Index

abiotic processing, stages of, 467–468
abiotic reactions, 430, 457, 467
abiotic sulfurization, 483–484
abyssal peridotite, 455–456
accretionary cycle, 277
accumulation curve, 631
acetate, in ultramafic systems, 495
acetogenesis, 483
active volcanoes
 emissions from, 194–197, 216
temporal variability of, 208–209
adiabatic mantle, 166–167
affinity, 590
aldehyde disproportionation reactions, 433–434
aldol reactions, 434
Alfred P. Sloan Foundation, 1
aliphatic chains, 462
alkalinity, cycle of, biological evolution and, 296
alkanes, 424, 426–427
alkenes, 424
alloy–silicate melt partitioning, 29
 coefficients, 16–17
 D$_{\text{alloy/silicate}}$ and, 25
hydrogen and, 25–26
of LEVEs, 20–21
 of LEVEs and, 25
American–Antarctic Ridge, 255–257
anaerobic reactions, 607–608
anaerobic methane-oxidizing archaea (ANME), 530–531, 534
anhydrous MORBs, 135–136
animation, as substitution reaction, 430–433
ANME. See anaerobic methane-oxidizing archaea
Anthropocene, 627
antigorite, 285–286
aqueous electrolytes, 368
 in confined liquids, 372
aquifers, 191–192
aragonite, 74, 137
archaea
 anaerobic methane-oxidizing, 530–531, 534
 in subsurface biome, 533–534
Archean, 283
Ashadze, 494
asthenospheric mantle, 70–72, 78–80
atmosphere loss, MO and, 17–19
atmospheric recycling, of sulfur, 100–102
ATP, 588
Aulbach, S., 68
axial diffuse vents
 basalts and, 492
 oceanic rocky subsurface and, 492
axial high temperature
 basalts, 488–492
 oceanic rocky subsurface and, 488–492
Azores, 240–242
Bagana, 217
Baltic Sea, 527–528
basalts. See also mid-ocean ridge-derived basalts
 axial diffuse vents and, 492
 axial high temperature, 488–492
carbon content of, 4–5
carbon dioxide and, 144
ocean islands and, 144
benzaldehyde, 433–434
benzene, 426
Berner’s model, 336
bicarbonate ions, 19
bioavailability, of OC, 505
biofilm-based metabolisms, 504
biogeochemical cycling, 480
 reaction rate controls, 505
biogeochemistry, of deep life, 561–562
biological evolution, 299–300
 alkalinity, cycle of and, 296
dioxygen cycle and, 294–296
subduction and, 294
biomass, 587–588
 deep biosphere, 588
 energy limits and, 588
bioorthogonal non-canonical amino tagging (BONCAT), 563
biotic recycling, of sulfur, 100–102
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>bipartite networks</td>
<td>642–643</td>
</tr>
<tr>
<td>Birch–Murnaghan equation of state (BMEOS)</td>
<td>171</td>
</tr>
<tr>
<td>Birch’s law</td>
<td>50</td>
</tr>
<tr>
<td>BMEOS. See Birch–Murnaghan equation of state</td>
<td></td>
</tr>
<tr>
<td>Boltzmann constants</td>
<td>395</td>
</tr>
<tr>
<td>BONCAT. See bioorthogonal non-canonical aminotagging</td>
<td></td>
</tr>
<tr>
<td>Brazilian diamonds</td>
<td>103</td>
</tr>
<tr>
<td>bridgmanite</td>
<td>75–76, 90–91</td>
</tr>
<tr>
<td>Brillouin scattering</td>
<td>77</td>
</tr>
<tr>
<td>Brønsted acid catalysis</td>
<td>422</td>
</tr>
<tr>
<td>BSE. See Bulk Silicate Earth</td>
<td></td>
</tr>
<tr>
<td>bulk rock investigations</td>
<td>449–451</td>
</tr>
<tr>
<td>bulk silicate</td>
<td>112</td>
</tr>
<tr>
<td>Bulk Silicate Earth (BSE)</td>
<td>322, 325</td>
</tr>
<tr>
<td>carbon in</td>
<td>10–14, 25–26</td>
</tr>
<tr>
<td>C/H ratio of</td>
<td>14, 19</td>
</tr>
<tr>
<td>chondrites</td>
<td>6–7</td>
</tr>
<tr>
<td>C/N ratios of</td>
<td>14, 19</td>
</tr>
<tr>
<td>C/S ratio of</td>
<td>16–18</td>
</tr>
<tr>
<td>D/H ratio of</td>
<td>7–9</td>
</tr>
<tr>
<td>equilibrium accretion and budget of</td>
<td>19–21</td>
</tr>
<tr>
<td>hydrogen in</td>
<td>10–12</td>
</tr>
<tr>
<td>LEVE budgets of</td>
<td>14–19, 25–26</td>
</tr>
<tr>
<td>magma ocean differentiation and budget of</td>
<td>19–21</td>
</tr>
<tr>
<td>nitrogen in</td>
<td>10–12</td>
</tr>
<tr>
<td>S/N ratio of</td>
<td>16–18</td>
</tr>
<tr>
<td>sulfur in</td>
<td>10–12</td>
</tr>
<tr>
<td>volatile budget of</td>
<td>19–21</td>
</tr>
<tr>
<td>Bureau, H., on diamond formation</td>
<td>106–108</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>56. See also carbonates</td>
</tr>
<tr>
<td>deep carbon stored as</td>
<td>74</td>
</tr>
<tr>
<td>in dolomite</td>
<td>73–74</td>
</tr>
<tr>
<td>calcite</td>
<td>74</td>
</tr>
<tr>
<td>calcium silicate perovskite</td>
<td>112</td>
</tr>
<tr>
<td>Ti-poor, 112–113</td>
<td></td>
</tr>
<tr>
<td>Ti-rich, 112–113</td>
<td></td>
</tr>
<tr>
<td>calderas</td>
<td></td>
</tr>
<tr>
<td>emissions and</td>
<td>201–206, 209</td>
</tr>
<tr>
<td>temporal variability of</td>
<td>209</td>
</tr>
<tr>
<td>unrest in</td>
<td>203–204</td>
</tr>
<tr>
<td>Calvin–Benson–Bassham cycle</td>
<td>564–565</td>
</tr>
<tr>
<td>CaMg(CO₃)</td>
<td>73–74. See also carbonates</td>
</tr>
<tr>
<td>Canary Islands</td>
<td>143, 149–150, 240–242</td>
</tr>
<tr>
<td>Candidate Phyla Radiations</td>
<td>556–565</td>
</tr>
<tr>
<td>Cannizzaro reactions</td>
<td>433–434</td>
</tr>
<tr>
<td>Cape Vede</td>
<td>149–150</td>
</tr>
<tr>
<td>carbide</td>
<td>29, 461</td>
</tr>
<tr>
<td>atomic scale structure of</td>
<td>47</td>
</tr>
<tr>
<td>crystalline</td>
<td>47</td>
</tr>
<tr>
<td>in Fe(Ni) alloys</td>
<td>72</td>
</tr>
<tr>
<td>graphite–Fe</td>
<td>8</td>
</tr>
<tr>
<td>molten iron</td>
<td>47</td>
</tr>
<tr>
<td>carbide inner core model</td>
<td>41–42</td>
</tr>
<tr>
<td>carbon. See also deep carbon; organic carbon abundance</td>
<td>11–14</td>
</tr>
<tr>
<td>abundance of, in mantle</td>
<td>67–73</td>
</tr>
<tr>
<td>in basalts</td>
<td>4–5</td>
</tr>
<tr>
<td>baseline</td>
<td>347–348</td>
</tr>
<tr>
<td>in BSE</td>
<td>10–14, 25–26</td>
</tr>
<tr>
<td>in chondritic building blocks</td>
<td>12</td>
</tr>
<tr>
<td>across CMB</td>
<td>55–56</td>
</tr>
<tr>
<td>in continental lithosphere</td>
<td>70–72</td>
</tr>
<tr>
<td>of continental subsurface</td>
<td>500–501</td>
</tr>
<tr>
<td>in convecting mantle</td>
<td>70–72, 254–257</td>
</tr>
<tr>
<td>in core formation</td>
<td>20</td>
</tr>
<tr>
<td>in core over time</td>
<td>55–56</td>
</tr>
<tr>
<td>in core–mantle segregation</td>
<td>24–25</td>
</tr>
<tr>
<td>defining</td>
<td>40</td>
</tr>
<tr>
<td>dissolved inorganic</td>
<td>480–489</td>
</tr>
<tr>
<td>distribution of</td>
<td>80–81, 276</td>
</tr>
<tr>
<td>on Earth</td>
<td>4–5</td>
</tr>
<tr>
<td>in E-chondrites</td>
<td>11–12</td>
</tr>
<tr>
<td>estimates of abundance of</td>
<td>66–67</td>
</tr>
<tr>
<td>in exogenic systems</td>
<td>347–348</td>
</tr>
<tr>
<td>extraction of, from mantle</td>
<td>67–73</td>
</tr>
<tr>
<td>feedbacks</td>
<td>299</td>
</tr>
<tr>
<td>in Fe(Ni) alloys</td>
<td>72</td>
</tr>
<tr>
<td>forms of</td>
<td>11–14, 66</td>
</tr>
<tr>
<td>fractionation of</td>
<td>18–19</td>
</tr>
<tr>
<td>inheritance of, in mantle</td>
<td>68</td>
