this section, we present a numerical method for the solution of the one-
dimensional steady equations which govern the form of the concentration and
temperature profiles C(x) and T(x), respectively. Equations (1.8) thus become

aC"{x) + fi- C(x)e~l/™ = 0,

aT"(x)-p(T(x)-9a) + C(x)e-l/™ = 0 in 0 < x < 1, (2.1)

with boundary conditions

C\x) = T'(x) = 0 on x = 0,1. (2.2)

Consideration of (2.1) with their associated boundary conditions (2.2) shows
this system to constitute a non-linear eigenvalue problem. It therefore follows
that a sequence of eigenmodes is to be expected. In addition, there will be
some degree of arbitrariness in the pattern amplitude, but one of the physical
parameters will need to be computed as the eigenvalue.

Following Forbes [5], [6], the m-th eigenfunction is therefore sought in the
Fourier-series form

oo

C(x) = Co + ^ Cp cos(mpnx),
P=\
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T(x) = To + Y^ TP cos(mpnx). (2.3)
P=\

This form (2.3) automatically satisfies the Neumann boundary conditions (2.2),
but the coefficients Co, C\, C2,... and To, TX,T2,... are as yet unknown. In
addition, we shall compute the chemical diffusion coefficient o as the non-linear
eigenvalue of the problem. The arbitrariness associated with the eigenfunction
(2.3) is removed by specifying the concentration amplitude

Ac = C(0) - C{\/m), (2.4)

which, at least for the linearised solution, represents the difference between the
maximum and minimum points in the concentration profile, occurring at the
points x = 0 and x — l/m for the w-th eigensolution.

The numerical solution technique begins with the observation that, when the
two equations in the system (2.1) are added, the resulting equation relating C
and T and their derivatives is linear. Consequently, it is possible to express
all the Fourier coefficients To, Tx, T2,... simply in terms of Co, C\, C2,... The
relationship is

To = ea +

a{mpny + p

The infinite Fourier series (2.3) are next truncated, and approximated by
trigonometric polynomials of some order P. It is therefore required to find the
(P + l)-vector of unknowns

u = [Co, o, C2,..., C/»]T. (2.6)

An initial guess is made for the vector (2.6), and is updated iteratively using
Newton's method. On the basis of the current estimate for the vector (2.6) of
unknowns, all other quantities of interest can be computed. The coefficient C\ is
obtained from the amplitude condition (2.4), and is thus given by the expression

^ [C-D/2]

Cx=-Ac-
1 r=\

The square brackets around an expression indicates that only the integer part of
that quantity is to be taken. The Fourier coefficients for the temperature profile
are finally obtained from (2.5), up to the required order P.
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It remains to satisfy the first of the equations in the system (2.1), and this is
done by adjusting the elements of the vector (2.6) iteratively, using Newton's
method. The equation is multiplied successively by the basis functions 1,
cos(m7rjt), . . . , cos(mPjix) and integrated over the interval 0 < x < 1 to give
the system of non-linear algebraic equations

E0 = fi- / Ce~l/Tdx = 0,
Jo

Ep = -\a{mpit)2Cp- [ Ce'l/Tcos(mpnx)dx = 0 /? = 1, 2, . . . , /> (2.8)
Jo

The integrals in these expressions are evaluated using the composite trapezoidal
rule, with values for the concentration C(x) and temperature T{x) taken from
the (truncated) Fourier expansions (2.3), evaluated at the equally-spaced mesh
points

Xj•. = (J - l ) / ( / - 1), 7 = 1 ,2 , . . . , / .

Since the integrands are periodic, trapezoidal-rule quadrature is of exponentially
high order accuracy.

The algebraic problem is thus to force the vector [Eo, Eu ..., EP]J of re-
siduals in (2.8) to be within some pre-set distance of the zero vector. This is
achieved using a damped Newton's method, as in Forbes [6].

