ON CONTINUOUS LINEAR TRANSFORMATIONS OF INTEGRAL TYPE

H. W. Ellis and T.E. Mott
(received April 27, 1959)
Let ($\mathrm{X} \times \mathrm{Y}, \mathrm{S} \times \mathrm{T}, \mu \times \nu$) denote the completion of the Cartesian product of the σ-finite and complete measure spaces ($\mathrm{X}, \mathrm{S}, \mu$) and ($\mathrm{Y}, \mathrm{T}, \nu$) [3]. Let λ_{x} and λ_{y} denote arbitrary length functions defined on (X,S, μ) and (Y,T, ν) respectively, $\lambda_{x}^{*}, \lambda_{y}^{*}$ the conjugate length functions [2]. We suppose that

$$
\begin{equation*}
\lambda_{x y}(f)=\lambda_{x y}(|f|)=\lambda_{x}\left[\lambda_{y}(f)\right] \tag{1}
\end{equation*}
$$

is defined for every $f(x, y)$ measurable (SxT). The Fubini theorem implies that $f(x, y)$ is measurable (T) for almost all x. Thus $\lambda_{x y}(f)$ will be defined when $\lambda_{y}(f)$ is measurable (S). If $\mathrm{L} \lambda_{\mathrm{y}}=\mathrm{LP}, 1 \leqslant \mathrm{p}<\infty$, this is implied by the Fubini theorem. General conditions ensuring that $\lambda_{y}(f)$ is measurable (S) are given in [1, Theorem 3.2]. When $\lambda_{x y}(f)$ is defined for every $f(x, y)$ measurable $(S \times T)$, it is a length function and $L^{\boldsymbol{\lambda}} x y$ is a Banach space [1, Theorem 3.1].

We note that if $1 \leqslant p<\infty$ and

$$
\lambda_{x}[g(x)]=\left(\int_{x}|g|^{p} d \mu\right)^{l / p}, \quad \lambda_{y}[g(y)]=\left(\int_{y}|g|^{p} d \nu\right)^{1 / p}
$$

and $h(x, y)$ is measurable ($\mathrm{S} \times \mathrm{T}$), then

$$
\begin{aligned}
\lambda_{x y}(h) & =\lambda_{x}\left[\lambda_{y}(h)\right]=\left(\int_{x}\left(\int_{y}|h|^{P} d \nu\right) d \mu\right)^{1 / p} \\
& =\left[\int_{x \times y}|h(x, y)| p_{d}(\mu \times \nu)\right]^{1 / p}
\end{aligned}
$$

by the Fubini theorem. Thus if λ_{x} and λ_{y} correspond to the p-norms in (X, S, μ) and (Y, T, ν), $\lambda_{\text {Xy }}$ corresponds to the

Can. Math. Bull., vol.2, no.3, Sept. 1959
p-norm in the product space. The theorem below is no doubt well known when $L^{\boldsymbol{\lambda}} \mathrm{x}$ and $L^{\boldsymbol{\lambda}} \mathrm{y}$ are L^{p} spaces for two independent values of $p, 1 \leqslant p<\infty$. (For the case $L^{\boldsymbol{\lambda}} \mathrm{x}=L^{\boldsymbol{\lambda}} \mathrm{y}=\mathrm{L}^{2}$, see [4].)

If $K(x, y)$ is measurable $(S \times T)$ and $g(y) \in L^{\lambda}{ }^{*}$, $\mathrm{K}(\mathrm{x}, \mathrm{y}) \mathrm{g}(\mathrm{y})$ is measurable $(\mathrm{S} \times \mathrm{T})$ and, since X and Y are σ-finite, the Fubini theorem implies that

$$
\begin{equation*}
K g(x)=\int_{y} K(x, y) g(y) d \nu \tag{2}
\end{equation*}
$$

is measurable (S).
THEOREM. (i) Each element $K(x, y)_{*}$ in $L^{\boldsymbol{\lambda}}$ xy is the kernel of a linear transformation K of $L \lambda^{*} y$ into $L^{\lambda} x_{\text {defined }}$ by (2) with $\|K\| \leqslant \lambda_{\mathrm{xy}}(\mathrm{K})$.
(ii) Suppose that $K_{i}(x, y) \in L^{\lambda_{x y}}, i=1,2, \ldots$ and that

$$
\begin{equation*}
\sum_{1}^{\infty} \lambda_{\mathrm{xy}}\left(\mathrm{~K}_{\mathrm{i}}\right)<\infty \tag{3}
\end{equation*}
$$