</tr>
<tr>
<td>isotopic composition of</td>
<td>8–9</td>
</tr>
<tr>
<td>as light element in core</td>
<td>27–28, 40, 55</td>
</tr>
<tr>
<td>in mantle</td>
<td>238</td>
</tr>
<tr>
<td>mantle melting and</td>
<td>257–262</td>
</tr>
<tr>
<td>melting points and</td>
<td>53–54</td>
</tr>
<tr>
<td>in meteorites</td>
<td>11–14</td>
</tr>
<tr>
<td>mineral ecology</td>
<td>630–633</td>
</tr>
<tr>
<td>movement of</td>
<td>1</td>
</tr>
<tr>
<td>outgassed from volcanoes</td>
<td>211–215</td>
</tr>
<tr>
<td>oxidation of</td>
<td>418–419</td>
</tr>
<tr>
<td>oxidized form</td>
<td>70–72</td>
</tr>
<tr>
<td>in partial melting</td>
<td>258</td>
</tr>
<tr>
<td>perturbations in flux of</td>
<td>277–278</td>
</tr>
<tr>
<td>polymorphs</td>
<td>73–74</td>
</tr>
<tr>
<td>ratios, 11–14</td>
<td></td>
</tr>
<tr>
<td>in redox reactions</td>
<td>80–81</td>
</tr>
<tr>
<td>reduced form</td>
<td>70–72</td>
</tr>
<tr>
<td>residence time of</td>
<td>277–278</td>
</tr>
<tr>
<td>sedimentary</td>
<td>133</td>
</tr>
<tr>
<td>solidus and</td>
<td>264</td>
</tr>
<tr>
<td>solubility</td>
<td>18, 20–21</td>
</tr>
<tr>
<td>sources of</td>
<td>211–215</td>
</tr>
<tr>
<td>speciation of, from mantle</td>
<td>67–73</td>
</tr>
<tr>
<td>stability of</td>
<td>70–72</td>
</tr>
<tr>
<td>in subconduction zones</td>
<td>133</td>
</tr>
<tr>
<td>temporal distribution of</td>
<td>628–629</td>
</tr>
<tr>
<td>in ultramafic systems</td>
<td>494</td>
</tr>
<tr>
<td>in ureilites</td>
<td>16</td>
</tr>
<tr>
<td>volcanic</td>
<td>215</td>
</tr>
<tr>
<td>carbon budgets</td>
<td>4–5</td>
</tr>
<tr>
<td>constraints on</td>
<td>56–57</td>
</tr>
<tr>
<td>of core</td>
<td>40–41</td>
</tr>
<tr>
<td>from core accretion</td>
<td>66–67</td>
</tr>
<tr>
<td>from core–mantle differentiation</td>
<td>66–67</td>
</tr>
</tbody>
</table>
ingassing, 66
of Moon, 8–11
outgassing, 66
volcanic carbon and, 216–217
carbon cycle, 57
cadence of, 278–279
carbon deposition centers and, 276–278
carbonate melts in, 129
components of, 277
continental, 499
contingency at, 299–300
deep water and, 105–106
diamonds and, 94–95
longevity of, 278–279, 299
long-term, 276–278
mantle transition zone and, 102–103
non-steady-state dynamic of, 299
organic chemistry of, 416–420, 438–439
pace of, 278–279
prediction of, 280–281
pulse of, 278–279, 292, 299
self-stabilizing feedbacks, 299
subduction, 276
subduction zones and, 416–417
supercontinent assembly and, 625–626
surface processes and, 279–283
tectonic, 279, 293–295
carbon deposition centers, carbon cycle and, 276–278
carbon dioxide, 455–456. See also emissions, carbon dioxide
atmospheric plumes of, 188–189
basalts and, 144
bulk, 135–136
decadal averages of, 196–197
degassing, 238–264
diffuse emissions, 191–192, 201–206
direct measurement of, 191
dissolution, 21–22
eclogites and, 146–147
experimental containers and, 457–458
during explosive eruptions, 197–198
flux, 195–196, 242–243, 250
global emission rates of, 193–194
groundwater and, 191–192
incipient melting and, 165–166, 170–171, 177
indirect measurement of, 190–191
in magmas, 238–264
as magmatic volatile, 188
in mantle, 67–68, 177
mantle plumes and, 251–254
melt density and, 170–171
methanation, 367–375
methane and, 95–96
in mid-ocean ridge system, 242–243
in MORBs, 243, 250–251
OIB, 252
partial melting and, 165–166
peridotite and, 146–147
primary magma, 253
saturation, 238–264
solubility of, 238
volcanic, 190
carbon distribution, in core formation, 22–25
carbon dynamics, at subduction/collision transition, 292–293
carbon flux, 150–151, 339–341
carbonate precipitation and, 331–333
carbonate weathering and, 330–331
metamorphic inputs, 329–330
OC weathering and, 330–331
outputs, 331–334
silicate weathering and, 331–333
subduction zones and, 281
volcanic inputs, 328–329
Carbon in Earth, 1
carbon isotopes
composition, 103
of diamonds, 103
in fluid-buffered systems, 97
fractionation, 97
of PDAs, 109
redox-neutral formation and, 96–98
carbon neutrality, of subduction zones, 283–284
carbon phase diagram, 595
oxygen fugacity of, 76–77
carbon reservoirs, 323–324
depth, 74–75
sizes of, 41
carbon solubility, 18
in magmas, 67–68
subduction zone and, 284–285
carbon speciation in MO, 22
oxy-thermobarometry and, 76–77
carbon transformation pathways, in subduction zones, 277–278
carbon transport, 133
in cratonic lithospheric mantle, 142
under nanoconfinement, 363–364
in subduction zone, 289
carbonaceous chondrites, LEVEs in, 15–29
carbonaceous matter (CM)
abiotic formation of, 466–468
accumulation of, 466
composition of, 466–467
experimental occurrences of, 461–465
formation of, 464
future research on, 469–470
in hydrothermal experiments, 462–463
in hydrothermally altered mantle-derived rocks, 449
limits to knowledge about, 469–470
oxygen fugacity and, 462–463
carbonate basalt, 113
carbonate ions, 19
carbonate melts
in carbon cycle, 129
compositions, 137–138
in cratonic lithospheric mantle, 138–139, 142–143
from diapirs, 287–288
extraction of, 148
from hot slabs, 287–288
importance of, 150
incipient melting of, 166–168
in intraplate settings, 143
under mid-ocean ridges, 147–148
migration of, 129, 132
at ocean islands, 143
silicate melts and, 168–169
stability fields of, 147
structure of, 168–169
with subconduction zones, 132–134
in upper mantle, 129
in various geodynamic settings, 166–168

carbonate stability
constraints on, 130–131
oxygen fugacity and, 130
carbonate weathering, carbon flux and, 330–331
carbonated basalts
bulk compositions, 137
melt stability of, 179
carbonated MORBs, 135–136
carbonated sediment
melting of, 134–138
potassium in, 137–138
siliates of, 135–136
in transition zone, 134–138
in upper mantle, 134–138

carbonates
assimilation, 70
breakdown of, 80–81
in cratonic lithospheric mantle, 140–142
experimental calibrations, 140–142
Fe-bearing, 75
formation of, 133
in mantle, 72–73, 143–145
mineral dissolution of, 133–134
Na-carbonate, 137
pelagic, 296–299
phase at subluid, 135–136
precipitation, 331–333
pump, 279–280
redox constraints on, 140–142
seismic detectability of, 77
silicate and, 142–143
solubility of, 285
structure of, 147
structure of, 282
thermoelastic properties of, 77–78
carbonate–silicate melts, formation of, 69
carbonatite melts, 173
mobility of, 168–178

carbonatites, 133–134
abundance of, 149
classification of, 148
crustally emplaced, 147–150
deep, 144
emplacement of, 149
evolution of, 149
formation of, 144, 149
limits to knowledge and, 150–151
magmas, 130
magmatism of, 149
ocean islands and, 149
in subduction zones, 134
carbon-bearing fluids
complexity in, 358, 360
fluid–fluid interactions, 366
guest molecules in, 366–372
nanoconfinement and, 363