3. Stability of the nonlinear steady patterns

Suppose that a steady pattern of chemical concentration and temperature has
been found, by the methods of Section 2. In this section, we denote such a steady
pattern as [Cs(x), Ts(x)]J, and seek to determine whether it is stable to small
perturbations. Since stability here means that a small disturbance will not grow
with time, it is necessary to consider the full time-dependent equations (1.8). A
small time-dependent perturbation to the steady solution is now assumed, in the
form

C(x, t) = Cs{x) + eC,(jc, 0 + O(e2),

T(x, t) = Ts(x) + €Tx{x, t) + O(e2), (3.1)

where € is some small parameter. Equations (3.1) are now substituted into the
full equations (1.8) and boundary conditions (1.9), and only terms of first order
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in e are retained. This gives rise to the first-order variational equations

in

! 0 on x = 0, 1. (3.2)
dx

Here, we have defined the vector

the diagonal matrix

and the spatially dependent matrix

-exp(-l/7,) -[Csexp(-1/Ts)]/Ts
2

[ ] sexp(-l/7;) - £ + [C, exp(-l/T,)] /T/

The subscript m has been employed with these two matrices, to signify that their
elements are dependent upon the particular eigenfunction for which a steady
solution has been found. The stability of a steady pattern to small perturbations
may thus be decided by an investigation of solutions to the linear system of
equations (3.2) for arbitrary initial conditions.

The general solution to the vector system of equations (3.2) clearly has the
Fourier-series form

(3.3)
71=0

A steady pattern computed by the method of Section 2 will be stable to small
perturbations if and only if the Fourier coefficients Vn(t) cannot grow with the
passage of time.

When (3.3) is substituted into the variational system (3.2) and the latter is
then spectrally decomposed, there results an infinite vector differential equation
for the evolution of the Fourier coefficients in (3.3). This equation is

V0'(0 = V f f Am(x)cos(qnx)dx\\q(t),
q=0 WO /

Vn'(0 = -nVDmVn(0 + 2Y"( f Am(x)cos(qnx)cos(nnx)dx)\q(t)

n = 1,2,3.... (3.4)
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Progress in the study of (3.4) cannot proceed without some approximation,
and so we truncate the Fourier series (3.3) beyond the (A7 + l)-th order term,
for some integer N. We define the sequence of constant 2 x 2 matrices

<7>n = / A-m(x)cos(qnx)cos(nnx)dx,
Jo

q = 0 , 1 , 2 , . . . n = 0 , 1 , 2 , . . . (3.5)

and consider the truncated approximation to the system (3.4) in the vector form

X'(0 = HX(r) (3.6)

in which we have defined the 2A7 + 2 partitioned vector

= [V 0 (0 ,V,(0 , . . . ,V A , (0] T

and the (2N + 2) x (2N + 2) constant partitioned matrix

"CO a l ,0 ' " ' aW,0

H =

w,yv - N2n2Dn

The matrices (3.5) are evaluated with great accuracy using the trapezoidal rule,
and values of the steady concentration and temperature taken from the Fourier-
series representation (2.3).

For stability of the computed pattern (2.3), it is both necessary and sufficient
that the eigenvalues of the matrix H all have negative real parts, in the limit N ->
oo. We use the NAG library routine F02AFF to compute all the eigenvalues
of the finite matrix H in (3.6), and stability of the corresponding pattern is
then decided on this basis. Essentially the only error made in this process is
the truncation of the infinite system (3.4) to the finite system (3.6). However,
this is not a significant concern, since an examination of (3.4) shows that the
higher-order Fourier modes are dominated by a structure of the form \ n '(t) «
—«27r2Dm Vn (f) for n sufficiently large. Thus the high-order Fourier components
decay rapidly to zero. A similar situation was found in the problem studied by
Forbes [6]. In practice, we find that taking N = 30 is easily adequate to account
for the low-order Fourier modes.
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4. The linearised solution

In this section, we investigate patterns of very small amplitude. In practice,
these are possibly not of great interest, since they would be too small to be
detected in a laboratory experiment. Nevertheless, this investigation is of value
mathematically, since it allows simple closed-form expressions to be obtained
for the pattern profile and for the eigenvalue o, and additionally permits a rather
complete analysis of pattern stability, which serves as a useful guide to the fully
non-linear numerical approach.

The linearised equations are derived from the exact non-linear system (1.8)
by means of the perturbation expansions

,t) + O(e2), (4.1)

where e is some small parameter related to the pattern amplitude, as in Sec-
tion 3. When (4.1) are substituted into (1.8) and only terms of zeroth order
in the parameter e are retained, we obtain the equilibrium concentration and
temperature

Ce=/iexp{l/(0fl

Te=9a + ill p. (4.2)

The first-order terms in the expansion (4.1) give rise to the linearised equations

3U 32U
— = D m — + A U in 0 < . r < l ,
dt dx2

3U
— = 0 on JC = 0, 1, (4.3)
dx

where the vector U contains the first-order perturbation functions in the form

U(x,t) = [Cl(x,t),T1(x,t)]J.

