ON CONTINUOUS LINEAR TRANSFORMATIONS OF INTEGRAL TYPE

H.W. Ellis and T.E. Mott

(received April 27, 1959)

Let $(X \times Y, S \times T, \mu \times \vartheta)$ denote the completion of the Cartesian product of the σ -finite and complete measure spaces (X,S,μ) and (Y,T,ϑ) [3]. Let λ_x and λ_y denote arbitrary length functions defined on (X,S,μ) and (Y,T,ϑ) respectively, λ_x^* , λ_y^* the conjugate length functions [2]. We suppose that

(1)
$$\lambda_{xy}(f) = \lambda_{xy}(|f|) = \lambda_x [\lambda_y(f)]$$

is defined for every f(x, y) measurable $(S \times T)$. The Fubini theorem implies that f(x, y) is measurable (T) for almost all x. Thus $\lambda_{xy}(f)$ will be defined when $\lambda_y(f)$ is measurable (S). If $L \stackrel{\lambda_y}{\rightarrow} = L^p$, $1 \leq p < \infty$, this is implied by the Fubini theorem. General conditions ensuring that $\lambda_y(f)$ is measurable (S) are given in [1, Theorem 3.2]. When $\lambda_{xy}(f)$ is defined for every f(x, y) measurable (S $\times T$), it is a length function and $L \stackrel{\lambda_x y}{\rightarrow} xy$ is a Banach space [1, Theorem 3.1].

We note that if $1 \leq p < \infty$ and

$$\lambda_{x}[g(x)] = (\int_{x} |g|^{p} d\mu)^{1/p}, \ \lambda_{y}[g(y)] = (\int_{y} |g|^{p} d\nu)^{1/p},$$

and h(x, y) is measurable (SxT), then

$$\lambda_{xy}(h) = \lambda_{x} [\lambda_{y}(h)] = (\int_{x} (\int_{y} |h|^{P} dv) d\mu)^{1/P}$$
$$= [\int_{x \times y} |h(x, y)|^{P} d(\mu \times v)]^{1/P}$$

by the Fubini theorem. Thus if λ_x and λ_y correspond to the p-norms in (X,S, μ) and (Y,T, ν), λ_{xy} corresponds to the

Can. Math. Bull., vol.2, no.3, Sept. 1959

p-norm in the product space. The theorem below is no doubt well known when L^{λ_x} and L^{λ_y} are L^p spaces for two independent values of p, $1 \le p < \infty$. (For the case $L^{\lambda_x} = L^{\lambda_y} = L^2$, see [4].)

If K(x, y) is measurable (S×T) and $g(y) \in L^{\lambda} \overline{y}$, K(x, y)g(y) is measurable (S×T) and, since X and Y are σ -finite, the Fubini theorem implies that

(2)
$$Kg(x) = \int_{\mathcal{Y}} K(x, y)g(y)dv$$

is measurable (S).

THEOREM. (i) Each element K(x, y) in $L^{\lambda xy}$ is the kernel of a linear transformation K of $L^{\lambda y}$ into $L^{\lambda x}$ defined by (2) with $||K|| \leq \lambda_{xy}(K)$.

(ii) Suppose that $K_i(x, y) \in L^{\lambda}xy$, i = 1, 2, ... and that

(3)
$$\sum_{i=1}^{\infty} \lambda_{xy}(K_i) < \infty$$

Then $\left\{\sum_{i=1}^{n} K_{i}(x, y)\right\}$ is a Cauchy sequence in $L^{\lambda}xy$ and, if K(x, y) is a limit in norm of this sequence, the sequence of bounded linear transformations $\left\{\sum_{i=1}^{n} K_{i}\right\}$ converges in norm to the bounded linear transformation K. Thus, for every $g \in L^{\lambda}y$, $\sum_{i=1}^{n} K_{i}g(x)$ converges strongly to Kg(x) in $L^{\lambda}x$ [5, p. 150]. Furthermore, given $g \in L^{\lambda}y$, there exists a set $X_{0} \subset X$ with $\lambda_{x}(X - X_{0}) = 0$ such that $\sum_{i=1}^{n} K_{i}g(x)$ converges pointwise to Kg(x) in X_{0} . In particular if for $e \in S$, $\lambda_{x}(e) = 0$ implies that $\mu(e) = 0$, as is the case for the L^P spaces, $1 \leq p \leq \infty$, then $\sum_{i=1}^{n} K_{i}g(x)$ converges pointwise to Kg(x) almost everywhere.

Proof. (i) The assumption that $K(x, y) \in L^{\lambda}xy$ implies that K(x, y) is measurable (SxT) and that $\lambda_{xy}(K) < \infty$. The definition of $\lambda_x [\lambda_y(K)]$ then implies that $\lambda_y(K) \in L^{\lambda_x}$. Thus the set $E = [x \in X: \lambda_y(K) = \infty]$ is λ_x -null (i.e. $\lambda_x(E_{\infty}) = 0)$ [2, p. 579]. Thus $\lambda_y(K)$ is defined and finite in a set X_0 with $\lambda_x(X - X_0) = 0$.