carbon-bearing phases
limits to knowledge about, 81–82
stable forms of, 66
carbon-bearing reactants, in experiments, 458–461

carbonite peridotite
in mantle, 131–132
melting of, 131–132
CARD. See catalyzed reporter deposition
Carnegie Institute of Science, 388–389
CaSiO3-perovskite, 112–113
retrogressed, 114–115
CaSiO3-walstromite, 91–92

catalytic reactions, 599–601
catalyzed reporter deposition (CARD), 562–563
cathodoluminescence, of Marange diamond, 95
CaTiO3-perovskite, 112–113
C-bearing phases, in E-chondrites, 11–12
cell counts, 586
cellular bioenergetics, 566–567
cementite. See Fe3C
Cenozoic, 276, 293
Census of Deep Life, 558
C/H ratios
of BSE, 14, 16–19
bulk weight, 13–14
subchondritic, 19
C–H species, stabilization of, 19
Le Chatelier’s Principle, 420
chlorite, 285–286
chondrites
BSE, 6–7
CI, 6–7
E-chondrites, 6–7, 11–12, 15
EH, 15
EL, 15
ordinary, 15–16
chondritic building blocks, carbon in, 12
CI, chondrites, 6–7
Index

Circulation Obviation Retrofit Kit, 528–530
Claisen–Schmidt condensation, 434
climate, 188, 215
stability of Earth, 4
climatic drivers
 in elemental cycling, 319–321
 negative feedbacks and, 319–321
clinopyroxene, 136–137
CLIPPIR diamonds, 114
 inclusions in, 114–115
 silicates in, 114–115
closed-system volcanoes, 209
CM. See carbonaceous matter
CMB. See core–mantle boundary
C/N ratios
 of BSE, 14, 19
 bulk weight, 13–14
supercritical, 19
Coast Range Ophiolite Microbial Observatory (CROMO), 532
C–O–H fluids, 134
cold oxic basement, subsurface biome of, 530
compositional expansion coefficients, 41–50
compressional-wave velocity, 53
conductive geotherms, 132
confined liquids
 aqueous electrolytes in, 372
 reactivity and, 374–375
 solubility and, 369–370
 volatile gas solubility in, 370–372
continent. See supercontinent assembly
continental crust, 326–327
continental lithosphere, carbon in, 70–72
continental lithospheric mantle, 326–327
continental rifts, emissions and, 201–206
continental subsurface, 497–498
biomes, 524–527
 carbon content of, 500–501
 carbon cycling, 499
depth bedrock in, 503–504
depth coal beds in, 503
environments, 498–501
hydrocarbon reservoirs in, 502–503
continental weathering, 310
covecting mantle, 237
carbon in, 70–72, 254–257
 limits of knowledge about, 263–264
melting, 257–262
plumes, 251–254
sampling, 240–242
covecting geotherms, 132
core, 4–5
 carbon as light element in, 27–28, 40, 55
carbon budgets of, 40–41
carbon in, over time, 55–56
composition, 57
Fe₇C₃ at, 55
limits to knowledge about, 57–58
pressure of, 44
recovery, 237
core accretion
 carbon budget from, 66–67
 multistage, 25–26
 simulation of, 24–25
core formation
 carbon distribution in, 22–25
 carbon in, 20
 Dc alloy/silicate in, 22–25
disequilibrium, 26–27
LEVEs in, 20
 multistage, 23–26, 28
proto-Earth, 26–27
 single-stage, 28
sulfide segregation and, 16–18
core–mantle boundary (CMB)
carbon across, 55–56
carbon distribution at, 55–56
pressure for, 54–55
temperature at, 53
core–mantle differentiation, carbon budget from, 66–67
core–mantle fractionation, 23–24
core–mantle segregation, 5, 22–23
carbon in, 24–25
 cracking reactions, 496–497
cratonic lithospheric mantle
carbon transport in, 142
carbonate melts in, 138–139, 142–143
carbonates in, 140–142
depth, 142–143
kimberlite in, 138–139
metasomatism of, 142–143
oxidation fugacity in, 141
reduction of, 141
Cretaceous Peninsular Ranges, 344–345
CROMO. See Coast Range Ophiolite Microbial Observatory
crustally emplaced carbonatites, 147–150
cryptic methane cycle, 405–406
C/S ratios
 of BSE, 16–18
 bulk weight, 13–14
 of fumaroles, 193
temporal variability and, 210–211
C/X ratios, 5
cycloalkanes, 426
cyclohexane, 423–426
cyclohexanol, 426
Darcy’s law, 177
Dc alloy/silicate
 alloy–silicate melt partitioning and, 25
 in core formation, 22–25
sulfur in, 25
DCO. See Deep Carbon Observatory
deamination rates, 431–432
as substitution reaction, 430–433
DECADE. See Deep Earth Carbon Degassing
decompression melting, 257
deep bedrock, in continental subsurface, 503–504
deep biosphere
adaptations for survival in, 539, 568–569
biomass, 588
energetics, 585
limits to knowledge about, 505–506
locations, 481
metabolism, 562–565
similarities across, 504–505
deep carbon
as CaCO3, 74
organic chemistry of, 416–420, 438–439
reservoir, magnesite as, 74–75
science, emergence of, 1
subduction, 288–289
Deep Carbon Observatory (DCO), 1, 90, 388–389
Carbon Mineral Challenge, 632
data and, 620
DMGC and, 115–116
Integrated Field Site Initiatives, 641
on volcanism, 189–190
deep carbonatites, 144
deep coal beds, in continental subsurface, 503
Deep Earth Carbon Degassing (DECADE), 195, 206, 217–218
on volcanism, 189–190
deep life, 539–541
biogeochemistry of, 561–562
deep mantle
oxy-thermobarometry of, 76–77
redox freezing in, 111–114
Deep Sea Drilling Program (DSDP), 250
deep water
carbon cycle and, 105–106
diamonds and, 105
in ringwoodite, 106
degassing
diffuse, 199–201, 204
MO, 5
passive, 197, 206–207
dehydration, 436
aqueous alcohol, 421–422
as elimination reaction, 420–423
dehydrogenation reactions, 423–427
depoelted MORB mantle (DMM), 211–215
Desulfovibrio indonesiensis, 570–571
devolatization pattern, 285–286
D/H ratio, of BSE, 7–9
diagenesis, 430
DIAL. See differential absorption LIDAR
diamantiferous peridotite, 70
diamonds
Brazilian, 103
Bureau on, 106–108
carbon cycle and, 94–95
carbon isotope composition of, 103
carbonates in, 135
CLIPPIR, 114–115
crystallization from single carbon fluid species, 97–98
deep water and, 105
defects in, 92
depth of formation, 91–92
diagnostic tools for, 107
experiments for studying, 106–108
Frost on, 106–108
FTIR maps and, 92–94
future research on, 115–116
geobarometry of, 91
HDF migration and, 99–100
history of, 93–94
inclusion entrainment, 106–108
isochronal precipitation, 97
Jagersfontein, 103
Kankan, 103
limits to knowledge about, 115–116
lithospheric, 89–90
mantle metasomatism and formation of, 99–100
from mantle transition zone, 103–104
Marange, 95
metasomatic fluids and formation of, 98–100
Monastery, 103
monocrystalline growth of, 107
natural growth media, 107
Northwest Territories Canadian, 99–100
obtaining, 89–90
platelets in, 93–94
polycrystalline formation of, 108–109
precipitation of, and methane, 95–96
Proterozoic lherzolitic formation, 110–111
redox freezing and, 111–114
redox-neutral formation of, 96–98
scanning electron microscope images of, 107–108
sublithospheric, 89–90
super-deep, 105
synthesizing, 106–107
thermal modelling of, 92–94
trapping of inclusions in, 92
Diamonds and the Mantle Geodynamics of Carbon (DMGC)
DCO and, 115–116
goals of, 115–116
research areas of, 90