The diagonal matrix Dm is exactly as defined in the variational system of equa-
tions (3.2) and contains the eigenvalue a (the chemical diffusion constant), and
the constant matrix A is

A = I ~cxP(-l/Te) ~
exp(-l/7;) -p-
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[13] Patterns in burning 157

A stationary pattern is a steady solution to the system (4.3), and can be written

U(JC) = Bcos(mnx), (4.4)

where B is an arbitrary constant vector. The integer m is free to be chosen,
and as in (2.3), it indicates which eigenfunction is to be sought. When (4.4)
is substituted into the linearised equations (4.3), there results the eigenvalue
problem

AB = m2n2DmB. (4.5)

From (4.5), the vector B may be found, within an arbitrary constant of multi-
plication which might then be decided by an amplitude condition such as (2.4).
In addition, the diffusion coefficient a is determined as the eigenvalue of the
system (4.5), and has the form

m27r2 + /?)exp(-l /7;)

m2n2\ix - T2(am2n2 + 0)] '

in which the constant Te is the equilibrium steady-state temperature defined in
(4.2).

The formula (4.6) for the diffusion coefficient a imposes restrictions on the
region in parameter space within which patterns (of infinitesimal amplitude) are
possible. The results are only of physical significance if a is a non-negative
constant, which therefore bounds the thermal diffusion coefficient a according
to the formula

a < ~^—2 \^~2 - p\ . (4.7)
m2n2 \_Tf J

Since the coefficient of thermal diffusion itself cannot be negative in any applic-
ation of physical interest, there thus arises from (4.7) a further restriction

0a < y/'ix/ fi — ix/fi, (4.8)

which shows that pattern formation is only possible within this bounded interval
of ambient temperatures 9a. Finally, the positivity of ambient temperature in
(4.8) gives the condition /J, < ft. From this, we see that pattern formation can
only occur if the ambient temperature is not too hot, and if Newtonian cooling
of the burning surface occurs at a sufficiently great rate.

It is now instructive to consider the stability of these linearised patterns (4.4).
The general solution to (4.3) has the Fourier-series form

oo 2

U(jf, t) = 2_]COS^nX) /_]exP(^?,r0^,r- (4.9)
<?=0 r=\
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The exponents kq<r and the vectors Kq r are eigenvalues and eigenvectors of the
matrix equations

[A - <?27r2Dm]K?,r = V K ? . " q =0,1,2 (4.10)

The linearised steady pattern (4.4) can only be stable if all the constants kqr have
negative real parts, given that one of these constants is zero when q = m. (The
equivalent condition for stability of small amplitude patterns in the Belousov-
Zhabotinskii reaction has been given by Forbes [6].) We define the trace and
the determinant of the 2 x 2 matrices in (4.10) to be, respectively,

^m,q = -q2Jt2(a + o) - (P - n/T2 + e~1/T'),

Am,, = <74TTW + q2rr2\ae-1/T' +a (p - fi/T2)] + /3e"1/r' (4.11)

and obtain the solution for the exponents kqr in the form

V = \ [S-,, ± >/s2,,-4Am.,] . (4.12)

The eigenvalues kqr will all have negative real parts if the trace Emi? in (4.11)
is negative, and the determinant Am q is positive. Under these conditions, the
linearised steady solution (4.4) will be stable.

From (4.11), a necessary condition for stability, as revealed by an investigation
of the trace Em q, is that

f(0a, n;0) = P- ix/T2 + e-"T< > 0. (4.13)

This condition is related to the appearance of time-dependent oscillations in
the well-stirred system (see Forbes [4] and Gray and Scott [9]). When the
system is well mixed, there are no spatial gradients, and this is equivalent to
setting the parameters or and a to zero in (1.8). This leaves a pair of coupled
ordinary differential equations for the time evolution of the concentration C
and temperature T, and the condition f(9a, /x; fi) = 0 indicates points of Hopf
bifurcation, at which a time-oscillatory solution is born from the equilibrium
conditions (4.2). The necessary condition (4.13) therefore states that linearised
patterns can only be stable if they occur outside the region within which temporal
oscillations exist in the well-stirred system.