Then $\left\{\sum_{1}^{n} \mathrm{~K}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})\right\}$ is a Cauchy sequence in $\mathrm{L}^{\lambda}{ }^{\lambda} \mathrm{xy}$ and, if $K(x, y)$ is a limit in norm of this sequence, the sequence of bounded linear transformations $\left\{\sum_{1} n_{1} K_{i}\right\}$ converges in norm to the bounded linear transformation K. Thus, for every $g \in L^{\lambda}{ }_{y}^{*}$, $\sum_{1}{ }_{1} K_{i} g(x)$ converges strongly to $K g(x)$ in $L^{\lambda} x[5, p .150]$. Furthermore, given $g \in L \lambda^{*} y$, there exists a set $X_{0} \subset X$ with $\lambda_{\mathrm{x}}\left(\mathrm{X}-\mathrm{X}_{0}\right)=0$ such that $\sum_{1}^{n_{1}} \mathrm{~K}_{\mathrm{i}} \mathrm{g}(\mathrm{x})$ converges pointwise to $\mathrm{Kg}(\mathrm{x})$ in X_{0}. In particular if for $\mathrm{e} \in \mathrm{S}, \lambda_{\mathrm{x}}(\mathrm{e})=0$ implies that $\mu(e)=0$, as is the case for the LP spaces, $1 \leqslant p \leqslant \infty$, then $\sum_{1} n_{i} g(x)$ converges pointwise to $K g(x)$ almost everywhere.

Proof. (i) The assumption that $\mathrm{K}(\mathrm{x}, \mathrm{y}) \in \mathrm{L}^{\boldsymbol{\lambda}} \mathrm{xy}$ implies that $K(x, y)$ is measurable $(S \times T)$ and that $\lambda_{x y}(K)<\infty$. The definition of $\lambda_{x}\left[\lambda_{y}(K)\right]$ then implies that $\lambda_{y}(K) \in L^{\lambda} x$. Thus the set $E=\left[x \in X: \lambda_{y}(K)=\infty\right]$ is λ_{x}-null (i.e. $\left.\lambda_{\mathrm{x}}\left(\mathrm{E}_{\infty}\right)=0\right)[2, \mathrm{p} .579]$. Thus $\lambda_{\mathrm{y}}(\mathrm{K})$ is defined and finite in a set X_{0} with $\lambda_{\mathrm{x}}\left(\mathrm{X}-\mathrm{X}_{0}\right)=0$.

$$
\text { If } g(y) \in L^{\lambda^{*}}, K(x, y) g(y) \in L^{1}(Y) \text { for } x \in X_{0} \text { and }
$$

$$
\begin{equation*}
\int_{y}|K(x, y) g(y)| d \nu \leqslant \lambda_{y}(K) \lambda_{y}^{*}(g) \tag{4}
\end{equation*}
$$

Thus, using (L 2) and (L 4) for $\lambda_{x}[2]$, (1) and (4) above,

$$
\begin{equation*}
\lambda_{\mathrm{x}}(\mathrm{Kg}) \leqslant \lambda_{\mathrm{x}}\left[\lambda_{\mathrm{y}}(\mathrm{~K}) \lambda_{\mathrm{y}}^{*}(\mathrm{~g})\right]=\lambda_{\mathrm{y}}^{*}(\mathrm{~g}) \lambda_{\mathrm{xy}}(\mathrm{~K})<\infty . \tag{5}
\end{equation*}
$$

Thus $K g(x) \in L^{\lambda} x^{\prime}$ and (2) defines a transformation K of $L^{\lambda^{*} y}$ into $L^{\lambda} x$. That K is linear is easily verified and (4) implies that $\|K\| \leqslant \lambda_{\mathrm{xy}}(\mathrm{K})$ so that K is bounded.
(ii) The part concerning pointwise convergence requires proof. We set

$$
\bar{f}(x)=\lim _{n \rightarrow \infty} \sum_{1}^{n}\left|K_{i} g(x)\right|
$$

where this limit is defined, and $=0$ elsewhere. Then \bar{f} is measurable (S) and, using (5),

$$
\begin{aligned}
\lambda_{x}(\bar{f}) & =\sup _{\mathrm{n}} \lambda_{\mathrm{x}}\left(\sum_{1}^{\mathrm{n}}\left|\mathrm{~K}_{\mathrm{i}} g\right|\right) \leqslant \sup _{\mathrm{n}} \Sigma_{1}^{n} \lambda_{\mathrm{x}}\left(\mathrm{~K}_{\mathrm{i}} \mathrm{~g}\right) \\
& \leqslant \lambda_{\mathrm{y}}^{*}(\mathrm{~g}) \sum_{1}^{\infty} \lambda_{\mathrm{xy}}\left(\mathrm{~K}_{\mathrm{i}}\right)<\infty .
\end{aligned}
$$