on super-deep diamonds, 105
diapirs, carbonate melt from, 287–288
DIC. See dissolved inorganic carbon
dielectric constants, in nanocoherence, 372–374
differential absorption LIDAR (DIAL), 190–191
differential equations, first order, 317
diffuse degassing, 199–201, 204
 emissions from, 207–208
diffuse emissions, 191–192, 201–207
diffusion
 pore, 364–366
 surface, 364–365
 viscosity-diffusion, 171–172
diffusion-sink experiments, 176
dioxygen cycle, biological evolution and, 294–296
disequilibrium core formation, 26–27
disproportionation reactions, 433–434
 aldehyde, 433–434
dissolution, of siderites, 462–463
dissolved inorganic carbon (DIC), 480–489
dissolved organic carbon (DOC), 480–489
 solubilization of, 484
DMGC. See Diamonds and the Mantle Geodynamics of Carbon
DMM. See depleted MORB mantle
DOC. See dissolved organic carbon
dolomite
 CaCO₃ in, 73–74
 crystal structure of, 73–74
 high-pressure polymorphs and, 73–74
 iron and, 73–74
 MgCO₃ in, 73–74
dolomitic carbonite, 132
Dorado Outcrop, 492–493
dormancy, 588–589
dormant volcanoes, emissions from, 198
down-going slab materials, 133
DSDP. See Deep Sea Drilling Program

E. coli, 570–571
EAR. See East African Rift
Earth. See also Bulk Silicate Earth
carbon on, 4–5
 climate stability of, 4, 313
 life on, 4
 mantle reservoir of, 4–5
 organic chemistry and, 415–416
 proto-Earth core formation, 26–27
 structure of, 4–5
 surface temperature of, 313
 whole-Earth carbon cycle, 315–316, 338–341
Earth Microbiome Project, 641
EarthChem Library, 240–242, 623
EAS. See electrophilic aromatic substitution
East African Rift (EAR), 149, 205–206, 217, 328–329
East Pacific Rise, 179, 240–241
Ebelman reaction, 292
EC. See Eddy covariance
E-chondrites
 carbon in, 11–12
 C-bearing phases in, 11–12
 LEVEs and, 15
 model, 6–7
eclipte, 70
 carbon dioxide and, 146–147
 in mantle, 144
 melting, 215
eclipte-derived melts, 146–147
ecliptic lithospheric diamonds, 90
Eddy covariance (EC), 191
Eger Rift, 206
EH chondrites, 15
elastic geobarometry, 91–92
electrical conductivity anomalous, 181
 enhancement, 176–177
 incipient melting and, 173–174, 179
 melt mobility and, 179
 in olivine matrix, 174
electrophilic aromatic substitution (EAS), 433–434
elemental cycling
 basic concepts of, 315
 climatic drivers in, 319–321
 negative feedback in, 319–321
 residence time in, 315–319
 steady state in, 315–319
elimination reactions
 dehydration as, 420–423
 hydration as, 420–423
EM1 OIB, 102
EMFDD reaction, 131
emissions, carbon dioxide
 from active volcanoes, 194–197, 216
 calderas and, 201–206, 209
 constraints, 207
 continental rifts and, 201–206
 cumulative, 201–202
 data distribution, 203
 decadal averages of, 196–197
 diffuse, 191–192, 201–207, 216
 from diffuse degassing, 207–208
 from dormant volcanoes, 198
 estimation of, 197
 during explosive eruptions, 197–198
 fumaroles and, 198–201
 global of carbon dioxide, 193–194
 hydrothermal systems, 201–206
 measurement of, 199–201
 next iteration of, 206–208
 over geologic time, 215
 plume gas, 188, 201–203
 quantifying, 215–217
 synthesis of, 215–217
 temporal variability of, 208–209
 vent, 216
EMOD buffers, 96–97
endogenic systems, 314–315
energy limits, 585
 anabolism and, 607–608
 biomass and, 588
Index

energy limits (cont.)
- density and, 603–605
- maintenance in, 586–587
- microbial states and, 586–589
- time and, 606–607
Enermark field, 526–527
entropy
- changes in, 590
- defining, 590
enzyme evolution, 635–636
equilibrium accretion, BSE budget and, 19–21
eruption forecasting, temporal variability and, 209–211
eukaryotes, in subsurface biome, 535–536
eutectic composition, 41–42
- of Fe–O binary system, 42–43
- of Fe–S binary system, 42–43
- of Fe–Si binary system, 42–43
exogenic reservoirs, 327–328
exogenic systems, 314–315
- carbon flux, 331–348
- carbon in, 347–348
- experimental containers, carbon dioxide and, 457–458
- extreme cellular biophysics, 570–572
- extreme molecular biophysics, in subsurface environment, 567–570
Fe3C
- density of, 47–48
- inner core phase and, 50–52
- natural form of, 44–48
- near iron end member, 48
- orthorhombic, 44–48
Fe7C3
- constraints from, 52
- at core, 55
- electrical resistivity of, 55
- sound velocities of, 52
Fe-bearing carbonates, melting of, 75
Fe–C alloy
- constraints from, 52
- elasticity parameters for, 45
- liquid, 49, 52
- melting temperatures of, 53–55
- near iron end member, 52
- slab-derived, 56
- sound velocities of, 50
Fe–C binary system, 41–42
- densities of, 44, 48
FeCO3s, 78–79
feedback loops, 317–318
Fe–H, sound velocities of, 53
Fe–light element alloys
- melting curve parameters, 52
- sound velocities of, 52–53
Fe(Ni) alloys
- carbide in, 72
- carbon in, 72
- precipitation curve, 70–71
Fe–Ni–C alloys, solidus temperature ranges in, 72
Fe–O binary system
- characterizing, 44
- eutectic composition, 42–43
- melting temperatures, 55
- sound velocities of, 53
ferropericlase, 76
Fe–S binary system
- characterizing, 42
- eutectic composition, 42–43
- eutectic point of, 55
- melting temperatures, 55
- sound velocities of, 53
Fe–Si binary system
- characterizing, 42–44
- eutectic composition, 42–43
- melting temperatures, 55
- sound velocities of, 53
FISH. See fluorescent in situ hybridization
Fisher–Tropsch process, 460–461
flank gas emission, 188
fluid addition, 215
fluid inclusions, in oceanic lithosphere, 456–464
fluid–fluid interactions, 366
fluorescent in situ hybridization (FISH), 562–563
flux melting, 144
formaldehyde, 459
formate, in ultramafic systems, 495
founder effect, 540
Fourier-transform infrared spectroscopy (FTIR) maps, 190–191, 238, 451–452
- diamonds and, 92–94
Friedel–Crafts reaction, 434
Frost, D. J., 69
on diamond formation, 106–108
FTIR. See Fourier transform infrared spectroscopy maps
FTT reactions, 457–458
magnetite and, 464
fumaroles, 213–214
C/S ratios of, 193
emission rates and, 198–201
G protein-coupled receptors (GPCRs), 568
Gakkel Ridge, 240–241, 250
Galapagos Spreading Center, 248–249
Garrett melt inclusion, 246–247
gas giants, growth of, 10
generalized inverse Gauss–Poisson (GIGP), 631–632
genetic drift, 540
Genomic Standard Consortium, 641
geochemistry
- of diamonds, 91
- elastic, 91–92
geo–bio interactions, 640–643
geochemical tracers, 68
geochemical time
- emissions over, 215
- volcanic carbon and, 215
Index

geological cycle, 294
GeoMapApp, 241–242
gemimicry, 439
gothers
 conducive, 132
 convective, 132
Gibbs energy, 589–599
 changes in, 591–601
 composition and, 599–601
 densities, 604–605
 molal, 604
 pressure and, 599–601
 standard state, 592–595
 surveying, 601–603
 temperature and, 599–601