Figure 2 shows the location of the Hopf line f(0a,(x;P) = 0 in the 9a - \x
parameter plane, for /J = 1. The curve is qualitatively similar for other values
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FIGURE 2. The location of the Hopf curve (dashed line) in the 6a - M parameter plane, for
Newtonian cooling coefficient /} = 1. Also shown is the border of the region (4.8) within which
linearised patterns are possible (solid line).

of the Newtonian cooling coefficient fi. Inequality (4.13) shows that stable
linearised patterns are only possible above and to the right of the Hopf curve in
Figure 2 (sketched with a dashed line). Patterns which are formed within the
region enclosed by the Hopf curve are therefore unstable, and utimately decay
to a well-mixed time-oscillatory solution of (1.8). Also shown on Figure 2 is
the bounding curve for ambient temperature 6a, obtained from (4.8). Pattern
formation is only possible in the region to the left of this (solid) curve.

A situation of some interest is the limiting case a = 0, when there is no
thermal diffusion. Under such circumstances, stable patterns of infinitesimal
amplitude are never possible, as the following theorem shows.

THEOREM 1. All time-independent small amplitude patterns (4.4) are unstable
if a = 0.

PROOF. In the degenerate case a = 0, the determinant Am,? in (4.11) becomes
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simply
Ami, = q2n2a (ft - ^/Te

2) + Pe^7'.

Now in view of the condition (4.8) for the existence of patterns of physical
significance, this determinant can be made arbitrarily large and negative, by
choosing to perturb the steady pattern (4.4) with a signal having sufficiently
large wave number q. Therefore, exponents A?r exist which have positive real
parts, by (4.12), and hence the pattern is unstable.

In discussing the stability of chemical patterns, it is usually the case that
the lowest Fourier modes are the ones which are most likely to cause pattern
instability (Forbes [6]). In Theorem 1, however, we see that the instability is
caused by the high modes, which is an interesting reversal of the usual situation.
When thermal diffusivity is present (a =£ 0), however, these high modes are
rapidly damped out.

Figures 3 (a) and (b) show the variation of the chemical diffusion coefficient
a with ambient temperature 9a, for the cases a = 0 and a = 0.001, respectively.
Here, we have taken /u, = 0.5 and /? = 1, and the diffusion coefficient, computed
from (4.6), is shown for the first four eigensolutions in each case. When a = 0,
there is a positive value of a for each eigenfunction parameter m, for every
ambient temperature 9a permitted by (4.8). However, for non-zero a as in
Figure 3(b), only a finite number of eigenfunctions give positive values for a at
a given ambient temperature 9a, and there will therefore only be a finite spectrum
of physically meaningful eigensolutions for any ambient temperature. We refer
to these figures again in the following section.

5. Nonlinear patterns

Here, numerical results obtained by the method of Section 2 and the stability
test in Section 3 are presented, analysed, and compared with the linearised
results of Section 4.

We begin by considering the degenerate case a = 0, for which there is no
thermal diffusion. The results of many numerical solutions are summarised
in Figure 4, which shows the dependence of the non-linear eigenvalue a (the
chemical diffusion coefficient) upon the pattern amplitude as defined by (2.4).
Here we have taken 9a = 0.18, \i = 0.5 and /3 = 1, which represents a point
between the two curves in Figure 2, where patterns are normally expected to
exist, and to be stable. However, by Theorem 1, small amplitude patterns will
in fact be unstable in this singular case a = 0. The stability test of Section 3
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FIGURE 3. The variation of the diffusion coefficient a with ambient temperature 9a, for the
linearised solution. Results are shown for the first four eigensolutions m = 1, 2, 3, 4, assuming
parameter values n = 0.5 and ft = 1. (a) Fora = 0, (b) Fora = 0.001.
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FIGURE4. The variation of the diffusion coefficient a with pattern amplitude Ac, for 9a = 0.18,
= 0.5, j6 = 1 and a = 0. Results are shown for the first four eigensolutions m = 1, 2, 3, 4.

confirms that the prediction of Theorem 1 also has validity in the non-linear
case, since all the solutions in Figure 4 are unstable. Results are shown for the
first four eigenfunctions, m = 1, 2, 3,4.

As Ac —*• 0, the results agree very well with those of the linearised solution
(4.6). There is then surprisingly little change in the computed values of a as the
pattern amplitude Ac is increased. However, the non-linear solution branches
all fail suddenly at about Ac = 0.0315, and this intriguing limiting behaviour
is now analysed.

