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1. Introduction

A topology on a set 31" is defined by specifying a family <& of its subsets
which has the properties (i) arbitrary set intersections of members of #
belong to #', (ii) finite set unions of members of *€ belong to ^ and (iii)
the empty set • and the set 2£ each belong to <%. The members of # are
called the closed subsets of X. If X is any subset of X then X denotes the
closure of X, that is, the set intersection of all closed subsets which contain
X, however when X = {x} contains one point only we will denote X by x.
The pair (X, #) is called a topological space or, in what follows, a T-space.
By a T-lattice we mean a complete distributive lattice of sets in which
arbitrary g.l.b. means arbitrary set intersection, finite l.u.b. means finite
set union and which contains the empty set • • It is well-known, for example
Birkhoff [1], that if (X, #) is a T-space and the members of ^ are partially
ordered by set inclusion then ^ is a T-lattice.

Two T-spaces (X, <&) and {eS/, S>) are said to be homeomorphic when
there exists a one to one mapping / of X onto & which preserves the
operation of closure, that is, for each subset X of X we have f(X) = f{X).
If / is a homeomorphism so is the inverse mapping f'1. Equivalently a
homeomorphism between the two T-spaces may be defined as a one to one
mapping / of 9£ onto <3/ such that

and

(Here and in what follows => stands for implies and <*• for logical equivalence.)
A homeomorphism / : X -*• & induces a one to one mapping of the lattice
# onto the lattice 2 which, together with its inverse, is order preserving;
that is, the homeomorphism induces a lattice isomorphism between the
T-lattices # and Q). Two T-spaces are said to be lattice equivalent when
their T-lattices of closed subsets are isomorphic.
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496 P. D. Finch [2]

2. Lattice equivalence and homeomorphisms

We prove

THEOREM (2.1). In order that two T-spaces (3T, <g) and (&, 2) be homeo-
morphic it is necessary and sufficient that there exist a lattice equivalence
<f> : <& -> Si with the following properties,

(i) to each x in X there is at least one y in W such that

y = 4>(x),
(ii) to each y in <3/ there is at least one x in 2£ such that

x = *-i(y)

(iii) if, for each x in 2£ and each y in %/,

then
V = *(«) => 1̂ .1 = \Y,\

and

x = 4-itf) => \X.\ = \Yy\.

(Here \S?\ denotes the cardinal number of the set Sf).

REMARK. The second implication in (iii) is logically equivalent to the
first since, when <f> is a lattice equivalence

PROOF OF THEOREM (2.1). (a) Necessity. Let / be a homeomorphism
of 3E onto <$f. The lattice equivalence induced by /, namely that defined
by <f>(C) = f(C) for each C in <S, has the stated properties. In the first
place (i) holds, since if y = f(x) then

and similarly (ii) holds. Finally (iii) holds since if y = <f>(x) and rj belongs
to Y. then

whence

Conversely if | belong Xx then

whence
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Thus

and since / is one to one this implies that |YV| = \XJ.
(b) Sufficiency. Suppose that between the two T-spaces there exists

a lattice equivalence <f> which has the stated properties. The relation x 1 = x2

is an equivalence relation on & and so the sets Xx, for x in X, form a
partition of 3C. Let this partition be denoted by

where A is an indexing set which indexes the elements of the partition.
Similarly let

88 = {Yfi : 0 e B}

denote the partition of <3f which is formed by the sets Yv for y in <Sf. The
lattice equivalence <f> induces a one to one mapping y> oi s/ onto 88, namely
that given by

= {y.lxe Xa, <f>(x) = y}.

To prove this assertion note firstly that by (i) no %pXa is empty and that
if ylt y2 are in y>Xa there are elements xx, x2 in Xa such that

Thus y>Xa is contained in some Yfi. To show that y>Xa belongs to 88 observe
that if y is in y>Xa and t] is in Yy then there is an a; in Xa with

and so rj is in y>Xa. This establishes that y maps s# into 88. To prove that
the mapping is onto 88 we argue as follows. If Yfi belongs to 88 and y is
in Yf there is, by (ii), at least one element xva.SC such that x = ^(y).
But there is a unique Xa in s/ which contains this element x and since
y = <f>(x) it follows that Yfi = y>Xa.