GIGP. See generalized inverse Gauss–Poisson
global emission rates, of carbon dioxide, 193–194
Global Volcanism Program (GVP), 197
Volcanoes of the World, 194
GOSAT. See Greenhouse Gases Observing Satellite
GPCRs. See G protein-coupled receptors
grain boundaries, 361–362
Grand Tack scenario, 8–11
graphite, 29
 exhausting, 259–260
 formation, 465–466
 in mantle, 259–260
 thermodynamic predictions, 465
graphite–Fe–carbide, 8
graphitization, 282–283
green chemistry, 439
greenhouse conditions, 342
greenhouse intervals, 342–343
groundwater
 carbon dioxide and, 191–192
 Vesuvio, 191–192
Guaymas Basin, 527–528
guest molecules, in carbon-bearing fluids, 366–372
Gulf of Mexico, 527–528
Gutenberg discontinuity, 164–165
GVP. See Global Volcanism Program

Halicephalobus mephisto, 535
harzburgite, 132
Hashin–Shtrikman upper-bound (HS+) model, 174–176
Hauri, E. H., 189–190, 248–249, 264, 323
Hawaii melt inclusions, 263
Hazen, R. M., 630–632
HDF microinclusions, in lithospheric diamonds, 99
HDF migration, diamonds and, 99–100
heat flux, from hotspots, 252
Helgeson–Kirkham–Flowers (HKF) equations, 596
helium, 213–215, 244–245
hematite–magnetite, 457
hematite–magnetite–pyrite, 457
heteroatoms, 456
HFSE. See high-field-strength element
high-field-strength element (HFSE), 98–99
highly siderophile element (HSE), 15–29
 sulfide segregation and, 16–18
HIMU OIB, 102
histone-like nucleoid structuring proteins (HNS), 568
HKF equations. See Helgeson–Kirkham–Flowers equations
Holocene, 194
hot slabs, carbonate melt from, 287–288
hothouses, 345–346
hot spots, 240–242, 257
 heat flux from, 252
HS+ model. See Hashin–Shtrikman upper-bound model
HSE. See highly siderophile element
hydride, as elimination reaction, 420–423
hydraulic fracturing, 526–527
hydrocarbon reservoirs, in continental subsurface, 502–503
hydrocarbons, short-chain, 495
hydrogen
 alloy–silicate melt partitioning and, 25–26
 in BSE, 10–12
 fractionation of, 18–19
 isotopic composition of, 8–9
 methane and, 459–460
 hydrogenation reactions, 423–427
Hydrogenophaga, 531–532
hydrogenotrophic methanogenesis, 483
hydrolyzable amino acids, 495
hydrothermal
 carbon pump, 279–280, 283
 circulation, 495–496
 experiments, CM in, 462–463
 petroleum, 484–497
 reactions, 436–437
hydrothermal systems
 abundance of, 204
 emissions and, 201–206
 sedimented, 496–497
 volcanism and, 204
hydrothermally altered mantle-derived rocks, CM in, 449
ICB. See inner core boundary
ICDP. See International Continental Drilling Programs
icehouse conditions, 342
icehouse drivers, 344–345
Iceland, 240–242
igneous aquifers, 499–502
IMLGS. See Index to Marine and Lacustrine Geological Samples
incipient melting
 carbon dioxide and, 165–166, 170–171, 177
 of carbonate melt, 166–168
 composition, 167
incipient melting (cont.)
defining, 163–165
density, 170–171
electrical conductivity and, 173–174, 179
interconnectivity, 175–176
limits of knowledge about, 182
mantle convection and, 181–182
melt mobility of, 177–179
origins, 164
of peridotite, 179
profiles, 167–168
of silicate melt, 166–168
stability fields in, 165–166
types of, 177–178
viscosity-diffusion, 171–172
water and, 165–166
Index to Marine and Lacustrine Geological Samples (IMLGS), 240–241
inner core
Fe₃C and, 50–52
late veneer, 8–11
phase, 50–52
sound velocities in, 50–51
inner core boundary (ICB), 41–42
Integrated Ocean Drilling Program (IODP), 250, 527
International Continental Drilling Programs (ICDP), 641
Integrated Ocean Discovery Program (IODP), 412–530
intraplate settings, carbonate melts in, 143
inverse Monte Carlo simulations, 26–27
IODP. See Integrated Ocean Drilling Program, International Ocean Discovery Program
IOMs. See insoluble organic molecules
iron
carbon alloys, 40–41
dolomite and, 73–74
melting point, 53–54
redox capacity of, 107–108
spin state, 78–79
iron end member
Fe₃C near, 48
Fe–C alloy near, 52
iron–light element systems
binary phase relations, 41–42
phase relations of, 41–44
isotope clumping, 388
kinetics, 393–399
isotopic reservoirs, 401–405
Jagersfontein diamonds, 103
Jagersfontein kimberlite, 76
Juan de Fuca Ridge, 240–241, 248–249, 493, 528–530
warm anoxic basement of, 528–530
Jupiter, 8–11
Kaapvaal cratons, 69, 101, 103
Kankan diamonds, 103
karpatite, 450–451
Kerguelen Islands, 143
kerogen, 282–283
Kidd Creek, 400–401
Kilauea, 253
kimberlite, 89–90, 106–107, 139–140
in cratonic lithospheric mantle, 138–139
eruption dates, 93, 111
genesis of, 140
group 1, 139
group 2, 139
Jagersfontein, 76
magmatism, 110–111
origins of, 139
oxygen fugacity and, 130–131
parental magma composition, 139–140
kinetic array, 399–401
kinetic inhibition, 419–420
kinetic minimum, 293
kinetic rate constants, 340
kinetics
isotope clumping, 393–399
Michaelis–Menten, 393–399
Kokshetav, 292
LAB. See lithosphere–asthenosphere boundary
labile amino acids, 497
large igneous provinces (LIPs), 254
large ion lithophile element (LILE), 98–99
large number of rare events (LNRE), 630–631
late accretion, 14–16
LEED. See low-energy electron diffraction
LEVEs. See life-essential volatile elements
Lewis acid catalysis, 422
lherzolite, 132
LIDAR. See Light Detection and Ranging
life, records of, 294
life-essential volatile elements (LEVEs), 4, 28–29
alloy–silicate melt partitioning and, 25
alloy–silicate partitioning of, 20–21
budgets of BSE, 14–19, 25–26
in carbonaceous chondrites, 15–29
constraints from isotopes of, 7–8
in core formation, 20
delivery timing of, 17–18
distributions of, 5–6
E-chondrites and, 15
initial distributions of, 20
isotopic compositions of, 5
limits of knowledge, 29
origins of, 11, 19–20
Index 663

solubility data for, 19
unknowns involving, 29
Light Detection and Ranging (LIDAR), 190–191
light elements, 49
carbon as, in core, 27–28, 40
lignin phenols, 481–483
Ligurian Tethyan ophiolites, 453–454
LILE. See large ion lithophile element
LIPs, See large igneous provinces
liquid Fe–C alloy, 49
constraints from, 52
elasticity parameters for, 46
sound velocities of, 52
liquid outer core, oxygen in, 44
lithophile elements, 6–7
lithosphere–asthenosphere boundary (LAB), 164
defining, 181
termal, 167–168
lithospheric diamonds, 89–90
classification of, 90
composition of, 90
ecolitic, 90
formation of, 90
HDF microinclusions in, 99
peridotitic, 90
reduced mantle volatiles in, 94–96
refermatization in, 110
lithospheric mantle, continental, 326–327
lithospheric reservoir, 348
LNRE. See large number of rare events
Logatchev hydrothermal fields, 449–450, 494
Loihi, 253
longevity, of carbon cycle, 278–279
Lost City, 404–405
low energy states, 589
low-velocity zone (LVZ), 164–165, 181
limits of knowledge about, 182
