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N O N - P A R A L L E L I Z A B I L I T Y O F G R A S S M A N N 
M A N I F O L D S 

BY 

S. T R E W A N D P. Z V E N G R O W S K I 

ABSTRACT. The fact that no real Grassmann manifolds Gk(R
n) 

are parallelizable (or even stably parallelizable) except for the 
obvious cases G^R^^S1, G^R4) = G3{R4) = RP3, and G^R8)^ 
G7(R

S) = RP7 was first noted by Hiller and Stong. Their work in 
turn depends on induction and the work of Oproiu, who examined 
detailed calculations of Stiefel-Whitney classes for fc = 2, 3. In this 
note we give a short proof of this result, using elementary results 
from K-theory, that also covers the complex and quaternionic 
Grassmann manifolds. 

THEOREM. The only Grassmann manifolds that are stably parallelizable (as 
real manifolds) are G # 2 ) , G^IR4)^ G3(IR

4), and GX([R8) = G7(IR
8), where F = R, 

C, or H. 

The proof uses the known characterization of the tangent bundle of Gk(Fn) 
(cf. [5]) and the composite inclusion 

/ : F P « - * s G 1 ( p - k + 1 ) -*> *> G ^ p 1 " 1 ) -4 Gk(Fn), 

where / is the usual inclusion map arising from F n « F n - 1 © F . One shows 
j*(n^-(n-2k + 2)r^_keK^Pn'k), where r is the realification of an F-
vector bundle, r£ k the F-tangent bundle of Gk(Fn), " ~ " is stable equivalence, 
and £n the canonical line bundle over FPm. The proof is completed by 
comparing with the known order of r£*_k ([1], [2], and [4] for F = R, C, H 
respectively). 

This theorem generalizes work of Hiller-Stong [3] and Oproiu [6], who 
obtained the above result for F = IR (in addition to many other results on 
immersions) by examining the Stief el-Whitney classes. 
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