Because of the result just established there is no loss of generab'ty in
supposing that B = A, that is, that 88 and J / have the same indexing set.
We shall suppose therefore that this is so and without further comment
write

Ya = {y:3xeXa,<f,(x)=y}
and

From (iii) it follows that \Xa\ = \Ya\ for each a in A.
For each a in A let Fa be the set of one to one mappings of Xa onto

and let' a
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By (iii) none of the sets Fa is empty and so, by the axiom of choice, there
exists a non-empty set

Since si is a partition of X and since 86 is a partition of ^ , / is the one to
one mapping of 2£ onto <$/ given by

/(*) = fAx) w n e i* a; e Xa.

If Z"1 is the inverse mapping of fa then

rito)=f?<3/) when 2/6 Ya

is the inverse mapping of /. Moreover this one to one mapping / of 3C onto
<& is such that for each x in 3C and each y in <%/,

f(x) =
and

f-Hy) = <f>-Hy).

To prove this we observe that to each x in 3C there is a unique Xa in
which contains x and then

The second equation is proved in the same way.
Finally we show that the one to one mapping / of 3E onto 'Sf which we

have just defined is a homeomorphism between the two T-spaces and this
will complete the proof of the theorem. To do so we establish that for each
C in ^ we have f(C) = <f>(C), and similarly, that for each D in 2 we have
/-1(D) = ^(D). Suppose then that C belongs to # and let y be any
element of /(C). There is a unique x in 2E for which y = f(x) and since,

we obtain /(C) ^ </>{C). Conversely if y is in <f>(C) then <f>(C) contains y
and

Thus /~1(y) belongs to C, that is, y belongs to f(C). This shows that
(f>(C) ^ /(C) and hence, because of the reverse order established above, that
f(C) = (j>(C). The proof that f-x(D) = ^{D) for each D in S is similar.
This concludes the proof of the theorem.

We recall that a T0-space is a T-space {3C, <&) in which xx = x2 implies
xi = xt- ^n such a space |Xe| = 1 for each x in #". It follows that in the
statement of theorem (2.1) the condition (iii) is superfluous when each
of the spaces is a !T0-space. We may state therefore,

I
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COROLLARY (2.1).1 In order that two T0-spaces (X, <&) and (&, <2>) be
homeomorphic it is necessary and sufficient that there exist a lattice equivalence
(f>: # -*• Qi with the properties (i) and (ii) above.

Another form of this result may be stated as follows.

COROLLARY (2.1)'. In order that the T^-identifications of two T-spaces
(X, <8) and (<&, 2>) be homeomorphic it is necessary and sufficient that there
exist a lattice equivalence <f> : & ->• 2 with the properties (i) and (ii) above.

We remark that condition (i) above is logically equivalent to
(i)' for each x in X

To see this note that (i) clearly implies (i)'. Conversely if (i)' is true there
is at least one y in <f>{x) such that ^(y) contains x, whence x ^ ^{y).
Since however ^{y) ^ x by (i)' we obtain (i). Similarly the condition (ii)
is logically equivalent to

(ii)' {<j>{x):xe^m = y-

We say that a T-space (X, *#) is a 7V-space when the set x\Xx is closed for
each x in X. When (X, #) is also a T0-space we say that it is a T0D-space.
In this case the definition reduces to that in Thron [4], since a !T0-space
(X, #) is a T0O-space if and only if the derived set {a;}' = %\{x} is closed
for each x in X. We prove

LEMMA (2.1). A lattice equivalence <f> between two TD-spaces (X, <&)
and (<&, 3>) has the properties (i) and (ii) above.

PROOF. If <f> does not have the property (i)' then there is at least one
point x in X such that

is a proper subset of x. It follows that this set can contain no element of
Xm and hence that

Since (X, #) is a T^-space it follows that the closure of the set union on
the left of the above relation is a subset of x\Xx, that is,

Hence
x = <f>~x

1 Mr. R. S. Buckdale also obtained this result independently of the author.
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which is absurd since Xx ^ • • Similarly <j> has the property (ii)' and this
concludes the proof of the lemma.