low-energy electron diffraction (LEED), 452–453
Lucky Strike segment, 240–241
LVZ. See low-velocity zone
macrofauna, 481
magma ocean (MO)
atmosphere interactions, 17–19
BSE budget and, 19–21
carbon speciation in, 22
degassing, 5
magmas, carbon dioxide in, 238–264
magnesite, as deep carbon reservoir, 74–75
magnesium budgets, 492–493
magnetite, 459
FTT and, 464
MAGs, See metagenome-assembled genomes
Maier–Kelley formulation, 596
Main Ethiopian Rift (MER), 205–206
maintenance
in energy limits, 586–587
measurements of, 587
Manam, 217
mantle. See also convecting mantle; cratonic
lithospheric mantle; deep mantle; upper mantle
abundance of carbon in, 67–73
adiabatic, 166–167
asthenospheric, 70–72, 78–80
carbon dioxide in, 67–68, 177
carbon in, 238
carbonate in, 143–145
carbonate minerals in, 72–73
carbonite peridotite in, 131–132
convection, 181–182
deep, 76–77, 111–114
degassing, 339–342
depletion of, 144
extraction of carbon from, 67–73
graphite in, 259–260
incipient melting and, 181–182
ingassing, 339–342
inheritance of carbon at, 68
oxidation of, 258
oxidized carbon in, 77–78
peridotite in, 113–114, 144
resistive lids, 164–165
slab-derived fluids in, 134
speciation of carbon from, 67–73
sulfur in, 100–102
mantle geodynamics. See Diamonds and the Mantle
Geodynamics of Carbon
mantle melting regime, 164
carbon and, 257–262
mantle metasomatism, 100–101
characterizing, 163
defining, 163–165
diamond formation and, 99–100
mantle plumes
carbon dioxide and, 251–254
convecting, 251–254
mantle reservoirs
of Earth, 4–5
modern, 322–326
primitive, 322–326
mantle transition zone
carbon cycle and, 102–103
diamonds from, 103–104
hydration state of, 105
MAR. See Mid-Atlantic Ridge
Marange diamonds, 95
cathodoluminescence of, 95
methane and, 95–96, 98
RIFMS for, 98
Mars, 26–27, 259–260, 321
Masaya, 209
mass-independent fractionation (MIF), 100–101
MED. See Mineral Evolution Database
melt, incipient. See incipient melting
melt composition, melt mobility and, 177–179
melt density
calculation of, 170–171
carbon dioxide and, 170–171
curve, 170–171
water and, 170–171
melt inclusions
data sets, 240–242
Garrett, 246–247
glassy, 253
Hawaii, 263
isotopic heterogeneity in, 246–248
MORB, 244–248
OIBs and, 252–253
Siqueiros, 246–247
volumes, 242
melt mobility
electrical conductivity and, 179
of incipient melts, 177–179
melt composition and, 177–179
melt stability, of carbonated basalts, 179
melts. See specific types
Menez Gwen, 494
MER. See Main Ethiopian Rift
Mesozoic, 276
metagenome-assembled genomes (MAGs), 558–560
metamorphic inputs, carbon flux, 329–330
metamorphism, defining, 188
metasomatic fluids, diamond-forming, 98–100
metasomatism. See also mantle metasomatism
of cratonic lithospheric mantle, 142–143
overprints, 142
metatranscriptomics, 560
meteorites, carbon in, 11–14
methanation, carbon dioxide, 367–375
methane, 388–389, 447–448, 459, 489
biogenic, 503
carbon dioxide and, 95–96
cycling, 504
in diamond precipitation, 95–96
formation, 403, 465–466
hydrogen and, 459–460
limits to knowledge about, 409
in Marange diamonds, 95–96, 98
oxidation, 405–409
production of, 459–460
synthesis of, 95–96
thermodynamic equilibrium and, 388–389
in ultramafic systems, 494–495
methanogenesis
differential reversibility of, 406
reversibility of, 394
methanol, 459
formation of, 459
methylcyclohexanol, 435–436
MgCO3, 56. See also carbonates
in dolomite, 73–74
Michaelis–Menten kinetics, 393–399
microbial array, 399–401
microbial ecosystems, 640–643
microbial metabolism, in subsurface environment, 562–565
microbial states, energy limits and, 586–589
micro-Raman spectroscopy, 91–92
microscale, in situ investigations at, 451–464
Mid-Atlantic Ridge (MAR), 240–241, 494
mid-ocean ridge system
carbon dioxide in, 242–243
carbonate melts under, 147–148
mid-ocean ridge-derived basalts (MORBs), 112–113, 213, 237
anhydrous, 135–136
bulk compositions of, 135–136
carbon dioxide in, 243, 250–251
carbonated, 135–136
chemistry of, 135–136
compositions, 137, 248–251
eruption of, 243
melt inclusions, 244–248
oxidation of, 69
oxygen fugacity and, 69
tests, 243–244
solubility in, 243–244
vapor-undersaturated, 246
variations in, 248–251
MIF. See mass-independent fractionation
Mineoka ophiolite complex, 455–456
Mineral Evolution Database (MED), 621
Miyakejima volcano, 195
MO. See magma ocean
modern mantle reservoirs, 322–326
molecular lubrication, pore diffusion and, 365–366
Momotombo, 209
Monastery diamonds, 103
montmorillonites, 464–465
Moon
carbon budgets of, 8–11
formation of, 11, 26–27
MORBs. See mid-ocean ridge-derived basalts
Mount Etna, 208, 328–329
Multi-Gas measurements, 190–191
Murowa, 93
Na-carbonate, at solidus, 137
Nankai Trough, 527–528
nanoconfinement
carbon transport under, 363–364
carbon-bearing fluids and, 363
dielectric constants in, 372–374
nanoporosity, 359–360, 362–363
features of, 360–363
NanoSIMS, 562–563
Published online by Cambridge University Press

National Centers for Environmental Information (NCEI), 240–241
National Oceanographic and Atmospheric Association, 240–241
NBO/T approach, 21–22
NCEI. See National Centers for Environmental Information
negative feedback, 317–318, 338
climatic drivers and, 319–321
in elemental cycling, 319–321
Neoproterozoic, 346–347
network analysis, 640–643
Newer Volcanics of Victoria, 132
Nibelungen, 494
nitrogen
aggregation, 93
in BSE, 10–12
depletion, 18–19
fractionation of, 18–19
isotopic composition of, 8–9
as siderophile elements, 25
nitrogen cycle, mantle transition zone and, 102–103
nominal oxidation state of carbon (NOSC), 587–588
non-ideal conditions, 598
Northwest Territories Canadian diamonds, 99–100
NOSC. See nominal oxidation state of carbon
novel genes, 564–565
Nuna, 629
Nyiragongo volcano, 195, 201–206
OC. See organic carbon
Ocean Drilling Program (ODP), 492–493
Hole 735B, 455
Leg 201, 527–528
ocean island basalt (OIB), 237
carbon dioxide in, 252
chemistry of, 135–136
melt inclusions and, 252–253
sulfides from, 101–102
ocean islands
basalts and, 144
carbonate melts beneath, 143
carbonatites and, 149
oceanic crust, 487–488
axial diffuse vents and, 492
axial high temperature and, 488–492
characteristics, 491
fluid inclusions in, 456–464
recharge water and, 487–488
ridge flanks and, 492–493
subsurface biome of, 528
ultramafic systems and, 493–495
warm anoxic basement, subsurface biome of, 528–530
OCO-2. See Orbiting Carbon Observatory
ODP. See Ocean Drilling Program
OET. See oxygen exposure time
OIB. See ocean island basalt
Oldoinyo Lengai, 198–199
oligomer dissociation, 569
olivine, 132
carbonation of, 462
olivine matrix, electrical conductivity in, 174
Olmani Cinder cone, 132