Temperature profiles are shown in Figures 5(a) and 5(b), for the first eigen-
function m — 1 and the fourth eigenfunction m = 4, respectively. In both
graphs, we have taken 6a — 0.18, \i = 0.5, fi = 1 and a = 0, and in each
case we have plotted a pattern of moderate amplitude Ac — 0.015 (shown with
a dashed line), and the pattern of the largest amplitude that could be computed
with our numerical technique (sketched with a solid line). There is, in fact, no
qualitative difference between the results in Figures 5(a) and 5(b), apart from a
change in the length scale of the pattern. This is because, in the degenerate case
a = 0, the governing equations (2.1) and (2.2) for steady profiles are invariant
under the transformation x = x/m, o = a/m2. Thus the pattern with m = 4
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FIGURE 5. Unstable temperature profiles for 9a = 0.18, /x = 0.5, p = 1 and a = 0. Results
are shown for (a) The first eigensolution m = 1, with Ac = 0.015 (dashed line) said a = 0.312
(solid line, Ac — 0.031533185). The line labelled "maximum" is that predicted by Theorem 2.
(b) The fourth eigensolution m = 4, with Ac = 0.015 (dashed line) and a = 0.0195 (solid line,
Ac =0.031533185)
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in Figure 5(b) is identical to the pattern in Figure 5 (a) with m = 1, except
that its length scale has been compressed by a factor of four, and its eigen-
value a = 0.0195 is one-sixteenth of the value 0.312 for the limiting profile in
Figure 5(a).

Figures 5 suggest a possible reason for the sudden failure of the numerical
method to continue beyond about Ac — 0.0315 in Figure 4. It appears that the
temperature profile of maximum amplitude is ultimately limited by the formation
of a sharp corner at the crest, reminiscent of the famous Stokes gravity wave
(see Schwartz and Fenton [16]). This is indeed the case, and is examined in the
following theorem.

THEOREM 2. When thermal diffusion is absent, a = 0, the temperature profile
of maximum amplitude has a corner at the maximum value of temperature

(5.1)

which encloses an angle n — 2arctan y, where

V = I _ O , , _ 9 T x I • (5-2)
•^ •* max /

fflfl.V / I

PROOF. When a = 0, the steady concentration C(x) may be eliminated from
(2.1), to give a second-order non-linear ordinary differential equation for the
temperature T(x), in the form

F(T)T"(x) + G(T)[T'(x)]2 + H(T) = 0, (5.3)

where we have defined the functions

F(T) = [T2-T +6a]/T2,
G{T) = [(l-29a)T-9a]/T\

H{T) = [ [ n V T ]

A comer forms in the temperature profile at a point where the second derivative
becomes singular. This is only possible in the differential equation (5.3) if the
coefficient function F{T) is zero at that point. Setting F{T) = 0 and solving
for T gives the result (5.1).

The proof of the result (5.2) is a little more involved, and requires a local
analysis of the corner region in the profile. The difficulty arises from the fact
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that T(x) and its derivatives are generalised functions in the neighbourhood of
the corner. We therefore consider the one-parameter family of C°° functions

T(x) = Tmax - y j ( x - x c ) * + p , p>0 (5.4)

with the intention of eventually allowing p —»• 0. Here, the symbol xc denotes
the position of the corner in the profile. The function T(x) and its derivatives
are obtained from (5.4) and evaluated at x = xc. The differential equation (5.3)
then becomes

- 2Tmax)y
2

TLx ~ lYyfpTmax + Y* P

~ PWmax ~ Oa) ( 1
\ Tmax ~

Allowing p -> 0 and solving for the slope y gives the result (5.2). Now because
of the symmetry of the profile (5.4) about the corner point x = xc, the angle
enclosed internally by the profile is n — 2arctan(y). This concludes the proof
of Theorem 2.

In Figure 5(a), we have plotted a segment of the curve (5.4) with p = 0, and
with the value of y estimated from (5.2). Here, the true value of a at the limiting
case is unknown, and so the approximate value a =0.312 obtained numerically
has been used. The topmost portion of this line (labelled "maximum" on
Figure 5 (a)) suggests that the profile of larger amplitude in Figure 5 (a) is very
close to the theoretical maximum.

As anticipated from the information in Figures 3, the inclusion of a small
amount of thermal diffusivity (non-zero a) is expected to make a substantial
qualitative difference to the results, as it removes the degeneracy of the a = 0
case. These differences are highlighted by contrasting Figure 6 with Figure 4.
In Figure 6, we display the variation in the computed eigenvalue a (the chemical
diffusion coefficient) with the concentration amplitude Ac of the pattern. Here,
the parameter values are 9a = 0.18, fx — 0.5, fi = 1 and or = 0.001.