From the Lemma and Theorem (2.1) we deduce

THEOREM (2.2). In order that two TD-spaces (#*,#) and \®J,$>) be
homeomorphic it is necessary and sufficient that there exist a lattice equivalence
<f> : ^ ->• 2 with the property (iii) above.

Similarly from corollary (2.1) we obtain the following result due to
Thron [4].

COROLLARY (2.2). Every lattice equivalence between two T0D-spaces
is induced by a homeomorphism between the two spaces.

It is of some interest to note that corollary (2.1) leads to a simple
proof of the following result in Thron [4], namely

COROLLARY (2.3). / / 3C, *€) is not a TD-space there exists a lattice equi-
valence between {9£', *&) and some other space (<W, Si) which is not induced by a
homeomorphism.

PROOF. AS noted by Thron if (3C, #) is not a T0-space the lattice
equivalence between the space and its T0-identification gives the desired
result. Suppose then that (9£, If?) is a T0-space but not a TD-space so that
there is at least one point f in 3C for which {!}' is not closed. Write
<& = #"\{f } and let 9 be the family of closed sets in <& defined by

9 = {D : D = C\{f}, C e * } .

As is proved by Thron and may be verified easily the mapping <j> : C -> C\{f}
is a lattice equivalence. Further if y is any element of <& then

(2.1) 0 = £3E\{{}.

If there were a homeomorphism / of 3C onto ty which induced the lattice
equivalence <f> then condition (i) of theorem (2.1) would hold and there
would be an r\ in <3f such that

But by (2.1) this would imply

(2.2) r

If | e rjX then (2.2) implies that fp = | * and since (#", <€) is a T0-space it
follows that r] = f contradicting the fact that r\ is in <3f. On the other
hand if £ $rj& then

and this contradicts the fact that {|}' is not closed. Thus there is no homeo-
morphism which induces the lattice equivalence and this is the desired
result.
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3. Representations of abstract lattices

According to theorem (2.1), two T-spaces are homeomorphic if and
only if between their lattices of closed subsets there is a lattice equivalence
with certain specified properties. This result does not characterise those
complete distributive lattices which are isomorphic to a lattice of closed
subsets of some T-space, nor does it indicate how, in such lattices, one
can characterise lattice theoretically those elements which are the images
of point closures. To discuss these problems we introduce some further
terminology.

Firstly we recall that in section 1. we said that a T-lattice is a complete
lattice of subsets of a set X, which contains 2£ and the empty set • and
in which finite l.u.b. and arbitrary g.l.b. mean finite set union and arbitrary
set intersection respectively. Note that a T-lattice is necessarily distributive.
If %! is a T-lattice on a set 2£ then {X, <&) is a T-space and # is its lattice
of closed subsets. A lattice homomorphism <f> : £C -> <£' of a complete
lattice «Sf onto a complete lattice „£?' will be said to be lower complete when
is preserves arbitrary g.l.b., that is, if and only if

for any system {Ly : y e F} of elements of £?. We say that a complete lattice
admits a T-respresentation if there is a T-lattice ^ and a lower complete
lattice homomorphism <f> of £C onto c€. When <f> is an isomorphism we say
that the T-representation is faithful. Our first result is

LEMMA (3.1). A complete lattice ^K of subsets of a set 2F in which finite
l.u.b. and finite g.l.b mean finite set union and finite set intersection
respectively and which contains 2£ and the empty set • , is a T-lattice if and
only if, for each x in X

(3.1) xeA{M :xeM,M eUV).

PROOF. The only if part of the lemma is obvious. To prove the converse
we must show that when (3.1) holds arbitrary g.l.b. in ^K means arbitrary
set intersection. But (3.1) implies

for any family {My : y e F} of elements of
Since we have also

we obtain the desired result.
We recall that a lattice 3? is said to be a subdirect union of a family

of lattices {=S?a : a e i } when (i) ^f is a sublattice of the cartesian product
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of the family and (ii) for each a in A the projection of JSP into £Pa is in fact
onto J§?a. It is known, Birkhoff [1], that any distributive lattice with more
than one element is isomorphic with a subdirect union of replicas of 2,
the two element chain {0, 1}, 0 < 1. Thus each element L of Jif may be
represented, under an isomorphism, by

where each la is either 0 or 1. This representation leads, in the usual way,
to a mapping 6 of £P onto a set &f of subsets of A, namely that defined by

6(L) = {a : la = 1}.