OMI. See Ozone Monitoring Instrument
Opalinus Clay, 526–527
orangeites, 139
Orbiting Carbon Observatory (OCO-2), 192–193
ordinary chondrites, 15–16
organic carbon (OC), 282
anaerobic breakdown of, 483
bioavailability of, 505
burial rate, 333
carbon flux and, 330–331
dissolved, 480–489
oxidation of, 481
particulate, 480–489
weathering, 330–331
organic chemistry
bonds in, 415–416
carbon cycle, 416–420, 438–439
deep carbon, 416–420, 438–439
Earth and, 415–416
organic matter preservation, in sedimentary subsurface, 484–485
organic oxidations, 427–429
orthopyroxene, 132
oxidation
aqueous, 428
carbon, 418–419
methane, 405–409
organic, 427–429
of organic carbon, 481
oxidized carbon, in mantle, 77–78
oxygen, in liquid outer core, 44
oxygen exposure time (OET) models of, 486–487
sedimentary subsurface and, 486
oxygen fugacity, 17–18, 21–22, 150–151
carbon phases, 76–77
carbonate stability and, 130
CM and, 462–463
in cratonic lithospheric mantle, 141
kimberlite and, 130–131
magnitude of, 131
MORBs and, 69
oxy-thermobarometry
carbon speciation and, 76–77
deep mantle, 76–77
Ozone Monitoring Instrument (OMI), 193, 206–207
data sets, 197
pace, of carbon cycle, 278–279
PAH. See polycyclic aromatic hydrocarbon
Paléocene–Eocene thermal maximum (PETM), 319
partial melting
carbon dioxide and, 165–166
carbon in, 258
particulate organic carbon (POC), 480–489
microorganisms accessing, 484
PDAs. See polycrystalline aggregates
Pearson correlation coefficients, 246–247
pelagic carbonates, in subduction zone, 296–299
periclase, 113–114
peridotite, 130, 144–145
abyssal, 455–456
incipient melting of, 179
in mantle, 113–114, 144
solidus of, 258
peridotitic lithospheric diamonds, 90
permeability, 177, 203–204
perturbations, 277–278
Peru Margin, 527–528
petit spot volcanism, 179, 238
PETM. See Paleocene–Eocene thermal maximum
petrogenic carbon, 481–483
Phanerozoic, 149, 281–282
phase relations, of iron–light element systems, 41–44
Photobacterium profundum, 570–571
piezolyte, 570
Pitcairn, 253
Planck constants, 395
planetary embryos, 28–29
plume gas emissions, 188, 201–203
POC. See particulate organic carbon
Poisson’s ratio, 77–78
polycrystalline aggregates (PDAs), 108–109
absolute ages of, 109
carbon isotope values of, 109
formation of, 109
polycrystalline diamond formation, 108–109
polycyclic aromatic hydrocarbon (PAH), 450–451, 497
pore diffusion
molecular lubrication and, 365–366
steric effects and, 364–365
porosity. See nanoporosity
potassium, in carbonated sediment, 137–138
predictive reaction-rate models, 432–433
PREM model, 50
pressure–temperature plot, silicate melts and, 144–145
primary magma carbon dioxide, 253
primitive mantle reservoirs, 322–326
process end members, 401–402
propanoic acid, 428
protein expression, 635–636
protein unfolding, 569
Proterozoic, 283
Proterozoic lherzolitic diamond formation, 110–111
through time, 110–111
protoplanetary bodies, 20
P–T trajectories, 285–287, 289
subduction zone, 289–290
pulse, of carbon cycle, 278–279
pumps
carbonate, 279–280
hydrothermal carbon, 279–280
soft-tissue, 279–280
pyrite–pyrrhotite–magnetite, 457
QFM buffer, 258
quartz–fayalite–magnetite, 457
radiogenic isotopes, 237–238
rare biosphere, 525–526
rare earth elements (REE), 129
Rayleigh isotopic fractionation in multi-component systems (RIFMS), 97, 109
for Marange diamonds, 98
reactivity, confined liquids and, 374–375
recharge water, oceanic rocky subsurface and, 487–488
recycling processes, 164
Redoubt Volcano, 204
redox capacity
of iron, 107–108
of sulfides, 107–108
redox constraints, on carbonates, 140–142
redox freezing
in deep mantle, 111–114
defining, 113–114
diamonds and, 111–114
redox processes, in subduction zone, 290–291
redox reactions, 75, 81
carbon in, 80–81
redox-neutral formation
carbon isotope fractionation and, 96–98
do diamonds, 96–98
reduced mantle volatiles
in lithospheric diamonds, 94–96
in sublithospheric diamonds, 94–96
REE. See rare earth elements
refractory elements, constraints from isotopes of, 6–7
refractory garnet peridotites, 111
remineralization, 481
reservoirs
carbon, 41, 323–324
dep deep carbon, 74–75
exogenic, 327–328
hydrocarbon, 502–503
isotopic, 401–405
lithospheric, 348
mantle, 4–5, 322–326
Solar, 8–9
residence time
defining, 318–319
in elemental cycling, 315–319
response time, defining, 318–319
Rhine Graben, 206
ribosomal gene sequencing, 558
ridge flanks
advective flow through, 492
oceanic rocky subsurface and, 492–493
RIFMS. See Rayleigh isotopic fractionation in multi-component systems
ringwoodite, deep water in, 106
Rio Grande Rift, 206
rocks. See specific types
Rodinia, 620, 629
supercontinent assembly of, 623–625
Rotorua, 201–204
RRUFF Project, 633
S isotopic systematics, 100–101
in sulfide inclusions, 101
Sabatier reaction, 395–398
Saccharomyces cerevisiae, 570–571
SAGMEG. See South African Gold Mine Miscellaneous Euryarchaeal Group
SAGs. See single-cell amplified genomes
sapropels, 484
scanning electron microscope images, of diamonds, 107–108
scanning transmission X-ray microscope, 485
Schoeller plot, 402
seafloor dredging, 237–238
seafloor weathering feedback, 338
secondary ion mass spectrometry (SIMS), 238
sedimentary aquifers, 499–502
sedimentary carbon, 133
subduction, 280–281
sedimentary subsurface, 481
chemical composition of, 481–484
organic matter preservation in, 484–485
oxygen exposure time and, 486
sorption in, 485–486
sedimented hydrothermal systems, 496–497
selective preservation, 483–484
serpentinitized oceanic rocks, 451–452
Serpentinomonas, 531–532
shear-wave velocity, 53
Shimokita Peninsula, 527–528
siderites, 461
dissolution of, 462–463
siderophile elements, 6–7
nitrogen as, 25
silicate, 4, 310. See also Bulk Silicate Earth
carbonate and, 142–143
silicate melt, 21–22
carbonate melts and, 168–169
extraction of, 148
formation of, 143–144
incipient melting of, 166–168
pressure–temperature plot and, 144–145
stability fields of, 147
structure of, 168–169
in upper mantle, 143–144
in various geodynamic settings, 166–168
viscosity-diffusion and, 172
silicate weathering
carbon flux and, 331–333
feedback, 334–338
global rates of, 336–337
silicates, in CLIPPIR diamonds, 114–115
SIMS. See secondary ion mass spectrometry
single-carbon species, 459
single-cell amplified genomes (SAGs), 558–560
single-species ecosystems, 525–526
SiO2
bulk, 135–136
in subduction zone, 291
SIP. See stable isotope probing
Siqueiros Fracture Zone, 245–246
Siqueiros melt inclusion, 246–247
Siqueiros Transform, 240–241
slab-derived fluids, in mantle, 134
slave cratons, 101
SLiMEs. See subsurface lithoautotrophic microbial ecosystems
small polar compounds, 496