One immediate qualitative difference between Figure 4 (a = 0) and Figure 6
(a = 0.001) is in the number of physically meaningful eigensolutions, for
which the computed eigenvalue a is non-negative. Because of the degeneracy
associated with the a = 0 case, there is an infinite spectrum of possible patterns,
as was suggested by the linearised solution in Figure 3(a). However, for ambient
temperature Qa = 0.18, Figure 3(b) predicts that only the first two eigensolutions
have physical meaning, and this is confirmed by the nonlinear results in Figure 6.
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FIGURE6. The variation of the diffusion coefficients with pattern amplitude Ac, for $a = 0.18,

/n = 0.5, /J = 1 and a = 0.001. Results are shown for the two eigensolutions m — 1, 2.

Another important difference between the two sets of results is that all the
solutions computed in Figure 6 for a = 0.001 were found to be stable, as
expected from the linearised solution and confirmed by the stability test of
section 3, whereas the solutions for a = 0 in Figure 4 were seen to be unstable.
In addition, the solution branches in Figure 4 for a = 0 are ultimately limited in
each case by the formation of a corner singularity at some point along the profile.
However, when a = 0.001, we have not detected any such limiting profile, and
it was only the mounting expense in computer run-time which prevented us from
continuing the solution curves in Figure 6 to larger values of a.

Figures 4 and 6 also differ with respect to the uniqueness of solutions for
a given set of physical parameters. When a = 0 as in Figure 4, there can
evidently only be a single solution profile and eigenvalue o for each choice of
parameters. However, the results in Figure 6 for a = 0.001 reveal a genuine
lack of uniqueness in the solutions, even for a pre-determined eigensolution
m. The two curves in Figure 6 both undergo folds at some maximum value
of the pattern amplitude Ac, so that specifying an amplitude for the pattern
could give at least two different stable profiles. It should, however, be pointed
out that the folds in these solution branches are to some extent a consequence
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FIGURE 7. Stable temperature profiles for 0a = 0.18, fi = 0.5, fi = 1 and a = 0.001.
Results are shown for (a) The first eigensolution m = 1, with a = 0.25. The two solutions
correspond to Ac = 0.062596752 (dashed line) and Ac = 0.19333040 (solid line), (b) The
second eigensolution m = 2, with a = 0.1. The two solutions correspond to Ac = 0.050573890
(dashed line) and Ac = 0.17695380 (solid line).
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FIGURE 8. The variation of the diffusion coefficient a with pattern amplitude Ac, for 9a = 0 . 1 ,
= 0.5 and /J = 1. Results are shown for a = 0 and a = 0.001, with m = 2.

of the definition (2.4) for pattern amplitude Ac, and an alternative definition
might move the position of the fold, or even remove it entirely. Nevertheless,
horizontal lines drawn through Figure 6 may intersect a given solution branch at
least twice; this represents genuine non-uniqueness, since a single choice of the
physical parameter a may result in one of at least two different stable patterns,
each of different amplitude Ac. A similar fact was observed by Forbes [6] for
equations governing pattern formation in the Belousov-Zhabotinskii reaction.

Some temperature profiles are displayed for this case, 6a = 0.18, /u, = 0.5,
P = 1 and a. = 0.001, in Figures 7(a) and (b). The two solutions in Figure 7(a)
both correspond to the same eigenfunction m = 1, and to the identical value
a = 0.25 of the chemical diffusion coefficient. (Notice that here, and in
computing the fold singularities in Figure 6, we have employed a variant of the
numerical method of Section 2, in which now the coefficient o is given, and
the pattern amplitude Ac computed as part of the solution.) Each of the profiles
shown in Figures 7 is stable, and the presence of superharmonic oscillations is
particularly evident in Figure 7(a). The two solutions in Figure 7(b) are non-
unique temperature profiles for the second eigenfunction m = 2, computed with
o = 0 . 1 .
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In Figure 8, we contrast results for the degenerate case a = 0 with results
obtained for a = 0.001, for the second eigensolution m = 2 and with parameter
values 9a = 0.1, \i = 0.5 and jS = 1. These values are within the region in
Figure 2 enclosed by the Hopf curve, and the linearised solutions are therefore
unstable. When a = 0, the computed values of the diffusion coefficient o
do not vary much from the linearised value given by (4.6), which corresponds
to pattern amplitude Ac — 0. In this case, there is again a limiting value of
amplitude at which the solution branch suddenly fails; at this point, a corner is
formed as described in Theorem 2. When a — 0.001, however, there is again
a fold singularity at a maximum value of amplitude of about Ac — 0.8294,
and a genuine lack of uniqueness in the possible solutions to the problem. The
stability test of Section 3 confirms that the solutions in Figure 8 are unstable, as
predicted by the linearised theory. No limiting profile has been detected for the
branch of solutions in Figure 8 obtained with a = 0.001, and it is again only
the computational expense which has prevented us from continuing this solution
branch further.