The mapping 0 : JSf -»• stf is an isomorphism in which finite l.u.b. and
finite g.l.b. correspond to finite set union and finite set intersection
respectively. Since the projection of Sf into J5?a is onto Ji?a there is, for each
a in A, at least one element L in ££ with la = 1 and at least one L' in JSP
with l'a = 0. If SC is a complete lattice so is J / and it then follows that,
if 0, 1 are least and greatest elements of JSf then 0(0) = • and 0(1) = A.
Conversely, of course, any isomorphism of a distributive lattice J5f onto a
distributive lattice of sets, in which finite l.u.b and finite g.l.b. correspond
to finite set union and finite set intersection respectively, leads to a
representation of =S? as a subdirect union of replicas of 2.

We prove now a result which provides much of the motivation in what
follows.

THEOREM (3.1). A complete distributive lattice JS? admits a faithful T-
representation if and only if it has a representation as a subdirect union of a
family {jSPa : a e A} of replicas of 2 in which each of the projections

na : JS? -> J ? a

is a lower complete lattice homomorphism.

PROOF. Let jSf be a complete distributive lattice, which has a represen-
tation as a subdirect union with the stated properties. Write

L*a = A{L : 7iaL = 1, L e &}.

Each na is of course, a lattice homomorphism but because of the additional
property of lower completenes we have

for each a in A. Let &/ be the complete lattice of sets defined above and 0
the defined isomorphism of J5? onto s4'. We prove that for each a in A

(3.3) xeA{B : a e £, Best),
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A{B :aieB,B
= A{6(L):la=l,Le&}
= 6[A{L :na(L) = 1, L e J2?}]

and hence, by lemma (3.1), that si is a T-lattice. This will establish that si
is a faithful ^-representation of £P. To prove (3.3) we note that

(3.4)

But since na(L^.x) = 1, l^a = 1 and so 0(L^a) contains a and this proves (3.3).
Thus si is a faithful T-representation of =§?.

The converse result is immediate. If =§? has a faithful T-representation
this leads to a representation of -S? as a subdirect union of replicas of 2.
Since si is a T-lattice (3.3) must hold and the implications in (3.4) may be
reversed to establish that each of the projection na is lower complete. This
concludes the proof of the theorem.

The following corollary is worth mentioning, its proof is straight
forward and is omitted.

COROLLARY (3.1). Under the conditions of theorem (3.1) those elements of
3? which correspond to the point closures in si are precisely the elements
Lj.a. In fact, for each x in A we have

]a} = 0(Lma).

It is known, Birkhoff [1], that the representation of an abstract
algebra as a subdirect union correspond one to one to those sets of con-
gruence relations on the algebra whose g.l.b is the null congruence. Thus
identifying the projections na with their associated congruences we are led
to study the set of lower complete lattic homomorphisms of a complete
lattice onto the two element chain. This study is carried out in the next
section where however, it turns out to be more convenient to introduce
the concept of a lattice bisector.

4. Lattice bisectors

Let SC be an arbitrary lattice. We say that a non-zero element L* is a
lattice bisector of „£? if and only if

(4.1) Lx ^ L* and Z,2 ̂  L* => Lx v L2 ^ L#

for any elements Lx, L2 in Jf. An equivalent formulation of (4.1) is

(4.2) Lj V I , ^ I * * I j ^ L* or Z2 ^ L # .

We establish

LEMMA (4.1). In a complete lattice £? there is a one to one correspondence
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between lattice bisectors and lower complete lattice homomorphisms of SC onto
the two element chain.

PROOF. Suppose that n : Ji? -»- 2 is a lower complete lattice homo-
morphism of the complete lattice J§? onto the two element chain. Write

(4.3) L* = A{L : n{L) = 1, L e J2?}.