small volcanic plumes, 198–201
smectite clays, 464–465
S/N ratio, of BSE, 16–18
snowballs, 346–347
soft-tissue pump, 279–280
Solar reservoir, 8–9
solidus
carbon and, 264
carbonate phase at, 135–136
of carbonated sediment, 135–136
curves, 136
Na-carbonate at, 137
of peridotite, 258
solubility
confined liquids and, 369–370
of DOC, 484
sorption, in sedimentary subsurface, 485–486
sound velocities
of Fe–C alloy, 50
in inner core, 50–51
South African Gold Mine Miscellaneous Euryarchaeal Group (SAGMEG), 534
Southwest Indian Ridge, 255–257
spin transition, 77–78
diagram, 78–79
spot measurements, 195–196
SRB. See sulfate-reducing bacteria
stability fields, in incipient melting, 165–166
stable isotope probing (SIP), 562–563
steady state
in elemental cycling, 315–319
transition to new, 321–322

Published online by Cambridge University Press
steric effects
pore diffusion and, 364–365
surface diffusion and, 364–365
Stromboli, 208
S-type asteroids, 7–9
subaerial volcanic budget, 206–207
sub-arc depths, 133–134
subconduction zone
carbon in, 133
carbonate melts with, 132–134
carbonatites in, 134
cross-section of, 134
subduction, 215, 311
biological evolution and, 294
carbon cycling, 276
cycle, 277
deep carbon, 288–289
flux, 334
sedimentary carbon, 280–281
shelf carbon, 276–278
subduction zones, 300
carbon cycle and, 416–417
carbon flux and, 281
carbon neutrality of, 283–284
carbon solubility and, 284–285
carbon transformation pathways in, 277–278
carbon transport in, 289
dissolution in, 285–287
models of, 310–312
pelagic carbonates in, 296–299
P–T trajectories, 289–290
redox processes in, 290–291
SiO₂ in, 291
sources and sinks, 279–280
tectonic building blocks at, 292–293
thermal anomalies in, 289
water in, 291–292
subduction/collision transition, carbon dynamics at,
292–293
sublithospheric diamonds, 89–90
formation of, 90–91
inclusions in, 96
reduced mantle volatiles in, 94–96
study of, 90–91
sub-seafloor sediments, subsurface biomes, 527–528
substitution reaction
animation as, 430–433
deamination as, 430–433
subsurface biome, 524–526, 572–573. See also continental subsurface;
depth biosphere
adaptations for survival in, 539, 568–569
archaea in, 533–534
of cold oxic basement, 530
continental, 524–527
deep life in, 539–541
defining, 524–525
diffusivity in, 537
ecology in, 536
eukaryotes in, 535–536
evolution of, 536
extreme cellular biophysics in, 570–572
extreme molecular biophysics in, 567–570
 genetic potential of, 558–561
global trends in study of, 533
habitable zones, 525–526
interactions in, 534–535
isolates, 534–535
microbial metabolism in, 562–565
of oceanic crust, 528
of other environments, 532–533
pH of, 537–538
pressure effects in, 567
salinity in, 538
sub-seafloor sediments, 527–528
temperature of, 538–539
of ultra-basic sites, 530–532
viruses in, 536
of warm anoxic basement, 528–530
subsurface lithoautotrophic microbial ecosystems (SLiMEs), 499–502
sulfate-reducing bacteria (SRB), 526–527
sulfide segregation
HSEs and, 16–18
post-core formation, 16–18
sulfur
abundance of, 100–101
atmospheric recycling of, 100–102
biotic recycling of, 100–102
in BSE, 10–12
in Dc alloy/silicate, 25
fractionation of, 18–19
isotope composition, 8
isotope measurements, 101
as magmatic volatile, 188
in mantle, 100–102
in planetary embryos, 26
solar nebula condensation temperature, 14
sulfurization, abiotic, 483–484
sulfide inclusions, 100
S isotopic systematics in, 101
sulfides from OIB, 101–102
redox capacity of, 107–108
supercontinent assembly, 621
carbon cycle and, 625–626
of Rodinia, 623–625
super-deep diamonds
discovery of, 105
DMGC on, 105
Taupo Volcanic Zone (TVZ), 201–204, 217
Tavurvur, 217
TDLS. See tunable diode laser spectrometers
tectonic building blocks, 292
 at subduction zone, 292–293
tectonic carbon cycle, 279, 293–295
temporal variability, 208–209
 of active volcanoes, 208–209
 of calderas, 209
C/S ratios and, 210–211
of emissions, 208–209
eruption forecasting and, 209–211
terrestrial building blocks, 6–7
tertiary alcohols, 436
tetracarbonates, 80–81
TGA. See thermogravimetric analyses
theoretical modeling, constraints from, 6–7
thermal anomalies, in subduction zone, 289
thermochronometer, 92
thermodynamics
 equilibrium, 388–389
 graphite, 465
 methane and, 388–389
 predictions, 457, 465–466
thermogravimetric analyses (TGA), 451–452
time, energy limits and, 606–607
Titan, 457–458
transition zone, carbonated sediment in, 134–138
Tropospheric Ozone Monitoring Instrument
 (TROPOMI), 193
tunable diode laser spectrometers (TDLS), 192
tunneling, 399–400
Turrialba Volcano, 209
TVZ. See Taupō Volcanic Zone
UAVs. See unmanned aerial vehicles
ultra-basic sites, subsurface biome of, 530–532
ultramafic systems
 acetate in, 495
 carbon in, 494
 formate in, 495
 methane in, 494–495
oceanic rocky subsurface and, 493–495
United States Geological Survey (USGS), 623
unmanned aerial vehicles (UAVs), 192, 198
upper mantle
 carbonate melts in, 129
 carbonated sediment in, 134–138
 schematic representations of, 141
 silicate melt in, 143–144
 ureilites, carbon in, 16
Urey reaction, 284–285
USGS. See United States Geological Survey
vapor bubble volumes, 242
vent emissions, 216
Venus, 321
Vesuvio groundwater, 191–192
Vinet equation of state, 171
viruses, in subsurface biome, 536
viscosity-diffusion
 changes in, 172
 incipient melting, 171–172
 silicate melt and, 172
volatile elements. See life-essential volatile elements
volatile gas solubility, in confined liquids, 370–372
volcanic arcs, 284
volcanic carbon
 carbon budget and, 216–217
 flux of, 215
 geologic time and, 215
 limits to knowledge about, 217–218
volcanic carbon dioxide, 190
 advances in, 192–193
volcanic inputs, carbon flux, 328–329
volcanoes and volcanism
 active, 194–197, 208–209, 216
 carbon outgassed from, 211–215
 closed-system, 209
 DCO on, 189–190
 DECADE on, 189–190
 defining, 188
 dormant, 198
 hydrothermal systems and, 204
 petit spot, 179, 238
 small volcanic plumes, 198–201
 subaerial volcanic budget, 206–207
warm anoxic basement, subsurface biome of, 528–530
water. See also dehydration
deep, 105–106
 incipient melting and, 165–166, 170–171
as magmatic volatile, 188
 melt density and, 170–171
 recharge, 487–488
 in subduction zone, 291–292
weathering
 carbonate, 330–331
 continental, 310
 organic carbon, 330–331
 seafloor weathering feedback, 338
 silicate, 331–338
wehrlite, 132
whole-Earth carbon cycle
 box model, 315–316
 modeling, 338–341
World Energy Council, 204
xenoliths, 66–67
X-ray diffraction, 91–92
X-ray emission spectroscopy, 77
X-ray microscope, scanning transmission, 485
Yellowstone, 217
Zimbabwe, 95