The profile of the largest amplitude that could be computed accurately by our
numerical method, for the a = 0 branch of solutions in Figure 8, is sketched in
Figure 9. It is very close to the limiting configuration described in Theorem 2,
with a corner point occurring at the maximum temperature (5.1).

Two profiles are shown in Figure 10 for the same case as in Figure 8, with
a = 0.001 and pattern amplitude Ac — 0.73. Both profiles are unstable, but the
test of section 3 reveals that a disturbance of small amplitude to these profiles
would only grow very slowly initially, and thus the patterns might persist long
enough to be visible for some time in the laboratory. Notice that the ambient
temperature is 6a =0 .1 in this case, and the patterns shown thus represent very
large variations in temperature across the burning surface.

6. Conclusions

The problem of pattern formation in an exothermic chemical reaction has
been studied here in detail. A linearised analysis, valid for patterns of very
small amplitude, has been presented, and the predictions are then available to
guide the extensive numerical investigation of patterns of large amplitude given
here.

In the linearised theory, the stability of the stationary patterns has been related
to the Hopf bifurcation condition, at which a well-mixed system can undergo

https://doi.org/10.1017/S0334270000009103 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009103


170 Lawrence K. Forbes [26]
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FIGURE 9. Unstable temperature profile for Qa = 0.1, /x = 0.5, P = 1, a = 0 and m — 2. The
solution has been obtained with a = 0.0133 (Ac = 0.52977891).
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FIGURE 10. Unstable temperature profiles for 6a = 0.1, \i. = 0.5, f) = 1, a = 0.001 and
m = 2. The solutions have both been obtained with Ac = 0.73, for a = 0.013251349 (dashed
line) and a = 0.023222615 (solid line).
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periodic behaviour in time. When such behaviour is possible, the patterns are not
stable, but ultimately decay to a spatially uniform state which is time-oscillatory.
There is, however, a small region in parameter space outside of this oscillatory
region, in which the linearised theory predicts stable patterns. Fully non-linear
patterns of large amplitude also follow this general behaviour, as revealed by a
stability test described in Section 3.

When there is no thermal diffusion, the patterns are unique but unstable,
and they are ultimately limited by the formation of a finite-angle corner in the
temperature profile, at some maximum value of temperature. In this respect,
the profiles are reminiscent of the classical Stokes' wave of free-surface hy-
drodynamics (see Schwartz and Fenton [16]). The situation is very different,
however, when thermal diffusion is included. Then the patterns may be stable,
and in every case we have investigated, they are not uniquely prescribed simply
by the governing physical parameters. This is obviously of physical importance,
since our results show that a laboratory experiment in which all the parameters
were carefully monitored could nevertheless have at least two quite different
outcomes, both of which could well be stable; which one is actually obtained
is presumably dependent upon the initial conditions for the reagents in the
experiment.

We conclude with an observation about the patterns which the stability test
of Section 3 shows to be unstable, hi cases such as the two large-amplitude,
unstable patterns in Figure 10, there are eigenvalues of the matrix H in (3.6)
which have positive real parts and are thus responsible for the growth of a
certain Fourier mode, and the consequent instability of the pattern. However,
in most cases we have investigated, the positive real parts of these eigenvalues
are extremely small, and it therefore follows that, although the affected Fourier
modes must ultimately grow and destroy the pattern stability, the initial growth
rate would be so small that it would not be noticed until some time later. These
patterns could thus usefully be thought of as quasi-stable, and could certainly
be expected to persist long enough to be observed comfortably in the laboratory
in many cases. This is consistent with the experience of Forbes [6] for pattern
formation in the Belousov-Zhabotinskii reaction.
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