Since n maps £? onto 2 and since =£? is complete Z.* exists. Since n is lower
complete 7i(L*) = 1, it follows that L+ # 0 (for TT is onto 2) and that

This implies that L+ is a lattice bisector of J§? for if L1 ^ Z,* and L2 ^ L#

we have
7i(Lx V Z-2) = ^(Za) V TT(Z2) = 0 V 0 = 0

and consequently Lx v L2 "^ L*.
Conversely if L* is a lattice bisector of £? then n defined by (4.4) is a

lower complete lattice homomorphism of Jif onto the two element chain.
The fact that n maps 3? onto 2 follows from L# ^ 0 so that there is in J?
an element L such that TT(Z) = 0. To show that n is a lower complete
lattice homomorphism note that by (4.2),

o Lx ^ L* or Z.2 ^ Z,+
OTI(LT) V 7r(Z-2) = 1.

Further if {Ly : y e F} is any family of elements of SC

n{ALy) = 1 oALy ^ 1
o Ly ^z L%, y e L
oAn(L7) = 1.

The proof of the lemma is concluded by the observation that distinct lattice
bisectors correspond to distinct lower complete lattice homomorphisms of
onto 2. To see this note that L*, L'^ are distinct lattice bisectors of such that

L ̂  L* o L ^ z;
then L* ^ Z.; and Z.; ̂  L+. Thus L* = Z,; and this establishes the
desired result.

Lemma (4.1) shows that the results which follow may be expressed
in terms of subdirect unions of replicas of the two element chain. We
prove now
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THEOREM (4.1). Let & be a complete lattice and, let 38 be its set of lattice
bisectors. Suppose that 38 ̂  • and let 9C be any non-empty subsetof 3$.
Let & = <f> • Ji? be the family of subsets C of ££ defined by

(4.5) <f>(L) = C = {x : x ^ L, xe&}, Le&.

Then <€ is a complete lattice of subsets of X in which finite l.u.b. and arbitrary
g.l.b. mean finite set union and arbitrary set intersection respectively. Further
the mapping <f> : SC ->- <€ is a lower complete lattice homomorphism of 3?
onto <€.

PROOF. Clearly
${LY)KJ^L2)Q<\>{LXVL%).

However, since

x ^ Lx v L2 => x 5S Lx or x ^ L2,

when a; is a lattice bisector, we have in fact

If {Ly : y e r} is any family of elements of JS? then, for x in

Hence

This shows that j> is a lower complete lattice homomorphism of -Sf onto '€.
However since arbitrary g.l.b. exist in <$ and # contains a unit, namely
<X = (f>(l), it follows, Birkhoff [1], p. 49, that <g is a complete lattice. This
:oncludes the proof of the theorem.

This theorem shows that every complete lattice with lattice bisectors
idmits as a ^-representation a T-lattice on any non-empty subset of its
lattice bisectors and whose elements are of the form (4.5). Such a TVepresen-
tation we call a canonical ^-representation. Note that a canonical T"-repre-
>entation {2C, '&) is always a 7"0-space, for if the point closure x of a point
c in 30 is just the set <f>(x) and for xlt x% in

> *i = x2.

Dur next result establishes that not only is every T-representation of a
:omplete lattice a canonical T-representation to within a lattice isomorphism
nit further that the T0-identification of any T-representation is homo-
norphic to a canonical T-representation.

THEOREM (4.2). / / 3 is a T-representation of a complete lattice & on a
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set <& then there is a canonical T-representation %> on a non-empty set X of
lattice bisectors of ££ such that (9f, #) is homeomorphic to the T^-identification
of {&, 2).

PROOF. Let <f> : J? -> Qi be the lower complete homomorphism of j£?
onto $t which determines the T-representation as a family 3) of subsets
of the set <&. For each y in %/ write

Since 3? is complete and since <f> is onto 3>, L*(y) exists for each y in <Sf.
Since <f> is lower complete we have

(4-6) <f>{L*(y)} = y-

We prove that L^(y) is a lattice bisector of =§?. To do so observe thai
Ln,(y) is non-zero and

Hence y belongs to at least one of the sets <f>{Lx) and <f>{L2). If ^(I^) contains
y then 4>{L-\)^.y and hence L1^Z,!(c(y). Similarly if <f>{L2) contains 2
then L2 = L*(y). This establishes that L#(y) is a lattice bisector of i ? foi
each y in < .̂ Moreover it is an immediate consequence of (4.6) that fo:
Vi, Vz in <Sf