Thus $\bar{f} \in L^{\lambda} \mathbf{x}$ and is finite in a set X_{0} with $X-X_{0} \lambda_{x}$-null. For $\mathrm{x} \in \mathrm{X}_{0}, \sum_{1}^{\mathrm{n}} \mathrm{K}_{\mathrm{i}} \mathrm{g}(\mathrm{x}), \mathrm{n}=1,2, \ldots$, is a Cauchy sequence in R and defines a limit

$$
f(x)=\sum_{1}^{\infty} K_{i} g(x) .
$$

We define $f(x)=0$ in $X-X_{0}$. If K corresponds to a kernel $K(x, y)$ which is a limit in norm of $\sum \eta K_{i}(x, y)$,

$$
\lambda_{x}(f-K g) \leqslant \lambda_{x}\left(\sum_{n+1}^{\infty}\left|K_{i} g\right|\right)+\lambda_{x}\left(K g-\sum_{1}^{n} K_{i} g\right),
$$

and the second term on the right tends to zero as $n \rightarrow \infty$. Now $\sum_{1}^{n}\left|K_{i} g(x)\right|$ increases to $\sum_{1}^{\infty}\left|K_{i} g(x)\right|$ in X_{0} whence, using (L 5) for λ_{x},

$$
\begin{aligned}
\lambda_{\mathrm{x}}\left[\sum_{\mathrm{n}+1}^{\infty}\left|\mathrm{K}_{\mathrm{i}} \mathrm{~g}\right|\right] & =\lim _{\mathrm{m} \rightarrow \infty} \lambda_{\mathrm{x}}\left[\sum_{\mathrm{n}+1}^{m}\left|\mathrm{~K}_{\mathrm{i}} g\right|\right] \\
& \leqslant \lim _{\mathrm{m} \rightarrow \infty} \sum_{\mathrm{n}+1}^{m} \lambda_{\mathrm{x}}\left(\left|\mathrm{~K}_{\mathrm{i}} \mathrm{~g}\right|\right) \\
& =\sum_{\mathrm{n}+1}^{\infty} \lambda_{\mathrm{x}}\left(\left|\mathrm{~K}_{\mathrm{i}} \mathrm{~g}\right|\right) \\
& \leqslant \lambda_{\mathrm{y}}^{*}(\mathrm{~g}) \sum_{\mathrm{n}+1}^{\infty} \lambda_{\mathrm{xy}}\left(\mathrm{~K}_{\mathrm{i}}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
\end{aligned}
$$

Thus $\quad \lambda_{x}(f-K g)=0, f-K g \neq 0$ in a λ_{x}-null set and $\sum_{l}^{n_{1}} K_{i} g(x)$ converges to $\mathrm{Kg}(\mathrm{x})$ pointwise outside a λ_{x}-null set.

COROLLARY. If $g \in L^{\lambda^{*}}$ and $K_{i}(x, y)$ is a Cauchy sequence in $L^{\lambda_{x y}}$ converging in norm to $K(x, y)$, if K_{i}, K are the bounded linear transformations with kernels $\mathrm{K}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}), \mathrm{K}(\mathrm{x}, \mathrm{y})$ then there is a subsequence $K_{i j}$ with $K_{i j} g(x)$ (defined by (2)) converging pointwise to $\mathrm{Kg}(\mathrm{x}) \mathrm{d}_{\mathrm{u}}$ utside $\mathrm{a}_{\mathrm{j}} \lambda_{\mathrm{x}}$-null set.

We choose a subsequence $\left\{\mathrm{K}_{\mathrm{i}_{\mathrm{j}}}(\mathrm{x}, \mathrm{y})\right\}$ with

$$
\lambda_{x y}\left(\mathrm{~K}_{\mathrm{i}_{1}}\right)+\sum_{\mathrm{j}=1}^{\infty} \lambda_{\mathrm{xy}}\left(\mathrm{~K}_{\mathrm{i}_{\mathrm{j}+1}}-\mathrm{K}_{\mathrm{i}_{\mathrm{j}}}\right)<\infty
$$

REFERENCES

1. H.W. Ellis, A note on Banach function spaces, Proc. Amer. Math. Soc. 9 (1958), 75-81.
2. H.W. Ellis and Israel Halperin, Function spaces determined by a levelling length function, Can. J. Math. 5 (1953), 576-592.
3. P.R. Halmos, Measure Theory, (New York, 1955).
4. F. Riesz and B. Sz-Nagy, Functional Analysis, (New York, 1955).

Queen's University
Pennsylvania State University