(4) If
$$g(y) \in L^{\lambda_y^*}$$
, $K(x, y)g(y) \in L^1(Y)$ for $x \in X_0$ and
$$\int_{Y} |K(x, y)g(y)| d \lor \leq \lambda_y(K) \lambda_y^*(g) .$$

Thus, using (L 2) and (L 4) for $\lambda_x[2]$, (1) and (4) above,

(5)
$$\lambda_{\mathbf{x}}(Kg) \leq \lambda_{\mathbf{x}} [\lambda_{y}(K) \lambda_{y}^{*}(g)] = \lambda_{y}^{*}(g) \lambda_{\mathbf{x}y}(K) < \infty$$
.

Thus Kg(x) $\in L^{\lambda_x}$ and (2) defines a transformation K of $L^{\lambda_y^*}$ into L^{λ_x} . That K is linear is easily verified and (4) implies that $||K|| \leq \lambda_{xv}(K)$ so that K is bounded.

(ii) The part concerning pointwise convergence requires proof. We set

$$\overline{f}(\mathbf{x}) = \lim_{n \to \infty} \sum_{i=1}^{n} |K_{ig}(\mathbf{x})|$$

where this limit is defined, and = 0 elsewhere. Then \overline{f} is measurable (S) and, using (5),

$$\begin{split} \lambda_{\mathbf{x}}(\mathbf{\bar{f}}) &= \sup_{\mathbf{n}} \lambda_{\mathbf{x}}(\sum_{1}^{n} |\mathbf{K}_{i}\mathbf{g}|) \leq \sup_{\mathbf{h}} \sum_{1}^{n} \lambda_{\mathbf{x}}(\mathbf{K}_{i}\mathbf{g}) \\ &\leq \lambda_{\mathbf{y}}^{*}(\mathbf{g}) \sum_{1}^{\infty} \lambda_{\mathbf{xy}}(\mathbf{K}_{i}) < \infty \,. \end{split}$$

Thus $\overline{f} \in L^{\lambda_x}$ and is finite in a set X_0 with $X - X_0 \lambda_x$ -null. For $x \in X_0$, $\sum_{i=1}^{n} K_{ig}(x)$, n = 1, 2, ..., is a Cauchy sequence in R and defines a limit

$$f(\mathbf{x}) = \sum_{i=1}^{\infty} K_{i}g(\mathbf{x}).$$

We define f(x) = 0 in X - X₀. If K corresponds to a kernel K(x, y) which is a limit in norm of $\sum_{i=1}^{n} K_i(x, y)$,

$$\lambda_{\mathbf{x}}(\mathbf{f} - \mathbf{K}\mathbf{g}) \leq \lambda_{\mathbf{x}}(\sum_{n+1}^{\infty} | \mathbf{K}_{\mathbf{i}}\mathbf{g}|) + \lambda_{\mathbf{x}}(\mathbf{K}\mathbf{g} - \sum_{1}^{n} \mathbf{K}_{\mathbf{i}}\mathbf{g}),$$

and the second term on the right tends to zero as $n \to \infty$. Now $\sum_{1}^{n} |K_{i}g(x)|$ increases to $\sum_{1}^{\infty} |K_{i}g(x)|$ in X_{0} whence, using (L 5) for λ_{x} ,

$$\begin{split} \lambda_{\mathbf{x}} \Big[\sum_{n+1}^{\infty} |\mathbf{K}_{ig}| \Big] &= \lim_{m \to \infty} \lambda_{\mathbf{x}} \Big[\sum_{n+1}^{m} |\mathbf{K}_{ig}| \Big] \\ &\leq \lim_{m \to \infty} \sum_{n+1}^{m} \lambda_{\mathbf{x}} (|\mathbf{K}_{ig}|) \\ &= \sum_{n+1}^{\infty} \lambda_{\mathbf{x}} (|\mathbf{K}_{ig}|) \\ &\leq \lambda_{\mathbf{y}}^{*} (g) \sum_{n+1}^{\infty} \lambda_{\mathbf{xy}} (\mathbf{K}_{i}) \to 0 \text{ as } n \to \infty. \end{split}$$

Thus $\lambda_x(f - Kg) = 0$, $f - Kg \neq 0$ in a λ_x -null set and $\sum_{l=1}^{n} K_{i}g(x)$ converges to Kg(x) pointwise outside a λ_x -null set.

COROLLARY. If $g \in L^{\lambda_y^*}$ and $K_i(x, y)$ is a Cauchy sequence in $L^{\lambda_{xy}}$ converging in norm to K(x, y), if K_i , K are the bounded linear transformations with kernels $K_i(x, y)$, K(x, y)then there is a subsequence K_i , with $K_{i,g}(x)$ (defined by (2)) converging pointwise to Kg(x) dutside a^j λ_x -null set.

We choose a subsequence $\{K_{i_j}(x, y)\}$ with $\lambda_{xy}(K_{i_1}) + \sum_{j=1}^{\infty} \lambda_{xy}(K_{i_{j+1}} - K_{i_j}) < \infty$.

REFERENCES

- H.W. Ellis, A note on Banach function spaces, Proc. Amer. Math. Soc. 9 (1958), 75-81.
- H.W. Ellis and Israel Halperin, Function spaces determined by a levelling length function, Can. J. Math. 5 (1953), 576-592.
- 3. P.R. Halmos, Measure Theory, (New York, 1955).
- 4. F. Riesz and B. Sz-Nagy, Functional Analysis, (New York, 1955).

Queen's University Pennsylvania State University

166