There is, therefore, a one to one correspondence between the point closure
of 2 and a subset of the lattice bisectors of =§?. Let

and let <<? = 0 • JS? be the family of subsets <€ of 3C defined by

for L in <£\ By theorem (4.1) <g is a canonical T-representation of JS? on th
subset ^" of the set of all lattice bisectors of JSf. Note that for y in W an
L in J5f.

the forward implication following from (4.6) and the reverse implicatio
following from the definition of L+(y) I t is an immediate consequence c
(4.7) that

(4.8) d(L1) = d(L2)o<f>(L1)=<f,(L2)

for if B(Lj) = 6(L2) then
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and, if ^(Lj) = <f>(L2) then.

Thus the map a defined by

a{6(L)} =

is a one to one mapping of ^ into 3>. This mapping is, in fact, onto S for,
since <f> maps JSP onto 2, there is to each D in ^ at least one element Z, in J?
such that <£(Z.) = D. Thus there is a unique element in <€, namely C = 6(L),
such that a(C) = D. Further a is an isomorphism of C onto 2 for if (^ = 0(Lx)
and C2 = 0(L2) are elements of C then, when Cx ^ C2 we obtain from (4.7),

y ^ ^(Lj) => i»®) ^Lx=>L*{y)^L2^y^ <f>(L2).

Conversely, when ^(Z-j) ^ <f>{L2),

L*{y) ^L1=>y^ 4(LX) =>y^ <f>(L2) * i , ® ) ^ L,,

and hence
Cx^C2o a{Cx) ^ or(Cs).

Thus the given T-representation (<3f, Si) is lattice equivalent to the canonical
T-representation (9H, <€). However to each x in X there is at least one y
in ty such that x = Z# (̂ ) and then

Conversely to each y in ^ there is an element a; = L*{y) in ^* such that

x = a-1^).

The desired result then follows from Corollary (2.2).
A subset JK of a lattice .£? will be said to be a join basis for ££ when

very non-zero element of JSP is the join of elements of ~#. That is, for each
. # 0 in -SP there is a family {My : y e F} of elements of J( such that

L = F{M? : y e r } .

he preceding results enable us to establish

THEOREM (4.3). A complete lattice JSP admits a faithful T-representation
and, only if it has a non-empty subset of lattice bisectors which is a join

isis for &.
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PROOF. Suppose 88 ̂  • is the set of lattice bisectors of JS? and suppose
that X is a non-empty subset of 88 which is a join basis for <£?. By theorem
(4.1) there is a canonical ^-representation of JS? as a lattice ^ of closed
subsets of 3C. This ^-representation is given explicitly by equation (4.5).
But since 9C is a join basis for 3? and since j£? is complete

L = V(x:xe<f>{L)}
and consequently

=> Lx = L2.

This establishes that the canonical T-representation on 2£ is faithful. Notice
that the distributivity of =S? is a consequence of the existence of a faithful
T-representation and is not part of the hypothesis of the theorem. Con-
versely if the complete lattice 3? admits a faithful T-representation, and is
therefore distributive, then, by theorem (4.2), j£? admits a faithful canonical
T-representation <f> : £C -> ^ as a lattice of closed subsets of a non-empty
subset 2E of its lattice bisectors. But for each C in <&

C =

and the elements ^(L+) for L* in ^* form a join basis for c€. Since (£ is an
isomorphism of the complete lattice ££ onto the complete lattice # it
follows for each L in J§? we have

and hence, the non-empty set 2£ of lattice bisectors is a join basis for .§?.
This concludes the proof of the theorem.

An element L ^ 0 in a lattice .§? is said to be join reducible if there are
elements Llt L2 in £C with Ll<. L, L2< L and L = L1\/ L2. An element
L # 0 of a lattice jSf which is not join reducible is said to be join irreducible.
Note that each lattice bisector L* of a lattice 3? is join irreducible for
L+ = LjV Z,2 implies either L* 5; L* or L2 S: L^. Conversely if =5? is a
distributive lattice any join irreducible element is a lattice bisector. For
if L is a join irreducible element of JS? and

then the distributivity of £P implies that

{Lx A L ) V (L2 A I ) = I .

Since L # 0 we cannot have L1AL = L2AL = 0, thus if LX A I. = 0
then L2AL = L and L 5S Z,2. Similarly if L 8 A I = 0 then L 5S LX. If
however LXAL=£0 and I S A I ^ 0 then the join irreducibility of L implies
that either LXAL = L or L2AL = L, that is, either L -^ Lt or L < L2.
This shows that Z. is a lattice bisector. We have established therefore
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THEOREM (4.4). In a distributive lattice an element is a lattice bisector
if and only if it is join irreducible.

An immediate consequence of theorems (4.3) and (4.4) is the following
result in Thron [4], namely

THEOREM (4.5). A complete distributive lattice ££ admits a faithful
T-representation if and only if it has a join basis of join irreducible elements.

However this result and our earlier results on faithful ^-representations
are in fact, a consequence of a more general result of Biichi [2] which has
been partly rediscovered by several authors, for eaxmple Stelleckii [3] and
Vaclav [4]. Biichi considered a complete lattice £f with a family 31 of
subsets of SC which contained all one element subsets of =Sf. An ^-represen-
tation of & is a one to one mapping of -Sf onto a lattice of subsets in which
arbitrary g.l.b correspond to arbitrary set intersection and l.u.b of elements
of 31 correspond to set union. An element L in =§? is 9<£-subirreducible when
L ^N e3l implies a 2g L for at least one element a in N. The result of
Biichi referred to above is that £? admits an ^-representation if and only
if there is a join basis of -JJ-subirreducible elements. Theorem (4.5) is the
particular case of this result obtained by taking for 31 the set of all finite
subsets of JiC

Because of theorem (2.1) and theorem (4.2) the investigation of the
possibility of homeomorphism between two T-spaces each of which is lattice
equivalent to a given lattice is reduced to the study of canonical faithful
^-representations. Let J? be a complete distributive lattice which admits a
faithful T-representation, then £? has a join basis JT of join irreducible
elements. Let Jf(^C) be the set of join bases J f of join irreducible elements.
We introduce an equivalence relation into X{&) by writing

whenever there is an automorphism a of J? onto itself such that a.{K-^ = K2.
We call the equivalence classes in jf(^C) the automorphic classes of JtT(£C).
We prove

THEOREM (4.6). There is a one to one correspondence between the non-
wmeomorphic canonical faithful T-representations of a complete distributive
attice <£ and the automorphic classes of

PROOF. Each K in JT determines a canonical faithful T-representation
if ^ as a J0-space. If Klt K2 are elements of Jf the corresponding To-
paces are homeomorphic if and only if Kx and K2 belong to the same auto-
oorphic class. To see this let SC, <& be two elements of Jf(£f) and let (2£, <€),
'Sf, £&) be the corresponding canonical faithful ^-representations of -Sf.
-et
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6(L) = {x:x^L,xe&}
and

be the isomorphisms of SC onto # and S> respectively.
The point closures in (#", %) are given by

x = d(x), xeSe

and the point closures in (<3/, 2) are given by

Suppose firstly that 2E, *& belong to the same automorphic class of Jf(SC),
then there is an automorphism a of -S? onto itself such that a(#") = <&.
The mapping

is an isomorphism of ^ onto 2. For x in 9C let y = a (a;), then y is in *& and

= v>(y)

= y-

Conversely for y in 0/, x = arx{y) is in ^" and

x = 0(x)

Since each of (#\ <gr), (<&, 2) is a ro-space it follows from corollary (2.1)
that the two ro-spaces are homeomorphic. Conversely if there is a homeo-
morphism / of 3C onto <& this induces a lattice equivalence <f> of If onto 2
The mapping

a = tp~1<f>d

is an automorphism of J§? onto itself, and since for each x in 3C there is a
unique y in ^ , and conversely, such that <f>(x) = y, we have

a (a;) = y>-i<j>6{x)

= y

and so 3£ and <& belong to the same automorphic class. This concludes the
proof of the theorem.
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